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We study the relativistic Hartree approach with an exact treatment of the vacuum polarization in the Walecka
ss-vd model. The contribution from the vacuum polarization of the nucleon-antinucleon field to the source
term of the meson fields is evaluated by performing the energy integrals of the Dirac Green function along the
imaginary axis. With the present method of calculating the vacuum polarization in finite system, the total
binding energies and charge radii of16O and40Ca can be reproduced. On the other hand, the level splittings in
the single-particle level, in particular the spin-orbit splittings, are not described well because the inclusion of
vacuum effect provides a large effective mass with small meson fields. We also show that the derivative
expansion of the effective action is fairly useful for the estimation of the vacuum effect.
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I. INTRODUCTION

It is well known that the relativistic field theory based on
the hadrons, referred to as quantum hadrodynamics(QHD),
has been very successful in describing the ground states of
finite nuclei[1]. When the energy functional of the relativis-
tic mean field(RMF) is fitted to nuclear saturation, the RMF
model automatically produces an appropriate order of the
spin-orbit splitting of nuclei, the spin-observables of the
proton-nucleus scattering and the energy dependence of the
proton-nucleus optical potential. In RMF, however, only
positive-energy nucleons are taken into account in the calcu-
lation, in spite of the existence of solutions with negative
energy, which is one of the interesting characters of the rela-
tivistic picture. The negative-energy states are observables in
antinucleonic atoms. The bound levels of antinucleonic at-
oms are predicted to be much deeper than those of ordinary
nucleon states since the magnitudes of the nucleon-scalar
and nucleon-vector self-energies, which are very large, can-
cel each other to provide the usual binding energy in the
nucleon sector, while they reinforce each other in the anti-
nucleon sector(see Ref.[2] and references therein). It is
important to study if this feature remains when we treat the
negative-energy states explicitly in the QHD framework.
Knowledge of the depth of antinucleon binding in the
nucleus would be valuable in the search for the exotic col-
lective antimatter production proposed by Greiner[3].

Recently, the gauge invariant nuclear-polarization calcu-
lation was carried out in the relativistic random-phase ap-
proximation(RRPA) based on the RMF theory. It was found
that the RRPA eigenstates with negative energy have a sig-
nificant role, since the transverse form factors of these states
become considerably large[4]. If antinucleons are deeply
bound, the transverse response function has a contribution

from the antinucleon states with an energy lower than twice
the nucleon mass. In that case, electron-scattering or photo-
absorption may confirm the large binding of the antinucleon.
In order to investigate the antinucleon state in the QHD
model, however, we are required to take into account the
contribution of vacuum polarization of the nucleon-
antinucleon field to the mean field for consistency. This
means that the RMF model without vacuum contribution has
to be extended to the full one-nucleon-loop approximation,
which we refer to as the relativistic Hartree approximation
(RHA).

The vacuum contributions and their effects on the bound
states of positive energy were investigated by several authors
within the local-density approximation and the derivative-
expansion method[5–12]. After refitting the parameters of
the model to the properties of spherical nuclei, it was found
that the RHA calculation can reproduce the experimental
data of the binding energies and the rms radii of nuclei as
well as the RMF can. On the other hand, due to the decrease
of the scalar and vector potentials by the feedback from the
vacuum in the RHA calculation, the effective mass of
nucleon becomes large and the binding energy of antinucleon
small compared with the RMF.

Despite the finding of the importance of the vacuum ef-
fect, however, the exact evaluation of one-loop corrections in
a finite nuclear system has never been performed. This is an
exceedingly difficult task, since the exact treatment of
vacuum polarization in finite nuclei requires the computation
of not only the valence nucleon with positive energy but also
an infinite number of negative-energy states. In this context,
an excellent method has been developed in quantum electro-
dynamics(QED) [13,14]; the summation over eigenstates is
replaced by an energy integral of the Dirac Green function
along the imaginary axis in which the Green functions do not
oscillate. With this approach, it is possible to perform the
calculation much faster. Blunden carried out the exact RHA
calculation of QHD in 1+1 dimensions and the calculation
of quantum solitons model in 3+1 dimensions[15,16]. In the
present paper we will apply this method, developed in the
context of atomic physics, to the RHA calculation of QHD.
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This paper is organized as follows. In Sec. II A, we intro-
duce the effective Lagrangian density used in this work and
give the outline of the renormalization in the source term of
meson fields. The method to obtain the renormalized vacuum
densities is given in Sec. II B for the baryon density, and in
Sec. II C for the scalar density. The details of the computa-
tional procedure for the calculation of the vacuum correction
are described in Sec. III. In Sec. IV, the numerical results of
the RHA calculation including vacuum corrections for
baryon and scalar densities are presented for16O and 40Ca
and the effect of the vacuum on the properties of the nucleus
is discussed. In Sec. V, we will also compare our rigorous
method with the local-density approximation and the deriva-
tive expansion. Finally, we give a summary of our calcula-
tion in Sec. VI.

II. RELATIVISTIC HARTREE APPROACH
IN FINITE NUCLEUS

A. Lagrangian density

The nucleus is described as a system of Dirac nucleons
which interact in a relativistic covariant manner through the
exchange of several mesons; the scalar mesonssd produces a
strong attraction, while the isoscalar vector mesonsvd pro-
duces a strong repulsion for the nucleon sector. In the present
work, we employ a Lagrangian density including the photon
sAd, as well as thes andv mesons as
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1

2
]ms]ms −
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denotes counterterms to renormalize the nucleon density
which has a divergence from the vacuum. Since this La-
grangian density includes the nonlinear coupling terms for
the s meson, the one-s-meson loop also can contribute to
the nucleon density[9,11]. In the present paper, however, we
neglect this contribution for the sake of simplicity. Assuming
that the nuclear ground state is spherically symmetric, the
Hartree basis consists of eigenfunctions of the following
Dirac equation:

Fg0SeN − gvv0srd −
1

2
es1 + t3dA0srdD + ig · =

− „mN + gsssrd…GcNsrd = 0. s3d

The meson fieldsv0srd and ssrd satisfy the Klein-Gordon
equations:

s− ¹2 + mv
2dv0srd = gvrv rensrd, s4d

s− ¹2 + ms
2dssrd = − gsrs rensrd − g2s2srd − g3s3srd, s5d

respectively. The renormalized baryonfrv rensrdg and scalar
frs rensrdg densities are given by

rv rensrd =E
C

dz

2pi
Trfg0G

Hsr,r ;zdg + sCTd, s6d

rs rensrd =E
C

dz

2pi
TrfGHsr,r ;zdg + sCTd, s7d

whereGHsr ,r ;zd is the single-particle Green function of the
Hartree approximation with the potential terms of the Dirac
equation(3). The z integrations are carried out along the
modified Feynman contour which lies below the real axis up
to the nuclear Fermi energy[13,14]. The divergences arising
from these integrals are cancelled by the contributions from
the counterterms denoted by CT. This procedure will be dis-
cussed in detail in Sec. II B and II C. The integral along the
Feynman contour can be changed to an integral over the
imaginaryz axis, with additional pole contributions from the
positive-energy states up to Fermi level. Thus, we may write
the unrenormalized baryon and scalar densities as

E
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respectively. Here,GV
H is the vacuum part of the single-

particle Green function of the relativistic Hartree approxima-
tion:

GHsr1,r2;zd = GD
Hsr1,r2;zd + GV

Hsr1,r2;zd, s10d

GD
Hsr1,r2;zd = 2pi o

ei.0

F

dsz− eidcisr1dc̄isr2d, s11d
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GV
Hsr1,r2;zd = o

ei.0

cisr1dc̄isr2d
z− ei + ih

+ o
ei,0

cisr1dc̄isr2d
z− ei − ih

. s12d

The numerical integration forGV
H along the imaginaryz axis

can be carried out straightforwardly, since there are no poles
in the integrand. Although the second terms of right-hand
sides of Eqs.(8) and (9) have divergences, an expansion of
the total vacuum correction in the coupling constantsgv and
gs of the meson fields verifies that all divergences are con-
tained in the first order ofgv for the baryon density, and are
contained in terms up to the third order ofgs for the scalar

density. In the following subsections, we show that these
divergences are removed by taking the proper counterterms
(2) into account.

B. Vacuum correction for the baryon density

In this subsection, we consider the vacuum correction for
the baryon density. For the estimation of the vacuum correc-
tion, we will treat the proton and neutron on an equal foot-
ing, to save numerical effort. In order to deal with the un-
renormalized density containing the divergence, we start
with a perturbative expansion inv ands fields:

E
−i`

+i` dz

2pi
Trfg0GV

Hsr,r ;zdg =E
−i`

+i` dz

2pi
Trfg0G0sr,r ;zdg +E

−i`
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+E
−i`

+i` dz

2pi
TrFE dxg0G0sr,x;zdgsssxdG0sx,r ;zdG + higher order, s13d

whereG0 denotes the Green function for the free Dirac equa-
tion. This expansion allows us to write the vacuum polariza-
tion as a sum of infinite terms, as shown in Fig. 1.

We note that only the second term in the expansion, the
Feynman diagram of which is depicted in Fig. 1(c), contains
an essential divergence of thev-meson self-energy type.
This situation is the same as the vacuum polarization for the
electron-positron field in QED, except for the facts that the
propagating particle is massive and the diagrams including
not only vector mesons but also scalar mesons contribute to
the correction for the baryon density. According to Wich-
mann and Kroll[17], the one-loop vacuum correction may
be obtained by the sum of the finite part of Fig. 1(c) and Fig.
1(a) subtracted by Fig. 1(c). Thus, the renormalized baryon
density from vacuum,rv

V
ren
P srd, is written as

rv
V

ren
P srd = rv

s1d
rensrd + rv

sRdsrd, s14d

whererv
s1d

rensrd, which corresponds to the Uehling term[18]
in QED, denotes the finite contribution from Fig. 1(c) and
can be calculated from the renormalized result in the mo-
mentum representation. Choosing the renormalization point
at q2=0, only a wave function countertermzv is needed to
obtain the finite result:

rv
s1d

rensrd =E dp

s2pd3eip·rv0spd
gv

p2upu2E
0

1

dxxs1 − xd

3lnS1 +
upu2xs1 − xd

mN
2 D , s15d

wherev0spd is the Fourier transform of thev-meson field
v0srd. We estimate the contribution from the lowest order of
gv

2 by this explicit expression numerically. The second term
of Eq. (14), which corresponds to the Wichmann-Kroll term

[17] in QED, is the residual finite density expressed by

rv
sRdsrd = rv

VPsrd − rv
s1dsrd

=E
−i`

+i` dz

2pi
Trfg0GV

Hsr,r ;zdg −E
−i`

+i` dz

2pi

3TrFE dxg0G0sr,x;zdgvg0vsxdG0sx,r ;zdG .

s16d

In the present work, we evaluate the vacuum correction for
the baryon density by using this expression directly. After the
partial-wave expansion in the Dirac angular-momentum
quantum numberk, eachuku contribution of Eq.(16) is still
finite. The partial-wave Green function of the RHA calcu-
lated numerically on the imaginary axis is used in the first
term, while the analytical form of the partial-wave Green
function of the free Dirac equation is used in the second
term.

There are several advantages to the method of solving the
Green function on imaginary axis. For example, we can carry

FIG. 1. Graphical representation of the baryon density in the
self-consistent relativistic Hartree approximation. The double and
single lines denote the Hartree propagator and the free propagator
of the nucleon, respectively. The wavy and dotted lines with cross
represent the vector and scalar potentials given by the previous step
of the Hartree iteration, respectively. The divergence contained in
(a) is caused by the contribution from(c).
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out the integration overz without bothering with the poles. In
addition, we can employ Gaussian quadrature for the radial
integral in the second term of the right-hand side of Eq.(16),
as well as the integration overz, because the Green function
on the imaginary axis behaves like the modified Bessel func-
tion, which is not an oscillating function. As a result, the
vacuum correction can be obtained very fast and with high
precision, and it is possible to perform the RHA calculation
with a practical computational time.

It should be noted that, according to naive power count-
ing, rv

sRdsrd contains a superficially divergent contribution
with the threev mesons attached to the baryon loop, but this
contribution actually vanishes as a result of current conser-
vation. In QED, ways of calculating this term have been
discussed by many authors[13,17,19] and it is well known
that this contribution vanishes if the summation overk is
restricted to a finite number of terms. In this case, thek-tail
contribution is given by the extrapolation. This conclusion is
valid for the present case, since the neutralv-meson couples
to the conserved baryon current. Hence, Eq.(14), together
with Eqs.(15) and(16), can be used to calculate the vacuum
correction for the baryon density numerically.

C. Vacuum correction for the scalar density

Next, we consider the vacuum correction for the scalar
density. The regularization procedure for the scalar density is
performed by using the same concept as we did for the
baryon density. One can easily see that the perturbative ex-
pansion of the Hartree vacuum correction for the scalar den-
sity, corresponding to Eq.(13) gives the Feynman diagrams
depicted in Fig. 2, where the four diagrams from Fig. 2(b) to
2(e) are divergent.

The scalar density is renormalized by the
countertermsa1ssrd+1/2a2s2srd+1/3a3s3srd+1/4a4s4srd
+1/2zs]mssrd]mssrd in dL. The finite part of Fig. 2(c) is
calculated from the renormalized result in the vacuum. The
masssa2d and wave functionszsd counterterms are required
to make the contribution finite. The result is then given by

rs ren
s1d srd =E dp

s2pd3eip·rsspd
3gs

2

2p2F1

6
upu2 −E

0

1

dx„mN
2

+ upu2xs1 − xd…lnS1 +
upu2xs1 − xd

mN
2 DG , s17d

where sspd is the Fourier transform ofssrd and we have
chosenq2=0 for the renormalization point. The physical
vacuum contribution for the scalar density is given by the
sum of rs ren

s1d srd and the residual finite density denoted by
rs

sRdsrd:

rs ren
VP srd = rs ren

s1d srd + rs
sRdsrd, s18d

where the residual finite densityrs
sRdsrd includes the finite

contributions arising from Figs. 2(b), 2(d), and 2(e). The fi-
nite residual vacuum densityrs

sRdsrd is evaluated by subtract-
ing the contribution of Fig. 2(c) and the counterterms from
the unrenormalized divergent scalar density:

rs
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+i` dz

2pi
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−E
−i`

+i` dz

2pi
TrFE dxG0sr,x;zdgsssxdG0sx,r ;zdG

− „a1 + a3s2srd + a4s3srd…/gs, s19d

where the coefficientsa1,a3, anda4 of the counterterms are
given by

a1 = gsE
−i`

+i` dz

2pi
TrfG0sr,r ;zdg, s20d

a3 = gs
3E

−i`

+i` dz

2pi
TrFE dx1dx2G

0sr,x1;zdG0sx1,x2;zdG0sx2,r ;zdG , s21d

a4 = gs
4E

−i`

+i` dz

2pi
TrFE dx1dx2dx3G

0sr,x1;zdG0sx1,x2;zdG0sx2,x3;zdG0sx3,r ;zdG . s22d

FIG. 2. Graphical representation of the scalar density in the
self-consistent relativistic Hartree approximation. The same nota-
tion as in Fig. 1 is used. The divergence contained in(a) is caused
by the contributions from(b) to (e).
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We note thata1,a3, anda4 are independent ofr, though it is
still present in the right-hand side of these expressions. Per-
forming the partial-wave expansion in free Green functions,
however, eachuku contribution to the coefficients depends on
the radial partr. With these partial-wave subtraction terms,
the scalar density is calculated for eachuku. The net effect of
the scalar density generated from the vacuum polarization is
obtained by taking the extrapolationukmaxu→`.

III. COMPUTATIONAL DETAILS FOR
THE VACUUM CORRECTION

As has been explained in the previous section, therv ren
s1d

and rs ren
s1d contributions are calculated from the explicit

forms (15) and (17). They contribute by a small amount as
discussed below. Therefore, we explain here mainly the esti-
mation of the residual contributions defined by Eqs.(16) and
(19). We write the radial part of the residual baryon and
scalar densities as

rv ren
R srd = o

uku=1

ukmaxu

rv ren,uku
R srd s23d

and

rs ren
R srd = o

uku=1

ukmaxu

rs ren,uku
R srd, s24d

respectively. Here,rv ren,uku
R srs ren,uku

R d represents the contribu-
tion from uku= ±k to net residual baryon(scalar) density. We
computerv ren,uku

R and rs ren,uku
R using the angular momentum

decomposed form of Eqs.(16) and (19). The details of our
calculation follow here. For the respective contributions of
uku in Eqs. (16) and (19), we carry out the integral overiz
using Gaussian quadrature. The radial Green functions with
imaginary energy are given in terms of the two solutions of
the Dirac equation: the one regular atr =0 and the one regu-
lar for r →`. Several values for the upper and lower limits of
the integral overz are selected, depending on the radius pa-
rameter r around 20i –50i GeV. The vacuum densities
rv ren,uku

R srd andrs ren,uku
R srd for zmax→` are extrapolated from

the resulting integrated values. Subsequently, the sum over
uku is performed up to the cutoffukmaxu. This sum overuku
does not converge very rapidly. In the present work,ukmaxu
for the baryon density is 33 for both of16O and40Ca, while
ukmaxu for the scalar density is 36 for16O and 48 for40Ca.
Finally, we have extrapolated theuku contribution to larger
values to obtain the convergent vacuum densities. As an ex-
ample, the contributions fromuku=5, 10, 15, 20, 25, and 30
for in 16O are shown in Fig. 3.

An accuracy test for the computed vacuum correction of
the baryon densityrv ren

R srd is provided by the requirement
that the total induced vacuum correction should vanish due
to the conservation of baryon density,

DB = 4pE
0

`

drr2rv ren
R srd = 0. s25d

In the present calculation, with various QHD parameters, we
found DB,10−3 as a typical value for both16O and 40Ca.

For the scalar density, on the other hand, there are no con-
straints from conservation laws. However, it would be rea-
sonable to expect the numerical error in the scalar density to
be of the same order of magnitude as the one in the baryon
density.

In Sec. II B, we mentioned that the divergence of the un-
renormalized baryon density in the present model has the
same structure as the unrenormalized vacuum charge density
of the electron-positron field in the QED correction. How-
ever, the dependence on the partial-wave contribution is
largely different from that for the QED case: a largeukmaxu is
required to achieve the convergence as seen in Fig. 3, while
for the renormalized charge density in QED the term with
ukmaxu=1 gives a good approximation[13]. In addition, it
should be pointed out that Eqs.(15) and (17) are negligible
for the present calculation, i.e.,rv ren

s1d andrs ren
s1d are an order

of magnitude smaller than the residual densities. This stands
in contrast with the QED calculation, in which the corre-
sponding contribution, known as the Uehling effect, has a
dominant contribution[19]. These differences from QED
seem to be caused by thev-s couplings as well as the large
coupling constant of the nuclear force. In particular, the
baryon density, the source of thev meson, is strongly influ-
enced by thes meson. This is shown in Fig. 4, where the
baryon densitiesrv ren

s1d srd with and without s meson are
compared; it is clear from that graph that the vacuum correc-
tion for the baryon density is negligibly small if only thev
meson is taken into account. We found that the baryon den-
sity induced by the vacuum polarization comes from dia-
grams withs-meson self-energy insertions mainly.

FIG. 3. The contributions fromuku=5, 10, 15, 20, 25, and 30 to
(a) the baryon densityrv ren,uku

R srd and (b) the scalar density
rs ren,uku

R srd.
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IV. RESULTS AND DISCUSSION

Here, we show the results of the relativistic Hartree cal-
culation with a rigorous treatment of renormalized densities
in 16O and40Ca, based on the Lagrangian density of Eq.(1).
The numerical procedure of the present RHA calculation is
similar to that used in the conventional RMF calculation;
firstly, the Dirac equation(3) is solved under the externalv
ands fields, for the valence nucleons only. Secondly, using
the same potential, we calculate the vacuum densities by
means of the Green function described in the previous sec-
tion. Thirdly, the equations of motion of mesons, Eqs.(6)
and (7), are solved with the source terms due to the valence
nucleons and vacuum contributions. Substituting these re-
sults in the Dirac equation, we complete one iteration step.
Using the same method as indicated in the previous section,
the energy shift due to the vacuum polarization is estimated
by

EVP =E drFE
−i`

+i` dz

2pi
Trfg0

„GV
Hsr,r ;zd

− G0sr,r ;zd…gz+ sCTdG , s26d

CT= − 1/4zvs¹v0d2 + 1/2zss¹sd2 + a1s + 1/2a2s2

+ 1/3a3s3 + 1/4a4s4, s27d

which is calculated at each iteration. The iteration is contin-
ued until the total binding energy of the nucleusEtotal
=Emeson+Evalence+EVP converges, showing self-consistency.

The QHD parameter set is chosen so as to reproduce rea-
sonably well the experimental values of the total binding
energies, the rms radii, and the single-particle energies for
both of 16O and40Ca. In the second column of Table I, we
give the results with the coupling constants and massesgs

=7.38,g2=7.90,g3=3.20, andms=458.0 MeV for thes me-
son, andgv=9.18 andmv=783.0 MeV for thev meson. The
results of the RMF calculation with the parameter set TM2
[20] and experimental data taken from Ref.[21] are also
shown in the third and last columns, respectively. We see that
our total binding energies including the vacuum correction
and rms radii are similar to those of RMF and agree with the
experimental data well.

The vacuum contribution plays a crucial role for the gen-
eration of the weak meson fields. In Fig. 5, we plot the

s-meson field in nuclear matter as a function of the coupling
constantgs while keeping the other parameters fixed. The
figure shows that the vacuum correction contributes destruc-
tively to the valence contribution, and it is impossible to
obtain a strong meson field unless a very large coupling con-
stant is used. We could of course choose such a parameter set
with large coupling constants. However, this would have pro-
duced an unstable solution in the RHA calculation, since the
deeply-bound antinucleon states produced by the strongv
ands fields with large coupling constants, imply to produce
a large vacuum effect, which works in the opposite direction.
Such a RHA solution is not realistic, because it is unstable
even for trivial fluctuations in the nucleon density. Hence, we
have to choose a parameter set which produces a weak field
in the self-consistent iteration.

The RMF reproduces the observed tendency of the single-
particle spectra reasonably well, due to the small effective
mass of the nucleon,mN

* srd=mN+gsssrd. The fact that the
scalar field is suppressed in the RHA results in the large
effective mass. As a result, it raises a problem in fitting the
single-particle energies. As seen in Table I, the energy split-
tings in the single-particle states of the present RHA are very
small, and they are unlikely to agree with the experimental
values. This is a known problem, from previous RHA calcu-
lations, using the local-density approximation and the deriva-
tive expansion to estimate the vacuum correction[8,11]. It is
difficult to resolve this problem in the RHA with the ordinary
QHD models, used up to now.

Thus the QHD models require a mechanism for producing
the spin-orbit splittings, other than the small effective mass.
One suggestion is made in Refs.[12,23], where a tensor-
coupling of thev meson is introduced in order to provide the
spin-orbit splittings. However, thev-meson coupling with
the nucleon is known to be dominated by the vector coupling
in the nucleon-nucleon potential. Another candidate to solve
this problem may be the possibility of the finite pion mean
field in the relativistic Hartree framework, which was sug-
gested to provide the spin up and spin down partners with
large energy separations[22]. It is interesting to extend the
present RHA calculation by taking these effects into account.
This is certainly a subject to be worked out in a future study.

V. COMPARISON WITH THE PREVIOUS METHOD FOR
THE VACUUM POLARIZATION

The effect of the negative-energy nucleons for finite nu-
clei was first estimated by the local-density approximation
[5,7,9]. It was developed further by applying the derivative-
expansion method[6,8,11,12]. In this section, we compare
our resulting densities, induced by the vacuum polarization,
with those of the local-density approximation and the
derivative-expansion method. The local-density approxima-
tion uses as input results from the calculations of the infinite
nuclear matter. In this approximation, the vacuum correction
is given by

rs,ren
VPsLDA dsrd = −

1

p2fmN
*3srdlnsmN

* srd/mNd + 1/3mN
3

− 3/2mN
2mN

* srd + 3mNmN
*2srd − 11/6mN

*3srdg,

s28d

and the scalar density decreases in the nuclear interior. The

FIG. 4. Comparison between the baryon densities with and
without thes-meson contribution. The latter is given by solving the
Dirac Green function with thev-meson field only.
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vacuum does not change the baryon density, because of the
conservation of the baryon number. In the derivative-
expansion method, on the other hand, the presence of the
derivative term allows a nonvanishing correction for the
baryon density, as well as for the scalar density:

rv,ren
VPsDEdsrd = −

gv

3p2 = · lnSmN
* srd
mN

D = v0srd, s29d

rs,ren
VPsDEdsrd = rs,ren

VPsLDA dsrd −
gs

2p2 = · lnSmN
* srd
mN

D = ssrd

−
gs

2

4p2mN
* srd

„=ssrd…2 +
gv

2

6p2mN
* srd

„=vsrd…2,

s30d

where only the leading order of the derivative terms is taken
into account. The baryon and scalar densities induced by the
vacuum polarization are given in Fig. 6, together with those
from the local-density approximation and the derivative ex-
pansion. There, for purpose of comparison, we assume the
same potential in evaluating the vacuum polarization. We can
see that the densities obtained by the local-density approxi-
mation are corrected significantly, not only for the baryon
density, which vanishes in this approximation, but also for
the scalar density. Both the scalar and baryon density profiles

TABLE I. The total binding energies, the rms charge radii, and the single-particle energies in16O and
40Ca.

Present RHA TM2 Experiment

16O

Etotal/AsEVP/Ad sMeVd 8.05(1.69) 7.93s−d 7.98s−d
rch sfmd 2.65 2.67 2.74

Single particle state of proton

1s1/2 sMeVd 31.0 38.2 40±8

1p3/2 sMeVd 15.6 18.6 18.4

1p1/2 sMeVd 13.3 11.1 12.1

Single particle state of neutron

1s1/2 sMeVd 35.6 42.3 45.7

1p3/2 sMeVd 19.7 22.4 21.8

1p1/2 sMeVd 17.4 14.8 15.7
40Ca

Etotal/AsEVP/Ad sMeVd 8.47(2.23) 8.48s−d 8.55s−d
rch sfmd 3.42 3.50 3.45

Single particle state of proton

1s1/2 sMeVd 36.5 45.2 50±11

1p3/2 sMeVd 25.5 30.7

1p1/2 sMeVd 24.0 36.2 34±6

1d5/2 sMeVd 13.5 16.1

1d3/2 sMeVd 11.0 8.7 8.3

2s1/2 sMeVd 9.1 8.5 10.9

Single particle state of neutron

1s1/2 sMeVd 45.5 53.1

1p3/2 sMeVd 33.8 38.3

1p1/2 sMeVd 32.3 33.8

1d5/2 sMeVd 21.2 23.4

1d3/2 sMeVd 18.7 15.9 15.6

2s1/2 sMeVd 16.9 15.6 18.1

FIG. 5. The scalar potential in nuclear matter. As-meson mass
ms=458.0 and a Fermi momentumkF=1.42 are employed.s0 de-
notes the ordinarys-meson field, generated from the valence nucle-
ons whilesVac denotes the contribution from the vacuum. Due to
the cancellation between them, the nets-meson field does not in-
crease smoothly with the coupling constant,gs.
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obtained by the present calculation are in a surprisingly good
agreement with those of the derivative expansion.

However, this cannot always be the case[16], and the
excellent agreement between our method and the leading-
order derivative expansion can be attributed to the specifics
of the s-v model. Consider, for example, the vacuum cor-
rection in the baryon density withouts meson. Using the
present method, the vacuum correction in this situation can
turn out to be significant with a large coupling constant of
the v meson. As found in Eq.(29), on the other hand, the
vacuum correction from the derivative expansion vanishes
exactly formN

* srd→mN. Hence, we find thats meson plays
an important role in the agreement between our method and
the leading-order derivative expansion. Thus the present cal-
culation supports that the leading-order derivative expansion
is greatly useful for the estimation of the vacuum correction
in the RHA.

In the present calculation of the full RHA for finite nuclei,
the vacuum-polarization corrections(15) and(17) to the me-
son propagators are implicitly taken into account to all orders
by the iteration method achieving the self-consistency in the
relativistic Hartree approximation. There, the unphysical
pole in the meson propagator at finite momentum transfer,
known as the Landau ghost, may affect the present numerical
results[7,24] through integration over the momentum trans-
fer. However, this unphysical effect is not significant in the
RHA of finite nuclei, because even if the(15) and(17) terms

are totally ignored in the calculation, the final results for the
scalar and vector densities do not change appreciably. The
good agreement with the results of the derivative expansion,
where the Landau ghost plays no role, also implies that the
unphysical effect is negligible.

VI. SUMMARY

We have developed a rigorous method to calculate
vacuum-polarization effects in the relativistic Hartree ap-
proach. The renormalized baryon and scalar densities have
been evaluated within a practical computational time by re-
placing the summation over the Hartree basis by the numeri-
cal integral of the Dirac Green function over the imaginary
energy. We have obtained numerical results, indicating that
the vacuum corrections for the baryon and scalar densities
are non-negligible in the RHA calculation.

Our results, exploiting the Walecka model, have repro-
duced the experimental binding energies and rms radii of16O
and 40Ca nicely, after adjustment of the parameters. How-
ever, it was impossible to find a QHD parameter set capable
of reproducing the spin-orbit splittings in accordance with
the observed data and as required by the nuclear shell model.
In the s-v model, the main attraction is caused by the large
s-mean field, which provides a small nucleon effective mass
in finite nuclei. However, the negative-energy nucleons will
acquire a mass differing from that of the free nucleon only
reluctantly. On the whole, the effective nucleon mass re-
mains quite large, implying that the spin-orbit splittings in
the single particle spectra come out very small. The QHD
type effective theory based on thes-v mesons, then, needs
to include new types of interaction terms and/or go beyond
the RHA approximation to solve this problem.

We have found that our results from the RHA calculation
are very similar to those in Refs.[6,11], where the
derivative-expansion method was used to estimate the
vacuum polarization. In particular, it has been shown that the
agreement of the density profiles of the vacuum correction is
quite good. Thus the validity of this approximation has been
confirmed by the present calculation.
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