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Proton-neutron coupling in the Gamow shell model: The lithium chain

N. Michel}*%* W. NazarewicZ:>*Tand M. Ploszajczak’
lDepartment of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
%Physics Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, Tennessee 37831, USA
3Joint Institute for Heavy-lon Research, Oak Ridge, Tennessee 37831, USA
“Institute of Theoretical Physics, Warsaw University, ulicaz&l69, 00-681 Warsaw, Poland
SGrand Accélérateur National d’lons Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Boite Postale 55027,
F-14076 Caen Cedex 05, France
(Received 29 July 2004; published 14 December 2004

The shell model in the compleixplane(the so-called Gamow shell mogiélas recently been formulated and
applied to the structure of weakly bound, neutron-rich nuclei. The completeness relations of Newton and
Berggren, which apply to the neutron case, are strictly valid for finite-range potentials. However, for long-range
potentials, such as the Coulomb potential for protons, for which the arguments based on the Mittag-Leffler
theory do not hold, the completeness still needs to be demonstrated. This has been done in this paper, both
analytically and numerically. The generalized Berggren relations are then used in the first Gamow shell model
study of nuclei havingboth valence neutrons and protons, namely, the lithium chain. The single-particle basis
used is that of the Hartree-Fock-inspired potential generated by a finite-range residual interaction. The effect of
isospin mixing in excited unbound states is discussed.
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[. INTRODUCTION When extending the GSM formalism to the general
i . neutron-proton case, with both protons and neutrons occupy-
One of the main frontiers of the nuclear many-body prob-ing valence s.p. states, one is confronted with a theoretical
lem is the structure of exotic, short-lived nuclei with eXtremeprob|em: the Berggren completeness relations, which are the
neutron-to-proton ratios. Apart from intrinsic nuclear struc-pillars of the Gamow shell model, have been strictly proved
ture interest, properties of these nuclei are crucial for ouand checked numericalf,13]) only for quickly vanishing
understanding of astrophysical processes responsible fgfinite-range local potentials, while the repulsive Coulomb
cooking of elements in stars. From a theoretical point ofpotential for protons has infinite range. The theoretical prob-
view, the major challenge is to achieve a consistent picture dem lies, in fact, not in the Berggreicomplex-energycom-
structure and reaction aspects of weakly bound and unbourgleteness relation itself, but in the Newtgreal-energy
nuclei, which requires an accurate description of the particl€¢ompleteness relatioril4,15. This latter involves both
continuum[1]. Here, the tool of choice is the continuum bound and scattering states, upon which the Berggren com-
shell model(see Ref[2] for a recent reviewand, most re- Pleteness relations can be demonstrated using the method of
cently, the Gamow shell modéGSM) [3-6] (see also Refs. analytic continuation.

[7-9)). The GSM is the multiconfigurational shell model ~ OUr paper is organized as follows. Section Il contains a
with a single-particles.p) basis given by the Berggren en- derivation of the Newton completeness relation that is valid

semble [10-17 which consists of Gamowor resonant for a rather wide class _of potentials, including the Coulomb

states and the complex nonresonant continuum. The resondh tet_ntla:c. Basetd on tg's _rezu_lt, tthhe Berggren comple_tenelss
states are the generalized eigenstates of the time-independ ﬁ éofrc]) ronr e%rt?o?%i]lsTﬁ g\:‘eu mlg i cgl Stzgt]s gﬁ%:scgﬁg;gtf_y
Schradinger equation which are regular at the origin and saly, i

) : " ss of the proton Berggren ensemble are given in Sec. Ill.
isfy purely outgoing boundary conditions. The s.p. Berggrensaction v ir?troduces t%ge Hartree-Foc@HF-)iﬁspired pro-

basis is generated by_ a fin_ite-depth potential, and_ the manysaqure used to optimize the s.p. basis, the so-called
body states are obtained in shell-model calculations as thg zmow-HFE method. The first GSM calculation involving ac-
linear combination of Slater dete_rminants spanned by resGiye neutrons and protons is presented in Sec. V, with the
r}ant and nonresonant s.p. basis states. Hence, both Cof-shell study of the lithium chain, ranging frofhi to Li.
tinuum effects and correlations between nucleons are takefhe residual interaction used is a surface-peaked finite range
into account simultaneously. The interested reader can fingy,ce A novel aspect, absent in our previous GSM studies, is
all details of the formalism in Ref4], in which the GSM e appearance df=0 couplings which seem to exhibit sig-
was applied to many-neutron configurations in neutron-richyiicant particle-numberor density dependence. Finally,
helium and oxygen isotopes. Sec. VI contains the main conclusions of our work.

II. COMPLETENESS RELATIONS IN THE GSM:

*Electronic address: michel@mail.phy.ornl.gov ANALYTICAL CONSIDERATIONS

"Electronic address: witek@utk.edu As the one-body completeness relation for resonant and
*Electronic address: ploszajczak@ganil.fr scattering states is prerequisite for our theory, we shall dem-
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onstrate it rigorously. We shall first consider the case of a To prove the convergence rigorously, let us consider the
local potential and then generalize it to nonlocal potentials.completeness relation of the free box expressed in the form

A. Local potential

In order to demonstrate the orthonormality and complete-

of Eq. (4):

+0o0

> B2 (k)i (Kl ) (K = k) = 81 =17), (9
m=0

ness relations for s.p. proton states, we consider a spherical

proton potential that is finite at=0, and it has a pure Cou-

where (k') are the Riccati-Bessel functiong(x,R)=0

lomb behavior for — +o, The one-body radial wave func- (m=0,1,2..), andB,, is the normalization constant

tionsu(r) are solutions of the Schrodinger equation:

w(r) = ['(' o - kZ} u(r), )
v(r)~corﬁt, r— +o, (2)

where the potentiab is given in units of fm?, andl is the

RA R
Bmzjlﬂ(KmR)jl—l(KmR) = (10
Km+1 ™ Km
Subtracting(9) from (8), one obtains
2 Un(NUA(T) + 2 UKy, UKy T (K = Kiy)
neb m=0
= B2 (k)i (k) (Ke1 = k)] = 0. 11

angular momentum of the particle. Let us consider the

bounded region enclosed in a large sphere of ragiu3his
can be achieved by introducing an infinite well of radRis
surrounding the nucleysOf course, in the final resulR will
be allowed to go to infinity. For each value Bf one has the
following completeness relation di9:R] [16]:

400

2 Up(NUR(r') + 2 U (e, U@ (k1) = 8 = 17),

neb m=0

3)

We shall now demonstrate that the above series converges in
the sense of functions, so the limiting transition from a series
to an integral wherR— +o0 can be easily carried out.

To this end, let us consider the behavior of thi&y term in
the series whemn (andk,) — +%. For very large values of
km, one can use the semiclassical expansion in powek‘,#of

W(r) .

U(Key ") = Cr (o) = Ciy J|(kmr)+0((k: ) (12

whereb denotes the set of bound states having radial wave: a 1
9 Ji(kpr) = sm(km“I—>——cos<kmr—I >+O<k2 2),

functionsu,(r) with k3 <v(R), andu@(k,r) is a wave func-

tion of a normalized discretized continuum state, given by

the boundary conditiong'®(k,,,0)=0 andu@®(k.,, R)=0.

2) 2k

(13

For the purpose of this discussion, it is convenient to in-where C,, is a normalization constang, is a constant de-

troduce the set of wave functiofi$2]

u@(ki,r)
u(k;,r) = ——, (4)
\k|+l kl
which obey the following normalization condition:
O
(ull)|u(ky)) = ——. (5)
ki+1_ ki
Since, in addition,
(uK)uy) =0, (6)
<Un|un’> = Onn s (7)

the box completeness relation can be written as

+oo

2 UKy UKy F) (K —

m=0

> Up(Nu(r') +

neb

Kp) = 8(r=r').

(8)

WhenR— +«, the infinite series in Eq:8) becomes an in-
tegral, thus giving the expected completeness relation. Un-

pending onl only, and

;
V(r) :J v(r’)dr’. (14)

0
For the Coulomb potential/(r)«<In r; hence the expression

(12) properly accounts for the logarithmic term in the phase
shift. 1t immediately follows from Eqs(12) and(13) that

_(m+1/27  a+RVR) (i)

m R ormm O\m2): (15
_(m+127 g (i)

A (16)

The constanC,, can be determined from the normalization
condition:

R ~ V(r)': 2, Cﬁ]
CﬁqJO [hz(kmr)—Kh(kmr)],(kmr)}dHo(E)

1
= (17)
I(nml_ km

fortunately, this cannot be done right away, as the series anlince the integral involving’ behaves like ]Jq(2 C,, be-

the integral converge only in a weak sense.

comes
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Rr~ N . c2 1
CﬁqE[Jf(ka) ~TkeR 1 keR) ] + o<_m> __ 1

kﬁ'\ I(m+1 - km
(18)
[cf. EQ. (10)].
Using Eqgs.(15) and(16), one obtains
2 1
Cm— \/;+ O(?)’ (19)
2 1
Bm— \/;+O(%> (20)

Let us consider the behavior &, for R— +o but x,,— «
with k>0. The expansion of Eq.13) is still valid in this
case, as for=R, it is a familiar expansion in IR of the
Bessel function. It follows from Eq.13) that

_(m+ 1/2)7T+O(i)
- R?

with m chosen saq,, is the closest tac. Then Eqs(10) and

(13) give
By = \/z + O(i)
™ N R/’
as expected.

Note that the leading term in Eq€l9) and (20) is the
familiar normalization of continuum wave functiorjd7].

(21)

Km

(22)

The reminders, of the order ofi?, guarantee the conver-

gence of the series. By using Eq42)—(16), one can show
that the seriegll) converges for alt >0 andr’ >0.

As a consequence, in the limit &— +, Eq. (11) be-
comes

> un(Nug(r) + j b {u(k,mu(k,r') - %i.(kr)i.(kr')}dk

neb 0
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the presence of the Coulomb potential the standard regular-
ization procedurd18,19 has to be modified20]. In our
work, however, we apply the exterior complex scaling
method[21,22 which works very well regardless of whether
the Coulomb potential is used or not.

B. Nonlocal potential

In the presence of a nonlocal potential, such as the HF
exchange potential generated by a finite-range two-body in-
teraction, the Schrédinger equatigh) becomes

u”(r):{l(l%l)ﬂ;,(r)—kz]u(rﬂf Ocvm(r,r’)u(r’)dr’

0
(27)

wherev, is the local part of the potential, and, its nonlocal
kernel. We assume that,(r,r')—0 whenr — +o orr’—
+o (the nuclear potential has to be localizednd that
vn(r,00=00r (the potential is regular at the originAs the
radial HF functions are regular at zero, the latter condition is
automatically met for the HF exchange potential.

If the integral containing the nonlocal potential, be-
haves like 1k*> whenk— +, then the asymptotic expres-
sion (12) holds. Indeed, integration by parts yields

v . v|<r'>j(<kr'>}
ar, ! k n _ d !
fo vni(r,r )[h( r') K r

1| dv, = Pon, L
=g[ ;;,'(r,o)ﬂ(oﬂjo a:,zl(r,r )i (kr )dr}

1\ (1
*Olie) =Nie)
where V,(r)=fGu,(r')dr’ ,j|(t):f{0f§:j|(t”)dt”dt’, andt, and
t, are chosen so thafj(t) is bounded or{0: +x[. Conse-

quently, Eq.(12) also holds for nonlocal potentials. The
proof of completeness can be, therefore, performed in the

(28)

By taking advantage of the closure relation for the Riccati-Same way as for local potentials, by simply replacinigy v,

Bessel functions,

f ji(kn)ji(kr)dk= garr -r'), (24)

0

one finally arrives at the sought completeness relation

> un(r)un(r’)+Jw u(k,ryuck,r’ydk=8r-r'). (25)

neb 0

By using the same arguments as in Hédl, one obtains the

generalized Berggren completeness relation, also valid for

the proton case:

> un(r)un(r’)+f u(k,nu(k,r')dk=8r —=r’). (26)
L+

neb,d

in all expansions irk™*.

Ill. COMPLETENESS OF THE ONE-BODY PROTON
BERGGREN ENSEMBLE: NUMERICAL TESTS

In this section, we shall discuss examples of the Berggren
completeness relation in the one-proton odsethe neutron
case, see Ref4]). The s.p. basis is generated by the spheri-
cal Woods-SaxoriWsS) plus Coulomb potential:

_ _ . }df(r)
V(r) == Vof(r) — 4Vyd sr ar

f(r)= {1 + exp(r_dRO)}_l.

+Ve(r), (29)

(30)

For details, including the numerical treatment of scatteringn all the examples of this section, the WS potential has the
wave functions and corresponding matrix elements, we referadiusRy=5.3 fm, the diffusenesd=0.65 fm, and the spin-
the reader to Ref4]. Let us only remark, in passing, that in orbit strengthVs,=5 MeV. The Coulomb potentiaV. is as-
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FIG. 2. Similar to Fig. 1 except for the boungs, s.p. state of
the WS potential with/o=75 MeV expanded in the basis generated
‘,Qy another WS potentla(l\/(B)-SO MeV). The height of the arrow
gives the squared amplltude of the bourm},2 state at the value of
I—Im[k] (The correspondingg value is purely imaginary.

FIG. 1. Distribution of the squared amplitude®k) of the 25/,
proton state of a Woods-Saxon potential with a depth
=65 MeV, in the s.p. basis generated by a Woods-Saxon potenti
with a depthVy=70 MeV. The Coulomb potential is assumed to be
that of a uniformly charged sphere. The amplitudes of both rea
(solid line) and imaginary(dotted ling components of the wave
function are plotted as a function of fk&. The height of the arrow  and k;=2.0-i0.0 (all in fm™). The contour is discretized
gives the squared amplitude of thp;2 state contained in the basis. with n=40 points:

sumed to be generated by a uniformly charged sphere of

radiusR, and chargeQ= +20e. The depth of the central part 2p3) = 2 colu) + E Cie|u(k)). (33
is varied to simulate different situations. nebd

In this section, we shall expand th@z state|uys), ei- In the first example, we shall expand thp;3 s.p. reso-
ther weakly bound or resonant, in the basigse(k)) gener-  pnance(E=3.287 MeVI'=931 ke\) of a WS potential of the
ated by the WS potential of a different depth: depthV,=65 MeV in the basis generated by the WS poten-

tial of the depthVS:YO MeV. (Here the D3/, S.p. resonance
luwe) = > o Jupes(k)) +f c|uye(k)dk (31)  has an energg=1.905 MeV and width'=61.89 keV) Af-

T L, ter diagonalization in the discretized bag#8), one obtains

E=3.289 MeV and =934 keV for the P;» S.p. resonance,

[cf. Eqg. (26)]. In the above equation, the first term in the j.e., the discretization error is-3 keV. The density of the
expansion represents contributions from the resonant statexpansion amplitudes is shown in Fig. 1. As both states are

while the second term is the nonresonant continuum contriresonant, the squared amplitude of the; 2 basis state is
bution. Since the basis is properly normalized, the expansioplose to 1. Nevertheless, the contribution from the nonreso-

amplitudes meet the condition nant continuum is essential. It is due to the fact that the
resonant state in the basis is very narrow, whereas the ex-
2 2 _ panded resonant state is fairly broad. It is interesting to no-
+ =1. : > . . .
2 G j L c(kdk=1 (32) tice that the contribution from scattering states with energies

+

smaller than that of the resonant state is practically negli-
In all cases considered, the@{, and Ip;, orbitals are well ~ gible; this is due to the confining effect of the Coulomb
bound(by ~50 and~20 MeV, respectivelyand do not play  barrier.

any significant role in the expansion studied, although they The second example, shown in Fig. 2, deals with the case
are taken into account in the actual calculation. Thig2 of a 2pg, state that is bound in both potentials. Herg
state is, however, either loosely bound or resonant, and the75 MeV andV )=80 MeV, and the Bs/o State lies ate
scattering states along the contdur are essential to guar- =-0.0923 MeV ancE:—2.569 MeV, respectively. Here, the
antee the completeness. To take the nonresonant continuwsnattering component is almost negligible, which reflects the
into account, we take the complex contduy that corre- localized character of bound proton states. After the diago-
sponds to three straight segments in the comglgane, nalization, one obtainE=-2.568 MeV and'=1.73 keV for
joining the pointsky=0.0-i0.0,k;=0.3-10.1,k,=1.0-i0.0, the 25, state, which is indeed very close to the exact result.
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FIG. 3. Similar to Fig. 2 except for thepd,, resonance of the FIG. 4. Similar to Fig. 2 except for thepg, resonance of the
WS potential withVy=70 MeV expanded in the basis generated by WS potential withVy=75 MeV expanded in the basis generated by
another WS potentia(l\/gB):75 MeV). another WS potentia(l\/E)B)=70 MeV).

In the third exampldgFig. 3), the unbound B, state(E

=1.905 MeV andl'=61.89 keVVo=70 MeV) is expanded basis is appropriate at the beginning of the He chain, but

in a WS basis containing the boundpg level (E . . . .
=-0.0923 MeVV® =75 MeV). As a consequence, the reso- when departing from the core nucleus, its quality deterio-
: L0 : ' rates. For instance, the’Me” basis is not expected to be

nance’s width has to be brought by the scattering states. Nev- . .
ertheless, the component of thps2 state of the basis is still optimal when applied t‘? the neutron-nch halo nuplébls- )
close to 1, whereas the continuum component plays a sefecause of the very different asymptotic behavior of this
ondary role. Once again, one can see a Coulomb barrier efve€akly bound system. The obvious remedy is to use the s.p.
fect: even if the expandedpg, state is unbound, its wave basis that is optimal for a given nucleus, that is, the HF basis.
function is very localized due to the large Coulomb barrier;However, since the Berggren ensemble used in the GSM is
hence it has a large overlap with the bourm},2basis state. required to possess spherical symmetry, HF calculations
The diagonalization yields E=1.9065 MeV and I'  must be constrained to spherical shapes. Moreover, since in
=58.9 keV, i.e., the discretization error is again close to 35ome cases one is interested in unbound nuclei lying beyond
keV. o o the drip line(particle resonancgsthe HF procedure has to

In the last example, shown in Fig. 4, the basis is that OgEe extended to unbound states. In the following, the HF-

the WS potential with a depth of 70 MeV, and the expande e

; . . ased procedure that meets the above criteria is referred to as
state corresppnds to a WS potgnual W= 75 MeV. This t%e Gamow-Hartree-FodlGHF) method.
is the most interesting case since one expresses a boun Since, strictly speaking, the spherical HF potential cannot
(rea) state in a basis that contains only complex wave func- ' Y SP 9, P P

tions. (The contribution from well bound, and 1y, S.p. be dpfined for.open—shell nuplei, one r_]as to resort to approxi-
states is negligible As expected, the behavior of the ampli- Mations. In this work, we tried two different ways of aver-
tudes is very close to that of the previous examlee Fig. 29ind the HF potential. The first ansatz is the usual uniform-
3). Moreover, one can notice that the scattering states bdllling approximation in which HF occupations are averaged
come important in the expansion When their energies apOVer |nd|V|dUa| Sphe”cal She”s. In the Second ansatz, the
proach the resonant state energy. The diagonalization givéteformed HF potential corresponding to nonzero angular
E=-0.0925 MeV and'=-3.8 keV for the P, state. momentum projection is averaged over all the magnetic
Summarizing this section, our numerical tests demonguantum numbers. Both methods reduce to the true HF po-
strate that the one-body Berggren completeness relatiotential in the case of closed-shell nuclei.
works very well in the proton case involving the Coulomb
potential. For other numerical tests, see REZ8] (study of
the s.p. level densiyyand[24] (study of the Berggren expan-
sion in the pole approximation

A. Average spherical HF potential

In the uniform-filling approximation no individual HF or-
bitals are blocked. The matrix elements of the HF potential
U, between two spherical statesand 8 carrying quantum
numbers(j,l) are

IV. SPHERICAL GAMOW HARTREE-FOCK METHOD

In our previous calculations of the He chdji,4], we
used the s.p. basis of the WS potential representiteg This
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+o0

<a|qu|B> = <a|ﬁ|ﬂ> Um(l’,f’)U(r,)dr,
1 NOV - V(1) = ° , 36
* 2j + 1m%m;\ 2\ + 1<am>\m)\|v|ﬁm)\mx> dr=u+ u(r) (30

(34) where we use the notation of E(R7). The resulting HF
R equations are local but potentials become state dependent.
where h is the s.p. Hamiltonian(given by a WS The main difficulty is the appearance of singularities in
+Coulomb potentig| \ is an occupied shell with angular Ve(r) due to the zeros of the s.p. wave function. This prob-
guantum numbergj,,l,),N(\) is the number of nucleons lem is practically solved by replacingr) with a small num-
occupying this shell, antf is the residual shell-model inter- Per (e.g., 10%) in the denominator of Eq36) when u(r)
action. approaches zero, and by using splines to define the HF po-
To define theM potential, one occupie®locks the s.p.  tential. The numerical accuracy is checked by calculating
states in the valence shell that have the largest angular m@verlaps between different wave functions having the same
mentum projections on the third axis. The resulting Slateii.!) values. The overlaps are typically ?pwhich is small
determinant corresponds to the angular momenglmM.  €nough to consider wave functions orthogonal.
For closed-shell nuclgiM=0) and for nuclei with one par- Let us note in passing that the demonstration of Sec. Il B
ticle (or hole outside a closed subshéM=j), this Slater is valid when the nonlocal part of the p(_)tential is Iocal_ized,
determinant can be associated with the ground state of th@s it is the case for the nuclear interaction. However, if one
s.p. Hamiltonian. However, in other cases it corresponds t¥/@nts to explicitly consider the Coulomb HF potential be-
an excited state witd>0. The sphericaM potentialU,, is  tween valence protons, one has to resort to approximations in

defined by averaging the resu'ting HF potentia' over mag.order to avoid its inﬁnite-range n0n|0(_3a| p_art. One pOSSIbI|Ity
netic quantum numbens: is to use the so-called Slater approximation, which has been

i shown to work fairly well[27]. Another method, the so-
- 1 ) - called generalized local approximation, has been proposed in
(a|Uy|B) =(afhlB) + N 2 2 (emm|V|BmAm,) Ref. [28], where the Coulomb exchange term has been pa-
Lj mej+1-Npj X rametrized in terms of a coordinate-dependent effective
(35 mass. In any case, the effect of the approximate treatment of
whereN; ; is the number of nucleons occupying the valencethe Coulomb exchange term pn_the GHF basis is very Smfill
o : as compared to other uncertainties related to the construction
shell with quantum numbellsj. of the GHE Hamiltonian
The M potential is expected to work better for nuclei with :
one particle(or hole) outside the closed subshell. However,
one can expect this potential to be not as goot)gavhen
the Slater determinant with=M represents an excited state.  In order to compare the quality of two GHF potentials, we
inspect the binding energy.e., the expectation value of the
GSM Hamiltonian for several Li and He isotopes in the
truncated GSM space. As discussed in Sec. V below, we took
While the HF procedure is well defined for the boundat most two particles in the GHF continuum. Due to this
states, it has to be modified for the unbound s.p. staés®-  truncation, and as well as the discretization of the contqur
nant or scattering even in the case of closed-shell nuclei. and the assumption of the momentum cutgffe contour
First, the effective nuclear two-body interaction has to bedoes not extend to infinily the completeness relation of the
quickly vanishing beyond certain radius. Indeed, if it doesresulting many-body shell-model basis is violated and, ex-
not, the resulting HF potential diverges when> +%, thus  cept for some special cases, the results obtained with differ-
providing incorrect s.p. asymptotics. Moreover, as resonangnt average potentials are different.
states are complex, the true self-consistent HF potential is According to the variational principle, better basis-
complex. This is to be avoided, as the Berggren completegenerating potentials must yield lower binding energies.
ness relation assumes a real potential. However, since we aTable | shows the binding energies ©f*He and’*!Li cal-
interested in the optimal basis-generating potential and not igulated in the GSM. SincéHe and'°He are closed-shell
the full-fledged complex-energy HF problg@b], we simply  nuclei, bothU ; andUy, are identical in these cases. One can
take the real part of thegenerally complexHF potential. see that the uniform-filling approximation for the GHF po-
tential works better forLi, 8Li, and *°Li, whereas the s.p.
basis of theM potential is a better choice fdHe. In all the
remaining cases, the two potentials give results that are prac-
As the residual interaction used in our shell-model calcutically equivalent. In the particular case #ie and®Li (not
lations is finite range, its exchange part gives rise to a nondisplayed, there areat mosttwo nucleons in the nonresonant
local potential. The HF equations solved in the coordinatecontinuum. Consequently, the shell-model spaces®ke
space can be written as integro-differential equations. Thand®Li are almost complete, and the results are almost inde-
standard method to treat such a HF problem is by means gfendent of the choice of s.p. basis. Based on our tests, in our
the equivalent local potenti§P6]: GHF calculations we use the uniform-filling approximation

D. Choice of the average potential

B. Unbound HF states

C. Treatment of the exchange part
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TABLE I. Binding energies of the He and Li isotopéa MeV) calculated in the GSM using the GHF
basis with(i) the uniform-filling approximation potentidl ; or (ii) the U, potential. See Sec. IV A for
definitions.

SHe "He He L 8L oL 10, el

Uy -1.038 -0.048 -2.357 -14.266 -15.521 —-20.288 -18.082 -15.649
Uwm -0.984 -0.475 -2.418 -13.008 -15.094 -20.181 -17.749 -15.634

except for nuclei with one particl@gole) outside closed sub- The SGl interaction is a compromise between the SDI and
shells where thé potential provides a slightly more optimal the Gaussian interaction. The paramégin Eq. (37) is the
s.p. basis. radius of the WS potential, and,(J, T) is the coupling con-

stant which explicitly depends on the total angular momen-
V. GAMOW SHELL-MODEL DESCRIPTION OF tum J and the total isospif of the nucleonic pair. A princi-

THE LITHIUM CHAIN pal advantage of the SGI is that it is finite range, so no

energy cutoff is, in principle, needed. Moreover, the surface
delta term in Eq(37) simplifies the calculation of two-body

In our previous studieg3,4], we have used the s.p. basis matrix elements, because they can be reduced to one-
generated by a WS potential which was adjusted to reprodimensional radial integralgln the case of other finite-range
duce the s.p. energies firle. This potential*°He” param-  interactions, such as the Gogny forf29], the radial inte-
eter set{4]) is characterized by the radil®g=2 fm, the dif-  grals are two dimensionalConsequently, with SGI, an ad-
fusenessd=0.65 fm, the strength of the central fieMy,  justment of the Hamiltonian parameters becomes feasible.
=47 MeV, and the spin-orbit strengtl,=7.5 MeV. As a The Hamiltonian(38) is diagonalized in the Berggren ba-
residual interaction, we took the surface delta interactiorsis generated by means of the GHF procedure of Sec. IV.
(SDI). However, when it comes to practical applications, SDIThis allows one to use the optimal spherical GHF potential
has several disadvantages. First, it has zero range, so an €or each nucleus studied; hence a more efficient truncation in

ergy cutoff has to be introduced; hence the residual interache space of configurations with a different number of par-
tion depends explicitly on the model space. Moreover, as thécles in the nonresonant continuum.

SDI interaction cannot practically be used to generate the HF

potential(it produces a nonrealistic mean figldne is bound B. Choice of the valence space
to use the same WS basis for all nuclei of interest, which is
far from optimal as the number of valence particles in-
creases. So, we have decided to introd[&jea finite-range
residual interaction, the surface Gaussian interagqi8@l):

A. Description of the calculation

The valence space for protons and neutrons consists of the
Ops;» and (p,», GHF resonant states, calculated for each
nucleus, and théips,,} and{ipy;»}(i=1,...,n), respectively,
complex and real continua generated by the same potential.
Gl ri—rp\2 These continua extend from k=0 to Rék]=8 fm™*, and
Vir(rura) =Vo(J, Thexpl - P &4 +rol = 2Ro), they are discretized with 14 pointse., n=14). The M,
state is taken into account only if it is bound or very narrow.
(37) For the lightest isotopes considered, it is a very broad reso-

which is used together with the WS potential with tfele”  hant statgI’~5 MeV), and, on physics grounds, it is more

parameter set. justified to simply take a red]ip;;,} contour, so the com-
The Hamiltonian employed in our work can thus be writ- pleteness relation is still satisfied.
ten as follows: Altogether, we have 195, and 14 or 15,,, GHF shells
o R in the GSM calculation. The imaginary parts of thealues
H=H®Y +H? (38)  of the discretized continua are chosen to minimize the error

- made in calculating the imaginary parts of the energies of the
where H? is the one-body Hamiltonian described abovemany-body states. Other continua, suchsas,ds, ... are
augmented by a hard sphere Coulomb potential of raljus neglected, as they can be chosen to be real and would only
from the “He core, andH® is the two-body interaction induce a renormalization of the two-body interaction. We
among valence particles, which can be written as a sum diave checke(3,4] that their influence on the binding energy
SGI and Coulomb terms. It is important to emphasize thaof light helium isotopes is negligible. On the other hand, the
the Coulomb interaction between valence protons can bés;, antibound neutron s.p. state is important in the heaviest
treated as precisely at the shell-model level as the nucleas isotopes(*°Li, *'Li) and plays a significant role in explain-
part. Indeed, the Coulomb two-body matrix elements in theng the halo ground-statgy.s) configuration of*'Li [9,30].

HF basis can be calculated using the exterior complex scalAt present, however, solving a GSM problem fdki in the

ing as decribed in Ref4]. Though not used in this paper, as full psdGHF space is not possible within a reasonable com-
we are considering only one valence proton in the shelputing time.

model space, this feature of the Gamow shell model allows Having defined a discretized GHF basis, we construct the
for a precise treatment of the Coulomb term. many-body Slater determinants from all s.p. basis states
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TABLE II. Squared amplitudes of different configurations in the ground staté iofvithout truncation
(second columpand with truncation to at most two patrticles in the non-resonant contirithird columr).
The sum of squared amplitudes of all Slater determinants mvjtarticles(protons| 7] or/and neutron§v])
in the non-resonant continuum is denotedLlﬁS).

Configuration No truncation Truncation
0pz/ AL 7]0p2, [ v] 0.561-i2.783x 1074 0.612-i2.285x 1074
LW ] 0.096+4.732x 10°5 0.096+4.980x 10°5
LBw] 0.184+1.203x 1074 0.164+41.077x 10%
L2012 0.064+42.419x 10°5 0.054+1.600% 1075
LP (0] 0.088+7.032x 10°5 0.075+5.508x 10°5
LI m?] 0.088+1.621x 1075 0

(resonant and scatteriygkeeping only those with at most C. The lithium chain

two particles in the nonresonant cont!nuu_m. I.nde_ed, acc_ord— As a pilot example of GSM calculations in the space of
ing to our tests, as the two-body Hamiltonian is diagonalizedyrotonand neutron states, we have chosen to investigate the
in its optimal GHF basis, the weight of configurations in- | j chain. The continuum effects are very important in these
volving more than two particles in the continuum is usually nyclej, both in their ground states and in excited states. The
quite small, and they are neglected in the following. To illus-nycleus!'Li is also a well-known example of a two-neutron
trate this point, let us consider thi€=3/2" ground state of hajo. In ourp-spaces) calculation, we consider the one-body
Li. Since, in this case, th_ere are only three va_llence particlegoulomb potential of théHe core, which is given by a uni-
the_ complete calculation is _p035|ble. As_seen_ in Table II, thf?ormly charged sphere having the radius of the WS potential.
weight of the component with three particles in the nonresoit turns out that the inclusion of the one-body Coulomb po-
nant continuuml [ 712], is indeed two orders of magnitude tential modifies the GHF basis in lithium isotopes as com-
smaller than other configuration weights. The presence ofared to the helium isotopes, an effect which is usually ne-
L(f‘)[wvz] modifies the weights of other configurations on aglected in the standard SM calculations.
very minor way. For the leading configuration Recent studies of the binding energy systematics in the
0p3/2[77]0p§,2[v], without any particles in the nonresonant sd-shell nuclei using the shell model embedded in the con-
continuum, the effect is-8%. As a consequence, the neglecttinuum(SMEQC) [31,32 have reported a significant reduction
of theL®[77] component leaves the overall structure of theof the neutron-protorT=0 interaction with respect to the
state unchanged, and one can safely truncate the shell-modégutron-neutronl=1 interaction in the nuclei close to the
space while slightly renormalizing the two-body residual in-neutron drip line[5,33. In the SMEC, this reduction is as-
teraction. sociated with a decrease in the one-neutron emission thresh-
The algorithm that has been adopted by[4isto isolate ~ 0ld when approaching the neutron drip line, i.e., itis a genu-
many-body resonances is based on the pole approximatioRle continuum coupling effect. The detailed studies in
i.e., the diagonalization of the Hamiltonian in a smaller basigluorine isotopes have shown that the reduction of T
consisting of resonant states only. Therefore, in some casedutron-proton interactiocannotbe corrected by any adjust-

it is necessary to include in the GSM basis very broad resoment of the monopole components of the effective Hamil-
nant states. Let us consider, for instance, the fif§T20)  tonian. To account for this effect in the standard SM, one

state inLi and the two lowest 5/2 states in’Li. Without  Would need to introduce a particle-number dependence of the

explicitly taking into account the ), broad Gamow state, T=0 monopole terms. Interestingly, it has recently been sug-
the 2(T=0) level of °Li does not appear in the pole approxi-

mation; hence it is very difficult to determine. Similarly, in | 6
the same pole approximation, there appears only oné 5/2
level in “Li. Consequently, in order to identify those excited
states, we included the resonapt @ level in the GSM basis.

In order to further reduce discretization effects, we doubled
the number of discretization points along the corresponding
Op,» contours. To check whether these two Berggren en-
sembles are equivalent, we performed calculations for the
lowest I',0*, and 2(T=1) levels in®Li. (The lowest 3 state r -+
has not been considered in this exercise, agpg state, -
resonant or scattering, can enter its decomposition for obvi-
ous geometrical reasomsthe results are shown in Fig. 5,
from which its is clear that the two GSM bases are practi-
cally equivalent.

L. I o

Energy (MeV)

I without 0p1/2 with 0p1/2

FIG. 5. The lowest 1,0*, and 2(T=1) levels in°Li calculated
with and without the 04, s.p. resonant state in the GSM basis.
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FIG. 6. ExperimentalEXP) and predicted
(GSM) binding energies and spectra of lithium

) isotopes obtained with the SGI Hamiltonian. The
—— o resonance widths are indicated by shading. The
e o energies are given with respect to the corétté.
15 — "2 Experimental data are taken frof85-37.
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gested[34] that a linear reduction of =0 two-body mono- an antibounds,;;, state in the Berggren basis is also likely
pole terms is expected if one incorporates three-body interresponsible for large deviations with the data seen'for
actions into the two-body framework of a standard SM.  and*Li.

Our GSM studies of lithium isotopes indicate that the re-  In a number of cases, excited GSM states are calculated to
duction of T=0 neutron-proton interaction with increasing lie above several decay thresholds, i.e., they are predicted to
neutron number is essential. For example, if one uses thiee unstable to single-nucleon, deutron, proton+neutron
Vo(J,T=0) strength adjusted tbLi to calculate’Li, the g.s.  emission, and/ow decay. The total decay width of a nucleus
of ’Li becomes overbound by 13 MeV, and the situationin a given GSM eigenstate is given by an imaginary part of
becomes even worse for heavier Li isotopes. To reduce thigs complex eigenenergy. Different open decay channels con-
disastrous tendency, in the first approximation, we have usedibute incoherently to the total decay width and their respec-
a linear dependence of=0 couplings on the number of tive partial width cannot be separated ea$ly. In practical

valence neutronBl,,: applications, however, one may calculate the spectroscopic
factors for the separation of nuclgsnor nucleon groups in
Vo(J=1,T=0) = ay1 - B1o(Ny— 1)1, (39) a given GSM eigenstate, following the well-known proce-

dures of the standard shell mod8B,39, i.e., by calculating
the probability to find a certain one- or many-particle con-
Vo(d=3,T=0) = azd 1 = B3o(Ny = 1], (40)  figuration formed byA-k and k nucleons in a state of the
A-nucleon system. We intend to implement this option in the
with a10:—600 MeV frT‘?, B10:—5O MeV frr?, a30:—625 future.
MeV fm?, and B3,=-100 MeV fn®. This linear dependence  Due to the explicit presence of the Coulomb potential in
is probably oversimplified, as shown in Ref§,33] where  the GSM, isospin is no longer conserved. In order to assess
the proton-neutrom=0 interaction first decreases fast with the isospin-mixing effect, for each shell-model stpk® we
increasing neutron number and then saturates for weaklyefine the average isospin quantum numbgrin the fol-
bound systems near the neutron drip line. Forfhe inter-  lowing way:
action, we have taken parametérg(J=0,T=1) and Vy(J

=2,T=1) determined for the He ground statf§, as they _-1+V1 +4<\If|?2|qf>
provide reasonable results in the He chain. Ta= 2 (41)

The results of our GSM calculations for the neutron-rich R
Li isotopes are shown in Fig. 6. One obtains a reasonabl@here the isospin raising and lowering operator$imct on
description of the g.s. energies of lithium isotopes relative taingle-proton and single-neutron states with expliatiffer-
the g.s. energy ofHe, but excited states are reproducedent asymptotic behavior. As seen in Table IlI, the values of
roughly. Clearly, the particle-number dependence of the ma¥,, indicate very small isospin-mixing effects. The imagi-
trix elements has to be further investigated in order tonary part for 2 of ®Li and 3/2 of ‘Li comes from the fact
achieve the detailed description of the data. The absence tfiese states are unbound. This result demonstrates that de-

TABLE lIl. Average isospin(41) calculated in GSM for various states §rLi.

Jm 1 2; 2 3/2 (g.s) 1l 5/2 712 312

Tav 0.01 0.023+0.020 14i0.015 0.509 0.514 0.507  0.505 1.508011
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spite the presence of the Coulomb potential and despite meutron-proton coupling. This effect cannot be absorbed by
large coupling to the continuum in some cases, the isospithe modification ofT=0 monopole terms in the standard SM
guantum number is still almost nearly conserved. That isframework. The effective renormalization @=1,T=0) and
isospin is a very good characteristic of nuclear states, even {I=3,T=0) couplings, and, to a lesser extent, other coupling
they are unbound, such as the second 3é¢tte of Li  constants found in the present GSM studies have to be fur-
(which is aT=3/2 isobaric analog of théHe ground state  ther investigated. To better take into account all these effects,
or the lowesfT=1,J7=2" state of°Li (which can be viewed calculations with a finite-range, density-dependent interac-
as aT=1 isobaric analog of the first excited state®sfe). tion inspired by the Gogny forcf29] are now in progress.
The identification of many-body resonances can be diffi-The three main problems related to the realistic GSM calcu-
cult if they lie close in energy and have the same angulatations are the treatment of the center of mésssential,
momentum and parity. Sometimes isospin can come to thespecially in the context of halo nuclgithe inclusion of
rescue. For instance, the approximate isospin quantum nunantibound statef9,30,40,4], and the handling of very large
ber(41) was used to characterize the twbates irfLi and  shell-model spaces.
assign their experimental counterpafsee Fig. 6. This For that matter, the successful application of GSM to
method does not work for the two 572%vels in’Li, which  heavier nuclei is ultimately related to the progress in optimi-
have bothT=1/2. Experimentally, one of these levels is a zation of the GSM basis, related to the inclusion of the non-
broad resonance with a width of 880 keV, while the secondesonant continuum configurations. A promising develop-
state has a much smaller width of 89 keV. In our GSM cal-ment is the adaptation of the density matrix renormalization
culations, however, the two lowest 5/fvels in‘Li differ group method42] to the genuinely non-Hermitian SM prob-
in their Opy/, content; in the pole approximation one of them lem in the complex plane using thg schemg6,43].
contains the Py, broad Gamow state while the other does In summary, in this paper we report proof-of-principle
not. Consequently, the latter state can be associated with thgoton-neutron calculations using the Gamow shell model.
5/2, experimental level while the former can be assigned taOur single-particle proton Hamiltonian contains the Cou-

the broad 5/2 resonance. lomb term that explicitly breaks isospin symmetry. In order
to extend GSM calculations to open-proton systems, the
VI. CONCLUSIONS Berggren completeness relation has been extended to the

) ) case of the Coulomb potential. The completeness relation has
The Gamow shell model, which has been introduced only,|so peen derived for nonlocal interactions that naturally ap-
very recently[3,4], has proven to be a reliable tool for the hear in the GHF method, a Hartree-Fock-inspired procedure
microscopic description of weakly bound and unboundi gptimize the s.p. basis. According to the GSM, the isospin
nuclear states. In the He isotopes, the GSM, with either SDhixing effects are very weak, even for high-lying unbound
or SGl interactions, was able to describe fairly well bindingstates of Li isotopes.

energy patterns and low-energy spectroscopy, in particular
the Borromean features in the chdifiHe [4,6]. Using the
finite-range SGI interaction made it possible to perform cal-
culations in the GHF basis, thus designing the optimal Berg- Discussions with Akram Mukhamedzhanov are gratefully
gren basis for each nucleus. acknowledged. This work was supported in part by the U.S.

In the Li isotopes, the results crucially depend on The Department of Energy under Contracts No. DE-FGO02-
=0 interaction channel. It was found that tiie=0 force = 96ER40963 (University of Tennessg@e No. DE-ACO05-
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