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The dynamics of nuclear collective motion is investigated in the case of reflection-asymmetric shapes. The
model is based on a new parametrization of the octupole and quadrupole degrees of freedom, valid for nuclei
close to the axial symmetry. Amplitudes of oscillation in other degrees of freedom different from the axial ones
are assumed to be small, but not frozen to zero. The case of nuclei which already possess a permanent
quadrupole deformation is discussed in some more detail and a simple solution is obtained at the critical point
of the phase transition between harmonic octupole oscillation and a permanent asymmetric shape. The results
are compared with experimental data of the thorium isotopic chain. The isotope226Th is found to be close to
the critical point.
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I. INTRODUCTION

Phase transitions in nuclear shapes have been recently ob-
served at the boundary between regions characterized by dif-
ferent intrinsic shapes of quadrupole deformation. It has been
shown by Iachello[1–3] that new dynamic symmetries,
called E(5), X(5), and Y(5), hold, respectively, at the critical
point between spherical shape andg-unstable deformation,
between spherical and deformed axially symmetric shape,
and between deformed axial and triaxial shape. Here, we are
mainly interested in the second case. First examples of X(5)
symmetry in transitional nuclei have been found in152Sm [4]
and 150Nd [5]. Other candidates for the X(5) symmetry in
different nuclear regions have been reported later[6–13].
From the theoretical point of view, slightly different poten-
tials have been explored by Caprio[14] and by Bonatsoset
al. [15], while the evolution of thes=2 band when the lower
border of the square well potential is displaced from zero has
been investigated by Pietralla and Gorbachenko[16].

A similar phase transition(i.e., from shape oscillation to
permanent deformation, conserving the axial symmetry of
the system) could take place also in the octupole degree of
freedom. We have found a possible example of such a phase
transition in the thorium isotope chain, with the critical point
close to the mass 226. In this case, the octupole mode is
combined with a stable quadrupole deformation. Preliminary
results have been reported in two recent Conferences[6,17].

In order to provide a theoretical frame in which to discuss
the different aspects of the octupole motion, we introduce a
new parametrization of the quadrupole and octupole degrees
of freedom, valid in conditions close to the axial symmetry.
In this limit, a model similar to the classical one by Bohr
[18] has been developed. This is the subject of the first part
of this paper. In the second part, the model is used to discuss
the evolution of the octupole mode along the isotopic chain
of thorium, and the results are compared with the experimen-
tal data.

II. THEORETICAL FRAME FOR COMBINED
QUADRUPOLE AND OCTUPOLE EXCITATIONS

A. Previous investigations of the octupole plus
quadrupole deformation

Reflection-asymmetric nuclear shapes have been dis-
cussed in a number of papers, either in terms of surface
quadrupole1octupole deformation(Bohr geometrical ap-
proach) or with an extended interacting boson model(alge-
braic approach). The latter, proposed in 1985 by Engel and
Iachello [19], has been recently used by Alonsoet al. [20],
Radutaet al. [21,22], and Zamfir and Kusnezov[23,24]. An
alternative approach assuminga-cluster configurations has
been discussed by Shneidmanet al. [25]. In the frame of the
geometrical approach, a number of theoretical investigations
of the octupole vibrations around a stable quadrupole defor-
mation have been reported in the last 50 years[26–32]. Most
of them, however, are limited to the case of axial symmetry.
This approach has been criticized, e.g., by Donner and
Greiner[33], who have stressed the fact that all terms of a
given tensor order must be taken into account for a consis-
tent treatment. To do this, Donner and Greiner renounce to
the use of an “intrinsic frame” referred to the principal axes
of the overall tensor of inertia and choose to define the oc-
tupole amplitudes in the “intrinsic frame” of the quadrupole
mode alone. In this approach, definite predictions have been
obtained at the limit where the octupole deformations are
“small” in comparison with the quadrupole ones[34].

B. The new parametrization

Here we adopt a different approach, which can be useful
also in the case of comparable octupole and quadrupole de-
formation, close to the axial-symmetry limit. Namely, we
choose as an “intrinsic” reference frame the principal axes of
the overall tensor of inertia, as it results from the combined
quadrupole and octupole deformation. The definitions of
quadrupole and octupole amplitudesam

sld, with l=2,3 and
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a−m
sld=s−dmam

sld* , are recalled in Appendix A. All these ampli-
tudes are defined in the(noninertial) intrinsic frame. To this
purpose, in the case of the quadrupole mode alone, it is
enough to assumea2

s2d=a−2
s2d real anda±1

s2d=0, with the stan-
dard parametrization in terms ofb2 andg2,

a0
s2d = b2 cosg2, s1ad

a1
s2d = 0, s1bd

a2
s2d = Î1/2b2 sing2. s1cd

For the octupole mode alone, a parametrization suitable to
this purpose had been proposed in 1999 by Wexler and Dus-
sel [35]. We adopt here a very similar one,

a0
s3d = b3 cosg3, s2ad

a1
s3d = − s5/2dsX + iYdsing3, s2bd

a2
s3d = Î1/2b3 sing3, s2cd

a3
s3d = Xfcosg3 + sÎ15/2dsing3g

+ iYfcosg3 − sÎ15/2dsing3g . s2dd

With this choice, the tensor of inertia turns out to be diagonal
(see Appendix A).

In both cases, one has to consider, in addition to the in-
trinsic variables(b2,g2 for the quadrupole, orb3,g3,X,Y for
the octupole), the three Euler angles defining the orientation
of the intrinsic frame in the laboratory frame, in order to
reach a number of parameters equal to the number of degrees
of freedom(five for the quadrupole, seven for the octupole).

Unfortunately, the situation is not so simple when quad-
rupole and octupole modes are considered together, as the
intrinsic frames of the two modes do not necessarily coin-
cide. We shall limit our discussion to situations close to the
axial symmetry limit—in which, obviously, the two frames
coincide—and define a parametrization which automatically
sets to zero the three products of inertiaJk,k8 skÞk8d up to
the first order in the amplitudes of nonaxial modes.

To this purpose we put

am
sld = am

sld + ãm
sld, s3d

wheream
sld are defined according to Eqs.(1) and(2) and ãm

sld

are correction terms, which are assumed to be small com-
pared to the axial amplitudesa0

sld, but of the same order of
magnitude as the other nonaxial terms. It will be enough to
consider these corrections only for those amplitudes which,
according to Eqs.(1) and(2), are either zero or small of the
second order: the imaginary part ofa2

s2d, a2
s3d and the real and

imaginary parts ofa1
s2d, a1

s3d. The six “new” first-order ampli-
tudes added to those of Eqs.(1) and (2) are, however, not
independent of one another, if we choose as the reference
system the one in which the three products of inertia turn out
to be zero.

The expressions of the inertia tensor as a function of the
deformation parameters, obtained with the Bohr assumptions

[18] of not-too-big deformations and irrotational flow, are
given in Appendix A. In order to simplify the notations, from
now on we consider the inertia parametersB2,B3 included in
our definitions of the amplitudesam

sld, which therefore corre-
spond toÎBlam

sld in the original Bohr notations. From Eqs.
(A20), and retaining only terms of the first order in the small
amplitudesam

sld with mÞ0, we obtain the conditions

J12 = − 2Î6sb2 Im ã2
s2d + Î5b3 Im ã2

s3dd = 0, s4ad

J13 + iJ23 = Î6sb2ã1
s2d + Î2b3ã1

s3dd = 0, s4bd

which are satisfied(at the leading order) if we put

ã1
s2d =

− Î2b3

Îb2
2 + 2b3

2
sh + izd, ã1

s3d =
b2

Îb2
2 + 2b3

2
sh + izd,

Im ã2
s2d =

− Î5b3

Îb2
2 + 5b3

2
j, Im ã2

s3d =
b2

Îb2
2 + 5b3

2
j s5d

with the new parametersh, z, andj small of the first order.
It is clear that only the ratios of the relevant amplitudes are
constrained by Eqs.(4). The definition of the new variables
given in each line of Eqs.(5) contains therefore an arbitrary
factor. Our choice(and in particular for the square-root fac-
tors at the denominators) has some distinguished advantage,
which will become clear from the classical expression of the
kinetic energy, discussed in the next paragraph.

In the intrinsic reference frame, and at the same order of
approximation, the values of the three principal moments of
inertia can be derived from Eqs.(A18) and (A19),

J1 = 3sb2
2 + 2b3

2d + 2Î3sb2
2g2 + Î5b3

2g3d, s6ad

J2 = 3sb2
2 + 2b3

2d − 2Î3sb2
2g2 + Î5b3

2g3d, s6bd

J3 = 4sb2
2g2

2 + b3
2g3

2d + 18sX2 + Y2d + 2sh2 + z2d + 8j2.

s6cd

With the amplitudes given by Eqs.(1) and (2), the principal
axes of the quadrupole would coincide with those of the
octupole. It is not necessarily so with our more general as-
sumptions. Whena1

sldÞ0, the axis 3 of the tensor of inertia
for the quadrupole mode alone does not coincide with that of
the octupole. Ifa1

sld=0, but Ima2
sldÞ0, the misalignment

concerns the other two principal axes perpendicular to the
common axis 3.

C. The classical expression of the kinetic energy

Now it is possible to express the classical kinetic energy
(as given by Bohr hydrodynamical model) in terms of the
new variables and of the intrinsic componentsqk of the an-
gular velocity. The classical expression has the form

T =
1

2o Q̇mGmnQ̇n, s7d

where Q̇;hj̇1, j̇2,… , j̇9,q1,q2,q3j, j̇m sm=1,… ,9d are the
time derivative of the nine parameters we have just defined,
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andq1,q2,q3 are the intrinsic components of the angular ve-
locity of the intrinsic system with respect to an inertial
frame. The elements of the matrixG (leading terms and rel-
evant first-order terms) are shown in Table I.

The determinantG=detG takes the form

G ~ b2
2b3

2sb2
2 + 2b3

2d2sb2
2 + 5b3

2d−1sb2
2g2 + Î5b3

2g3d2

and, at the limitb3!b2, turns out to be proportional tob2
8,

and therefore consistent with that of the Bohr model for a
pure quadrupole motion. This is a consequence of our choice
of the normalization factors in Eqs.(5). This choice has other
advantages: all the nondiagonal terms involving the time de-
rivatives ofb2 or b3 and either the derivative of one of the
other intrinsic amplitudes orq3 turn out to be zero in the
present approximation. Other nondiagonal elements are

small (of the first order) in the “small” amplitudesg2,g3,X,Y,
j,h,z. In situations close to the axial symmetry, they have
negligible effect on the results(see Appendix B), with the
only exception being elements of the last line and column.
The latter, in fact, are still small of the first order, but must be
compared with the diagonal elementJ3, which is small of
the second order in the “small” nonaxial amplitudes. These
terms play an important role in the treatment of the intrinsic
component of the angular momentum along the approximate
axial-symmetry axis, which will be discussed in the next
paragraph.

D. Intrinsic components of the angular momentum

According to the classical mechanics, the componentsL1,
L2, andL3 of the angular momentum in the intrinsic frame

TABLE I. The matrix of inertiaG: leading terms and relevant first-order terms. Other first-order terms are indicated with the symbol<0.
As the matrix is symmetric, first-order terms in the last three columns are not explicitly shown. HereJ1=3sb2

2+2b3
2d+2Î3sb2

2g2

+Î5b3
2g3d; J2=3sb2

2+2b3
2d−2Î3sb2

2g2+Î5b3
2g3d; andJ3=4sb2

2g2
2+b3

2g3
2d+18sX2+Y2d+2sh2+z2d+8j2. The determinant of the matrix is

G=detG=1152b2
2b3

2sb2
2+2b3

2d2sb2
2+5b3

2d−1sb2
2g2+Î5b3

2g3d2.

ḃ2 ġ2 ḃ3 ġ3 Ẋ Ẏ j̇ ḣ ż q1 q2 q3

ḃ2
1 0 0 0 0 0 0 0 0 […] […] 0

ġ2 0 b2
2 0 0 0 0 0 0 0 […] […] (…)

ḃ3
0 0 1 0 0 0 0 0 0 […] […] 0

ġ3 0 0 0 b3
2 fÎ15Xg f−Î15Yg 0 F−

5b2X

Îb2
2 + 2b3

2G F−
5b2Y

Îb2
2 + 2b3

2G […] […] (…)

Ẋ 0 0 0 fÎ15Xg 2+2Î15g3 0 0 F−
5b2g3

Îb2
2 + 2b3

2G 0 […] […] (…)

Ẏ 0 0 0 f−Î15Yg 0 2−2Î15g3 0 0 F−
5b2g3

Îb2
2 + 2b3

2G […] […] (…)

j̇ 0 0 0 0 0 0 2 0 0 […] […] (…)

ḣ 0 0 0 F−
5b2X

Îb2
2 + 2b3

2G F−
5b2g3

Îb2
2 + 2b3

2G 0 0 2 0 […] […] (…)

ż 0 0 0 F−
5b2Y

Îb2
2 + 2b3

2G 0 F−
5b2g3

Îb2
2 + 2b3

2G 0 0 2 […] […] (…)

q1 <0 <0 <0 <0 <0 <0 <0 <0 <0 J1 0 0

q2 <0 <0 <0 <0 <0 <0 <0 <0 <0 0 J2 0

q3 0
− Î40b2b3j

Îb2
2 + 5b3

2 0

Î8b2b3j

Îb2
2 + 5b3

2 6Y −6X

Î8b2b3sÎ5g2 − g3d
Îb2

2 + 5b3
2 2z −2h 0 0 J3
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are obtained as the derivatives of the total kinetic energy
with respect to the corresponding intrinsic component of the
angular velocity,

Lk =
] T

] qk
. s8d

The part of the kinetic energy depending on the component
qk has the form

Tksqkd =
1

2
Jkqk

2 + Fkqk, s9d

whereFk is a function of the dynamical variablesji and of
their derivatives with respect to the time, and issmall of the
first orderaccording to our definition. As for the moments of
inertia,J3 is small of the second order, while J1,J2 are not
small. According to Eq.(8), we have

Lk = Jkqk + Fk,

qk =
Lk − Fk

Jk
, s10d

TksLkd =
1

2
JkF 1

Jk
sLk − FkdG2

+ FkF 1

Jk
sLk − FkdG

=
Lk

2

2Jk
−

Fk
2

2Jk
. s11d

For k=1,2, thesecond term is small of the second order and
can be neglected. It is not so fork=3, asJ3 is also small and
of the same order asFk

2. In more detail, we have

L3 = J3q3 + F Î8b2b3

Îb2
2 + 5b3

2
sgj̇ − jġd + 6sYẊ− XẎd

+ 2szḣ − hżdG , s12d

where we have put

g = Î5g2 − g3. s13d

At this point, it will be convenient to express the variablesg2
and g3 as linear combinations of two new variables, one of
which is, obviously,g=Î5g2−g3. The other one, that we call
g0, can be chosen proportional to the linear combination
which enters in the expression of the determinantG,

g0 = csb2
2g2 + Î5b3

2g3d . s14d

With this choice, we obtain

g2 =
g0/c + Î5b3

2g

b2
2 + 5b3

2 ,

g3 =
Î5g0/c − b2

2g

b2
2 + 5b3

2 , s15d

and, at the leading order,

b2
2ġ2

2 + b3
2ġ3

2 =
b2

2b3
2

b2
2 + 5b3

2ġ2 +
1

b2
2 + 5b3

2sġ0/cd2. s16d

In deriving Eq.(16), the factor 1/c has been considered con-
stant. We may note, however, that the same result holdsat
the leading orderalso if 1 /c is a function ofb2 and/orb3. In
fact, terms involving the time derivative of 1/c also contain
the “small” quantityg0, and their effect is negligible in the
present approximation(see Appendix B). For example, one
could choose for 1/c a quadratic expression inb2,b3, in
order to obtain forg0 an adimensional quantity, likeg2 , g3,
andg. The same argument applies for possible redefinitions
of other “small” variables, likeg.

Expression(12) can be somewhat simplified with the sub-
stitutions

X = w sinq, s17ad

Y = w cosq, s17bd

h = v sinw, s17cd

z = v cosw, s17dd

j = u sinx, s17ed

g = Î2sÎb2
2 + 5b3

2/b2b3du cosx, s17fd

g0

c
= fsb2,b3dÎb2

2 + 5b3
2u0, s17gd

which gives for the determinant of the matrixG
G = DetG = 2304sb2

2 + 2b3
2d2u0

2v2u2w2f2sb2,b3d. s18d

The choice of the functionfsb2,b3d is irrelevant for what
concerns the angular momentum. Nondiagonal terms(small
of the first order) would depend on this choice, but their
effect is negligible(see Appendix B). As a criterion to define
the form of the functionf, we observe that for permanent
quadrupole deformationb2=b2 and at the limitb3

2!b2
2, our

value ofG must agree with the result given, at this limit, by
Eisenberg and Greiner[34]. This happens if the functionf
we have left undetermined tends to a constant whenb2
→b2. We adopt here the simplest possible choice, i.e.,
fsb2,b3d=1, to obtain the matrixG given in Table II, and(at
the leading order)

G = detG = 2304sb2
2 + 2b3

2d2u0
2v2u2w2, s19d

J3 = 4u0
2 + 2v2 + 8u2 + 18w2, s20d

2T = ḃ2
2 + ḃ3

2 + u̇0
2 + 2sv̇2 + v2ẇ2d + 2su̇2 + u2ẋ2d

+ 2sẇ2 + w2q̇2d + 2q3f2v2ẇ + 4u2ẋ + 6w2q̇g
+ J1q1

2 + J2q2
2 + J3q3

2. s21d
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E. Classification of elementary excitations with respect toKp

We can now deduce the intrinsic components of the an-
gular momentum,

L1 = J1q1, s22ad

L2 = J2q2, s22bd

L3 = J3q3 + f2v2ẇ + 4u2ẋ + 6w2q̇g = 2v2sq3 + ẇd

+ 4u2s2q3 + ẋd + 6w2s3q3 + q̇d + 4u0
2q3. s22cd

In the same way, we can obtain the classical moments
conjugate tox, q, and w (we observe that none of these
variables appears in the expressions ofG or J3),

pw = 2v2sẇ + q3d, s22dd

px = 2u2sẋ + 2q3d, s22ed

pq = 2w2sq̇ + 3q3d. s22fd

Now we can solve the system of equations(22) with respect

to the variablesq1,q2,q3,ẇ,ẋ,q̇. We obtain

q1 = L1/J1, s23ad

q2 = L2/J2, s23bd

q3 =
1

u0
sL3 − pw − 2px − 3pqd, s23cd

ẇ =
pw

2v0
2 −

1

u0
2sL3 − pw − 2px − 3pqd, s23dd

ẋ =
px

2u2 −
2

u0
2sL3 − pw − 2px − 3pqd, s23ed

q̇ =
pq

2x0
2 −

3

u0
2sL3 − pw − 2px − 3pqd. s23fd

Equations(23) have a very simple meaning in the case where
the potential energy does not depend on the variablesw, x, or
q. In such a case(a sort of modelw-x-q-unstable, in the
sense of theg-unstable model by Wilets and Jean[36]), the
conjugate moments of these three angular variables are con-
stants of the motion, with integer eigenvaluesnw, nx, andnq

(in units of"). Moreover, if we assume thatu0→0, the third
componentq3 of the angular velocity tends tò unlessL3
−pw−2px−3pq=0 [Eq. (23c)]. In this case, the operatorL3 is
diagonal, with eigenvaluesK=nw+2nx+3nq, and the three
degrees of freedom corresponding tow, x, and q can be
associated to nonaxial excitation modes withK=1, 2, and 3,
respectively.

To investigate the character of the degree of freedom de-
scribed by the parameteru0, and for a deeper understanding
of the nature of the other degrees of freedom, it is necessary
to express the complete Hamiltonian in the frame of a defi-
nite model which, although not unique, is at least completely
self-consistent at the limit close to the axial symmetry.

In fact, it is now possible to use the Pauli prescriptions

[37] to construct the quantum operatorT̂ corresponding to
the classical kinetic energyT of Eq. (21). In doing this, we
make use of the partial inversion of the matrixG given by the
solution(23) of the linear system(22), and note that none of
the variablesw, x, q, or q3 enters in the expression ofG,

TABLE II. The matrix of inertiaG after the introduction of the new variablesu0, v, u, w, w, x, andq (see text). Here,J1=J2=3sb2
2

+2b3
2d and J3=4u0

2+2v2+8u2+18w2. Only the leading terms are shown. Neglected terms are small of the first order(or smaller) in the

submatrix involving onlyb2
˙ , b3

˙ , u0̇, v̇, u̇, ẇ, q1, andq2; of the third order(or smaller) in the submatrix involving onlyẇ, ẋ, q̇, andq3; of
the second order(or smaller) in the rest of the matrix.

ḃ2 ḃ3 u̇0 v̇ u̇ ẇ ẇ ẋ q̇ q1 q2 q3

ḃ2
1 0 0 0 0 0 0 0 0 0 0 0

ḃ3
0 1 0 0 0 0 0 0 0 0 0 0

u̇0 0 0 1 0 0 0 0 0 0 0 0 0

v̇ 0 0 0 2 0 0 0 0 0 0 0 0

u̇ 0 0 0 0 2 0 0 0 0 0 0 0

ẇ 0 0 0 0 0 2 0 0 0 0 0 0

ẇ 0 0 0 0 0 0 2v2 0 0 0 0 2v2

ẋ 0 0 0 0 0 0 0 2u2 0 0 0 4u2

q̇ 0 0 0 0 0 0 0 0 2w2 0 0 6w2

q1 0 0 0 0 0 0 0 0 0 J1 0 0

q2 0 0 0 0 0 0 0 0 0 0 J2 0

q3 0 0 0 0 0 0 2v2 4u2 6w2 0 0 J3
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2

"2T̂ = −H 1

b2
2 + 2b3

2

]

] b2
Fsb2

2 + 2b3
2d

]

] b2
G

+
1

b2
2 + 2b3

2

]

] b3
Fsb2

2 + 2b3
2d

]

] b3
G +

1

u0

]

] u0
Fu0

]

] u0
G

+
1

2v

]

] v
Fv

]

] v
G +

1

2u

]

] u
Fu

]

] u
G +

1

2w

]

] w
Fw

]

] w
G

+
1

2v2

]2

] w2 +
1

2u2

]2

] x2 +
1

2w2

]2

] q2J +
1

4u0
2FL̂3 −

]

] w

− 2
]

] x
− 3

]

] q
G2

+
1

2J1
L̂1

2 +
1

2J2
L̂2

2. s24d

This is, admittedly, only a semiclassical discussion. How-
ever, the formal quantum treatment in the frame of the Pauli
procedure, shown in Appendix C, gives exactly the same
result.

Until now, no assumption has been made on the form of
the potential-energy operator, which will determine the par-
ticular model. A few general remarks on this subject are con-
tained in Appendix D. We now assume that the potential
energy can be separated in the sum of a term depending only
on u0 and another containing the other dynamical variables.
In this case, the differential equation in the variableu0 is
approximately decoupled from the rest. One obtains the
Schrödinger equation

H 1

u0

]

] u0
Fu0

]

] u0
G +

2

"2fEu0
− Usu0dg −

1

u0
2FVu0

2
G2Jfsu0d

= 0, s25d

where we have put

Vu0
= K − nw − 2nx − 3nq. s26d

If we assume, for simplicity, a harmonic form for the poten-
tial Usu0d= 1

2Cu0
2, Eq. (25) is the radial equation of a bidi-

mensional harmonic oscillator. For the existence of a solu-
tion, it is required that

Vu0
= 2nu0

,

Eu0
= sNu0

+ 1d"vu0
s27d

with nu0
positive or negative integer and the integerNu0

ù unu0
u. Excitations in the degree of freedom corresponding

to the variableu0 carry, therefore, two units of angular mo-
mentum in the direction of the third axis of the intrinsic
reference frame.

We could extend our model to include all the intrinsic
variables different fromb2,b3. We assume a potential energy
corresponding to the sum of independent harmonic potentials
in the variablesv, u, w, andu0, plus a term depending onb2
andb3 (at the moment, we do not need to define the form of
this term). We also assume that the equations inb2,b3 can be
approximately decoupled from those of the other variables
and that, in the latter,b2 and b3 can be replaced by their
average values. It is easy to verify that the differential equa-
tions in the pair of variablesv,w (or u,x or w,q) correspond

again to a bidimensional harmonic oscillator and that, as
long as we neglect the rotation-vibration coupling, the eigen-
valueK of the intrinsic componentL3 of the angular momen-
tum is given by

K = nw + 2nx + 3nq + 2nu0
. s28d

The energy eigenvalues are, for the equation in the variables
v,w,

Ev = sNv + 1d"vv with Nv ù unwu s29d

and have a similar form for the other two oscillators.
It remains to consider the character of the different dy-

namical variables with respect to the parity operator. We
know that the parity of the amplitudeam

sld is s−1dl. Therefore,
b2 andg2 are even, whileb3, X, andY are odd. As forg3, we
observe thatb3 sing3 is odd, and thereforeg3 must be even.
As a consequence, the linear combinationsg and g0/c de-
fined in Eqs.(13) and(14) are also even. The new variables
h, z, and j are odd, as(e.g.) b2j is an octupole amplitude
and therefore is odd, whileb3j must be even. Finally, on the
basis of Eqs.(17), we realize thatv, u, andw must be odd
(while w, x, and q are even). We have therefore identified
elementary excitations corresponding toKp=1−, 2−, 3−, and
2+. Excitations withK=0 (of positive or negative parity)
conserve the axial symmetry, and are related to the variables
b2 and b3. A particular example will be discussed in the
following sections.

III. A SPECIFIC MODEL: AXIAL OCTUPOLE
VIBRATIONS IN NUCLEI WITH PERMANENT

QUADRUPOLE DEFORMATION

Specific assumptions on the form of the potential-energy
terms for all the variables describing the quadrupole and oc-
tupole degrees of freedom are necessary in order to obtain
definite predictions, also if these are limited to the axial
modes.

We discuss here, as an example, the case of axial octupole
excitations in nuclei which already possess a stable quadru-
pole deformation. In this case, one obtains relatively simple
results, suitable for comparison with experimental data. This
comparison will be performed in the next section.

Following the usual treatment of vibration1rotation, we
put b2=b2+b28, with b2= constant andub28 u ! ub2u. The new
variable b28 is therefore assumed to be small(of the first
order) as all other variables, with the exception ofb3. With
this choice, and assuming that the variables introduced in Eq.
(17) are suitable to describe the other degrees of freedom, the
matrix G takes a form similar to that of Table II(with b2

substituted byb2 and ḃ2 by ḃ28) and—at the lowest signifi-
cant order—turns out to be diagonal with respect to the vari-

ablesḃ3, ḃ28, q1, andq2. Moreover, in our model, the ampli-
tude of oscillation for all degrees of freedom different from
b3 is constrained to very small values: this fact implies
strong restoring forces and, therefore, oscillation frequencies
much larger than forb3.

In the limit of small amplitude of the octupole oscilla-
tions, this case has been discussed, e.g., by Eisenberg and
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Greiner [34]. In their approach, the “intrinsic” reference
frame is chosen to coincide with the principal axis of the
quadrupole deformation tensor, but the differences between
their approach and ours tend to disappear forub3u !b2. The
model we try to develop should be able to describe(axial)
octupole vibrations of finite amplitude, but its limit for
ub3u !b2 must obviously agree with the results of Eisenberg
and Greiner.

The quantum-mechanical equation of motion forb3 can
be obtained with the Pauli prescription[37], with the addi-
tional assumption that the equations involvingb3 andb28 or
the angular-momentum componentsL1,L2 are effectively de-
coupled from those containing the other dynamical variables
and/or theL3 operator. The latter equations could possibly be
complicated, and substantially coupled with one another and
with the angular momentum componentL3 along the(ap-
proximate) symmetry axis. A short discussion of this subject,
with some simplifying assumptions, has been given in the
previous Sec. II D. At the moment, we assume that terms
involving b28, L3, and other dynamical variables different
from b3 contribute to the total energy with their own eigen-
value, independent of the eigenfunction in theb3 degree of
freedom, and we only consider their lowest-energy state. We
also assume that this state hasK=0 (and neglect, as usual,
the possible rotation-vibration coupling). In this case, the
complete wave function has the form

C ~ csb3dF0sb28,g0,w,r,j0,q,x,wdDM,0
J ~ csb3dF0YJMsV̂d,

s30d

where DM,M8
J are the Wigner matrices andcs−b3d

=s−dJcsb3d. The differential equation for the wave function
csb3d, obtained with the Pauli prescription, has the form

F−
"2

2
G−1/2 d

db3
G1/2 d

db3
+ Vsb3d +

"2

2

JsJ + 1d
J1

Gcsb3d

= Ecsb3d, s31d

whereVsb3d is the potential-energy term. The expression of
the determinantG is not uniquely defined, as it also depends
on the part of the matrix of inertiaG involving all other
dynamical variables. This is a general problem for all models
where part of the degrees of freedom is ignored(and, in
collective models, a number of dynamical variables describ-
ing the details of nucleon degrees of freedom are certainly
ignored). With the present choice of dynamical variables
(Table II), one getsG=detG=2304u0

2v2u2w2sb2
2+2b3

2d2, and
Eq. (31) becomes

F−
"2

2
S d2

db3
2 +

4b3

b2
2 + 2b3

2

d

db3
D + Vsb3d +

"2

2

JsJ + 1d
J1

G
csb3d = Ecsb3d. s32d

This is the equation we have used in Refs.[6] and [17]. A
different choice of the dynamical variables would have
brought about a different result. For example, with the vari-
ables used in Table I, one obtains

G ~ b2
2b3

2sb2
2 + 2b3

2d2sb2
2 + 5b3

2d−1sb2
2g2 + Î5b3

2g3d2.

However, in this case the limitub3u! ub2u would not corre-
spond to the Eisenberg-Greiner result, due to the presence of
the factorb3

2 in the expression of the determinantG. In fact,
when the spherical symmetry is broken by the permanent
quadrupole deformation, and at the limit of small octupole
deformation, the octupole amplitudesam

s3d are decoupled from
one another[34] and it would have been more reasonable to
choose a dynamical variableu3=b3g3 in the place ofg3.
With this substitution, the factorb3

2 disappears.
It is convenient to express the differential equation(32) in

terms of the adimensional quantitiesx=Î2b3/b2 and e
=s1/"2db2

2E, v=s1/"2db2
2V. One obtains

d2csxd
dx2 +

2x

1 + x2

dcsxd
dx

+ Fe −
JsJ + 1d
6s1 + x2d

− vsxdGcsxd = 0,

s33d

where cs−xd=s−dJcsxd. This equation reduces to that of
Eisenberg and Greiner[34] whenx!1.

As for the potentialvsxd, we have explored two possible
forms: a quadratic term1 vsxd= 1

2cx2 or a square-well poten-
tial, as has been adopted[2] at the critical point in the X(5)
model [vsxd=0 for uxu,b and 5 1` outside, so that
cs±bd=0]. In both cases, there is a free parameter to be
determined from the comparison with empirical data.

We now discuss in particular the second case. We may
note that forV=0 Eq. (33) is formally equivalent to that of
spheroidal oblate wave functions(see Eq. 21.6.3 of Ref.
[38]) with the parametersm, l, and C redefined asm=0,
C2=e, and l=JsJ+1d /6−e. Here, however, the solution is
confined in the interval −b,x,b and the equation has been
solved numerically. For a givenb and for every value ofJ,
one obtains a complete set of orthogonal eigenfunctions,
with an integrating factors1+x2d. These eigenfunctions can
be characterized by the quantum numbers=n+1, wheren is
the number of zeros in the open interval 0,x,b. A few
examples of wave functions corresponding to the square-well
potential withb=1.73 and for different values ofs andJ are
depicted in Fig. 1.

The dependence of the eigenvalues on the parameterb is
illustrated by Fig. 2, where the ratiosEsJd/Es2d are shown
for the g.s. bandss=1d. Other possible choices of the set of
independent dynamical variables would have resulted in a
different equation, but the difference would have concerned
the coefficient of the first-derivative term in Eq.(33), with a
very small effect on the results, as long asb is in a range of
“reasonable” values. To exemplify the effect of this term,
results obtained with the coefficient of the first derivative put
to zero are also shown—as dotted lines—in Fig. 2. Differ-
ences between the two sets of results turn out to be very
limited for small values ofb (at least up tob<2). There is at
least one cases226Thd in which our results with the square-

1After completion of this work, we have been informed that a
quadratic potential plus a centrifugal term with variable moment of
inertia has also been considered in the model by Minkovet al. [32].
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well potential are in good agreement with the level scheme,
for low-lying states of positive and negative parity, while for
228Th a better agreement is obtained with the quadratic po-
tential. The possible interpretation of this result as evidence
for a phase transition in the octupole degree of freedom is
discussed in the next section.

IV. EVIDENCE OF PHASE TRANSITION IN
THE OCTUPOLE DEGREE OF FREEDOM

A. The radium and thorium isotopic chain

A phase transition in the nuclear shape manifests itself as
a relatively sharp change of a properorder parameter—e.g.,
the ratioR=Es4+d /Es2+d—as a function of adriving param-
eterwhich can be, in our case, the number of neutrons in the
isotopes of a given element or the number of protons along
an isotone chain. Due to the finite number of degrees of
freedom, the transition region has a finite width around the
critical point, and extends over several nuclides in the chain.
In the case of transitions between spherical shape and axial
quadrupole deformation, the X(5) symmetry, valid at the
critical point, predictsEs4+d /Es2+d=2.91 and we can use this

criterion to locate the critical point of the phase transition.
The situation is more complex when the quadrupole and

the octupole degrees of freedom must be considered at the
same time. Figure 3 shows, as a function of the neutron
number of Ra and Th isotopes, a few parameters which can
be used as indicators of the quadrupole and octupole collec-
tivity. As for the quadrupole mode, the decrease ofEs2+d
with increasingN [Fig. 3(a)] shows a corresponding increase
of collectivity. Moreover, in Fig. 3(b) we observe the transi-
tion between the vibrational(or not collective) behavior of
the lighter isotopes of the chain and a clear rotational behav-
ior sR<10/3d aboveA=226, with a critical point which can
be located aroundA=224. The ratioEs1−d /Es2+d, depicted in
Fig. 3(d), shows that the relative importance of the octupole
collectivity increases with decreasingN and reaches its
maximum in the region belowN=138, where the critical
point of the phase transition in the quadrupole mode could be
located on the basis of Fig. 3(b). Heavier isotopes show evi-
dence of octupole vibrations(of different K) around a
quadrupole-deformed core[41,42]. Lighter isotopes sN
,132d appear not to be deformed in their lower-J states.
However, at larger angular momentum, a rotational-like band
develops, and this band has the alternate-parity pattern typi-
cal of a stable octupole deformation[43].

The model introduced in the first part of this paper, and
developed in Sec. III for the particular case of a permanent
quadrupole deformation, assumes that nonaxial amplitudes
are constrained to very small values by the large restoring
forces. This implies that excitation of one of the nonaxial
degrees of freedom leads to high excitation energy, com-
pared to that of the first 1− level of theK=0 band. Experi-
mental data of Fig. 3(c) show that this is actually the case for
the light thorium isotopes, at least up toA=228. In fact, the
first 1− level is not far from the first 2+ and much lower than
levels belonging to negative-parity bands withKÞ0 (as the
lowest 2− or the second 1−).

FIG. 1. Examples of wave functionscsJsxd as a function ofx/b,
for b=1.73. Pairs of curves refer to consecutive values ofJ, with
even parity(continuous line) or odd parity (dotted line). Part a,
Jp=0+, 1−; b, Jp=10+,11−; c, Jp=18+,19− with s=1; d, Jp=0+,1−

with s=2. With increasing angular momentum, the difference in
ucsxdu2 between consecutive values ofJ tends to vanish and, as a
consequence, the positive and negative parts of the band merge
together.

FIG. 2. (Color online) RatioEsJpd /Es2+d as a function ofb, for
states of the ground-statess=1d band with differentJp. Dotted lines
show the results obtained with a differential equation corresponding
to that of Eq.(33) but without the first-derivative term.

FIG. 3. (Color online) Indicators of the quadrupole collectivity
(left) and of the octupole collectivity(right), as a function of the
neutron numberN in the isotopic chain of Ra(circles) and Th
(triangles): a, excitation energy of the first 2+ level; b, energy ratio
Es4+d /Es2+d; c, excitation energy of the first level of theKp=0−

band,J0
p=1− (open symbols) and of the lowest known level of other

negative-parity bands,J0
p=2− or 12

− (full symbols); d, energy ratio
Es1−d /Es2+d. The horizontal line in partb shows the value(2.91)
expected for the X(5) symmetry. Data are from Refs.[39] and[40].
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B. Comparison with experimental data for 226,228Th

Our model assumes a permanent quadrupole deformation.
Therefore, it can be useful only for relatively heavy Th iso-
topes[Figs. 3(a) and 3(b)]. The quadrupole-deformed region
extends above the mass 224[which could correspond to the
critical point of the phase transition, havingEs4+d /Es2+d
<2.91]. Heavier Th isotopes(with Aù230) show negative-
parity bands built on the different states of octupole vibra-
tion, from K=0 to K=3, with band heads much higher than
the first 2+ [Fig. 3(c)]. Only for lower A does the 1− band
head of theKp=0− band decrease well below the band heads
of all other octupole bands, and higher levels of theKp=0−

band merge with those of positive parity of the ground-state
band(Fig. 4), approaching(but not reaching) the pattern ex-
pected for a rigid, reflection-asymmetric rotor.

The region of possible validity of our model is therefore
restricted to226Th and228Th.

The ratiosEsJpd /Es2+d for the low-lying states of226Th
and228Th are depicted in Fig. 4 and compared with the pre-
dictions of different models. The rigid-rotor model cannot
account for the position of the lowest negative-parity levels,
and overestimates the excitation energy for all the high-spin
states. Instead, a rather good agreement is obtained with the
present model, if one assumes, in the case of226Th, a square-
well potential [as the one hypothesized by Iachello in his
X(5) model] and, in the case of228Th, a harmonic restoring
force. In both cases, the free parameter of the model has been
adjusted to reproduce the position of the 1− level. As shown
in Fig. 4 (dotted line), a much better agreement with the
high-spin levels of226Th is obtained with a slightly different
value of the parameter(b=1.87 instead of 1.73), at the ex-
pense of a very limited discrepancy for the 1− level.

Therefore, for what concerns the level energies of the
ground-state band(including in it also the odd-J, negative-
parity states), 226Th seems to present the expected behavior
of a nucleus with permanent quadrupole deformation and
close to the critical point of the phase transition in the octu-
pole mode.

C. Other possible tests of the critical-point behavior

A considerable amount of experimental information has
been reported, in the last few years, on possible candidates
[4,5,7–13] for the dynamical symmetry X(5) (phase transi-
tion point in the quadrupole mode). It is now clear that the
agreement between experimental and calculated energies for
the ground-state band does not automatically imply that a
similar agreement exists also for other observables, like the
excitation energy of the second 0+ level (the band head of the
s=2 band) and the in-band and interband transition prob-
abilities. In several transitional nuclei, the excitation energies
in the ground-state band are in excellent agreement with the
X(5) predictions, but the calculated ratios of theBsE2d tran-
sition probabilities fail to reproduce the experimental ones
[9], unless anad hocsecond-order term is included in the E2
transition operator[14,44]. It is therefore important to test
the predictions of our models also for what concerns such
observables.

The low-lying level scheme of226Th is shown in Fig. 5,
together with the one resulting from the present model, with
the value ofb adjusted in order to reproduce the empirical
value of the ratioEs1−d /Es2+d. At the moment, only the first
two levels of thes=2 band (02

+, 22
+) are known and their

excitation energies are somewhat higher than the values pre-
dicted at the critical point. We can observe, however, that
also in the best X(5) nuclei [4,5,11] the position of the levels
of the s=2 band deviates somewhat from the model predic-
tions (although in the opposite direction). In our opinion, a
similar qualitative agreement is obtained also in the present
case. The negative-parity levels of thes=2 band are pre-
dicted to lie at higher energies, and could be difficult to
observe. Absolute values of the transition strengths are not
available for 226Th, but some relevant information is pro-
vided by the branching ratios in the level decays. In Tables
III and IV, experimental ratios of the reduced transition
strengths for E1 or E2 transitions coming from the same
level are compared with the model prediction at the critical
point.

FIG. 4. (Color online) RatiosEsJpd /Es2+d as a function ofJ, for
positive-parity states(circles) and negative-parity states(triangles)
of the ground-statess=1d band of226Th and228Th, compared with
different model calculations: rigid rotor(curvea, even parity only),
present model at the critical point(curvesb and b8), and present
model with harmonic potential inb3 (curvec). The curvesb andc
correspond to a fit on the lowest 1− state, the curveb8 on the 20+

state. Note that the even-parity parts of the curvesb andb8 are very
close to the curvea for J,6, while, for each one of the curvesb,
b8, andc, the even- and odd-parity branches tend to merge together
at large values of J.

FIG. 5. Experimental level scheme of226Th compared with the
predictions of the present model at the critical point. The two spec-
tra are normalized on the first 2+ level, and the model parameterb
is adjusted to reproduce the position of the first 1−.
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The electric dipole moment would vanish for the collec-
tive motion of a fluid with uniform charge density, as the
center of charge would coincide with the center of mass.
Therefore, the observed E1 transition amplitudes are entirely
due to the nonuniformity of the nuclear charge distribution
[45]. To calculate the value of

BsE1d = si uuMsE1duufd2/s2Ji + 1d,

the E1 transition operator has been assumed to have the form
[46–49]

MmsE1d = C1b2b3Y1,m, s34d

with the constant factorC1 depending on the nuclear charge
polarizability. The E2 transition operator for the in-band
transition and at the limit close to the axial symmetry has
been taken in the simple form

MmsE2d = C2sb0dY2,m, s35d

neglecting the(weak) dependence onb3
2. Therefore, the the-

oretical ratio of the reduced strengths for transitions of dif-
ferent multipolarity(E1 and E2) is determined apart from a
constant factor, which must be fixed by comparison with the
experimental data. The average of the ratiosBsE1d /BsE2d

for the transitions coming from the 10+ and 11− levels has
been used for normalization of the theoretical values given in
Table IV.

V. CONCLUSIONS

A theoretical scheme for the description of quadrupole
plus octupole excitations close to the axial symmetry limit
has been developed in Sec. II and specialized in Sec. III to
the simpler case of a permanent(and axially symmetric)
quadrupole deformation. In principle, the model should be
able to describe the wide field of reflection-asymmetric
nuclear shapes, close to(but not coincident with) the axial
symmetry limit. Calculations of nuclear shapes in the frame
of the HFB-cranking model[50] for nuclei of the radium-
thorium region find a large variety of results, including
proper potentials for quadrupole-octupole vibrations around
a spherical shape or for octupole vibrations around a de-
formed, reflection-symmetric shape, and also situations with
a rather flat minimum of the potential along a line at constant
b2 with ub3u,b3

max. The latter case is just what is expected
for our “critical point” of the phase transition in the octupole
mode. In Sec. IV, we have investigated the evolution of the
nuclear shape along the isotopic chain of thorium, and shown
that evidence of phase transition exists, not only in the quad-
rupole mode but also in the octupole mode around a stable
quadrupole deformation. The model developed in Sec. III
turns out to be able to account for the experimental data of
226Th (at the critical point of the phase transition in the oc-
tupole mode), and also of its neighbor228Th (characterized
by axial octupole vibrations). More and improved experi-
mental data on E2 and E1 transition strengths would be nec-
essary for a more stringent test of the model predictions.

Further developments of the calculations are in progress
to provide detailed predictions for other significant cases,
e.g., those of224Ra and224Th, whose positive-parity levels
show an energy sequence very close to Iachello X(5) predic-
tions for the critical point of phase transition between spheri-
cal shape and axially symmetric quadrupole deformation.
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APPENDIX A: SUMMARY OF THE GENERAL
FORMALISM

The general formalism to describe collective states of
rotation/vibration in nuclei is discussed, e.g., in Ref.[18].
The nuclear surface is described in polar coordinates as

rsu,fd = R0F1 + o
l

o
m=−l,l

am
sldYl,m

* su,fdG , sA1d

with the conditiona−m
sld=s−1dmam

sld* .
In the sum, the values ofl are now limited to 2,3. A term

with l=1 should be included in order to maintain fixed the
position of the center of mass[34],

TABLE III. Experimental and calculated values of the ratios of
reduced strengths for E1 transitions coming from the same level of
226Th.

Trans. 1 Trans. 2 Bi→f1
sE1d /Bi→f2

sE1d

Ji
p ⇒Jf1

p ⇒Jf2
p Theoretical Experimental

1− ⇒0+ ⇒2+ 0.47 0.54 (5)

3− ⇒2+ ⇒4+ 0.65 0.99 (25)

22
+ ⇒1− ⇒3− 0.63 0.60 (18)

TABLE IV. Experimental and calculated values of the ratios of
reduced strengths(in W.u.) R=BsE1d /BsE2d, for transitions coming
from the same level of226Th.

Trans. 1 Trans. 2 R3105

Ji
p ⇒Jf1

p ⇒Jf2
p Theoretical Experimental

8+ E1 7− E2 6+ 1.3 2.0 (8)

9− E1 8+ E2 7− 1.3 1.7 (2)

10+ E1 9− E2 8+ 1.6 1.5 (1)a

11− E1 10+ E2 9− 1.6 1.7 (1)a

12+ E1 11− E2 10+ 1.8 1.6 (1)

13−; E1 12+ E2 11− 1.8

14+ E1 13− E2 12+ 1.9 1.4 (1)

15− E1 14+ E2 13− 2.0 1.7 (3)

16+ E1 15− E2 14+ 2.1

17− E1 16+ E2 15− 2.1 1.5 (3)

18+ E1 17− E2 16+ 2.2

19− E1 18+ E2 17− 2.3 1.7 (4)

aValues used for normalization.
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am
s1d =

3
Î16p

o
l,l8

Îs2l + 1ds2l8 + 1d

3Sl l8 1

0 0 0
Dfasld

^ asl8dg
m

s1d
. sA2d

This term, however, is inessential for the following discus-
sion, and will be omitted. For not-too-large deformation, in
fact, the amplitudesam

s1d are much smaller than the others,
and their effect turns out to be negligible for most purposes
(with the noticeable exception of the E1 transition ampli-
tudes). At the same level of accuracy, one can also neglect
the slight variation ofR0 necessary to keep the volume ex-
actly constant.

In the Bohr model that we are considering here, the clas-
sical expression of the collective kinetic energy is

T =
1

2
B2 o

m=−2,2
uȧm

s2du2 +
1

2
B3 o

m=−3,3
uȧm

s3du2. sA3d

In order to simplify the notation in the following, we include
the inertia coefficientBl in the definition of the collective
variablesam

sld. In the literature, this symbol is usually re-
served to the variables defined in the intrinsic reference
frame and, from now on, we will always use this reference
frame for the collective variablesam

sld,

ÎBlam
sld = o

n

an
sldDmn

sld*suid, sA4d

whereDsld are the Wigner matrices andui the Euler angles.
The axes of the intrinsic reference frame are defined along
the principal axes of the inertia tensor.

The expression of the kinetic energy in terms of the time
derivatives of the intrinsic deformation variablesam

sld and of
the angular velocityqW of the intrinsic frame with respect to
an inertial frame is discussed, e.g., in Refs.[18] and[34]. If
only the quadrupole mode is considered, the total kinetic
energy can be expressed as the sum of a vibrational term(in
the intrinsic frame) and a rotational term. If the octupole
mode is also considered, a rotation-vibration coupling term
must be added[34,35],

T = Tvib + Trot + Tcoup, sA5d

where

Tvib =
1

2o
l,m

uȧm
sldu2, sA6d

Trot =
1

2 o
l,n,n8

an
sldan8

sld* o
k,k8

qkqk8sMk
hljMk8

hljdnn8

;
1

2o
k,k8

qkqk8Jkk8, sA7d

Tcoup=
i

2 o
l,n,n8,k

qkfȧn
sldan8

sld* − an
sldȧn8

sld*gsMk
hljdn,n8

= io
l

Î3s2l + 1dfqs1d
^ fasld

^ ȧsldgs1dg0

s0d
. sA8d

Here,qk (k=1,2,3) are the Cartesian components of the an-
gular velocityqW along the axes of the intrinsic frame, while
the Mk

hlj are s2l+1d-dimensional matrices giving the
quantum-mechanical representation of the Cartesian compo-
nents of an angular momentumM =l in the intrinsic frame,
subject to commutation rules of the form

M1
hljM2

hlj − M2
hljM1

hlj = − iM3
hlj. sA9d

We assume, as usually,

sM3
hljdnn8 = ndn,n8,

sM1
hljdnn8 =

1

2
fÎsl − ndsl + n + 1ddn8,n+1

+ Îsl + ndsl − n + 1ddn8,n−1g ,

sM2
hljdnn8 =

1

2
f− iÎsl − ndsl + n + 1ddn8,n+1

+ iÎsl + ndsl − n + 1ddn8,n−1g .

Taking into account the properties of theMk
hlj, it is possible

to obtain the explicit expression for the diagonal and nondi-
agonal elements of the tensor of inertia[18,35],

Jkk8 =
1

2 o
l,n,n8

an
sldan8

sld*sMk
hljMk8

hlj + Mk8
hljMk

hljdnn8
.

sA10d

The spin operatorsMk
hlj transform as the Cartesian compo-

nents of a vectorMW hlj under rotation in the ordinary space.
Taking into account the commutation rule(A9), we can de-

fine the irreducible tensor components ofMW hlj as

M0
s1dhlj = M3

hlj,

M±1
s1dhlj = ±

1
Î2

sM1
hlj 7 iM2

hljd , sA11d

and express the products of two Cartesian components as the
sum of products of two tensor components. To this purpose,
we define, for each value ofl, the irreducible tensor product

Tm
sJd = fMs1d

^ Ms1dgm
sJd ; o

n,n8

s1n1n8uJmdMn
s1dMn8

s1d

sA12d

(where the common suffixhlj has been dropped, for the sake
of simplicity). We now introduce the reduced matrix ele-
ments of the tensor operatorTsJd,
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sliTsJdild = s− 1dJÎ2J + 1H1 1 J

l l l
J

3lsl + 1ds2l + 1d sA13d

to obtain

sMm
s1dMm8

s1ddn,n8
= o

Jm

s1m1m8uJmdsTm
sJddn,n8

= o
Jm

s1m1m8uJmdsliTsJdild

3
s− 1dl−n+m

Î2J + 1
slnl − n8uJmd. sA14d

We now observe that

an8
sld* = s− 1dn8a−n8

sld sA15d

and that

fasld
^ asldgm

sJd = o
n,n8

an
slda−n8

sld slnl − n8uJmd sA16d

to obtain

o
n,n8

an
sldan8

sld*sMm
s1dhljMm8

s1dhljdnn8

= o
J,m

s− 1dl

Î2J + 1
s1m1m8uJmdsliTsJdild

3fasld
^ asldgm

sJd. sA17d

The rank of the tensor productTsJd of the two identical vec-
tors Ms1dhlj must be even, and therefore the possible values
of J are limited to 0 and 2. Now we can substitute, in Eq.
(A10), the Cartesian components of the angular momentum
with its tensor components defined in Eqs(A11). The pos-
sible values ofm (andJ) contributing to the sum are limited
to m=0 (and thereforeJ=0 or 2) in the case ofsM3d2, to
m=0 or 2 (J=0 or 2) for sM1d2, sM2d2 and sM1M2d,and to
m=1sJ=2d for sM3M1d and sM3M2d. One obtains

J1 = o
l

hC0sldfasld
^ asldg0

s0d

+
1
Î6

C2sldfasld
^ asldg0

s2d − C2sldRefasld
^ asldg2

s2dj,

sA18ad

J2 = o
l

hC0sldfasld
^ asldg0

s0d

+
1
Î6

C2sldfasld
^ asldg0

s2d + C2sldRefasld
^ asldg2

s2dj,

sA18bd

J3 = o
l

hC0sldfasld
^ asldg0

s0d

−Î2

3
C2sldfasld

^ asldg0
s2dj, sA18cd

J12 = o
l

C2sldImfasld
^ asldg2

s2d, sA18dd

J13 = o
l

C2sldRefasld
^ asldg1

s2d, sA18ed

J23 = o
l

C2sldImfasld
^ asldg1

s2d, sA18fd

where

C0sld = s− 1dllsl + 1d
3

Î2l + 1,

C2sld = s− 1dl+1Îlsl + 1ds2l + 3ds4l2 − 1d
30

,

and therefore

C0s2d = 2Î5, C0s3d = − 4Î7,

C2s2d = − Î21, C2s3d = 3Î14. sA19d

If we chose as the intrinsic reference frame the principal axes
of the tensor of inertia, we must putJ12=J13=J23=0. Using
Eqs.(1)–(3), we obtain, up to the first order,

J12 = − 2Î21 Imfas2d
^ ãs2dg2

s2d

+ 6Î14 Imfas3d
^ ãs3dg2

s2d = 0, sA20ad

J13 + iJ23 = − 2Î21fas2d
^ ãs2dg1

s2d

+ 6Î14fas3d
^ ãs3dg1

s2d = 0. sA20bd

Here we make use of the fact that the zero-order terms are
automatically set to zero if theam

sld are defined according to
Eqs.(1) and (2). By inserting these definitions in the above
equations, and retaining only the first-order terms, one ob-
tains

fas2d
^ ãs2dg1

s2d < s2,0,2,1u2,1db2ã1
s2d

= −
1

Î14
b2ã1

s2d,

Imfas2d
^ ãs2dg2

s2d < s2,0,2,2u2,2db2 Im ã2
s2d

=Î2

7
b2 Im ã2

s2d,

fas3d
^ ãs3dg1

s2d < s3,0,3,1u2,1db3ã1
s3d

=Î 1

42
b3ã1

s3d,

Im fas3d
^ ãs3dg2

s2d < s3,0,3,2u2,2db3 Im ã2
s3d

= −Î 5

21
b3 Im ã2

s3d.

We obtain, therefore, from Eqs.(A20)
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b2ã1
s2d = − Î2b3ã1

s3d,

sA21d
b2 Im ã2

s2d = − Î5b3 Im ã2
s3d.

APPENDIX B: EFFECT OF NONDIAGONAL
(FIRST-ORDER) TERMS

The matrixG, as it results from Table I, contains zero-
order terms only in its principal diagonal(whose last ele-
ment, however, is small of the second order). Nondiagonal
terms have been expanded in series up to the first order in the
“small” dynamical variables(all of them, apart fromb2 and
b3). We shall calljk a generic “small” variable, different
from bl sl=2,3d.

Terms of the last line and column(those related to the
third intrinsic component of the angular velocity) are dis-
cussed in Sec. II D. Here, we consider a simpler problem: the
inversion of a matrixG which has finite values for all terms
in the principal diagonal, and only “small” values for all
others. In the zero-order approximation, the inverse matrix
A=G−1 is diagonal, with diagonal elementsAmm=1/Gmm.

The first-order approximation gives the nondiagonal ele-
ments

Amn = Anm = −
Gmn

GmmGnn

. sB1d

We are interested in particular in the effect of nondiagonal
terms on the coefficients of the derivatives with respect tob2
or b3.

Terms involving the derivatives with respect tobl andjk
have the form

G−1/2 ]

] jk
FG1/2Akl

]

] bl
G + G−1/2 ]

] bl
FG1/2Alk

]

] jk
G .

sB2d

The nondiagonal matrix elements of the matrixA are
of the first order in the “small” variables. They have there-
fore form flk

sidsb2,b3dji, where flk
sidsb2,b3d=]Al,k/]ji,

or—possibly—are the sum of several terms like that.
Substituting this expression in Eq.(B2), one obtains

G−1/2 ]

] jk
FG1/2Akl

]

] bl
G + G−1/2 ]

] bl
FG1/2Alk

]

] jk
G

= flk
sidsb2,b3dF2ji

]

] jk
+

ji

2G
S ] G

] jk
D + dikG ]

] bl

+ ji

3F flk
sidsb2,b3d

1

2G
S ] G

] bl
D + S ] flk

sid

] bl
DG ]

] jk
. sB3d

The last line of Eq.(B3) only contains the partial-derivative
operator with respect to the small variablejk. Compared with
the diagonal term involving the corresponding second-
derivative operator, it contains a small factorji more, and
can be neglected.

In the first line of the expression, all terms are potentially
of the same order of magnitude of the leading ones, and in

principlecould notbe neglected. The first of the terms in the
square brackets contains the partial derivative with respect to
jk. In the spirit of the adiabatic approach, we try to estimate
the expectation value of this term for the ground-state wave
function in all the variables, with the exception ofb2 andb3.
If we assume that the potential is harmonic for the ensemble
of these variables, the ground-state wave function can be
expected to be close to a multivariate Gaussian function. If,
moreover,jk andji are uncorrelated, the expectation value of
ji ] /]jk is zero, askjil=0.

For the casei =k, instead, the expectation value is

K2j
]

] j
L < 2

E exps− aj2/2dj
]

] j
exps− aj2/2ddj

E exps− aj2ddj

=
E exps− aj2/2ds− 2aj2dexps− aj2/2ddj

E exps− aj2ddj

= − 1

sB4d

and (in this approximation) cancels the third term,dik. In
conclusion, the coefficient of] /]bl coming from the nondi-
agonal terms of the matrixG can be approximated with a
sum of expressions like

flk
sidsb2,b3dK ji

G

] G

] jk
L , sB5d

which approximately vanishes fori Þk, and also vanishes for
i =k unless bothAlk and G depend explicitly onjk. More-
over, also in this latter case, it is possible to eliminate non-
diagonal elements of the matrixG of the form Glk
=glksb2,b3djk, with a slight change in the definition ofbl,
without any other effect at the present order of approxima-
tion. Namely, it is sufficient to substitute the dynamical vari-
ablebl with the new variable

bl
o = bl +

1

2
glksb2,b3djk

2 sB6d

to obtain

ḃl = ḃl
o − glksb2,b3djkj̇k + 0sjk

2d sB7d

and therefore, up to the second order injk,

ḃl
2 + 2glksb2,b3djkḃlj̇k = sḃl

o − glksb2,b3djkj̇kd2

+ 2glksb2,b3djkḃlj̇ < sḃl
od2

.

sB8d

This argument can be easily extended to the case in which
the dependence ofAlk on jk comes from the dependence on
jk of one of the terms at the denominator in Eq.(B1).
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APPENDIX C: QUANTIZATION ACCORDING TO
THE PAULI RULE

In this appendix, we discuss some aspects of the quanti-
zation of the kinetic energy expression given, e.g., in Eq.
(21), by means of the Pauli procedure: namely, if the classi-
cal expression of the kinetic energy in terms of the time
derivatives of the dynamical variablesjm is

T =
1

2o
m,n

Gm,nj̇mj̇n, sC1d

the corresponding quantum operator has the form

T = −
"2

2
G−1/2o

m,n

]

] jm

G1/2Am,n
]

] jn

, sC2d

whereG=detG andA=G−1. The choice of the “best set” of
dynamical variables is, in part, related to the expression of
the potential-energy term, and it is not obvious that it will
eventually coincide with the one discussed in Sec. II E.
However, it can be useful to explore the properties of the
kinetic-energy operator in the particular model in which the
matrix of coefficientsG is exactly that of Table II, with the
nondiagonal terms confined in one single line(and column)
of the lower 636 submatrix.

TABLE V. The relevant part of the matrix of inertia,G81 after the substitution of the angular-velocity componentsqksk=1,2,3d with the
time derivative of the Euler angleuk. Here,J1=J2=3sb2

2+2b3
2d andJ3=4u0

2+2v2+8u2+18w2. The determinant of this 636 matrix is now
G81=detG81=288u0

2v2u2w2sb2
2+2b3

2d2sin2u2.

ẇ ẋ q̇ u1̇ u2̇ u3̇

ẇ 2v2 0 0 2v2 cosu2 0 2v2

ẋ 0 2u2 0 4u2 cosu2 0 4u2

q̇ 0 0 2w2 6w2 cosu2 0 6w2

u̇1
2v2 cosu2 4u2 cosu2 6w2 cosu2 sJ1 cos2 u3+J2 sin2u3dsin2 u3+J3 cos2 u2 sJ2−J1dsin u2 sin u3 cosu3 J3 cos2 u2

u̇2
0 0 0 sJ2−J1dsin u2 sin u3 cosu3 J1 sin2 u3+J2 cos2 u3 0

u̇3
2v2 4u2 6w2 J3 cos2 u2 0 J3

TABLE VI. The lowest 636 submatrix of the inverse of the matrixG given in Table II. The upper part
is diagonal in the present approximation.

p̂w p̂x p̂q L̂1 L̂2 L̂3

p̂w

1

2v2 +
1

4u0
2

2

4u0
2

3

4u0
2 0 0

−
1

4u0
2

p̂x

2

4u0
2

1

2u2 +
4

4u0
2

6

4u0
2 0 0

−
2

4u0
2

p̂q

3

4u0
2

6

4u0
2

1

2w2 +
9

4u0
2 0 0

−
3

4u0
2

L̂1 0 0 0
1

J1 0 0

L̂2 0 0 0 0
1

J2 0

L̂3
−

1

4u0
2 −

2

4u0
2 −

3

4u0
2 0 0

1

4u0
2
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From now on, we limit our discussion to the lowest
636 submatrixG1 of the matrixG (and of the matrices de-
rived from G, Tables VI and VII) as the six corresponding
variables—w,x,q,u1,u2,u3—are effectively decoupled from
the others.

The formal procedure is discussed, e.g., in Chaps. 5 and 6
of Ref. [34]. The first pass is the substitution of the intrinsic
componentsq1,q2,q3 of the angular velocity with the time
derivatives of the three Euler anglesu1,u2,u3,

qk = o
i

Vkiu̇i sC3d

with

V = *
− cosu3 sinu2 sin u3 0

sin u3 sin u2 cosu3 0

cosu2 0 1* . sC4d

As a consequence of this substitution, the 636 matrix G1
transforms according to the relation

G18 = W̃G1W, W= Uh1j h0j
h0j V

U sC5d

(whereW̃ is the transpose of the matrixW andh1j,h0j are the
333 unit matrix and null matrix) and takes the form shown
in Table V. The next step is the inversion of the matrixG18. In

doing this, the explicit form(20) of J3 has been introduced
and second-order terms in the small amplitudes have been
neglected. At this point, it is necessary to introduce the in-
trinsic components of the angular momentum operator
sL1,L2,L3d in the place of the derivatives with respect to the
Euler angles. The expression ofLk in terms of] /]uk and vice
versa is given, e.g., in Chap. 5 of Ref.[34]. One gets

− i
]

] uk
= o VikL̂i sC6d

with the matrixV given by Eq.(C4). It is also convenient to
define the quantum operators

p̂w = − i ] /] w,

p̂x = − i ] /] x,

p̂q = − i ] /] q, sC7d

to obtain

− iH ]

] w
,

]

] x
,

]

] q
,

]

] u1
,

]

] u2
,

]

] u3
J

= W̃hp̂w,p̂x,p̂q,L̂1,L̂2,L̂3j . sC8d

TABLE VII. The matrix isG18d
−1W̃sinu2 (see text).

p̂w p̂x p̂q L̂1 L̂2 L̂3

]

] w

sinu2

2v2 +
sinu2

4u0
2

2 sinu2

4u0
2

3 sinu2

4u0
2 0 0

−
sinu2

4u0
2

]

] x

2 sinu2

4u0
2

sin u2

2u2 +
4 sinu2

4u0
2

6 sinu2

4u0
2 0 0

−
2 sinu2

4u0
2

]

] q

3 sinu2

4u0
2

6 sinu2

4u0
2

sin u2

2w2 +
9 sinu2

4u0
2 0 0

−
3 sinu2

4u0
2

]

] u1 0 0 0
−

cosu3

J1

sin u3

J2 0

]

] u2 0 0 0
sin u2 cosu3

J1

sin u2 cosu3

J2 0

]

] u3
−

sin u2

4u0
2 −

2 sinu2

4u0
2 −

3 sinu2

4u0
2

cosu2 cosu3

J1

− cosu2 sin u3

J2

sinu2

4u0
2
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The introduction of a set of conjugate momentap̂k such that

− i
]

] jk
= o

i

Wikp̂i sC9d

in Eq. (C2) gives

T̂ =
"2

2
Fo

m,n
sWAW̃dm,np̂mp̂n + iG−1/2o

m,n

] G1/2sAW̃dm,n

] jm

p̂nG .

sC10d

In our case,A=sG18d
−1, G18=W̃G1W, so that

TABLE VIII. Invariants up to fourth order built with the tensorsas2d and as3d, in the limit close to axial symmetry. HereTKK
sLd ;faK

^ aKgsLd, and we use the definitionsy2=h2+z2, w2=X2+Y2. “Small” (nonaxial) terms are approximated up to the second order.

A1; sas2d ·as2dd= b2
2 +

10b3
2

b2
2 + 5b3

2j2 +
4b3

2

b2
2 + 2b3

2v2

A2; −sas3d ·as3dd= b3
2 +10w2 +

2b2
2

b2
2 + 5b3

2j2 +
2b2

2

b2
2 + 2b3

2v2

B1; −
Î14

4
sas2d ·T22

s2dd= b2
3 −

9

2
b2

3g2
2 −

30b2b3
2

b2
2 + 5b3

2j2 +
6b2b3

2

b2
2 + 2b3

2v2

B2;
Î21

2
sas2d ·T33

s2dd= b2b3
2 − b2b3

2s
1

2
g2

2 + Î5g2g3 + g3
2d −

25

2
b2w

2 +
10b2b3

2

b2
2 + 5b3

2j2 +
3b2

3 − 4b2b3
2

2sb2
2 + 2b3

2d
v2

C1;
7

2
sT22

s2d ·T22
s2dd=

b2
4 +

20b2
2b3

2

b2
2 + 5b3

2j2 +
8b2

2b3
2

b2
2 + 2b3

2v2

C2;
35

18
sT22

s4d ·T22
s4dd=

b2
4

+
20b2

2b3
2

b2
2 + 5b3

2j2 +
8b2

2b3
2

b2
2 + 2b3

2v2

C3;
21

4
sT33

s2d ·T33
s2dd=

b3
4 +3b3

4g3
2 −25b3

2w2 +
10b2

2b3
2

b2
2 + 5b3

2j2 +
4b2

2b3
2

b2
2 + 2b3

2v2

C4;
77

18
sT33

s4d ·T33
s4dd=

b3
4 −4b3

4g3
2 +80b3

2w2 −
4b2

2b3
2

b2
2 + 5b3

2j2 +
4b2

2b3
2

b2
2 + 2b3

2v2

C5;
231

100
sT33

s6d ·T33
s6dd=

b3
4 +

21

25
b3

4g3
2 +

37

5
b3

2w2 +
142b2

2b3
2

25sb2
2 + 5b3

2d
j2 +

4b2
2b3

2

b2
2 + 2b3

2v2

C6; −
7Î6

4
sT22

s2d ·T33
s2dd= b2

2b3
2 −b2

2b3
2s2g2

2−2Î5g2g3+g3
2d −

25

2
b2

2w2 −
20b2

2b3
2 + 10b3

4

b2
2 + 5b3

2 j2 +
3b2

4 − 4b2
2b3

2 + 4b3
4

2sb2
2 + 2b3

2d
v2

C7; −
7Î55

18
sT22

s4d ·T33
s4dd= b2

2b3
2 −

1

6
b2

2b3
2s5g2

2 + 2Î5g2g3 + 13g3
2d

+5b2
2w2 +

− 7b2
4 + 10b2

2b3
2 + 5b3

4

3sb2
2 + 5b3

2d
j2 +

b2
4 − 20b2

2b3
2 − 8b3

4

3sb2
2 + 2b3

2d
v2
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WAW̃= WsW−1G1
−1W̃−1dW̃= G1

−1 sC11d

and the first term of Eq.(C10) takes the form given in Table
VI. The second term of Eq.(C10) vanishes. In fact, only the
derivatives with respect tou2 or u3 could give a contribution
to the sum, as the other variables do not appear in the ele-
ments of the submatrix. Moreover, the determinantG1 is
simply proportional to sin2u2 (with the proportionality factor
depending on dynamical variables which are outside the
present subspace), and the termG1/2 in Eqs. (C10) can be

replaced by sinu2. The matrix isG18d
−1W̃ sin u2 is given in

Table VII. The sum of the derivatives of each element of the
fifth row, with respect tou2, plus the corresponding one of
the sixth row, with respect tou3, would give the coefficient
of the corresponding momentum operator, but it is easy to
verify they cancel each other.

APPENDIX D: THE POSSIBLE FORMS OF
THE POTENTIAL TERM

The form of the approximate potential-energy expression
depends on the details of the underlying microscopic struc-
ture that the model should try to simulate. There are, how-
ever, some general rules to which the expression of the po-
tential energy must conform: it must be invariant under space
rotation, time reversal, and parity.

Irreducible tensors of different rank have been constructed
with each of the basic tensorsas2d andas3d, and scalar prod-
ucts of tensors of equal rank have been considered. In order
to be invariant under time reversal, each term must contain
an even number of octupole amplitudesam

s3d. Moreover, due
to symmetry, only tensorsTll

sKd=fasld ^ asldgsKd of even rankK
can be obtained with the coupling of two identical tensors
asld. There are therefore two independent invariants of order
2, sas2d ·as2dd and sas3d ·as3dd, two of order 3,sas2d ·T22

s2dd and
sas2d ·T33

s2dd, and seven of order 4, namelysT22
sKd ·T22

sKdd (K=2,

4), sT33
sKd ·T33

sKdd (K=2,4,6), and sT22
sKd ·T33

sKdd (K=2,4). Addi-
tional fourth-order invariants of the form sfas2d

^ as3dgsKd ·fas2d ^ as3dgsKdd sK=1−5d are not independent of
the above ones, and can be expressed as a linear combination
of them with the standard rules of angular momentum recou-
pling.

Invariant expressions up to the fourth order in the ampli-
tudesam

sld (l=2, 3) are shown in Table VIII, in terms of the
dynamical variablesb2, g2, b3, g3, w2=sX2+Y2d, j, andv2

=sh2+z2d. Expressions corresponding to different choices of
the dynamical variables can be easily obtained.

Here, only terms up to second order in the series expan-
sion of the “small”(nonaxial) amplitudes are given. In this
approximation, the fourth-order invariants built with the
quadrupole amplitudessC1,C2d turn out to be proportional to
each other and to the square of the corresponding second-
order invariantsA1

2d. Moreover, as is clear from Table VIII,
the three fourth-order invariants built with the octupole am-
plitudes sC3,C4,C5d and the square of the corresponding
second-order invariantsA2

2d are not linearly independent of
one another, and provide only two independent relations.

One can finally observe that the variablesX, Y, h, andz
always appear only in the combinationssX2+Y2d, sh2+z2d.
As long as the expression of the potential energy only de-
pends on the invariants up to fourth order, the anglesq and
w defined in Eq.(17) are not subject to a restoring force. The
situation is more complicated for the three variables related
to them= ±2 components ofam

l . Also in this case, however,
it is possible to construct combinations of invariants that
contain only linear combinations of the squares of the vari-
ablesj, g=Î5g2−g3, and g0=b2

2g2+Î5b3
2g3. Moreover, in

this case, the first two of them do appear in the combination
b2b3g2+2sb2

2+5b3
2dj2 . It is therefore possible to image a

situation in which the potential energy is independent also of
the anglex (although this is not a direct consequence of the
model, as is the case for the anglesq andw).
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