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E2 excitation strength in >Ni: Coupling of the *®Ni 2} collective core vibration
to the f;,, odd neutron hole
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The collectivity of the odd-mass nucled®i was explored via intermediate-energy Coulomb excitation
using a powerful combination of particle andray spectroscopy. A-ray at 287918) keV was observed and
is interpreted to deexcite a member of the core-coupled quintupléiNg) ® vf3}, at the same energy. By
similarity with the mirror nucleus®°Co, transition probabilities were calculated assumifig9/2" and J~
=11/Z for this state. Both assumptions lead to a transition strength higher than predicted by a large-scale
shell-model calculation using the GXPF1 effective interaction and exceed the value predicted within a simple
weak-coupling approach.
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Intermediate-energy Coulomb excitatifilj of the projec- interpreted to establish an excited state at the same energy
tile is a sensitive probe to investigate quadrupole collectivity[15]. Spin and parity of 11/2for the 2882 keV excited state
in exotic nuclei. In the past, this method has been extensivelgould tentatively be assigned from theray angular distri-
used to determine the absolB¢E21)=B(E2;0; —2;) ex-  bution. Symmetry of the observed 2882 keV level with the
citation strength in even-even nuclei beyond the valleyof correspondin% 11/2state of the ground-state band in the
stability [2-5]. In odd-A nuclei, core-coupled states are ac- mirror nucleus’Co supports the argument for the 11Ain
cessible to the method of Coulomb excitation. These statedssignmenf15,1q.
can qualitatively be described as originating from a particle The Coulomb excitation experiment ofiNi was per-
or hole weakly coupled to the even-even cg@ In >°Ni,  formed at the Coupled Cyclotron Facilifit7] of the Na-
the coupling of theuf;,l2 neutron hole to the 2excited state tional Superconductiong Cyclotron Laboratory at Michigan
of the ®*Ni core should give rise to a quintuplet of negative- State University. A primary beam 6fNi was accelerated in
parity states with spin values 3725/2°, 7/2°, 9/2°, and the K500 and K1200 cyclotrons to an energy of
11/Z". The region of the nuclear chart around the self-140 MeV/nucleon. The primary beam was then incident on a
conjugate, doubly-magic nuclet®i has attracted much at- 423 mg/crs °Be fragmentation target to produce the second-
tention in recent years. The measurement of a I&@27)  ary beam cocktail containing®Ni with an energy of
value [7-9], indicating an unexpectedly high degree of col-84.8 MeV/nucleon and an intensity of approximately
lectivity, prompted questions about the magicity_ NEZ 680 s?, purified in the A1900 fragment separafdg], and
=28[10]. So for example is th&(E2) strength in Weisskopf {ransported to the experimental area. The relatively low
units for the excitation of the first*2state in°®Ni four times beam purity of 5%°Ni only, inherent to projectile fragmen-
larger than the corresponding value in the doubly ma§ic  tation on the neutron-deficient side of the nuclear chart, was
=Z=20 nucleus°Ca [11]. ~ manageable due to event-by-event particle identification.

No transition strengths have been measured¥r until A 257.7mg/cra 9/Au Coulomb excitation target
now. Spin and parity of 7/2for the ONi ground state was  (77.2 MeV/nucleon midtarget energyas placed in the cen-
gsetermlned from the measurggtstrength in the decay to ter of SeGA, an array of eighteen, thirty-two-fold segmented,

Co [12,13. Particle spectroscopy of the nucleus has reigh-purity germanium detectofdd]. Identification of the
vealed 20 low-lying levels including one at 2888keV, but 55\ particles of interest was performed on an event-by-event
could not assign spins and paritifist]. A more recent gam-  pasjs with the focal plane detectors of the S800 spectrograph
masphere experiment aiming to measure the high-spin stru¢20, 21 and two beam-monitoring plastic scintillators before
ture of °*Ni identified four y rays from the deexcitation of he target. The SeGA array of germanium detectors was ar-
*Ni, including one with an energy of 2862 keV which is  ranged in two rings, denoted as the 37° and 90° rings refer-

ring to the angle of the detectors with respect to the beam
axis. For the present experiment, the SeGA array contained a

*Present address: Lawrence Livermore National Laboratory, Livtotal of 15 detectors, seven in the 37° ring and eight in the

ermore, CA 94550. 90° ring.
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The experimental cross section for Coulomb excitation is
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Energy (keV) eterb,,=14.1 fm to exceed the sum of target and projectile
radius by 2.3 fm and consequently the interaction ra¢fiols
FIG. 1. Laboratory-frametop) and projectile-framemiddle) lowing Wilcke et al. [25]) by 0.7 fm.
y-ray spectra in coincidence wittiNi particles. They rays from A gate on the appropriate scattering angle was not pos-
the deexcitation of an excited state ONi are apparent in the sible for ®>Ni due to low statistics and efficiency of the
middle panel at about 2880 keV. Only tH€Au deexcitationy rays  cathode-readout drift chambers used to reconstruct the labo-
detected in the 90° ring of SeGA can be seen in the middle panel, agtory scattering angle. Thus a method of scaling the mea-
the y rays are Doppler shifted to approximately 410 keV'in the 37°syred cross section using the dependence of#fe cross
ring. The bqttom panel shows an expansion of Fhe PFOJeCt”e‘fraf_n%ection[9,24] on laboratory scattering angle was developed
spe_ctrum W!th fits overlayed. The solid black line is th_e total fit 5n4 tested and used to determine the Coulomb excitation
which contains Fhe sum of the simulated response functions for the, << section fof*Ni in the present study. A detailed descrip-
37° (solld_gray ling and 9_O°_(da_shed gray linerings. The d_ouble- tion of the method is presented [8].
exponential background is indicated by the dot-dashed line. Assuming spin and parity of 1172for the state—thus
GEANT [22] simulations were performed for the ob- PureE2 character of the excitation—a total cross section of
servedy-ray energy to model the deexcitation spectrum of8X19) mb was calculated using the numberpfays deter-
Ni detected with SeGA. The Monte Carlo simulation wasMined from the fit in Fig. 1. With the scaling method and
performed for ten million incideny rays at a given energy, Sy=0.64 for ¢75"=3.1° an integrated Coulomb excitation
isotropically emitted in the projectile frame and Lorentz Cross section of 516) mb was determined. The Alder-
boosted with the mid-target beam velocity. The simulatedVinther theory of relativistic Coulomb excitation1]
histograms were fit with analytical curves to determine thevas used to translate the measured cross section into an
area under the simulated photopeak, and thus the simulat@psolute E2 excitation strength ofB(E2;7/2 —11/27)
efficiency. The analytical curves were then fit to the experi-=251(69) €® fm“. If the 287918) keV y ray measured in this
mental spectrum. More details on the experimental setup angxperiment is the result of a 972-7/2" transition, botiM1
the data analysis have been previously discussed iANdE2 transitions are most probable.
[9,23,24. The mixing of the two types of transitions can occur both
The y-ray spectra in coincidence with afNi particles  in the excitation and deexcitation processes. The calculation
satisfying the particle identification gates are shown in Figof B(m\;7/2"—9/2) is dependent on the amount of each
1. A yray at approximately 2800 keV from the deexcitation type of transition contributing to the excitation to the 9/2
of ®*Ni is visible in the projectile-frame spectrum. The simu- state. In the excitation process, tB& multipolarity transi-
lated peak shapes for the two rings were simultaneously fit téion is expected to dominate. An upper limit of 4.9 mb exci-
the summed projectile-frame spectrum on top of a doubletation cross section for purbll was calculated using the
exponential background. The result of the fitting process isecommended upper limits dMl1 transition rate§26]. As
shown in the bottom panel of Fig. ly-ray energies of the measured cross section using the scaling method was
288211) and 286822) keV were measured for the 37° and 57(16) mb, at least 92% of the excitation cross section is of
90° rings of SeGA, respectively. The weighted average ofypeE2. The error on the measur&{E2;7/2 —9/27) was
287918) keV (including a 0.5% systematic uncertainty at- adjusted to account for up to 8% contribution frovil ex-
tributed to the Doppler reconstructipagrees with the 2882 citation. For the deexcitation process, thEL transition is
keV y ray measured in the high-spin Gammasphere experiexpected to dominate due to the transition rate favokitig
ment[15]. deexcitation. The amount of each type of transition is impor-
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TABLE |. Theoretical predictions for the excitation of the 1I/éhd 9/2 members of the core-coupled
multiplet in ®°Ni. Given are the results of a shell-model calculation employing the GXPF1 effective interac-
tion using two different sets of effective charges) e,=1.%,€,=0.%¢ and(B) e,=1.3¢,€,=0.7e. In the last
columns we give the value predicted by the core excitation mi@edutlined in the text, using the experi-
mentalB(E27 ) core=532100) € fm* as well as the shell-mod@(E27)..e=702€” fm* excitation strength
for SNi. A, andA,, are the proton and neutron strength amplitudes within the shell model.

Theory
B(E2;7/2 — J;)[€?fm?]
712 —J¢ Ay A, SM SM weak coupling
(A) (B) (Expt) (Theor)
J=11/7 19.38 13.23 159 148 1680) 211
J=9/Z 18.39 21.42 183 189 1825 173
Experiment

B(E2;7/2 — Jp)[€? fm?]

J=11/Z 251(69)
=9/ 25733 € fm?
tant for the calculation of angular distribution effects modi- _ _ 23+ 1B(E2])core
fying the y-ray detection efficiency and thus entering the B(E2;7/Z — J) = 8 5 3

calculation of the total cross section. Using the recom-

mended upper limits o2 andM1 transition rate§26], a  for Je{3/2°,5/2°,7/27,9/27,11/27}, excitation strengths
maximum contribution of 29% fronk2 deexcitation transi- similar to the present shell-model calculation. Using the
tions was calculated. Total cross sections calculated withveighted mearB(E21)=532100) €?*fm* for the excitation
mixings of 29%, 0%, and 100%2/M1 fractions differed by of the first 2 state in the core®®Ni [9], one expects
less than 1%. An error of 1% was added to the calculate®(E2:7/2—11/27)=160€*fm* and B(E2:7/2 —9/2")
cross sections and transition probabilities for the 77/2 =133€? fm*. Table | lists the results for the weak coupling
—9/2 transition to account for this uncertainty caused bycalculation using the experimental as well as the shell model
the unknown M1/E2 mixing. The deduced excitation B(E21)ge for *°Ni.

strengthB(E2;7/2 —9/27) equals 25,53) € fm* derived Unlike the case of weak coupling where the sumrid
from the cross section followinfl]. strength iipleB(E2T) =B(E27 ) core iS €Xpected to be con-

A shell-model calculation of reduced transition probabili- centrated at abou€(2;)=2.7 MeV (°**Ni core), the shell

ties to the observed excited state®di was performed with  model calculation foP®Ni predicts 83.3% of the shell model

the conventional shell-model code MSHEI[R7] with the  B(E27).,.=702¢€? fm* strength below 3.5 MeV and only
GXPF1 interaction[10,28. The transition strengths were 63.89% concentrated between 2.5 MeV and 3.0 Ms¥¢ Fig.
calculated as described [29]. The calculation allowed for = 2),

the excitation of seven particles out of tliig, orbit. The The measured reduced transition probability for either ex-

calculations were performed with two different sets of totalgjted state spin and parity considered for i nucleus is
effective charges, and e,. The results of the shell-model

calculations are summarized in Table | with B€2) values _

. . | Shell Model (GXPF1) 9/2l 1 / —|
within the shell model deduced from the strength amplitudes o1/
and effective charges following 150 q

2 ® 3/25
u§ ® 572,
1 ) <, 100 -
B(E2;7/Z — J;) = - (Apgp + Anen)”. (2) = !
8 § 521
5 5or 327 © -

. . . . N 3/27

Figure 2 shows the low-lying2 strength ir*°Ni calculated | | | | v | /2\1

within the shell mode(GXPF1 effective interaction, effec- 0 800 2600 3500
tive charges,=1.% ande,=0.%).

The core excitation model for the nondeformed, @dd-
nuclei [6] based on the extreme case of weak coupling and FIG. 2. Low-lying E2 strength in®Ni calculated within the
ignoring a possible mixing of the 772yround state and the shell model using the GXPF1 effective interaction and the effective
712, excited state, predicts with chargese,=1.5% ande,=0.5.

Energy (keV)
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4 2076.3 Then the measureB(E2) value would have to roughly
289?__&3(7’ ﬁ;;é-ﬁ-’ an compare to the sum of the absolute excitation strengths to the
up= 2 11/2 and 9/Z excited states predicted by theory.
In summary, absolut®(E2) excitation strength ir°Ni
E@ has been measured in intermediate-energy Coulomb excita-
tion. The v ray observed at 28798) keV is interpreted to
mirror correspond to the ground-state decay of the 110129/2°
nuclei member of the core-coupled quintuplet of negative parity
0.0 - 2;(**Ni) ® vf7,. The results exceed the values predicted
within a large-scale shell-model calculation using the
FIG. 3. Comparison of théNi level scheme with the mirror  GxPF1 effective interaction and are higher than the values
nucleus®®Co [16]. We note that the first 2state of>*Ni lies at expected in an extremely simplyfied picture of weak cou-
2700.67) keV, supporting the assumption that the observed (S)ate ling. In the mirror nucleus®Co, the candidates for the
cogld correspond o a m.emt?:,%r o mggnbers of the core-couple 1/Z or 9/7 states form a doublet that would hardly be
quintuplet of negative parity,2Ni) ® v17,; resolved in an inverse-kinematics experiment with low sta-

istics and a limit in resolution posed by the use of fast

higher than the values predicted within the shell model ancﬁ)eams. This situation cannot be ruled out for the present
the weak-coupling approach. One possible explanation f°§tudy of 55Ni

this discrepancy is that the measured peak at gBj%keV

could be a doublet of rays very close in energy. The mirror ~ We thank A. Stolz, T. Ginter, M. Steiner and the NSCL
nucleus®Co, with ground state spin and parity 7/has an  cyclotron operations group for providing the high-quality
excited state witld™=11/2" at 2973.4820) keV and another secondary and primary beams. We acknowledge fruitful dis-
with J™=9/2" at 2976.3419) keV [16] (Fig. 3). While a spin  cussions with A. F. Lisetskiy. This work was supported by
of J=7/2 hasalso been suggested for the higher-energythe National Science Foundation under Grants No. PHY-
state, there is stronger evidence ffi=9/2". If the y ray = 0110253, PHY-9875122, PHY-0244453, INT-0089581 and in
measured at 28798) keV deexcites a doublet of states with part by Grant-in-Aid for Specially Promoted Research
energies less than 5 keV apart and spin and parity @@ (1300200} from the MEXT of Japan, and by the joint large-
11/Z, it would appear as ong ray within the present ex- scale nuclear-structure calculation project by RIKEN and

Energy (keV)

perimental conditions. CNS.
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