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Relativistic Hartree approach with exact treatment of vacuum polarization for finite nuclei
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We study the relativistic Hartree approach with an exact treatment of the vacuum polarization in the Walecka
(0-w) model. The contribution from the vacuum polarization of the nucleon-antinucleon field to the source
term of the meson fields is evaluated by performing the energy integrals of the Dirac Green function along the
imaginary axis. With the present method of calculating the vacuum polarization in finite system, the total
binding energies and charge radii’60 and*°Ca can be reproduced. On the other hand, the level splittings in
the single-particle level, in particular the spin-orbit splittings, are not described well because the inclusion of
vacuum effect provides a large effective mass with small meson fields. We also show that the derivative
expansion of the effective action is fairly useful for the estimation of the vacuum effect.
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[. INTRODUCTION from the antinucleon states with an energy lower than twice

the nucleon mass. In that case, electron-scattering or photo-

absorption may confirm the large binding of the antinucleon.

In order to investigate the antinucleon state in the QHD
odel, however, we are required to take into account the

. ; - : contribution of vacuum polarization of the nucleon-
tic mean field RMF) is fitted to nuclear saturation, the RMF antinucleon field to the mean field for consistency. This

model automatically produces an appropriate order of theneang that the RMF model without vacuum contribution has
spin-orbit splitting of nuclei, the spin-observables of they, o extended to the full one-nucleon-loop approximation,
proton-nucleus scat'terlng and'the energy dependence of tk}ﬁﬂch we refer to as the relativistic Hartree approximation
prot_o_n-nucleus optical potential. Ir_1 RMF, how_ever, only RHA).

positive-energy nucleons_are taken into account in the Ca_‘lcu' The vacuum contributions and their effects on the bound
lation, in spite of the existence of solutions with negativegsa of positive energy were investigated by several authors

energy, which is one of the interesting characters of the rela\ivithin the local-density approximation and the derivative-

tivistic ;:l)lctu_re. The ne_grﬂtlvE-enedrgly st?tesfare pbs?rvaples Epansion metho@5-12. After refitting the parameters of
antinucleonic atoms. The bound levels of antinucleonic aty,q gl to the properties of spherical nuclei, it was found

oms are predicted to be much deeper than those of ordina%

nucleon states since the magmtude; of the nucleon—scala&ta of the binding energies and the rms radii of nuclei as
and nucleon-vector self-energies, which are very large, cange a5 the RMF can. On the other hand, due to the decrease
cel each other to prowde th_e usual binding energy n th.eof the scalar and vector potentials by the feedback from the
nucleon sector, while they reinforce each other in the antiy,acuum in the RHA calculation. the effective mass of

nucleon sectosee Ref.[2] and references thereinlt is 01600 hecomes large and the binding energy of antinucleon
important to study if this feature remains when we treat thesmall compared with the RMF

negative-energy states explicitly in the QHD framework. Despite the finding of the importance of the vacuum ef-

Knowledge of the depth of antinucleon binding in thefect, however, the exact evaluation of one-loop corrections in

nuc]eus W.OUId be valuab!e in the search for the exotic COI'a finite nuclear system has never been performed. This is an
lective antimatter production proposed by Greifi&

R V. th ; ! | larizati | exceedingly difficult task, since the exact treatment of
Recently, the gauge invariant nuclear-polarization calcus e, m polarization in finite nuclei requires the computation
lation was carried out in the relativistic random-phase ap

o ‘of not only the valence nucleon with positive energy but also
proximation(RRPA) based on the RMF theory. It was found o infinite number of negative-energy states. In this context,

th"’.‘t the RRPA eigenstates with negative energy have a sSigi, oy cellent method has been developed in quantum electro-
nificant role, since the transverse form factors of these stat

b derably larcl. If inucl deen| (?:fynamics(QED) [13,14; the summation over eigenstates is
ecome considerably largé]. It antinucleons are deeply  o55069 by an energy integral of the Dirac Green function

bound, the transverse response function has a contributiog‘]ong the imaginary axis in which the Green functions do not
oscillate. With this approach, it is possible to perform the
calculation much faster. Blunden carried out the exact RHA

It is well known that the relativistic field theory based on
the hadrons, referred to as quantum hadrodyna@é$D),
has been very successful in describing the ground states
finite nuclei[1]. When the energy functional of the relativis-

*Electronic address: haga@rcnp.osaka-u.ac.jp calculation of QHD in 1+1 dimensions and the calculation
"Electronic address: stame@rcnp.osaka-u.ac.jp of quantum solitons model in 3+1 dimensidi$,1§. In the
*Electronic address: toki@rcnp.osaka-u.ac.jp present paper we will apply this method, developed in the
SElectronic address: horikawa@sakura.juntendo.ac.jp context of atomic physics, to the RHA calculation of QHD.
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This paper is organized as follows. In Sec. Il A, we intro-
duce the effective Lagrangian density used in this work and

give the outline of the renormalization in the source term of

meson fields. The method to obtain the renormalized vacuum —(my+g,0(0) i) =0 3)
densities is given in Sec. Il B for the baryon density, and in M+ g, () |¥n(r) =0.

Sec. Il C for the scalar density. The details of the computa-

tional procedure for the calculation of the vacuum correctionThe meson fieldsoy(r) and o(r) satisfy the Klein-Gordon
are described in Sec. Ill. In Sec. IV, the numerical results ofequations:

the RHA calculation including vacuum corrections for

baryon and scalar densities are presented™6r and“°Ca (= V2 4+ M) (1) = Yooy re1) (4)
and the effect of the vacuum on the properties of the nucleus

is discussed. In Sec. V, we will also compare our rigorous V242 —_ _ 3

method with the local-density approximation and the deriva- (V2 M0 = = 0abirrend) = G20 (1) = G07(1). ()
tive expansion. Finally, we give a summary of our Ca|CU|a-respective|y_ The renormalized barypm, .(r)] and scalar
tion in Sec. VI. [psren(r)] densities are given by

1
7’0<€N —g,wo(r) — Ee(l + Ts)Ao(r)) +iy-V

dz
Il. RELATIVISTIC HARTREE APPROACH Peorerl) :J ETF[VOGH(r,r;Z)] +(CT), (6)
IN FINITE NUCLEUS c

A. Lagrangian density

dz
The nucleus is described as a system of Dirac nucleons Poredr) = fc ﬁTr[GH(r,r;z)] +(CD, (7
which interact in a relativistic covariant manner through the
exchange of several mesons; the scalar méspproduces a  whereGH(r,r;2) is the single-particle Green function of the
strong attraction, while the isoscalar vector me$eh pro-  Hartree approximation with the potential terms of the Dirac
duces a strong repulsion for the nucleon sector. In the preseBhuation(3). The z integrations are carried out along the
work, we employ a Lagrangian density including the photonmodified Feynman contour which lies below the real axis up

(A), as well as ther and @ mesons as to the nuclear Fermi enerdt3,14. The divergences arising
from these integrals are cancelled by the contributions from
— 1 1 1 the counterterms denoted by CT. This procedure will be dis-
Ln= iy, — my) iy + Eﬂﬂm?"cf- Emioz- 59203 cussed in detail in Sec. Il B and Il C. The integral along the
Feynman contour can be changed to an integral over the
1,1 , 1, “ imaginaryz axis, with additional pole contributions from the
- Zf93‘r - Z(&u“’v — 0yw,)" Emw“’u‘” positive-energy states up to Fermi level. Thus, we may write

the unrenormalized baryon and scalar densities as

1 _ —
- _(&MAV - (?VA;/,)Z - gowNa-le - gwwN’)’,uw”’lr//N
4 dz 0H
S Ty G (r,r;2)]

1 I
- Ee‘/fN(l +73) Y, Ay = L, (1) F o g
=2 w?(r)wi(r)—f 2—Z.Tr[7°GC(r,r;Z)], (8)
>0 —jo Tl
where '
1 1 1 f ETr[GH(r r:z)]
oL=- Zg“w((?ﬂw,, - 0,,(1)#)2 + E§U&M0'(9“O'+ a0+ Eazaz ¢ 2 o
F +ioo
+ S+ 20t @ = S UOum + f il ©
3 4 a=0 L 2

denotes counterterms to renormalize the nucleon densifgSPectively. HereGy is the vacuum part of the single-
which has a divergence from the vacuum. Since this Lap_arhcle Green function of the relativistic Hartree approxima-
grangian density includes the nonlinear coupling terms fotlon:

the o meson, the one~meson loop also can contribute to H Y Y

the nucleon densit§9,11]. In the present paper, however, we G(ry,r2;2) = Gp(ry,rz;2) + Gy(ry,ra;2), (10
neglect this contribution for the sake of simplicity. Assuming

that the nuclear ground state is spherically symmetric, the F _
Hartree basis consists of eigenfunctions of the following Gh(ry,r;2) =271 D, 8(z— €)di(r)ui(ry), (11)
Dirac equation: 6>0
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" density. In the following subsections, we show that these
G\H,(rl,rz;z) = E LAG W) rl)l/"(rZ) l’/,'(rl)l’//'(_rZ). (12 divergences are removed by taking the proper counterterms
S0 ZT&+in oo ZT &~y (2) into account.

The numerical integration fo@v along the imaginary axis

can be carried out straightforwardly, since there are no poles
in the integrand. Although the second terms of right-hand In this subsection, we consider the vacuum correction for
sides of Eqs(8) and(9) have divergences, an expansion of the baryon density. For the estimation of the vacuum correc-
the total vacuum correction in the coupling constapf@nd  tion, we will treat the proton and neutron on an equal foot-

g, of the meson fields verifies that all divergences are coning, to save numerical effort. In order to deal with the un-

tained in the first order of, for the baryon density, and are renormalized density containing the divergence, we start
contained in terms up to the third order @f for the scalar with a perturbative expansion i and o fields:

B. Vacuum correction for the baryon density

+joo d +joo d +joo
f —Z,Tr[yOG\H,(r,r;z)]:J —Z_Tr[yoGo(r,r;z)]+J —Z_Tr{fdeOGO(r,x;z)gwyow(x)Go(x,r;z)
21 i 2 2

=i —joo

+joo
+f Z—%Tr{f deOGO(r,x;z)gocr(x)Go(x,r;z)} + higher order, (13

e

whereGP denotes the Green function for the free Dirac equa{17] in QED, is the residual finite density expressed by
tion. This expansion allows us to write the vacuum polariza-

tion as a sum of infinite terms, as shown in Fig. 1. pR(r) = pot(r) = p(r)
We note that only the second term in the expansion, the oy He gy
Feynman diagram of which is depicted in Figc)l contains =f —Tr[Y°G(r,r;2)] - —
an essential divergence of the-meson self-energy type. ~ico 2771 ~ico 2771
This situation is the same as the vacuum polarization for the
electron-positron field in QED, except for the facts that the XTr{f deOGO(r,x;z)gwyow(x)Go(x,r;z)}.
propagating particle is massive and the diagrams including
not only vector mesons but also scalar mesons contribute to (16)

the correction for the baryon density. According to Wich- ion f
mann and Kroll[17], the one-loop vacuum correction may In the present work, we evaluate the vacuum correction for

be obtained by the sum of the finite part of Figcland Fig. the baryon density by using this expression directly. After the

1(a) subtracted by Fig. (t). Thus, the renormalized baryon Partial-wave expansion in the Dirac angular-momentum
density from vacuumpvﬁan(r), is written as quantum numbek, each|x| contribution of Eq.(16) is still

finite. The partial-wave Green function of the RHA calcu-

eren (r)= Pw ren(r) +p<R>(r), (14) lated numerically on the imaginary axis is gsed in the first
term, while the analytical form of the partial-wave Green

Wherepf)ren(r), which corresponds to the Uehling tefiiB] function of the free Dirac equation is used in the second

in QED, denotes the finite contribution from Figict and  term.

can be calculated from the renormalized result in the mo- There are several advantages to the method of solving the

mentum representation. Choosing the renormalization poinGreen function on imaginary axis. For example, we can carry

at g°=0, only a wave function counterterg), is needed to

obtain the finite result:
pw ren(r) J elpr p) |p|zf dxx(l _X)
(a) (b) (c) (d)

(2m)®

2 -
><In<1 +|p|)((—]éx)), (15) FIG. 1 Graphicql_rgpresentation of the bgryon density in the
self-consistent relativistic Hartree approximation. The double and

mN
. . . single lines denote the Hartree propagator and the free propagator
where wo(p) is the Fourier transform of the-meson field  of the nucleon, respectively. The wavy and dotted lines with cross

wo(r) We estimate the contribution from the lowest order of epresent the vector and scalar potentials given by the previous step
g2 by this explicit expression numerically. The second termof the Hartree iteration, respectively. The divergence contained in
of Eq. (14), which corresponds to the Wichmann-Kroll term (a) is caused by the contribution frofa).
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vacuum correction can be obtained very fast and with high

precision, and it is possible to perform the RHA calculation

with a practical computational time. FIG. 2. Graphical representation of the scalar density in the
It should be noted that, according to naive power countself-consistent relativistic Hartree approximation. The same nota-

ing, PEUR)(r) contains a superficially divergent contribution tion as in Fig. 1 is used. The divergence containe¢bjris caused

with the threew mesons attached to the baryon loop, but thisby the contributions frontb) to (e).

contribution actually vanishes as a result of current conser- 2 1

vation. In QED, ways of calculating this term have been p<l)ren(r):f iseip-ra(p)%lﬁmz_f dx(n,

discussed by many authof$3,17,19 and it is well known 7 (2m) 27°| 6 0

that this contribution vanishes if the summation owvers Ip2x(1 %)

restricted to a finite number of terms. In this case, thiail +|p|x(1 —x))In(l +—2>} , 17

contribution is given by the extrapolation. This conclusion is My

valid for the present case, since the neuiwaheson couples |\ here o(p) is the Fourier transform of(r) and we have

to the conserved baryon current. Hence, Bif)), together  choseng?=0 for the renormalization point. The physical

with Eqgs.(15) and(16), can be used to calculate the vacuumyacuum contribution for the scalar density is given by the

correction for the baryon density numerically. sum of p _(r) and the residual finite density denoted by

pRr):

out the integration ovex without bothering with the poles. In X X
addition, wg can employ Gaussian quagdrature fo? the radia IO + Ox * Ox * Oxx
integral in the second term of the right-hand side of @®), @ = ©) © @ ®
as well as the integration over because the Green function
on the imaginary axis behaves like the modified Bessel func- @ X
tion, which is not an oscillating function. As a result, the |OMX + Q’( i

U]

(@ (h)

Pared1) = pP (1) + pR(1), (18)

where the residual finite densitg’f)(r) includes the finite

Next, we consider the vacuum correction for the scalaicontributions arising from Figs.(B), 2(d), and 2e). The fi-
density. The regularization procedure for the scalar density igjte residual vacuum densigéf)(r) is evaluated by subtract-
performed by using the same concept as we did for theng the contribution of Fig. @) and the counterterms from

baryon density. One can easily see that the perturbative exhe unrenormalized divergent scalar density:
pansion of the Hartree vacuum correction for the scalar den-

C. Vacuum correction for the scalar density

+joo

sity, corresponding to Eq13) gives the Feynman diagrams p(R)(r) - ETr[GU(r r:2)]
depicted in Fig. 2, where the four diagrams from Figh)2o 7 i 27T n
2(e) are divergent. +ioo
The scalar density is renormalized by the _ f _ZT{ f dxGO(r,x;2)g,0(X)GO(X, T :2)
countertermsa; o(r) + 1/ 2a,02(r) + 1/ 3a30°(r) + 1/ 4aya(r) i 27 R "

+1/2(,d,0(r)d*a(r) in 6L. The finite part of Fig. &) is _ 3
calculated from the renormalized result in the vacuum. The (e + ag0™(1) + aqo™()/g,, (19
mass(a,) and wave function({,,) counterterms are required where the coefficienta,, a5, anda, of the counterterms are
to make the contribution finite. The result is then given by given by

" dz
@1=0, f —Ti[G%r,r;2)], (20)
—joo 27T|
_ 3™ dz 0 R A0 )
=0, | ﬁTr dx,dx,G™(r,X1;2)G"(X1,X2;2)G"(X5,1;2) |, (21)
i
+ijoo d
a=g; f _ Z—;Tr{ f dxldxzdstO(r,xl;Z)GO(xl,XZ;Z)Go(xz,xs;Z)GO(xa,r;Z)]. (22
i
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We note thaty,, a3, ande, are independent of, though it is -
still present in the right-hand side of these expressions. Per- £
forming the partial-wave expansion in free Green functions, —
however, eaclw| contribution to the coefficients depends on x
the radial partr. With these partial-wave subtraction terms, =
the scalar density is calculated for edeh The net effect of 3
the scalar density generated from the vacuum polarization is N
obtained by taking the extrapolatiory,,, — . $
0 1 2 3 4 5
Ill. COMPUTATIONAL DETAILS FOR
THE VACUUM CORRECTION r [fm]
As has been explained in the previous section,plflu]l) N —
and pffl)ren contributions are calculated from the explicit g 0.01
forms (15) and (17). They contribute by a small amount as =
discussed below. Therefore, we explain here mainly the esti- X 000
mation of the residual contributions defined by Ed$) and = ] A
(19). We write the radial part of the residual baryon and «5‘ 00 N
scalar densities as Q A —o |xfs2s
] -0.02 \\—}/ xE30
|Kma>J s 5 ! i 1
05 )= 2 g reniyl(1) (23) o v 2z 34
[k]=1
. r [fm]
an
P FIG. 3. The contributions fronfk|=5, 10, 15, 20, 25, and 30 to
R _ R (@ the baryon densityp? (r) and (b) the scalar density
r)= r), 24  ren|«|
p(r ren( ) ‘K‘Ezl p(r rean|( ) ( ) pE rean\(r)'

respectively. Herepls \n.q(Ph renj«) represents the contribu-

tion from |x|=+ « to net residual baryoscalay density. We  For the scalar density, on the other hand, there are no con-
computepl; rnjq @Nd pf 1enjq USING the angular momentum  straints from conservation laws. However, it would be rea-
decomposed form of Eq¢l6) and (19). The details of our sonable to expect the numerical error in the scalar density to
calculation follow here. For the respective contributions ofbe of the same order of magnitude as the one in the baryon
|«| in Egs.(16) and (19), we carry out the integral ovéz  density.

using Gaussian quadrature. The radial Green functions with |n Sec. I B, we mentioned that the divergence of the un-
imaginary energy are given in terms of the two solutions ofrenormalized baryon density in the present model has the
the Dirac equation: the one regularrat0 and the one regu- same structure as the unrenormalized vacuum charge density
lar for r — . Several values for the upper and lower limits of ¢ {he electron-positron field in the QED correction. How-
the integral ovee are selected, depending on the radius pagyer, the dependence on the partial-wave contribution is
rameter raround 20-50 GeV. The vacuum densities |argely different from that for the QED case: a lafgg,,) is

Po renjxl(F) 8NP ren, (1) fOr Zya— oo are extrapolated from - required to achieve the convergence as seen in Fig. 3, while
the resulting integrated values. Subsequently, the sum ovgsr the renormalized charge density in QED the term with
|«| is performed up to the cutofiicya]. This sum overlk| |, =1 gives a good approximatiofL3]. In addition, it
does not converge very rapidly. In the present Wil should be pointed out that Eq&L5) and (17) are negligible

for the baryon density is 33 for both 8f0 and*’Ca, while  for the present calculation, i.en'” andp?__are an order

H . 40, W ren
|K_ma>4 for the scalar density is 36 forO e_md _48 for "Ca. of magnitude smaller than the residual densities. This stands
Finally, we have extrapolated tHe&| contribution to larger

) .. in contrast with the QED calculation, in which the corre-
values to obtaln'the'convergent vacuum densities. As an e)gponding contribution, known as the Uehling effect, has a
?mplel,etcr)le contrzlbuthnstror‘[;|:5, 10, 15, 20, 25, and 30 dominant contribution[19]. These differences from QED
orAn are s OWI’]fII’] r']g' ) d . Feem to be caused by theo couplings as well as the large

n accuracy test for the computed vacuum correction 0coupling constant of the nuclear force. In particular, the

the baryon density(; .(r) is provided by the requirement baryon density, the source of themeson, is strongly influ-
that the total induced vacuum correction should vanish dugceq by ther meson. This is shown in Fig. 4, where the

to the conservation of baryon density, baryon densities!”_ (r) with and without o meson are
B Y LR B compared; it is clear from that graph that the vacuum correc-
AB= 47Tf drr®p,, rer(r) = 0. (25 tion for the baryon density is negligibly small if only the
0 meson is taken into account. We found that the baryon den-
In the present calculation, with various QHD parameters, wesity induced by the vacuum polarization comes from dia-

found AB~1073 as a typical value for both®0 and*°Ca.  grams witha-meson self-energy insertions mainly.
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0.4 o-meson field in nuclear matter as a function of the coupling
’z 02 constantg, while keeping the other parameters fixed. The
= figure shows that the vacuum correction contributes destruc-
“’5 00—~ X000 fem 7Tl o tively to the valence contribution, and it is impossible to
™ — Full contribution obtam_ a strong meson field unless a very large coupling con-
G -02f --- Without 6 meson stant is used. We could of course choose such a parameter set
¥ contribution with large coupling constants. However, this would have pro-

049 r 2 3 4 5 duced an unstable solution in the RHA calculation, since the

r [fm] deeply-bound antinucleon states produced by the stiong

and o fields with large coupling constants, imply to produce
FIG. 4. Comparison between the baryon densities with anda large vacuum effect, which works in the opposite direction.
without theoa-meson contribution. The latter is given by solving the Such a RHA solution is not realistic, because it is unstable

Dirac Green function with the-meson field only. even for trivial fluctuations in the nucleon density. Hence, we
have to choose a parameter set which produces a weak field
IV. RESULTS AND DISCUSSION in the self-consistent iteration.

o The RMF reproduces the observed tendency of the single-

Here, we show the results of the relativistic Hartree calparticle spectra reasonably well, due to the small effective
culation with a rigorous treatment of renormalized densitiesnass of the nucleory(r)=my+g,o(r). The fact that the
in %0 and*Ca, based on the Lagrangian density of Bg.  scalar field is suppressed in the RHA results in the large
The numerical procedure of the present RHA calculation isffective mass. As a result, it raises a problem in fitting the
similar to that used in the conventional RMF calculation; single-particle energies. As seen in Table |, the energy split-
firstly, the Dirac equationi3) is solved under the external  tings in the single-patrticle states of the present RHA are very
and o fields, for the valence nucleons only. Secondly, usingsmall, and they are unlikely to agree with the experimental
the same potential, we calculate the vacuum densities byalues. This is a known problem, from previous RHA calcu-
means of the Green function described in the previous sedations, using the local-density approximation and the deriva-
tion. Thirdly, the equations of motion of mesons, E@).  tive expansion to estimate the vacuum correcf®dl]. It is
and(7), are solved with the source terms due to the valencé@lifficult to resolve this problem in the RHA with the ordinary
nucleons and vacuum contributions. Substituting these reQHD models, used up to now. . .
sults in the Dirac equation, we complete one iteration step. 1hus the QHD models require a mechanism for producing
Using the same method as indicated in the previous sectiofhe spin-orbit splittings, other than the small effective mass.

the energy shift due to the vacuum polarization is estimaten€ Suggestion is made in Refd2,23, where a tensor-
coupling of thew meson is introduced in order to provide the

by . spin-orbit splittings. However, th@-meson coupling with
" dz 07 ~H the nucleon is known to be dominated by the vector coupling
Evp:fdr f o LY (Gy(rr32) in the nucleon-nucleon potential. Another candidate to solve
o this problem may be the possibility of the finite pion mean

field in the relativistic Hartree framework, which was sug-
-Gr,r;2)]z+ (CT)], (26)  gested to provide the spin up and spin down partners with
large energy separatiorfig2). It is interesting to extend the
present RHA calculation by taking these effects into account.
CT=- U4, (Vap)?+ 12, (V0)*+ ayo + 1/2a,0? This is certainly a subject to be worked out in a future study.

+ 1/3a30° + 1/4a40”, (27) V. COMPARISON WITH THE PREVIOUS METHOD FOR

which is calculated at each iteration. The iteration is contin- THE VACUUM POLARIZATION
ued until the total binding energy of the nuclelyy, The effect of the negative-energy nucleons for finite nu-
=Emesor Evalencet Evp CcOnverges, showing self-consistency. clei was first estimated by the local-density approximation
The QHD parameter set is chosen so as to reproduce refb,7,9. It was developed further by applying the derivative-
sonably well the experimental values of the total bindingéxpansion method6,8,11,12. In this section, we compare
energies, the rms radii, and the single-particle energies fopur resulting densities, induced by the vacuum polarization,
both of 0 and“°Ca. In the second column of Table I, we With those of the local-density approximation and the
give the results with the Coup”ng constants and magses derivative-expansion method. The |0cal'den3ity approxima-
=7.38,0,=7.90,95=3.20, andn,=458.0 MeV for ther me-  tion uses as input results from the calculations of the infinite
son, andy, =9.18 andm,=783.0 MeV for thew meson. The nuclear matter. In this approximation, the vacuum correction
results of the RMF calculation with the parameter set TM2is given by
[20] and experimental data taken from RER1] are also 1., .
shown in the third and last columns, respectively. We see that pyoe (1) = - ?[mNs(r)ln(mN(r)/mN) +1/3my,
our total binding energies including the vacuum correction
and rms radii are similar to those of RMF and agree with the = 3/2m2my(r) + 3mymy2(r) — 11/6m(r)],
experimental data well. (29)
The vacuum contribution plays a crucial role for the gen-
eration of the weak meson fields. In Fig. 5, we plot theand the scalar density decreases in the nuclear interior. The
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TABLE I. The total binding energies, the rms charge radii, and the single-particle energ"i?@ and

40ca.
Present RHA T™2 Experiment
160
Eiotall A(Eyp/ A) (MeV) 8.051.69 7.93-) 7.99-)
I (FM) 2.65 2.67 2.74
Single particle state of proton
15,1/, (MeV) 31.0 38.2 40+8
1ps2 (MeV) 15.6 18.6 18.4
1py1j2 (MeV) 13.3 11.1 12.1
Single particle state of neutron
15, (MeV) 35.6 423 457
1pss, (MeV) 19.7 22.4 21.8
1py/, (MeV) 17.4 14.8 15.7
40Ca
Erotal/ A(Eyp/ A) (MeV) 8.472.23 8.48-) 8.55-)
Fen (fM) 3.42 3.50 3.45
Single particle state of proton
1s,/, (MeV) 36.5 452 50+11
1pzj, (MeV) 25.5 30.7
1py/, (MeV) 24.0 36.2 34+6
1ds/, (MeV) 135 16.1
1dg/, (MeV) 11.0 8.7 8.3
25,/ (MeV) 9.1 8.5 10.9
Single particle state of neutron
15,/ (MeV) 45.5 53.1
1ps» (MeV) 33.8 38.3
1p1/2 (MeV) 32.3 33.8
1ds;, (MeV) 21.2 23.4
1dg, (MeV) 18.7 15.9 15.6
251/ (MeV) 16.9 15.6 18.1
vacuum does not change the baryon density, because of the \
conservation of the t?aryon nu?/nber. In ¥he derivative- PurB(r) :—??—:2V -In( m:](r)) Vo), (29
expansion method, on the other hand, the presence of the N
derivative term allows a nonvanishing correction for the X
baryon density, as well as for the scalar density: pf,’y?é%E)(r) _ p)ﬁ?é';DA)(r) B 297,2 V. |n<mr':1—:)> vV olr)
T v oem-mmm 7T o .. % ,
R ] 2y T OO gt (V)
%'1 e O = %" | (30
o T o o _____________________________ where only the leading order of the derivative terms is taken
St . L . L L into account. The baryon and scalar densities induced by the
65 70 75 80 85 90 95

FIG. 5. The scalar potential in nuclear mattereAneson mass
m,=458.0 and a Fermi momentukz=1.42 are employedr, de-
notes the ordinarg-meson field, generated from the valence nucle-
ons while oy, denotes the contribution from the vacuum. Due to
the cancellation between them, the memeson field does not in-
crease smoothly with the coupling constayy,

vacuum polarization are given in Fig. 6, together with those
from the local-density approximation and the derivative ex-
pansion. There, for purpose of comparison, we assume the
same potential in evaluating the vacuum polarization. We can
see that the densities obtained by the local-density approxi-
mation are corrected significantly, not only for the baryon
density, which vanishes in this approximation, but also for
the scalar density. Both the scalar and baryon density profiles
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are totally ignored in the calculation, the final results for the
scalar and vector densities do not change appreciably. The
good agreement with the results of the derivative expansion,
where the Landau ghost plays no role, also implies that the
unphysical effect is negligible.

VI. SUMMARY

We have developed a rigorous method to calculate
vacuum-polarization effects in the relativistic Hartree ap-

0.005 . "
proach. The renormalized baryon and scalar densities have
- 0.000}. been evaluated within a practical computational time by re-
& -0.005} placing the summation over the Hartree basis by the numeri-
) cal integral of the Dirac Green function over the imaginary
2 -0.010} ) . T
K3 ~ eresent energy. We have obtained numerical results, indicating that
-0.015F T Dethvative expansion, on the vacuum corrections for the baryon and scalar densities
0.020 ! L . are non-negligible in the RHA calculation.
0 2 r[f'm] 4 5 6 Our results, exploiting the Walecka model, have repro-

duced the experimental binding energies and rms radfi®f
and *°Ca nicely, after adjustment of the parameters. How-
ever, it was impossible to find a QHD parameter set capable
of reproducing the spin-orbit splittings in accordance with
obtained by the present calculation are in a surprisingly goothe observed data and as required by the nuclear shell model.
agreement with those of the derivative expansion. In the o-w model, the main attraction is caused by the large
However, this cannot always be the cgd€], and the ¢-mean field, which provides a small nucleon effective mass
excellent agreement between our method and the leadinga finite nuclei. However, the negative-energy nucleons will
order derivative expansion can be attributed to the specificacquire a mass differing from that of the free nucleon only
of the o-w model. Consider, for example, the vacuum cor-reluctantly. On the whole, the effective nucleon mass re-
rection in the baryon density without meson. Using the mains quite large, implying that the spin-orbit splittings in
present method, the vacuum correction in this situation cathe single particle spectra come out very small. The QHD
turn out to be significant with a large coupling constant oftype effective theory based on teew mesons, then, needs
the w meson. As found in Eq(29), on the other hand, the to include new types of interaction terms and/or go beyond
vacuum correction from the derivative expansion vanisheshe RHA approximation to solve this problem.
exactly form’,:,(r)—>mN. Hence, we find thatr meson plays We have found that our results from the RHA calculation
an important role in the agreement between our method anare very similar to those in Refs[6,11], where the
the leading-order derivative expansion. Thus the present catlerivative-expansion method was used to estimate the
culation supports that the leading-order derivative expansiomacuum polarization. In particular, it has been shown that the
is greatly useful for the estimation of the vacuum correctionagreement of the density profiles of the vacuum correction is
in the RHA. quite good. Thus the validity of this approximation has been
In the present calculation of the full RHA for finite nuclei, confirmed by the present calculation.
the vacuum-polarization correctiofi5) and(17) to the me-
son propagators are implicitly taken into account to all orders
by the iteration method achieving the self-consistency in the
relativistic Hartree approximation. There, the unphysical This work has been supported by MATSUO
pole in the meson propagator at finite momentum transfefFOUNDATION, Suginami, Tokyo. A.H. would like to thank
known as the Landau ghost, may affect the present numeric&8irofessor S. Kita and Professor Y. Tanaka for giving him the
results[7,24] through integration over the momentum trans-opportunity to do this work and Dr. A. Deuzeman for useful
fer. However, this unphysical effect is not significant in the discussions. Y.H. acknowledges Dr. K. Tanaka for useful dis-
RHA of finite nuclei, because even if tli&5) and(17) terms  cussion.

FIG. 6. The vacuum correction fai) baryon and(b) scalar
densities.
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