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Description of nuclear octupole and quadrupole deformation close to the axial symmetry
and phase transitions in the octupole mode
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The dynamics of nuclear collective motion is investigated in the case of reflection-asymmetric shapes. The
model is based on a new parametrization of the octupole and quadrupole degrees of freedom, valid for nuclei
close to the axial symmetry. Amplitudes of oscillation in other degrees of freedom different from the axial ones
are assumed to be small, but not frozen to zero. The case of nuclei which already possess a permanent
quadrupole deformation is discussed in some more detail and a simple solution is obtained at the critical point
of the phase transition between harmonic octupole oscillation and a permanent asymmetric shape. The results
are compared with experimental data of the thorium isotopic chain. The isfﬁ%ﬁeis found to be close to
the critical point.
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I. INTRODUCTION IIl. THEORETICAL FRAME FOR COMBINED
QUADRUPOLE AND OCTUPOLE EXCITATIONS

Phase transitions in nuclear shapes have been recently ob- A. Previous investigations of the octupole plus
served at the boundary between regions characterized by dif- quadrupole deformation
ferent intrinsic shapes of quadrupole deformation. It has been
shown by lachello[1-3] that new dynamic symmetries,
called E5), X(5), and Y(5), hold, respectively, at the critical
point between spherical shape amdinstable deformation,

between spherical and deformed axially symmetric shape, . :
) O raic approach The latter, proposed in 1985 by Engel and
and between deformed axial and triaxial shape. Here, we arl%chello[lQ], has been recently used by Alonebal. [20],

mainly interested in the second case. First examples(6f X Radutaet al. [21,22, and Zamfir and Kusnezoi23,24. An
S-‘/mrl?,e”y in transitional m.’CIe' have been foundﬁ?Sm[Ar_] alternative approach assumingcluster configurations has
and °Nd [5]. Other candidates for the (%) symmetry i poon giscussed by Shneidmetral. [25]. In the frame of the
different nuclear regions have been reported 1§6f13.  yoometrical approach, a number of theoretical investigations
From the theoretical point of view, slightly different poten- ¢ yhe octupole vibrations around a stable quadrupole defor-
tials have t_)een explore_d by Capiib4] and by Bonatsost o0 have been reported in the last 50 y¢a6s-32. Most

al. [15], while the evolution of the=2 band when the lower ¢ yhem “however, are limited to the case of axial symmetry.
border of the square well potential is displaced from zero hag,iq approach has been criticized, e.g., by Donner and
been investigated by Pietralla and Gorbachefii4j. Greiner[33], who have stressed the fact that all terms of a

A S|m|lar(;)hfase transitiofi.e., from ihape_ olscnlat|on 0 given tensor order must be taken into account for a consis-
permanent deformation, conserving the axial symmetry o ent treatment. To do this, Donner and Greiner renounce to

';he Zystem Cor:"d te;ke p:jlace alspblln the ocfupc;le digreehofthe use of an “intrinsic frame” referred to the principal axes
reedom. We have found a possible example of such a phasg yhe overall tensor of inertia and choose to define the oc-
transition in the thorium isotope chain, with the critical point tupole amplitudes in the “intrinsic frame” of the quadrupole
close to the mass 226. In this case, the octupole mode i§,qe alone. In this approach, definite predictions have been
combined with a stable quadrupole deformation. Prehmmaryobtained at the limit where the octupole deformations are

results have been_reported in two recent_Conf_erefﬁ:,éﬂ ssmall” in comparison with the quadrupole onfg].
In order to provide a theoretical frame in which to discuss

the different aspects of the octupole motion, we introduce a
new parametrization of the quadrupole and octupole degrees
of freedom, valid in conditions close to the axial symmetry. Here we adopt a different approach, which can be useful
In this limit, a model similar to the classical one by Bohr also in the case of comparable octupole and quadrupole de-
[18] has been developed. This is the subject of the first parformation, close to the axial-symmetry limit. Namely, we
of this paper. In the second part, the model is used to discus#oose as an “intrinsic” reference frame the principal axes of
the evolution of the octupole mode along the isotopic chairthe overall tensor of inertia, as it results from the combined
of thorium, and the results are compared with the experimenguadrupole and octupole deformation. The definitions of
tal data. quadrupole and octupole amplituda%), with A=2,3 and

Reflection-asymmetric nuclear shapes have been dis-
cussed in a number of papers, either in terms of surface
quadrupole-octupole deformation(Bohr geometrical ap-
roach or with an extended interacting boson modalge-

B. The new parametrization
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aﬂﬁz:(_)ua(”)*, are recalled in Appendix A. All these ampli- [18] of not-too-big deformations and irrotational flow, are
tudes are defined in th@oninertia) intrinsic frame. To this ~ given in Appendix A. In order to simplify the notations, from
purpose, in the case of the quadrupole mode alone, it i80W on we consider the inertia parametBpsB; included in
enough to assuma(zz):a(_zz) real andaizl):oy with the stan- our definitions of the amplituda&f}f), which therefore corre-

dard parametrization in terms ¢ and v, spond to\s’B—xa(") in the original Bohr notations. From Egs.
(A20), and retaining only terms of the first order in the small
@ -
ay = B2 C0SY;, (1a) amplitudesaﬁf) with «# 0, we obtain the conditions
r/_ = yf_ a j—
a?=0, (1b) J12= = 2V6(8, Im 3P + 55, Im%P) =0, (4a)
a? =\1/2, sin y,. (10 Ja+1T5=6(BAY +\2837) =0,  (4b)

For the octupole mode alone, a parametrization suitable twhich are satisfiedat the leading orderif we put

this purpose had been proposed in 1999 by Wexler and Dus- ‘5,8 P
P ~ —N£p3 . ~ 2 :
sel [35]. We adopt here a very similar one, a(12> = m(,ﬂ_ i0), a(13) = M(W- i),
3y’ = B3 C0SYs, (2a)
a® = - (5/2(X+iY)sin ys, (2b) Imag = ————2 Bz & ImEY = ,_2/32 ¢ (5)
VB2 + 583 B2+ 583
a® = \1/285 sin ys, (200 with the new parameters, ¢, and ¢ small of the first order.
It is clear that only the ratios of the relevant amplitudes are
a® = X[ cos y; + (V15/2)sin y,] constrained by Eqg4). The definition of the new variables
_ — given in each line of EqY5) contains therefore an arbitrary
+iY[cosys — (V15/2)sin ys). (2d)  factor. Our choicgand in particular for the square-root fac-

With this choice, the tensor of inertia turns out to be diagonaF0r§ at the denominatgraas some d|st|ngwshed adyantage,
(see Appendix A which will become clear from the classical expression of the
In both cases, one has to consider, in addition to the inl—(InetIC energy, _dlscussed in the next paragraph.
In the intrinsic reference frame, and at the same order of

trinsic variables(3,,y, for the quadrupole, 0fB;,y3,X,Y for o o
the octupolg the three Euler angles defining the orientation2PProximation, the values of the three principal moments of

of the intrinsic frame in the laboratory frame, in order to inertia can be derived from EqgA18) and(A19),
reach a num.ber of parameters equal to the number of degrees Ju= 362+ 282 + 2y3(B2y, + \582y3), )
of freedom(five for the quadrupole, seven for the octupole

Unfortunately, the situation is not so simple when quad- a2 5 5/ 02 = .2
rupole and octupole modes are considered together, as the J2=3(B3+ 2f33) = 2V3(Byy2 + V5B373), (6b)
intrinsic frames of the two modes do not necessarily coin- 5 5 by 0 )
cide. We shall limit our discussion to situations close to the ~ J3=4(B5% + B573) + 18X% + Y2) + 2(7” + {?) + 8¢,
axial symmetry limit—in which, obviously, the two frames (60)
coincide—and define a parametrization which automatically _ ) o
sets to zero the three products of inetfig, (x# ') up to  With the amplitudes given by Eqgel) and(2), the principal

the first order in the amplitudes of nonaxial modes axes of the quadrupole would coincide with those of the

To this purpose we put octupole. It is not necessarily so with our more general as-
0N — =00 L () sumptions. Whera(l}‘)aﬁo, the axis 3 of the tensor of inertia

a, =a, +ta,;, (3 for the quadrupole mode alone does not coincide with that of

%™ the octupole. Ifa™=0, but Imal’ #0, the misalignment

nfoncerns the other two principal axes perpendicular to the
common axis 3.

Whereéﬁ‘) are defined according to Eq4)) and(2) and .,
are correction terms, which are assumed to be small co
pared to the axial amplitudea%”, but of the same order of
magnitude as the other nonaxial terms. It will be enough to C. The classical expression of the kinetic energy
consider these corrections only for those amplitudes which,
according to Eqs(1) and(2), are either zero or small of the
second order: the imaginary partaf), a(23) and the real and
imaginary parts 01’51(12), a<l3). The six “new” first-order ampli-
tudes added to those of Eq4) and (2) are, however, not
independent of one another, if we choose as the reference T= }2 0.6..0 7)
system the one in which the three products of inertia turn out T2 w7 pyev
to be zero. ) o ) )

The expressions of the inertia tensor as a function of thavhere Q={&,,&,,...,49,01,02,03}, €, (v=1,...,9) are the
deformation parameters, obtained with the Bohr assumptiontime derivative of the nine parameters we have just defined,

Now it is possible to express the classical kinetic energy
(as given by Bohr hydrodynamical mogleh terms of the
new variables and of the intrinsic componeqjsof the an-
gular velocity. The classical expression has the form
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TABLE I. The matrix of inertiaG: leading terms and relevant first-order terms. Other first-order terms are indicated with the sydbol
As_the matrix is symmetric, first-order terms in the last three columns are not explicitly shown.ﬂer@(ﬁ%+2ﬁ§)+2xﬁ3(ﬁ§w
+\5B2y3); Jo=3(B2+2B9) —2\3(Byo+BBYy3); and Jo=4( B34+ B5yA) + 18X2+Y2) +2(r2+(2)+8¢%.  The determinant of the matrix is
G=detG=115285B5(8;+2B3)°(B3+583) " (B3y2+\5B573)°

B Y2 Bs Y3 X Y ¢ 7 ¢ O G2 O3
g, 1 0 0 0 0 0 0 [.]L..] O
» 0 B 0 0 0 0 0 0 L1016
B, O 0 1 0 0 0 0 0 0 [.][..] O

_ [ sgx || sy
¥ 0 0 0 B [V15X] [-V15Y] 0 | VB2 || VB +2g2 | LAl
| _ _ __SBoys |
X 0 0 0 [V15] 2+2/15y, 0 0 VR 28 0 L1016
. _ . __5Bys
v 0 0 0 [-V15Y] 0 2-2/15,, 0 0 VB2 L0000
£ 0 0 0 0 0 0 2 0 0 [L.IL.1C.)

58X || 5B
n 0 0 0 i \f"ﬁ§+23§_ \“",35"'23% 0 0 2 0 010
) -_ 5BY ] _ 5B2¥3
¢ 0 0 0 i \“"ﬁ§+2,3§_ 0 V’B§+2,B§ 0 0 2 [0
G =0 =0 =0 ~0 ~0 ~0 ~0 ~0 ~0 J, 0 0
=0 =0 =0 =0 ~0 ~0 ~0 ~0 ~0 0 % O
- \*"4—(352535 \“‘%ﬁzﬁsf \“@ﬁzﬁs( \““E’Yz -7

% 0 g5 O E+5E oY o VB3 + 563 2 e 00

andq;,0,,03 are the intrinsic components of the angular ve-small(of the first ordey in the “small” amplitudesy,, y3,X,Y,
locity of the intrinsic system with respect to an inertial & 7,{. In situations close to the axial symmetry, they have
frame. The elements of the matrik(leading terms and rel- negligible effect on the resulisee Appendix B with the

evant first-order termsare shown in Table I. only exception being elements of the last line and column.

The determinanG=detg takes the form The latter, in fact, are still small of the first order, but must be
compared with the diagonal elemegt, which is small of

G o B2BABe+ 282382 + 580 U oy, + \582y5) the second order in the “small” nonaxial amplitudes. These

terms play an important role in the treatment of the intrinsic
and, at the limitB;<< 85, turns out to be proportional tﬁg, component of the angular momentum along the approximate
and therefore consistent with that of the Bohr model for aaxial-symmetry axis, which will be discussed in the next
pure quadrupole motion. This is a consequence of our choicgaragraph.
of the normalization factors in Eq&). This choice has other
advantages: all the nondiagonal terms involving the time de-
rivatives of B, or B; and either the derivative of one of the
other intrinsic amplitudes og; turn out to be zero in the According to the classical mechanics, the componknpts
present approximation. Other nondiagonal elements ark,, andLj of the angular momentum in the intrinsic frame

D. Intrinsic components of the angular momentum
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are obtained as the derivatives of the total kinetic energy ,. . BB . 1 o
with respect to the corresponding intrinsic component of the ,327’3“‘ 337’%: 2 27’2+ 2 5(%/0)°.  (16)
B>+ 583 B2+ 583

angular velocity,
In deriving Eq.(16), the factor 1¢ has been considered con-

L= ﬂ, (8)  stant. We may note, however, that the same result haids
9 G the leading orderlso if 1/c is a function of3, and/orBs. In
The part of the kinetic energy depending on the componenf@ct: terms involving the time derivative of ¢ also contain
g has the form the “small” quantity o, and their ef_‘fect is negligible in the
present approximatiotsee Appendix B For example, one
1, could choose for 1d a quadratic expression i3,,3;, in
T(aw = Ejqu * Pl ©) order to obtain fory, an adimensional quantity, like, , vs,

) ] ) ) and y. The same argument applies for possible redefinitions
whereF, is a function of the dynamical variablésand of  f other “small” variables, likey.

their derivatives with respect to the time, andsimall of the Expressiorn(12) can be somewhat simplified with the sub-
first orderaccording to our definition. As for the moments of gtjtutions

inertia, 73 is small of the second ordewhile 7,7, are not

small. According to Eq(8), we have X=wsin ¥, (173
L= Jik + Fr,
K= T Y =wcosd, (17b)
L,—F
Ok = kak, (10) n=vSine, (179
1 1 2 1 §: v COS¢, (17d)
Ti(Ly) = _jk|:_(|—k_ Fk):| + Fk|:_(|-k_ Fk):|
277 K N/ :
E=usiny, (17¢
20 27k y=2(\B3+ 52IB,B3)u cosy, (179
Fork=1,2, thesecond term is small of the second order and
can be neglected. It is not so fke 3, as7; is also small and Yo —
of the same order a&Z. In more detail, we have o (B2, B3)V B3 + 5B83Uo, (179
Ly= Tatla + [ \iﬂz,:’sz(y'g_ £) + 6(YX=XY) which gives for the determinant of the matigk
\r’ +
Pz oPs G = DetG = 2304 82 + 282)2u2v AW 2B, Bs) . (18)
+2({n- ﬂ-é)} : (12) The choice of the functiofi(s3,, B5) is irrelevant for what
concerns the angular momentum. Nondiagonal teisnsall
where we have put of the first ordey would depend on this choice, but their
_ effect is negligible(see Appendix B As a criterion to define
Y=V5%— 3. (13 the form of the functionf, we observe that for permanent

. . _ quadrupole deformatioB,=, and at the limitg2< 33, our
At this pmr;t, it will be gonyemen:{ to express the vi';mabtgs value ofG must agree with the result given, at this limit, by
and y; as linear com_l:)lrlatlons of two new variables, one Ofgigennerg and GreindB4]. This happens if the functioh
which is, obviously,y= 5y, ys. The other one, that we call \ye haye left undetermined tends to a constant wigen

Y0, €an be chosen proportional to the linear combination_%z' We adopt here the simplest possible choice, i.e.,

which enters in the expression of the determin@nt f(B,,5)=1, to obtain the matrig given in Table II, andat
- .
o= B2y + \5B3ys). (14)  the leading order
With this choice, we obtain G = detG = 2304 55 + 235 *upp°u’w?, (19
[E 2
Y2 = —70/c2+ \5637, T = 4U3 + 207 + 8u2 + 1802, (20
B>+ 583
) 02 4 2 * 2 2:2 2 2:2
y :\r'g'}/olc—lggfy (15) 2T—ﬁ2+ﬂ3+U0+2(U +U(,D)+2(U +UX)
ST g+sg + 2002 + W22) + 24| 20% + 4P + 602D |
and, at the leading order, + J10f + Jo05 + Ja03. (21)
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TABLE II. The matrix of inertiaG after the introduction of the new variablesg, v, u, w, ¢, x, and 9 (see text Here,jlsz:S(BE
+23§) and j3=4u(2)+2v2+8u2+ 18w2. Only the leading terms are shown. Neglected terms are small of the first @mdsmalley in the

submatrix involving onIyBZ, Bg, Ug, U, U, W, g4, andqpy; of the third orderor smallej in the submatrix involving onlyp, x, ¥, andqs; of

the second ordeor smallej in the rest of the matrix.

B2 B3 Uo v u w ¢ X U 01 02 O3
Bz 1 0 0 0 0 0 0 0 0 0 0 0
,'33 0 1 0 0 0 0 0 0 0 0 0 0
Uo 0 0 1 0 0 0 0 0 0 0 0 0
v 0 0 0 2 0 0 0 0 0 0 0 0
u 0 0 0 0 2 0 0 0 0 0 0 0
W 0 0 0 0 0 2 0 0 0 0 0 0
@ 0 0 0 0 0 0 22 0 0 0 0 2?
X 0 0 0 0 0 0 0 272 0 0 0 42
9 0 0 0 0 0 0 0 0 22 0 0 ow?
o 0 0 0 0 0 0 0 0 0 T 0 0
> 0 0 0 0 0 0 0 0 0 0 T2 0
O3 0 0 0 0 0 0 2° 4u? 6w? 0 0 Ve
E. Classification of elementary excitations with respect t&K™ Py 2
—— x=55" (L3~ P, 2p,~3py), (239
We can now deduce the intrinsic components of the an- 2u? ug ¢ X
gular momentum,
Li=710, (229
L2= T2, (22b) p=PL S p - 2p,-3py). (231)
2xo g

Ly = Talla + | 20% + 4%+ 6W20 | = 20%(qs + &)

+ 4U%(205 + X) + 6WA(3gg + ) + 4ugs.

(220

Equationg23) have a very simple meaning in the case where

In the same way, we can obtain the classical moment€ potential energy does not depend on the variahlgs or
conjugate toy, 9, and ¢ (we observe that none of these . In such a casga sort of modele-y-9-unstable, in the

variables appears in the expressiongsobr .73),

Py = 2v%(p +0la),
p)( = Zuz().( + ZQ3)!

Ps= 2W2(1-9 +303) .

(220
(22¢)

(22f)

Now we can solve the system of equatig@8) with respect

to the variablesy;,0,,95,¢,x,3. We obtain
01 =L4/ 1,

Gz = Lo/ T,

1
ds= —(Ls— Py~ 2P, — 3Py),
Uo

. P 1
=—% — (Ly—p,—2p, - 3ps),
¢ 207 ug( 3~ Py~ 2P, — 3py)

(233

(23b

(230

(23d)

sense of they-unstable model by Wilets and Jefs6)), the
conjugate moments of these three angular variables are con-
stants of the motion, with integer eigenvalugs n,, andny

(in units of ). Moreover, if we assume thag— 0, the third
componentgs of the angular velocity tends te unlessL,
—P,—2p,—3ps=0[EQ.(230)]. In this case, the operatbg is
diagonal, with eigenvalueK=n,+2n, +3n,, and the three
degrees of freedom corresponding ¢0 x, and 9 can be
associated to nonaxial excitation modes vi{th1, 2, and 3,
respectively.

To investigate the character of the degree of freedom de-
scribed by the parametep, and for a deeper understanding
of the nature of the other degrees of freedom, it is necessary
to express the complete Hamiltonian in the frame of a defi-
nite model which, although not unique, is at least completely
self-consistent at the limit close to the axial symmetry.

In fact, it is now possible to use the Pauli prescriptions

[37] to construct the quantum operatdrcorresponding to
the classical kinetic energy of Eq. (21). In doing this, we

make use of the partial inversion of the maigixgiven by the

solution(23) of the linear systeni22), and note that none of
the variablesp, yx, 9, or g; enters in the expression &,
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2 . 1 J 5 5 0 again to a bidimensional harmonic oscillator and that, as
ﬁT =" B+ 2/32£ (Bo+ 2B3)£ long as we neglect the rotation-vibration coupling, the eigen-
2 372 2 valueK of the intrinsic componerit; of the angular momen-
1 d d 19 d tum is given b
+T22£[(/3§+2/3§)£} +U—E[Uo£] J Y
B2+ 2f339 Bs 3] UodUo 0 K=n,+2n,+3n,+2n, . (28)
19 J 19 J 1 9 J . Lo .
+——v— |+ ——|Uu— [+ ——|Ww— The energy eigenvalues are, for the equation in the variables
2vdv| Jdv 2udul du| 2wow| JIw V.o

E,=(N, + Dfiw, with N,=|n (29

1 ¢ 1 & 1 & 1~ 4
T o 37 <P|

PP R s R b (e PR

20%9¢* 20%dx* 2wP99?| AUl Jde o )
5 and have a similar form for the other two oscillators.

PPN iIA_2+ il“_z (24) It remains to consider the character of the different dy-

27 ! 27 z namical variables with respect to the parity operator. We

o . . _ _ _ know that the parity of the amplitud&" is (~1)*. Therefore,
This is, admittedly, only a semiclassical discussion. How- partty P [ 1)

i , andy, are even, whilg3;, X, andY are odd. As fory;, we
ever, the formal quantum treatment in the frame of the Pau bserve thap, sin y, is odd, and therefore, must be even.

procedure, shown in Appendix C, gives exactly the same, o o consequence, the linear combinatignand y,/c de-
resg::.t" NOW. N0 assumption has been made on the form 0pned in Eqs.(13) and(14) are also even. The new variables
the potentiai-energy opgrator which will determine the par-”’ & andé are oad, as{g.g) Pat Is an octupolle amplitude
ticular model. A few general rémarks on this subject are conand. therefore is odd, Wh"ﬁe’g must be even. Finally, on the
tained in Apbendix D. We now assume that the potentialbaSIS of Egs(17), we realize thav, u, andw must be odd

C : while ¢, x, and ¥ are evein We have therefore identified
energy can be separated in the sum of a term depending on

on Uy and another containing the other dynamical variables ementary excitations correspondingk6=1, 2/, 3, and
o . ) e o . .
In this case, the differential equation in the variablgis 2". Excitations withK=0 (of positive or negative parily

. ; conserve the axial symmetry, and are related to the variables
appr(_J_X|_mater dec_oupled from the rest. One obtains th%z and B;. A particular example will be discussed in the
Schrodinger equation following sections.

EN N I TP L o S
UpdUo| “dUg hz[ Yo o] w2l 2 Hlo lll. A SPECIFIC MODEL: AXIAL OCTUPOLE
VIBRATIONS IN NUCLEI WITH PERMANENT

=0, (25 QUADRUPOLE DEFORMATION

where we have put Specific assumptions on the form of the potential-energy

QUO =K-n,=2n,-3ny. (26) terms for all the variables describing the quadrupole and oc-
tupole degrees of freedom are necessary in order to obtain
If we assume, for simplicity, a harmonic form for the poten- gefinite predictions, also if these are limited to the axial
tial U(uo):§Cu§, Eq. (25) is the radial equation of a bidi- modes.
mensional harmonic oscillator. For the existence of a solu- We discuss here, as an example, the case of axial octupole
tion, it is required that excitations in nuclei which already possess a stable quadru-
0. =2n pole deformation. In this case, one obtains relatively simple
Yo Yo’ results, suitable for comparison with experimental data. This
comparison will be performed in the next section.
Following the usual treatment of vibratiemotation, we

with n, positive or negative integer and the intedég, put B,= B+ B3, With = constant and;| <|5,|. The new

>|nu0|. Excitations in the degree of freedom correspondingva”able Bz is therefore assumed to be smatlf the first

. . orden as all other variables, with the exception 8§. With
to the variableug carry, therefore, two units of angular mo- _ . . . ) : .

. o . . .. this choice, and assuming that the variables introduced in Eq.
mentum in the direction of the third axis of the intrinsic

reference frame (17) are suitable to describe the other degrees of freedom, the
We could extend our model to include all the intrinsic matrix G takes a form S|m|!ar to that of Table (with /5

variables different frong,, 3s. We assume a potential energy Substituted bys, and 8, by ;) and—at the lowest signifi-
corresponding to the sum of independent harmonic potentia/@nt order—turns out to be diagonal with respect to the vari-
in the variables), u, w, andu, plus a term depending g8,  ablesps, 55, g1, andg,. Moreover, in our model, the ampli-
and B; (at the moment, we do not need to define the form oftude of oscillation for all degrees of freedom different from
this ternm). We also assume that the equationg@jyB; can be B3 is constrained to very small values: this fact implies
approximately decoupled from those of the other variablestrong restoring forces and, therefore, oscillation frequencies
and that, in the latter3, and B3 can be replaced by their much larger than fops.

average values. It is easy to verify that the differential equa- In the limit of small amplitude of the octupole oscilla-
tions in the pair of variables,¢ (or u,y or w,9) correspond tions, this case has been discussed, e.g., by Eisenberg and

Eu, = (Ny *+ Doy (27)
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Greiner [34]. In their approach, the “intrinsic” reference G« B2BA(B2+ 28282 + 52 N By, + \;§13§3,3)2_

frame is chosen to coincide with the principal axis of the =

quadrupole deformation tensor, but the differences betweeHowever, in this case the limi{; <3,/ would not corre-

their approach and ours tend to disappear|fiat <3,. The  spond to the Eisenberg-Greiner result, due to the presence of

model we try to develop should be able to descii@agial)  the factorf3 in the expression of the determina@t In fact,

octupole vibrations of finite amplitude, but its limit for when the spherical symmetry is broken by the permanent

| B3| < B, must obviously agree with the results of Eisenbergquadrupole deformation, and at the limit of small octupole

and Greiner. deformation, the octupole amplituda? are decoupled from
The quantum-mechanical equation of motion &y can  one anothef34] and it would have been more reasonable to

be obtained with the Pauli prescripti¢87], with the addi- choose a dynamical variablg;=pB3y; in the place ofys.

tional assumption that the equations involviggand 8, or  With this substitution, the factq6§ disappears.

the angular-momentum componehtsl, are effectively de- It is convenient to express the differential equatidg) in

coupled from those containing the other dynamical variableserms of the adimensional quantities= 285/ B, and e

and/or thel; operator. The latter equations could possibly bez(l/ﬁz)ﬁgE, v:(1/ﬁ2)ﬂ§v. One obtains

complicated, and substantially coupled with one another and

with the angular momentum componeln} along the(ap- d2y(x) Lo di(x) ol JU+1) 0 w0 =0
proximatg symmetry axis. A short discussion of this subject, dx? 1+x% dx € 6(1 +x) viX X =5
with some simplifying assumptions, has been given in the (33)

previous Sec. Il D. At the moment, we assume that terms

involving 33, L3, and other dynamical variables different yyhere y(-x)=(-)’y(x). This equation reduces to that of

from B; contribute to the total energy with their own eigen- Eisenberg and GreingB4] whenx<1.

value, independent of the eigenfunction in {Bigdegree of As for the potentiab(x), we have explored two possible

freedom, and we onI.y consider their lowest-energy state. W?orms: a quadratic teri‘m(x):%cxz or a square-well poten-

also assume that .th's state. Has0 (ar_1d neglgct, as usual, tial, as has been adopt¢d] at the critical point in the X5)

the possible rotation-vibration couplingin this case, the model [v(x)=0 for [x<b and = +e outside, so that

complete wave function has the form #(xb)=0]. In both cases, there is a free parameter to be
- determined from the comparison with empirical data.

' J

W= (B3) Po( B, Yo, Wi s €0y B X ) Div 0 % Y Ba) PoYaml(€), We now discuss in particular the second case. We may

(30) note that forv=0 Eq.(33) is formally equivalent to that of
spheroidal oblate wave functionsee Eq. 21.6.3 of Ref.
where Dﬂ,,‘M, are the Wigner matrices andi(—p3s;) [38]) with the parametersn, \, and C redefined asn=0,
=(=)%y{(B5). The differential equation for the wave function C°=¢, and\=J(J+1)/6-e. Here, however, the solution is

(33), obtained with the Pauli prescription, has the form  confined in the interval b<<x<'b and the equation has been
solved numerically. For a giveb and for every value o§,

%2 pd g d £2J(J+1) one obtains a complete set of orthogonal eigenfunctions,
Y d_,836 B, +V(B3) + 2 7 (B3) with an integrating factof1+x2). These eigenfunctions can
be characterized by the quantum numsew+ 1, wherev is
=E(Ba), (31)  the number of zeros in the open intervak@<b. A few

examples of wave functions corresponding to the square-well
whereV(B5) is the potential-energy term. The expression ofpotential withb=1.73 and for different values afandJ are
the determinanG is not uniquely defined, as it also dependsdepicted in Fig. 1.
on the part of the matrix of inertig involving all other The dependence of the eigenvalues on the pararbeter
dynamical variables. This is a general pro_ble_m for all m_Ode|SIIustrated by Fig. 2, where the ratidsJ)/E(2) are shown
where part of the degrees of freedom is ignofedd, in  for the g.s. bands=1). Other possible choices of the set of
collective models, a number of dynamical variables describindependent dynamical variables would have resulted in a
ing the details of nucleon degrees of freedom are certainlyjifferent equation, but the difference would have concerned
ignored. With the present ch0|cez of dyn_azmlcalz variables the coefficient of the first-derivative term in E@®3), with a
(Table II), one getsG=detG=23041°u"W(B5+2B3)% and  yery small effect on the results, as longtais in a range of

Eq. (31) becomes “reasonable” values. To exemplify the effect of this term,

2/ 2 5 results obtained with the coefficient of the first derivative put

- ﬁ_<d_ = 4Bs i) +V(Bs) + A7+ 1) to zero are also shown—as dotted lines—in Fig. 2. Differ-
2\dB5  B5+2B50dB; ¥ 2 o7 ences between the two sets of results turn out to be very

_ limited for small values ob (at least up td=2). There is at
WB3) = Ed(Ba). (32 |east one cas€?°Th) in which our results with the square-

This is the equation we have used in Rg®). and[17]. A

different choice of the dynamical variables would have *After completion of this work, we have been informed that a
brought about a different result. For example, with the vari-quadratic potential plus a centrifugal term with variable moment of
ables used in Table I, one obtains inertia has also been considered in the model by Minddoal. [32].
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FIG. 1. Examples of wave function (x) as a function ok/b,

: ! ) FIG. 3. (Color onling Indicators of the quadrupole collectivity
for b=1.73. Pairs of curves refer to consecutive values,afith

; - s _ ¢ (left) and of the octupole collectivityright), as a function of the

even parity(continuous ling or odd parlty_(dotted ling. Parta, neutron numbeN in the isotopic chain of Racircles and Th

J’T:Oﬂ 1_; b'. J7= 10+*11._; ¢, J7=18",19" with s=1; d, J’.T:0+,1‘ _ (triangley: a, excitation energy of the first"2evel; b, energy ratio

with s=2. With increasing angular momentum, the difference in E(4*)/E(2*); ¢, excitation energy of the first level of theé™=0"

|(x)|? between consecutive values dftends to vanish and, as a band,J7=1" (open symbolsand of the lowest known level of other

consequence, the positive and negative parts of the band MergR gative-parity bandslT=2" or 1; (full symbols; d, energy ratio

together. E(17)/E(2%). The horizontal line in parb shows the valug2.91)
expected for the ¥5) symmetry. Data are from Refg39] and[40].

well potential are in good agreement with the level scheme,

for low-lying states of positive and negative parity, while for

228Th a better agreement is obtained with the quadratic poeriterion to locate the critical point of the phase transition.

tential. The possible interpretation of this result as evidence The situation is more complex when the quadrupole and

for a phase transition in the octupole degree of freedom ishe octupole degrees of freedom must be considered at the

discussed in the next section. same time. Figure 3 shows, as a function of the neutron

number of Ra and Th isotopes, a few parameters which can

be used as indicators of the quadrupole and octupole collec-

tivity. As for the quadrupole mode, the decreaseE2")

with increasingN [Fig. 3(@)] shows a corresponding increase

A. The radium and thorium isotopic chain of collectivity. Moreover, in Fig. @) we observe the transi-

A phase transition in the nuclear shape manifests itself aion between the vibrationabr not collectivg behavior of
a relatively sharp change of a propeter parameter—e.qg., _the lighter isotopes of the chal_n and fi_clear r_otatlo_nal behav-
the ratioR=E(4*)/E(2*)—as a function of alriving param-  10f (R=10/3) aboveA=226, W|th_a critical point whlch can
eterwhich can be, in our case, the number of neutrons in th&€ located around=224. The ratic=(1")/E(2"), depicted in
isotopes of a given element or the number of protons alon§i9- d), shows that the relative importance of the octupole
an isotone chain. Due to the finite number of degrees ofollectivity increases with decreasiny and reaches its
freedom, the transition region has a finite width around thén@ximum in the region belovN=138, where the critical
critical point, and extends over several nuclides in the chainPoint of the phase transition in the quadrupole mode could be
In the case of transitions between spherical shape and axilicated on the basis of Fig(l3. Heavier isotopes show evi-
quadrupole deformation, the (% symmetry, valid at the dence of octupole vibrationgof different K) around a

critical point, predictsE(4*)/E(2+)=2.91 and we can use this quadrupole-deformed corg41,42. Lighter isotopes (N
<132 appear not to be deformed in their lonkstates.

However, at larger angular momentum, a rotational-like band
develops, and this band has the alternate-parity pattern typi-
cal of a stable octupole deformati43].

The model introduced in the first part of this paper, and
developed in Sec. Il for the particular case of a permanent
quadrupole deformation, assumes that nonaxial amplitudes
are constrained to very small values by the large restoring
forces. This implies that excitation of one of the nonaxial
degrees of freedom leads to high excitation energy, com-
pared to that of the first llevel of theK=0 band. Experi-
mental data of Fig. @) show that this is actually the case for

FIG. 2. (Color onling Ratio E(J™)/E(2*) as a function ob, for  the light thorium isotopes, at least up Ae=228. In fact, the
states of the ground-stats= 1) band with different™. Dotted lines ~ first 1 level is not far from the first 2and much lower than
show the results obtained with a differential equation correspondindevels belonging to negative-parity bands wi€k 0 (as the
to that of Eq.(33) but without the first-derivative term. lowest 2 or the second .

IV. EVIDENCE OF PHASE TRANSITION IN
THE OCTUPOLE DEGREE OF FREEDOM
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FIG. 4. (Color onling RatiosE(J™)/E(2*) as a function of], for 6*_447 5-_451 5-_483 g*_479 614
positive-parity stategcircles and negative-parity statériangles 4226 3.8 3322 ., 736
of the ground-stat¢s=1) band 0f??°Th and%?®Th, compared with s§=2 8*_72 1" 2% 17230 8*_72 s§=2
different model calculations: rigid rotgcurvea, even parity only, " >
present model at the critical poiturvesb andb’), and present 226
model with harmonic potential i3 (curvec). The curves andc Th present model

correspond to a fit on the lowest %tate, the curvéd’ on the 20 ) ]
state. Note that the even-parity parts of the cutvesdb’ are very FIG. 5. Experimental level scheme %ﬁé]’_h compared with the
close to the curva for J<6, while, for each one of the curvés predictions of the present model at the critical point. The two spec-

b’, andc, the even- and odd-parity branches tend to merge togethédf@ are normalized on the first 2evel, and the model parameter
at large values of J. is adjusted to reproduce the position of the first 1

B. Comparison with experimental data for 226229 C. Other possible tests of the critical-point behavior

Our model assumes a permanent quadrupole deformation. A considerable amount of experimental information has
Therefore, it can be useful only for relatively heavy Th iso-been reported, in the last few years, on possible candidates
topes[Figs. 3a) and 3b)]. The quadrupole-deformed region [4,5,7-13 for the dynamical symmetry (%) (phase transi-
extends above the mass 2Rahich could correspond to the tion point in the quadrupole moglelt is now clear that the
critical point of the phase transition, havir§(4")/E(2*)  agreement between experimental and calculated energies for
~2.91]. Heavier Th isotopegwith A=230) show negative- the ground-state band does not automatically imply that a
parity bands built on the different states of octupole vibra-similar agreement exists also for other observables, like the
tion, from K=0 to K=3, with band heads much higher than excitation energy of the second l@vel (the band head of the
the first 2 [Fig. 3c)]. Only for lower A does the 1 band s=2 band and the in-band and interband transition prob-
head of theK™=0" band decrease well below the band headsabilities. In several transitional nuclei, the excitation energies
of all other octupole bands, and higher levels of Kfe=0~ in the ground-state band are in excellent agreement with the
band merge with those of positive parity of the ground-stateX(5) predictions, but the calculated ratios of tR€E2) tran-
band(Fig. 4), approachingbut not reachingthe pattern ex- sition probabilities fail to reproduce the experimental ones

pected for a rigid, reflection-asymmetric rotor. [9], unless arad hocsecond-order term is included in the E2
The region of possible validity of our model is therefore transition operatof14,44. It is therefore important to test
restricted to??°Th and??®Th. the predictions of our models also for what concerns such

The ratiosE(J™)/E(2") for the low-lying states of?°Th  observables.
and??®Th are depicted in Fig. 4 and compared with the pre- The low-lying level scheme of?Th is shown in Fig. 5,
dictions of different models. The rigid-rotor model cannottogether with the one resulting from the present model, with
account for the position of the lowest negative-parity levelsthe value ofb adjusted in order to reproduce the empirical
and overestimates the excitation energy for all the high-spivalue of the ratidE(17)/E(2*). At the moment, only the first
states. Instead, a rather good agreement is obtained with tieo levels of thes=2 band(0;, 2;) are known and their
present model, if one assumes, in the cas&dh, a square- excitation energies are somewhat higher than the values pre-
well potential[as the one hypothesized by lachello in hisdicted at the critical point. We can observe, however, that
X(5) model and, in the case o®Th, a harmonic restoring also in the best ¥5) nuclei[4,5,1]] the position of the levels
force. In both cases, the free parameter of the model has beef the s=2 band deviates somewhat from the model predic-
adjusted to reproduce the position of theldvel. As shown tions (although in the opposite directipnin our opinion, a
in Fig. 4 (dotted ling, a much better agreement with the similar qualitative agreement is obtained also in the present
high-spin levels of?°Th is obtained with a slightly different case. The negative-parity levels of tse2 band are pre-
value of the parametdb=1.87 instead of 1.73 at the ex- dicted to lie at higher energies, and could be difficult to
pense of a very limited discrepancy for the lével. observe. Absolute values of the transition strengths are not

Therefore, for what concerns the level energies of theavailable for?%°Th, but some relevant information is pro-
ground-state bandncluding in it also the odd, negative- vided by the branching ratios in the level decays. In Tables
parity statel 2°°Th seems to present the expected behaviotll and IV, experimental ratios of the reduced transition
of a nucleus with permanent quadrupole deformation andtrengths for E1 or E2 transitions coming from the same
close to the critical point of the phase transition in the octudevel are compared with the model prediction at the critical
pole mode. point.
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TABLE Ill. Experimental and calculated values of the ratios of for the transitions coming from the 1@nd 1T levels has
reduced strengths for E1 transitions coming from the same level dheen used for normalization of the theoretical values given in

#2°Th. Table IV.
Trans. 1 Trans. 2 Bi_,fl(El)/Bi_,fz(El)
V. CONCLUSIONS

Jr 0Jf 0Jf Theoretical Experimental . e

2 2 A theoretical scheme for the description of quadrupole
1 go* o2* 0.47 0.54 (5 plus octupole excitations close to the axial symmetry limit
3 o2t 04" 0.65 0.99 (25) has been developed in Sec. Il and specialized in Sec. Il to
2; 01 03 0.63 0.60 (18) the simpler case of a permanefand axially symmetric

quadrupole deformation. In principle, the model should be
able to describe the wide field of reflection-asymmetric
The electric dipole moment would vanish for the collec- huclear shapes, close tbut not coincident with the axial
tive motion of a fluid with uniform charge density, as the Symmetry limit. Calculations of nuclear shapes in the frame
center of charge would coincide with the center of massof the HFB-cranking mode[50] for nuclei of the radium-
Therefore, the observed E1 transition amplitudes are entirel{horium region find a large variety of results, including
due to the nonuniformity of the nuclear charge distributionProper potentials for quadrupole-octupole vibrations around

[45]. To calculate the value of a spherical shape or for octupole vibrations around a de-
i 5 formed, reflection-symmetric shape, and also situations with
B(ED) = (i M(ED|[H)¥(23 + 1), a rather flat minimum of the potential along a line at constant
the E1 transition operator has been assumed to have the forfi? W'th“|ﬁ_3|_<ﬂg1ax_' The latter case is just what is expected
[46-49 for our “critical point” of the phase. transition in the pctupole
mode. In Sec. IV, we have investigated the evolution of the
M (ED) =C1B2B5Y1 5 (34 nuclear shape along the isotopic chain of thorium, and shown

that evidence of phase transition exists, not only in the quad-

polarizability. The E2 transition operator for the in-band rupole mode but also in the octupole mode around a stable

transition and at the limit close to the axial symmetry hasquadrupole deformation. The model developed in Sec. 1l
been taken in the simple form turns out to be able to account for the experimental data of

225Th (at the critical point of the phase transition in the oc-
M, (E2) = Cy(By)Ya,, (35)  tupole modg and also of its neighba™®Th (characterized
by axial octupole vibrations More and improved experi-
mental data on E2 and E1 transition strengths would be nec-
essary for a more stringent test of the model predictions.
Further developments of the calculations are in progress
%o provide detailed predictions for other significant cases,
e.g., those of?*Ra and??*Th, whose positive-parity levels
show an energy sequence very close to lache{l®) ¥redic-
TABLE IV. Experimental and calculated values of the ratios of tjons for the critical point of phase transition between spheri-

reduced strengthgn W.u,) R=B(E1)/B(E2), for transitions coming 4] shape and axially symmetric quadrupole deformation.
from the same level of?°Th.

with the constant facto€, depending on the nuclear charge

neglecting thgweak dependence oﬁ%. Therefore, the the-
oretical ratio of the reduced strengths for transitions of dif-
ferent multipolarity(E1 and E2 is determined apart from a
constant factor, which must be fixed by comparison with th
experimental data. The average of the ratgi§1)/B(E2)

Trans. 1 Trans. 2 RX 10P ACKNOWLEDGMENTS
Jr 0 Jfl O J;TZ Theoretical ~ Experimental We have the pleasure to thank Professor_F. lachello and
Professor B. R. Mottelson for helpful discussions.

8 E1 7T E2 6 1.3 2.0 ®)

9 E1 8 E2 T 1.3 1.7 )

100 E1 9 E2 & 16 15 (F APPENDIX A: SUMMARY OF THE GENERAL

11~ E1 10 E2 O 1.6 1.7 (D2 FORMALISM

12 E1 1 E2 10 1.8 1.6 1) The general formalism to describe collective states of
137 E1 12 E2 1T 1.8 rotation/vibration in nuclei is discussed, e.g., in REf8].

14 E1 13 E2 12 1.9 1.4 1) The nuclear surface is described in polar coordinates as
15 E1 14 E2 13 2.0 1.7 3 _ IO

16 E1 15 E2 14 2.1 "(0.$)=Ro/ 1 +§ ,L;m @l ¢)]’ (AD

17 E1 16 E2 15 2.1 15 (3 _ L O

18 E1 17 E2 16 59 with the cond|t|ona_”—(—1)“aﬂ . .

19 E1 18 E2 1T 23 17 @ _ In the sum, the va!ues of are now limited t_o 2,_3. A term

: : with A=1 should be included in order to maintain fixed the

#alues used for normalization. position of the center of mag84,
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3 /— | . * . *
dl=——=3 V(ax+)(2n +1) Tow=3 2 ada)a)” -aVa) |(m),,
N AN N’k
/ N2 T : ©
x(?) xo E>[a<h>®a<h’>]f) A2 =i2 3@+ Dl e [a e AT (Ag)

Here,q, (k=1,2,3 are the Cartesian components of the an-
gular velocityq along the axes of the intrinsic frame, while
the M{k” are (2n+1)-dimensional matrices giving the

This term, however, is inessential for the following discus-
sion, and will be omitted. For not-too-large deformation, in

; (1)
fact, thg amphtudest are much S'.“?‘"er than the others, guantum-mechanical representation of the Cartesian compo-
anq their effe.ct turns out to _be negligible for mo.s.t PUTPOS€S0ht5 of an angular momentulh=A\ in the intrinsic frame
(with the noticeable exception of the E1 transition ampl"subject to commutation rules of the form '
t

tudes. At the same level of accuracy, one can also neglec
the slight variation ofR, necessary to keep the volume ex- MMM — MMM = — M (A9)
actly constant.

In the Bohr model that we are considering here, the clasWe assume, as usually,

sical expression of the collective kinetic energy is
p ay (M{3)\}) o = Vayyy’ ,

1 . 1 .
T=2B X [a)/f+0Bs X [a)F. (A3)

r ———————
u==2,2 2 n=-33 (Mg_}\})vv’ = EI:\’()\ - V)()\ +tv+ 1) 5V’,v+l
In order to simplify the notation in the following, we include +VA+ -+ D)5, ]

the inertia coefficienB, in the definition of the collective

variablesa™. In the literature, this symbol is usually re- 1

served to the variables defined in the intrinsic reference (M{z}\})vyr:_[_l\'()\_V)()\+V+1)5 .
frame and, from now on, we will always use this reference

. . )\) R —
frame for the collective vanableéﬂ , PN N, p— 1)5V/,V_1].

\e“'B—xaij‘) =2 alMDM (4, (A4)  Taking into account the properties of th, it is possible
v to obtain the explicit expression for the diagonal and nondi-

agonal elements of the tensor of inelftis8,35,
whereD™ are the Wigner matrices arij the Euler angles.

The axes of the intrinsic reference frame are defined along 1 IR TTAUT IS NN
the principal axes of the inertia tensor. Jae=5 2 @ )afj,) (M{k }M{k’}+ I\/l{k’}Mi })
The expression of the kinetic energy in terms of the time
derivatives of the intrinsic deformation variablad’ and of (A10)
the angular velocityj of the intrinsic frame with respect to . .
an inerg'][ial frame isygiscussed, e.g., in R4S and[3[4)1]. If The spin operato[ME‘} transform as the Cartesian compo-
only the quadrupole mode is considered, the total kinetidents of a vectoM™ under rotation in the ordinary space.
energy can be expressed as the sum of a vibrational@ierm Taking into account the commutation ruld9), we can de-
the intrinsic framg and a rotational term. If the octupole fine the irreducible tensor componentsMf* as
mode is also considered, a rotation-vibration coupling term

wv'!

YA

must be adde(i34,33, MG = MmEY,
T=Tip* Trot+ Teoups (AS5) M(ill){)\} =+ %(M{l"} FiM {2"}) , (A11)
where \

and express the products of two Cartesian components as the

19 o2 sum of products of two tensor components. To this purpose,
Tuib= 52 la,I?, (A6)  we define, for each value of, the irreducible tensor product
Ao
T =[MP 0 MOV = 3 (11 [ImMPM'Y
1 . v’
Trot= > > ai“a(}) > Qka'(Mﬁ}M%})W, (A12)
o' K,k
1 (where the common suffif\} has been dropped, for the sake
= EE 9 Tk » (A7) of simplicity). We now introduce the reduced matrix ele-
kk' ments of the tensor operat®f”,

064319-11



P. G. BIZZETI AND A. M. BIZZETI-SONA PHYSICAL REVIEW C70, 064319(2004

113 - (N) M2
[T = (- 9°V23+ 1 Ji2= 2 CWIm[aM @ aMIP,  (A18d)
AN A A
XAN+ 12N +1) (A13) Tia= S C0RdaN @ aM 1@, (A18¢
to obtain )\
DOpg D _ ’ J)
(MLML), .= 2 (AL ImCTE), Tn= 3 C0Im[a™ & aM|@, (A1)
A
= E (Lplp Im TV where
A—-v+m = (- P ——2/
< _) Ovoh =/ [Im). (A14) G =D+ L
v2J+1
We now observe that 4 [ANAFD(N+3)(4N%-1)
, C(\) =(=1* 1\/ 30 \
a)" =(-1"a") (A15)
and therefore
and that

= —
C0(2) =245, CO(3) = - 47,
[a® @ a™]P) = X aMa,(\ok - v/ [Im) - (A16)

Co2)=-121, Cy3)=314. (A19)
to obtain If we chose as the intrinsic reference frame the principal axes
2 a(X)a(h)*(M(l)mM(l){x}) of the tensor of inertia, we must pdk,=J13=J»3=0. Using
e v My o ) Egs.(1)—3), we obtain, up to the first order,
2 =k ( [Im (N[ TN J12=~ 221 Ima® ®5(2)](22)
AN Tl [Im) (N TN
o +6V141ma® 3¥)P=0,  (A20a
a5 ) (A17)

Jiz+1T3=— 2\‘"?1[5(2) ®a?]P
The rank of the tensor produ@t” of the two identical vec- — 3 - @
tors MM must be even, and therefore the possible values +6V14a~ ®a¥];"=0. (A20b)

of J are limited to 0 and 2. Now we can substitute, in Ed.jere we make use of the fact that the zero-order terms are
(A10), the Cartesian components of the angular morﬂemun&utomaticalIy set to zero if tha are defined according to

with its tensor components defined in Eg¢fsl1). The pos- E : . o .

. o M gs.(1) and(2). By inserting these definitions in the above
sible values ofn (andJ) contributing to the sum are limited : - ot i
to m=0 (and thereforel=0 or 2 in the case ofM3)?, to equations, and retaining only the first-order terms, one ob

tains
m=0 or 2 (J=0 or 2 for (M,)?, (M,)? and (M;M,),and to
m=1(J=2) for (MsM,) and(MsM,). One obtains [a® @ 3?]P ~ (2,0,2, 12,1) 8,82
Jy= 2 {Ce)[aN @ aM]P = pA?,
\ V14
1
+ gl e aM]P - C,(Rea™ ® AV}, Im[a? e 3?12 ~ (2,0,2,42,2)8, Im &2

(A18a) - \/glgz |m’é(2),

Jo= 2 A © aM ]
. ° 2% © 3312 ~ (3,0,3,12, ) BAY

1
+ _rcz()\)[a(k) ® a(M](()Z) + Cz()\)Re[am ® a(x)](ZZ)}' - iﬁaa(f),
V6 42
(A18D)
Im[a® ©a¥]? = (3,0,3,22,2) 8; Im &>
Js= 2 AC)[a™ @ aM ]
X ,6’3 Imay.
2 .
- \/;CZ()\)[a(”) ® aM]P}, (A18¢)  We obtain, therefore, from EqgA20)
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[325(13 = \5 1335<13>, principle could notbe ngglected. The firs.t of_the terms in the
(A21) square bracl_«_ets contains the.part|al derivative with respect to
& In the spirit of the adiabatic approach, we try to estimate
the expectation value of this term for the ground-state wave
function in all the variables, with the exception 85 and 3.
If we assume that the potential is harmonic for the ensemble
APPENDIX B: EFFECT OF NONDIAGONAL of these variables, the ground-state wave function can be
(FIRST-ORDER) TERMS expected to be close to a multivariate Gaussian function. If,

) _ i moreoverg, and¢ are uncorrelated, the expectation value of
The matrixg, as it results from Table |, contains zero- &ald& is zero, ag&)=0.

order terms only in its principal diagon@vhose last ele-
ment, however, is small of the second ondédondiagonal
terms have been expanded in series up to the first order in the
“small” dynamical variablegall of them, apart froms, and <

BoIma? =-\58,1mad.

For the case=k, instead, the expectation value is

B3). We shall callg, a generic “small” variable, different Zgi
from B, (A\=2,3). Z3 »
Terms of the last line and columithose related to the exp(~ a£")d¢
third intrinsic component of the angular velogitgre dis-
cussed in Sec. Il D. Here, we consider a simpler problem: the fexp(— adl2)(- 2a8)exp(- adl2)dé

> f exp(— a§2/2)§ai§exp(— ad¥2)d¢
=2

inversion of a matrixg which has finite values for all terms

in the principal diagonal, and only “small” values for all =-1

others. In the zero-order approximation, the inverse matrix fexp(— af?)dé
A=G1is diagonal, with diagonal elements,, =1/G,,,.
The first-order approximation gives the nondiagonal ele- (B4)
ments
and (in this approximatioh cancels the third termg,. In
_ G conclusion, the coefficient of/ 98, coming from the nondi-
A, =A (B1) . : .
agonal terms of the matrig can be approximated with a

uv = Py = T :
G um of expressions like
We are interested in particular in the effect of nondiagonaF P

terms on the coefficients of the derivatives with respeg@.to _ £9G
or ﬂ3' fgxll)((B21ﬁ3) a[?_ ’ (BS)
Terms involving the derivatives with respect 8 and &, &

have the form which approximately vanishes fo# k, and also vanishes for

9 i=k unless both4,, and G depend explicitly on,. More-

E . over, also in this latter case, it is possible to eliminate non-
K diagonal elements of the matrig of the form G,

(B2)  =g,(B,, B3)& With a slight change in the definition ¢,

The nondiagonal matrix elements of the matdk are  Without any other effect at the present order of approxima-
of the first order in the “small” variables. They have there-tion. Namely, it is sufficient to substitute the dynamical vari-

fore form f;i|)<(321ﬂ3)§i: where fi‘&(ﬁz.ﬁg)wa,k/a&, able B, with the new variable
or—possibly—are the sum of several terms like that.

G2 [ G1’2Ak)\i] Lo d [ G2,
a9 & EN eN

2 - L . 1
Substituting this expression in E¢B2), one obtains BY=p)+ ngk(ﬂzlﬁs)gﬁ (B6)
J J J J
-12.9 | 12y 2 -12_% | ali2p 7
G agk{Gl Ak)\518)\:|+G . aﬁk{el AXK&&J to obtain
, d & [dG d 0 - 2
= fﬂ&(ﬂz,ﬁs){zgiﬁ—&( + £<5_§k) + b‘ik] 07_,8)\ +§ By = By — 9wl Ba: Ba) ééic + 0(&) (B7)
_ 1({4G PYi0) P and therefore, up to the second ordergjn
X{“Qﬂ(ﬁzﬁs)ﬁ(ﬁ) (a_,BM()]ag . (B3 . o Cw
» » k By + 200 B2, B3) &Bréic = (Bg - gxk(ﬁz,ﬁ3)§kfk)
The last line of Eq(B3) only contains the partial-derivative o ( 0)2
operator with respect to the small varialjle Compared with + 200 B2, B ékBrE= \BY) -
the diagonal term involving the corresponding second- (B8)
derivative operator, it contains a small factrmore, and
can be neglected. This argument can be easily extended to the case in which

In the first line of the expression, all terms are potentiallythe dependence od,, on & comes from the dependence on
of the same order of magnitude of the leading ones, and ig, of one of the terms at the denominator in EBL).
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TABLE V. The relevant part of the matrix of inertig,’ ; after the substitution of the angular-velocity componeptk=1,2,3 with the
time derivative of the Euler angle,.. Here, 7,=7,=3(85+283) and J5=4u3+2v2+8u?+ 1812, The determinant of this 8 6 matrix is now
' =detG’ ;=288 udv2uPwWA( B3+ 285)Sir? 6.

¢ X 9 01 b, 2
@ 202 0 0 22 cosé, 0 20?
X 0 202 0 4u? cos b, 0 402
9 0 0 w2 6w? cos 6, 0 6w
g, 2v°cosf, 4uPcosl, 6W CoSb,  (JyCOS O3+, SIPOs)SI b3+ T3 COS 0, (Jp=J)Sin 6,Sin 3 c0s6; T30S 6,
0, 0 0 0 (Jo—J1)sin 6, sin 65 cos by Ty SIr? 63+ 7, coS 6y 0
05 202 402 6w? J3 oS 6, 0 Ts

APPENDIX C: QUANTIZATION ACCORDING TO #2 9 J
THE PAULI RULE T=- EG"”ZE EG”ZAM,VE, (C2)
wy 7 Sp v

In this appendix, we discuss some aspects of the quanti- 1 ) . ,
zation of the kinetic energy expression given, e.g., in EqWhereG=detg and. A=~ The choice of the “best set” of
(21), by means of the Pauli procedure: namely, if the C|assi_dynam|cal_varlables is, in part, _re_lated to th_e expression of
cal expression of the kinetic energy in terms of the timethe potential-energy term, and it is not obvious that it will
derivatives of the dynamical variablés is eventually coincide with the one discussed in Sec. Il E.

However, it can be useful to explore the properties of the

T= }E G L c1 kinetic-energy operator in the particular model in which the
) prsubn, (C1) matrix of coefficients§ is exactly that of Table II, with the

o nondiagonal terms confined in one single li@ad colummn
the corresponding quantum operator has the form of the lower 6 6 submatrix.

TABLE VI. The lowest 6X 6 submatrix of the inverse of the matrikgiven in Table Il. The upper part
is diagonal in the present approximation.

Pe Py Po Ly L2 Ls
1,1 2 3 1
08 0% 4u3 4u3 4u? 0 0 4
2 1,4 6 2
Py 4u3 20 4u3 4u3 0 0 4u3
3 5 1,9 _3
Py 4u2 4u? 2w 4w 0 0 4u2
1
Ly 0 0 0 7 0 0
1
L, 0 0 0 0 A 0
1 2 3 1
Ls 4u3 au3 au? 0 0 4u3
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TABLE VII. The matrix i(G})~\Wsin 6, (see text

Py Py Po Ly L2 Ls
d  sing, sind, 2siné, 3sin6, _siné,
de % 4] 443 4u3 0 0 4uj
J 2 sin6, sing, 4siné, 6 sin g, 2 sin 6,
Ix 4u3 2u? 4u3 4 0 0 a2
J 3siné, 6 sin6, sin 6, . 9siné, 3 sin 6,
ad au3 au3 w2 443 0 0 4u3
9 _ cosby sin 6,
d 6, 0 0 0 J1 To 0

sin 6, cos 63 sin 6, cos 6

J 02 0 0 O jl j2 0
9 B sin 6, 2 sin 6, 3 sin 6, c0s6,cosf; —cosh,sin b, sin 6,
360 42 402 a0 A N 4uj

From now on, we limit our discussion to the lowest doing this, the explicit forn{20) of 75 has been introduced
6 X 6 submatrixg, of the matrixg (and of the matrices de- and second-order terms in the small amplitudes have been
rived from G, Tables VI and VI) as the six corresponding neglected. At this point, it is necessary to introduce the in-
variables—eo, x,1,6,,6,,6;—are effectively decoupled from trinsic components of the angular momentum operator
the others. (L;1,L,,L5) in the place of the derivatives with respect to the
The formal procedure is discussed, e.g., in Chaps. 5 and Buler angles. The expressionlgfin terms ofd/ 36, and vice
of Ref. [34]. The first pass is the substitution of the intrinsic versa is given, e.g., in Chap. 5 of R¢B4]. One gets
componentsy;,d»,ds of the angular velocity with the time

derivatives of the three Euler anglés, 6,, 65, 9 -
_ —i =2 Vid (o)
Ok = 2 Vi (C3 «
' with the matrixV given by Eq.(C4). It is also convenient to
with define the quantum operators
- cosé;sinf, sind; O p.=—idlde
v=| sinbzsing, cosf; 0| (C4) ¢
cosb, 0 1 p=—idlox,
As a consequence of this substitution, th& & matrix G, R _
transforms according to the relation Py=—i3d13 9, (C7
~ {1} {0} to obtain
1=WGW, W= C5
Gy =WG; o v (C5)
, o0 0 9 9 9
(whereW is the transpose of the matri¥ and{1},{0} are the 5 @ IX IV 36,96, 30,

3X 3 unit matrix and null matrixand takes the form shown _ A
in Table V. The next step is the inversion of the matFix In = vv{r)q,,ﬁx, Do, L1, L2,L3}. (C9
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TABLE VIII. Invariants up to fourth order built with the tensoe$? anda®, in the limit close to axial symmetry. HerE(KL) =[af
®af]V, and we use the definitiong= 72+ {2 w?=X2+Y2, “Small’ (nonaxia) terms are approximated up to the second order.

105, ., L A8,
A= (a?.a?)= B 32 +5832 B+ 23
2B2 gz 2B2 2
A= —(a®.a®)= B +100° /32 +5p2 Bz v 28
\ﬂ @ T2y 9.3 308,55 ., 66:85
B= a2 g P2 T Besgt T
21 1, - 25 , 10 363-4
L SR C A R U s
2 3 2 3
208385 88353
TQ . TQ)= 238 2 23 2
e AR g " st T
35(T(4) T(4))_ ,3‘2‘ 2062183 62 4 P23 8182:83 2
C= 18 % WAL B+ 2p
21 103 32 4p2p2
T2 T(Z) — 2P3 2 _P2P3 02
Co= 2 —(Ts3 3) Bg +313‘31fy§ —25[3%W2 :82 + 5[3:235 B2 ,32+ 2ﬂ3
(4 T@y = 4,32:83 2 4,32,33 2
e BEH g ~484% +8065W? T BrsE "B
231 21 37 1428535 46365
6) . T6)) = b 2l _20ePaPs _2PaP3_ o
Ce= 100 % 13 Bs " 25ﬁ§”§ g A T o5+ 5ﬁ§)é W
25 208535 + 1084 3/;4 4335+ 44
(2) T2y = — _SHPeP3 T —HP3 2 2P2 PoP3 T P32
Ce= (T 8T B -BRRB-25t ) 2P Brsg © 2(83+ 263
7 55 1 - 783+ 108385+ 5 20 8
C= : g T8 = gz = G BaB5Ys 257,73+ 133) +5520° 343( z f ;[;3) bip | Bo 3 (BB fﬁz SB) £,z
2 3 2 3
The introduction of a set of conjugate momepjasuch that . B2 G1/2(A\7V)
T= > > (WAVV),L WPup, +1G™ vy —WAV
v v d gl’-
Sl =S wp, (C9) (C10
I& 5
in Eq. (C2) gives In our case,A=(G;)%, 91:\7VQ1W, so that
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W AVV:W(W—lgIl\"/‘v—l)\'/"Vzgll ciy A (TH.TY) (K=2,4,6, and (TY.TY)) (K=2,4). Addi-
tional fourth-order invariants of the form ([a®

and the first term of EqC10) takes the form given in Table ®a®]®).[a®@®a®]K) (K=1-5) are not independent of
VI. The second term of EqC10) vanishes. In fact, only the the above ones, and can be expressed as a linear combination
derivatives with respect t6, or 65 could give a contribution  of them with the standard rules of angular momentum recou-
to the sum, as the other variables do not appear in the elgiing.
ments of the submatrix. Moreover, the determin@ht is Invariant expressions up to the fourth order in the ampli-
simply proportional to sif¥, (with the proportionality factor tudesa™ (\=2, 3) are shown in Table VIII, in terms of the
depending on dynamical variables which are outside th‘%iynamfcal variableg,, v,, Bs vs W2=(X?+Y?), & andv?
present subspageand the termG*2 in Eqgs.(C10) can be  =(;2+¢?). Expressions corresponding to different choices of
replaced by sird,. The matrixi(G;)*'Wsin 6, is given in  the dynamical variables can be easily obtained.
Table VII. The sum of the derivatives of each element of the Here, only terms up to second order in the series expan-
fifth row, with respect toé,, plus the corresponding one of sion of the “small”’(nonaxia) amplitudes are given. In this
the sixth row, with respect t@;, would give the coefficient approximation, the fourth-order invariants built with the
of the corresponding momentum operator, but it is easy t@uadrupole amplitude<C,,C,) turn out to be proportional to

verify they cancel each other. each other and to the square of the corresponding second-
order invariant(Af). Moreover, as is clear from Table VIII,
APPENDIX D: THE POSSIBLE FORMS OF the three fourth-order invariants built with the octupole am-
THE POTENTIAL TERM plitudes (C3,C4,Cs) and the square of the corresponding

second-order invariar(IAg) are not linearly independent of

The form of the approximate potential-energy expressionyne another, and provide only two independent relations.
depends on the details of the underlying microscopic struc- one can finally observe that the variab¥sY, 7, and¢

ture that the model should try to simulate. There are, howyyays appear only in the combinatiof&+Y?), (72+72).

ever, some general rules to which the expression of the pogg 5ng a5 the expression of the potential energy only de-
tential energy must conform: it must be invariant under spac%endS on the invariants up to fourth order, the angiend

rotation, time reversal, and parity. defined in Eq(17) are not subject to a restoring force. The

Wit::r:ggﬁ'tc’)lfeﬂt:znEgg‘j‘cozedr:ggzgtarsgg(ga\;?lg‘fcgg:n;rtcr)gdeé)ituation is more complicated for the three variables related
y - _ )\ . .
to the u=+2 components of;,,. Also in this case, however,

s possible to construct combinations of invariants that

to be invariant under time reversa_l, each term must Coma'Eontain only_linear combinations of the squares of the vari-
an even number of octupole amplltud@@. Moreover, due ablesé, y=1\5y,— s, and 702,3%7#\55/3%73- Moreover, in

(K) — . : ; L
to symmetry, only tensorg,; _[a(x.>®a(x) 0 ofevenrankK  this case, the first two of them do appear in the combination
can be obtained with the coupling of two identical tensorsg,g.,2+2(32+5p2)£ . It is therefore possible to image a
aW. ;I;herg:) are ther(z;:forg two independent |n\(/?r|a(r2])ts of ordeg;tyation in which the potential energy is independent also of
2, (a )'Za( ) and (a®-a®), two of order 3,(a?-T;;) and  the angley (although this is not a direct consequence of the
(@?-72), and seven of order 4, nameffioy - Tos) (K=2,  model, as is the case for the angisnd o).
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