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The shell model in the complex-k plane(the so-called Gamow shell model) has recently been formulated and
applied to the structure of weakly bound, neutron-rich nuclei. The completeness relations of Newton and
Berggren, which apply to the neutron case, are strictly valid for finite-range potentials. However, for long-range
potentials, such as the Coulomb potential for protons, for which the arguments based on the Mittag-Leffler
theory do not hold, the completeness still needs to be demonstrated. This has been done in this paper, both
analytically and numerically. The generalized Berggren relations are then used in the first Gamow shell model
study of nuclei havingboth valence neutrons and protons, namely, the lithium chain. The single-particle basis
used is that of the Hartree-Fock-inspired potential generated by a finite-range residual interaction. The effect of
isospin mixing in excited unbound states is discussed.
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I. INTRODUCTION

One of the main frontiers of the nuclear many-body prob-
lem is the structure of exotic, short-lived nuclei with extreme
neutron-to-proton ratios. Apart from intrinsic nuclear struc-
ture interest, properties of these nuclei are crucial for our
understanding of astrophysical processes responsible for
cooking of elements in stars. From a theoretical point of
view, the major challenge is to achieve a consistent picture of
structure and reaction aspects of weakly bound and unbound
nuclei, which requires an accurate description of the particle
continuum [1]. Here, the tool of choice is the continuum
shell model(see Ref.[2] for a recent review) and, most re-
cently, the Gamow shell model(GSM) [3–6] (see also Refs.
[7–9]). The GSM is the multiconfigurational shell model
with a single-particle(s.p.) basis given by the Berggren en-
semble [10–12] which consists of Gamow(or resonant)
states and the complex nonresonant continuum. The resonant
states are the generalized eigenstates of the time-independent
Schrödinger equation which are regular at the origin and sat-
isfy purely outgoing boundary conditions. The s.p. Berggren
basis is generated by a finite-depth potential, and the many-
body states are obtained in shell-model calculations as the
linear combination of Slater determinants spanned by reso-
nant and nonresonant s.p. basis states. Hence, both con-
tinuum effects and correlations between nucleons are taken
into account simultaneously. The interested reader can find
all details of the formalism in Ref.[4], in which the GSM
was applied to many-neutron configurations in neutron-rich
helium and oxygen isotopes.

When extending the GSM formalism to the general
neutron-proton case, with both protons and neutrons occupy-
ing valence s.p. states, one is confronted with a theoretical
problem: the Berggren completeness relations, which are the
pillars of the Gamow shell model, have been strictly proved
(and checked numerically[4,13]) only for quickly vanishing
(finite-range) local potentials, while the repulsive Coulomb
potential for protons has infinite range. The theoretical prob-
lem lies, in fact, not in the Berggren(complex-energy) com-
pleteness relation itself, but in the Newton(real-energy)
completeness relation[14,15]. This latter involves both
bound and scattering states, upon which the Berggren com-
pleteness relations can be demonstrated using the method of
analytic continuation.

Our paper is organized as follows. Section II contains a
derivation of the Newton completeness relation that is valid
for a rather wide class of potentials, including the Coulomb
potential. Based on this result, the Berggren completeness
relation for protons is derived in the same way as previously
done for neutrons[4]. The numerical tests of the complete-
ness of the proton Berggren ensemble are given in Sec. III.
Section IV introduces the Hartree-Fock-(HF-)inspired pro-
cedure used to optimize the s.p. basis, the so-called
Gamow-HF method. The first GSM calculation involving ac-
tive neutrons and protons is presented in Sec. V, with the
1p-shell study of the lithium chain, ranging from5Li to 11Li.
The residual interaction used is a surface-peaked finite range
force. A novel aspect, absent in our previous GSM studies, is
the appearance ofT=0 couplings which seem to exhibit sig-
nificant particle-number(or density) dependence. Finally,
Sec. VI contains the main conclusions of our work.

II. COMPLETENESS RELATIONS IN THE GSM:
ANALYTICAL CONSIDERATIONS

As the one-body completeness relation for resonant and
scattering states is prerequisite for our theory, we shall dem-
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onstrate it rigorously. We shall first consider the case of a
local potential and then generalize it to nonlocal potentials.

A. Local potential

In order to demonstrate the orthonormality and complete-
ness relations for s.p. proton states, we consider a spherical
proton potential that is finite atr =0, and it has a pure Cou-
lomb behavior forr → +`. The one-body radial wave func-
tions usrd are solutions of the Schrödinger equation:

u9srd = F lsl + 1d
r2 + vsrd − k2Gusrd, s1d

vsrd ,
const

r
, r → + `, s2d

where the potentialv is given in units of fm−2, and l is the
angular momentum of the particle. Let us consider the
bounded region enclosed in a large sphere of radiusR. (This
can be achieved by introducing an infinite well of radiusR
surrounding the nucleus.) Of course, in the final result,R will
be allowed to go to infinity. For each value ofR, one has the
following completeness relation onf0:Rg [16]:

o
nPb

unsrdunsr8d + o
m=0

+`

usddskm,rdusddskm,r8d = dsr − r8d,

s3d

whereb denotes the set of bound states having radial wave
functionsunsrd with kn

2,vsRd, andusddskm,rd is a wave func-
tion of a normalized discretized continuum state, given by
the boundary conditionsusddskm,0d=0 andusddskm,Rd=0.

For the purpose of this discussion, it is convenient to in-
troduce the set of wave functions[12]

uski,rd =
usddski,rd
Îki+1 − ki

, s4d

which obey the following normalization condition:

kuskiduuskjdl =
di j

ki+1 − ki
. s5d

Since, in addition,

kuskduunl = 0, s6d

kunuun8l = dnn8, s7d

the box completeness relation can be written as

o
nPb

unsrdunsr8d + o
m=0

+`

uskm,rduskm,r8dskm+1 − kmd = dsr − r8d.

s8d

WhenR→ +`, the infinite series in Eq.(8) becomes an in-
tegral, thus giving the expected completeness relation. Un-
fortunately, this cannot be done right away, as the series and
the integral converge only in a weak sense.

To prove the convergence rigorously, let us consider the
completeness relation of the free box expressed in the form
of Eq. (4):

o
m=0

+`

Bm
2 ĵ lskmrd ĵ lskmr8dskm+1 − kmd = dsr − r8d, s9d

where ĵ lskmr8d are the Riccati-Bessel functions,ĵ lskmRd=0
(m=0,1,2…), andBm is the normalization constant

− Bm
2 R

2
ĵ l+1skmRd ĵ l−1skmRd =

1

km+1 − km
. s10d

Subtracting(9) from (8), one obtains

o
nPb

unsrdunsr8d + o
m=0

+`

fuskm,rduskm,r8dskm+1 − kmd

− Bm
2 ĵ lskmrd ĵ lskmr8dskm+1 − kmdg = 0. s11d

We shall now demonstrate that the above series converges in
the sense of functions, so the limiting transition from a series
to an integral whenR→ +` can be easily carried out.

To this end, let us consider the behavior of themth term in
the series whenm sandkmd→ +`. For very large values of
km, one can use the semiclassical expansion in powers ofkm

−1:

uskm,rd = Cmĵ lskmrd − Cm

Vsrd
2km

ĵ l8skmrd + OSCm

km
2 D , s12d

ĵ lskmrd = sinSkmr − l
p

2
D −

al

2kmr
cosSkmr − l

p

2
D + OS 1

km
2 r2D ,

s13d

where Cm is a normalization constant,al is a constant de-
pending onl only, and

Vsrd =E
0

r

vsr8ddr8. s14d

For the Coulomb potential,Vsrd~ ln r; hence the expression
(12) properly accounts for the logarithmic term in the phase
shift. It immediately follows from Eqs.(12) and (13) that

km =
sm+ 1/2dp

R
+

al + RVsRd
2Rmp

+ OS 1

m2D , s15d

km =
sm+ 1/2dp

R
+

al

2Rmp
+ OS 1

m2D . s16d

The constantCm can be determined from the normalization
condition:

Cm
2E

0

RF ĵ l
2skmrd −

Vsrd
km

ĵ lskmrd ĵ l8skmrdGdr + OSCm
2

km
2 D

=
1

km+1 − km
. s17d

Since the integral involvingV behaves like 1/km
2 ,Cm be-

comes
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Cm
2 R

2
f ĵ l

2skmRd − ĵ l+1skmRd ĵ l−1skmRdg + OSCm
2

km
2 D =

1

km+1 − km

s18d

[cf. Eq. (10)].
Using Eqs.(15) and (16), one obtains

Cm =Î 2

p
+ OS 1

m2D , s19d

Bm =Î 2

p
+ OS 1

m2D . s20d

Let us consider the behavior ofBm for R→ +` but km→k
with k.0. The expansion of Eq.(13) is still valid in this
case, as forr =R, it is a familiar expansion in 1/R of the
Bessel function. It follows from Eq.(13) that

km =
sm+ 1/2dp

R
+ OS 1

R2D s21d

with m chosen sokm is the closest tok. Then Eqs.(10) and
(13) give

Bm =Î 2

p
+ OS 1

R
D , s22d

as expected.
Note that the leading term in Eqs.(19) and (20) is the

familiar normalization of continuum wave functions[17].
The reminders, of the order ofm−2, guarantee the conver-
gence of the series. By using Eqs.(12)–(16), one can show
that the series(11) converges for allr .0 andr8.0.

As a consequence, in the limit ofR→ +`, Eq. (11) be-
comes

o
nPb

unsrdunsr8d +E
0

+` Fusk,rdusk,r8d −
2

p
ĵ lskrd ĵ lskr8dGdk

= 0. s23d

By taking advantage of the closure relation for the Riccati-
Bessel functions,

E
0

+`

ĵ lskrd ĵ lskr8ddk=
p

2
dsr − r8d, s24d

one finally arrives at the sought completeness relation

o
nPb

unsrdunsr8d +E
0

`

usk,rdusk,r8ddk= dsr − r8d. s25d

By using the same arguments as in Ref.[4], one obtains the
generalized Berggren completeness relation, also valid for
the proton case:

o
nPb,d

unsrdunsr8d +E
L+

usk,rdusk,r8ddk= dsr − r8d. s26d

For details, including the numerical treatment of scattering
wave functions and corresponding matrix elements, we refer
the reader to Ref.[4]. Let us only remark, in passing, that in

the presence of the Coulomb potential the standard regular-
ization procedure[18,19] has to be modified[20]. In our
work, however, we apply the exterior complex scaling
method[21,22] which works very well regardless of whether
the Coulomb potential is used or not.

B. Nonlocal potential

In the presence of a nonlocal potential, such as the HF
exchange potential generated by a finite-range two-body in-
teraction, the Schrödinger equation(1) becomes

u9srd = F lsl + 1d
r2 + vlsrd − k2Gusrd +E

0

+`

vnlsr,r8dusr8ddr8

s27d

wherevl is the local part of the potential, andvnl its nonlocal
kernel. We assume thatvnlsr ,r8d→0 whenr → +` or r8→
+` (the nuclear potential has to be localized) and that
vnlsr ,0d=0∀ r (the potential is regular at the origin). As the
radial HF functions are regular at zero, the latter condition is
automatically met for the HF exchange potential.

If the integral containing the nonlocal potentialvnl be-
haves like 1/k2 when k→ +`, then the asymptotic expres-
sion (12) holds. Indeed, integration by parts yields

E
0

+`

vnlsr,r8dF j lskr8d −
Vlsr8d j l8skr8d

2k
Gdr8

=
1

k2F ] vnl

] r8
sr,0dJls0d +E

0

+` ]2vnl

] r82 sr,r8dJlskr8ddr8G
+ OS 1

k2D = OS 1

k2D , s28d

whereVlsrd=e0
r vlsr8ddr8 ,Jlstd=et0

t et08
t8 j lst9ddt9dt8, and t0 and

t08 are chosen so thatJlstd is bounded onf0: +`f. Conse-
quently, Eq. (12) also holds for nonlocal potentials. The
proof of completeness can be, therefore, performed in the
same way as for local potentials, by simply replacingv by vl
in all expansions ink−1.

III. COMPLETENESS OF THE ONE-BODY PROTON
BERGGREN ENSEMBLE: NUMERICAL TESTS

In this section, we shall discuss examples of the Berggren
completeness relation in the one-proton case(for the neutron
case, see Ref.[4]). The s.p. basis is generated by the spheri-
cal Woods-Saxon(WS) plus Coulomb potential:

Vsrd = − V0fsrd − 4Vsol ·s
1

r

dfsrd
dr

+ Vcsrd, s29d

fsrd = F1 + expS r − R0

d
DG−1

. s30d

In all the examples of this section, the WS potential has the
radiusR0=5.3 fm, the diffusenessd=0.65 fm, and the spin-
orbit strengthVso=5 MeV. The Coulomb potentialVc is as-

PROTON-NEUTRON COUPLING IN THE GAMOW SHELL… PHYSICAL REVIEW C 70, 064313(2004)

064313-3



sumed to be generated by a uniformly charged sphere of
radiusR0 and chargeQ= +20e. The depth of the central part
is varied to simulate different situations.

In this section, we shall expand the 2p3/2 stateuuWSl, ei-
ther weakly bound or resonant, in the basisuuWSBskdl gener-
ated by the WS potential of a different depth:

uuWSl = o
i

cki
uuWSBskidl +E

L+

cskduuWSBskdldk s31d

[cf. Eq. (26)]. In the above equation, the first term in the
expansion represents contributions from the resonant states
while the second term is the nonresonant continuum contri-
bution. Since the basis is properly normalized, the expansion
amplitudes meet the condition

o
i

cki

2 +E
L+

c2skddk= 1. s32d

In all cases considered, the 0p3/2 and 1p3/2 orbitals are well
bound(by ,50 and,20 MeV, respectively) and do not play
any significant role in the expansion studied, although they
are taken into account in the actual calculation. The 2p3/2
state is, however, either loosely bound or resonant, and the
scattering states along the contourL+ are essential to guar-
antee the completeness. To take the nonresonant continuum
into account, we take the complex contourL+ that corre-
sponds to three straight segments in the complex-k plane,
joining the pointsk0=0.0−i0.0, k1=0.3−i0.1, k2=1.0−i0.0,

and k3=2.0−i0.0 (all in fm−1). The contour is discretized
with n=40 points:

u2p3/2l . o
nPb,d

cnuunl + o
i=1

n

cki
uuskidl. s33d

In the first example, we shall expand the 2p3/2 s.p. reso-
nancesE=3.287 MeV,G=931 keVd of a WS potential of the
depthV0=65 MeV in the basis generated by the WS poten-
tial of the depthV0

B=70 MeV. (Here the 2p3/2 s.p. resonance
has an energyE=1.905 MeV and widthG=61.89 keV.) Af-
ter diagonalization in the discretized basis(33), one obtains
E=3.289 MeV andG=934 keV for the 2p3/2 s.p. resonance,
i.e., the discretization error is,3 keV. The density of the
expansion amplitudes is shown in Fig. 1. As both states are
resonant, the squared amplitude of the 2p3/2 basis state is
close to 1. Nevertheless, the contribution from the nonreso-
nant continuum is essential. It is due to the fact that the
resonant state in the basis is very narrow, whereas the ex-
panded resonant state is fairly broad. It is interesting to no-
tice that the contribution from scattering states with energies
smaller than that of the resonant state is practically negli-
gible; this is due to the confining effect of the Coulomb
barrier.

The second example, shown in Fig. 2, deals with the case
of a 2p3/2 state that is bound in both potentials. HereV0

=75 MeV andV0
sBd=80 MeV, and the 2p3/2 state lies atE

=−0.0923 MeV andE=−2.569 MeV, respectively. Here, the
scattering component is almost negligible, which reflects the
localized character of bound proton states. After the diago-
nalization, one obtainsE=−2.568 MeV andG=1.73 keV for
the 2p3/2 state, which is indeed very close to the exact result.

FIG. 1. Distribution of the squared amplitudesc2skd of the 2p3/2

proton state of a Woods-Saxon potential with a depthV0

=65 MeV, in the s.p. basis generated by a Woods-Saxon potential
with a depthV0=70 MeV. The Coulomb potential is assumed to be
that of a uniformly charged sphere. The amplitudes of both real
(solid line) and imaginary(dotted line) components of the wave
function are plotted as a function of Refkg. The height of the arrow
gives the squared amplitude of the 2p3/2 state contained in the basis.

FIG. 2. Similar to Fig. 1 except for the bound 2p3/2 s.p. state of
the WS potential withV0=75 MeV expanded in the basis generated
by another WS potentialsV0

sBd=80 MeVd. The height of the arrow
gives the squared amplitude of the bound 2p3/2 state at the value of
−Imfkg. (The correspondingk value is purely imaginary.)
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In the third example(Fig. 3), the unbound 2p3/2 state(E
=1.905 MeV andG=61.89 keV;V0=70 MeV) is expanded
in a WS basis containing the bound 2p3/2 level sE
=−0.0923 MeV;V0

sBd=75 MeVd. As a consequence, the reso-
nance’s width has to be brought by the scattering states. Nev-
ertheless, the component of the 2p3/2 state of the basis is still
close to 1, whereas the continuum component plays a sec-
ondary role. Once again, one can see a Coulomb barrier ef-
fect: even if the expanded 2p3/2 state is unbound, its wave
function is very localized due to the large Coulomb barrier;
hence it has a large overlap with the bound 2p3/2 basis state.
The diagonalization yields E=1.9065 MeV and G
=58.9 keV, i.e., the discretization error is again close to 3
keV.

In the last example, shown in Fig. 4, the basis is that of
the WS potential with a depth of 70 MeV, and the expanded
state corresponds to a WS potential withV0=75 MeV. This
is the most interesting case since one expresses a bound
(real) state in a basis that contains only complex wave func-
tions.(The contribution from well bound 0p3/2 and 1p3/2 s.p.
states is negligible.) As expected, the behavior of the ampli-
tudes is very close to that of the previous example(see Fig.
3). Moreover, one can notice that the scattering states be-
come important in the expansion when their energies ap-
proach the resonant state energy. The diagonalization gives
E=−0.0925 MeV andG=−3.8 keV for the 2p3/2 state.

Summarizing this section, our numerical tests demon-
strate that the one-body Berggren completeness relation
works very well in the proton case involving the Coulomb
potential. For other numerical tests, see Refs.[23] (study of
the s.p. level density) and[24] (study of the Berggren expan-
sion in the pole approximation).

IV. SPHERICAL GAMOW HARTREE-FOCK METHOD

In our previous calculations of the He chain[3,4], we
used the s.p. basis of the WS potential representing5He. This

basis is appropriate at the beginning of the He chain, but
when departing from the core nucleus, its quality deterio-
rates. For instance, the “5He” basis is not expected to be
optimal when applied to the neutron-rich halo nucleus8He
because of the very different asymptotic behavior of this
weakly bound system. The obvious remedy is to use the s.p.
basis that is optimal for a given nucleus, that is, the HF basis.
However, since the Berggren ensemble used in the GSM is
required to possess spherical symmetry, HF calculations
must be constrained to spherical shapes. Moreover, since in
some cases one is interested in unbound nuclei lying beyond
the drip line(particle resonances), the HF procedure has to
be extended to unbound states. In the following, the HF-
based procedure that meets the above criteria is referred to as
the Gamow-Hartree-Fock(GHF) method.

Since, strictly speaking, the spherical HF potential cannot
be defined for open-shell nuclei, one has to resort to approxi-
mations. In this work, we tried two different ways of aver-
aging the HF potential. The first ansatz is the usual uniform-
filling approximation in which HF occupations are averaged
over individual spherical shells. In the second ansatz, the
deformed HF potential corresponding to nonzero angular
momentum projection is averaged over all the magnetic
quantum numbers. Both methods reduce to the true HF po-
tential in the case of closed-shell nuclei.

A. Average spherical HF potential

In the uniform-filling approximation no individual HF or-
bitals are blocked. The matrix elements of the HF potential
Uuf between two spherical statesa andb carrying quantum
numberss j , ld are

FIG. 3. Similar to Fig. 2 except for the 2p3/2 resonance of the
WS potential withV0=70 MeV expanded in the basis generated by
another WS potentialsV0

sBd=75 MeVd.

FIG. 4. Similar to Fig. 2 except for the 2p3/2 resonance of the
WS potential withV0=75 MeV expanded in the basis generated by
another WS potentialsV0

sBd=70 MeVd.
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kauUufubl = kauĥubl

+
1

2j + 1 o
m,l,ml

Nsld
2jl + 1

kamlmluV̂ubmlmll

s34d

where ĥ is the s.p. Hamiltonian (given by a WS
+Coulomb potential), l is an occupied shell with angular
quantum numberss jl , lld ,Nsld is the number of nucleons

occupying this shell, andV̂ is the residual shell-model inter-
action.

To define theM potential, one occupies(blocks) the s.p.
states in the valence shell that have the largest angular mo-
mentum projections on the third axis. The resulting Slater
determinant corresponds to the angular momentumJ=M.
For closed-shell nucleisM =0d and for nuclei with one par-
ticle (or hole) outside a closed subshellsM = jd, this Slater
determinant can be associated with the ground state of the
s.p. Hamiltonian. However, in other cases it corresponds to
an excited state withJ.0. The sphericalM potentialUM is
defined by averaging the resulting HF potential over mag-
netic quantum numbersm:

kauUMubl = kauĥubl +
1

Nl,j
o

m=j+1−Nl,j

j

o
l

kamlmluV̂ubmlmll

s35d

whereNl,j is the number of nucleons occupying the valence
shell with quantum numbersl , j .

TheM potential is expected to work better for nuclei with
one particle(or hole) outside the closed subshell. However,
one can expect this potential to be not as good asUuf when
the Slater determinant withJ=M represents an excited state.

B. Unbound HF states

While the HF procedure is well defined for the bound
states, it has to be modified for the unbound s.p. states(reso-
nant or scattering), even in the case of closed-shell nuclei.
First, the effective nuclear two-body interaction has to be
quickly vanishing beyond certain radius. Indeed, if it does
not, the resulting HF potential diverges whenr → +`, thus
providing incorrect s.p. asymptotics. Moreover, as resonant
states are complex, the true self-consistent HF potential is
complex. This is to be avoided, as the Berggren complete-
ness relation assumes a real potential. However, since we are
interested in the optimal basis-generating potential and not in
the full-fledged complex-energy HF problem[25], we simply
take the real part of the(generally complex) HF potential.

C. Treatment of the exchange part

As the residual interaction used in our shell-model calcu-
lations is finite range, its exchange part gives rise to a non-
local potential. The HF equations solved in the coordinate
space can be written as integro-differential equations. The
standard method to treat such a HF problem is by means of
the equivalent local potential[26]:

Veqsrd = vlsrd +

E
0

+`

vnlsr,r8dusr8ddr8

usrd
, s36d

where we use the notation of Eq.(27). The resulting HF
equations are local but potentials become state dependent.
The main difficulty is the appearance of singularities in
Veqsrd due to the zeros of the s.p. wave function. This prob-
lem is practically solved by replacingusrd with a small num-
ber (e.g., 10−3) in the denominator of Eq.(36) when usrd
approaches zero, and by using splines to define the HF po-
tential. The numerical accuracy is checked by calculating
overlaps between different wave functions having the same
s j , ld values. The overlaps are typically 10−5, which is small
enough to consider wave functions orthogonal.

Let us note in passing that the demonstration of Sec. II B
is valid when the nonlocal part of the potential is localized,
as it is the case for the nuclear interaction. However, if one
wants to explicitly consider the Coulomb HF potential be-
tween valence protons, one has to resort to approximations in
order to avoid its infinite-range nonlocal part. One possibility
is to use the so-called Slater approximation, which has been
shown to work fairly well [27]. Another method, the so-
called generalized local approximation, has been proposed in
Ref. [28], where the Coulomb exchange term has been pa-
rametrized in terms of a coordinate-dependent effective
mass. In any case, the effect of the approximate treatment of
the Coulomb exchange term on the GHF basis is very small
as compared to other uncertainties related to the construction
of the GHF Hamiltonian.

D. Choice of the average potential

In order to compare the quality of two GHF potentials, we
inspect the binding energy(i.e., the expectation value of the
GSM Hamiltonian) for several Li and He isotopes in the
truncated GSM space. As discussed in Sec. V below, we took
at most two particles in the GHF continuum. Due to this
truncation, and as well as the discretization of the contourL+
and the assumption of the momentum cutoff(the contour
does not extend to infinity), the completeness relation of the
resulting many-body shell-model basis is violated and, ex-
cept for some special cases, the results obtained with differ-
ent average potentials are different.

According to the variational principle, better basis-
generating potentials must yield lower binding energies.
Table I shows the binding energies of6,7,9He and7-11Li cal-
culated in the GSM. Since8He and 10He are closed-shell
nuclei, bothUuf andUM are identical in these cases. One can
see that the uniform-filling approximation for the GHF po-
tential works better for7Li, 8Li, and 10Li, whereas the s.p.
basis of theM potential is a better choice for7He. In all the
remaining cases, the two potentials give results that are prac-
tically equivalent. In the particular case of6He and6Li (not
displayed), there areat mosttwo nucleons in the nonresonant
continuum. Consequently, the shell-model spaces for6He
and6Li are almost complete, and the results are almost inde-
pendent of the choice of s.p. basis. Based on our tests, in our
GHF calculations we use the uniform-filling approximation
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except for nuclei with one particle(hole) outside closed sub-
shells where theM potential provides a slightly more optimal
s.p. basis.

V. GAMOW SHELL-MODEL DESCRIPTION OF
THE LITHIUM CHAIN

A. Description of the calculation

In our previous studies[3,4], we have used the s.p. basis
generated by a WS potential which was adjusted to repro-
duce the s.p. energies in5He. This potential(“ 5He” param-
eter set[4]) is characterized by the radiusR=2 fm, the dif-
fusenessd=0.65 fm, the strength of the central fieldV0
=47 MeV, and the spin-orbit strengthVso=7.5 MeV. As a
residual interaction, we took the surface delta interaction
(SDI). However, when it comes to practical applications, SDI
has several disadvantages. First, it has zero range, so an en-
ergy cutoff has to be introduced; hence the residual interac-
tion depends explicitly on the model space. Moreover, as the
SDI interaction cannot practically be used to generate the HF
potential(it produces a nonrealistic mean field), one is bound
to use the same WS basis for all nuclei of interest, which is
far from optimal as the number of valence particles in-
creases. So, we have decided to introduce[6] a finite-range
residual interaction, the surface Gaussian interaction(SGI):

VJ,T
SGIsr 1,r 2d = V0sJ,TdexpF− S r 1 − r 2

m
D2Gdsur 1u + ur 2u − 2R0d,

s37d

which is used together with the WS potential with the “5He”
parameter set.

The Hamiltonian employed in our work can thus be writ-
ten as follows:

Ĥ = Ĥs1d + Ĥs2d s38d

where Ĥs1d is the one-body Hamiltonian described above
augmented by a hard sphere Coulomb potential of radiusR0

from the 4He core, andĤs2d is the two-body interaction
among valence particles, which can be written as a sum of
SGI and Coulomb terms. It is important to emphasize that
the Coulomb interaction between valence protons can be
treated as precisely at the shell-model level as the nuclear
part. Indeed, the Coulomb two-body matrix elements in the
HF basis can be calculated using the exterior complex scal-
ing as decribed in Ref.[4]. Though not used in this paper, as
we are considering only one valence proton in the shell
model space, this feature of the Gamow shell model allows
for a precise treatment of the Coulomb term.

The SGI interaction is a compromise between the SDI and
the Gaussian interaction. The parameterR0 in Eq. (37) is the
radius of the WS potential, andV0sJ,Td is the coupling con-
stant which explicitly depends on the total angular momen-
tum J and the total isospinT of the nucleonic pair. A princi-
pal advantage of the SGI is that it is finite range, so no
energy cutoff is, in principle, needed. Moreover, the surface
delta term in Eq.(37) simplifies the calculation of two-body
matrix elements, because they can be reduced to one-
dimensional radial integrals.(In the case of other finite-range
interactions, such as the Gogny force[29], the radial inte-
grals are two dimensional.) Consequently, with SGI, an ad-
justment of the Hamiltonian parameters becomes feasible.

The Hamiltonian(38) is diagonalized in the Berggren ba-
sis generated by means of the GHF procedure of Sec. IV.
This allows one to use the optimal spherical GHF potential
for each nucleus studied; hence a more efficient truncation in
the space of configurations with a different number of par-
ticles in the nonresonant continuum.

B. Choice of the valence space

The valence space for protons and neutrons consists of the
0p3/2 and 0p1/2 GHF resonant states, calculated for each
nucleus, and thehip3/2j and hip1/2jsi =1,… ,nd, respectively,
complex and real continua generated by the same potential.
These continua extend from Refkg=0 to Refkg=8 fm−1, and
they are discretized with 14 points(i.e., n=14). The 0p1/2
state is taken into account only if it is bound or very narrow.
For the lightest isotopes considered, it is a very broad reso-
nant statesG,5 MeVd, and, on physics grounds, it is more
justified to simply take a realhip1/2j contour, so the com-
pleteness relation is still satisfied.

Altogether, we have 15p3/2 and 14 or 15p1/2 GHF shells
in the GSM calculation. The imaginary parts of thek values
of the discretized continua are chosen to minimize the error
made in calculating the imaginary parts of the energies of the
many-body states. Other continua, such ass1/2,d5/2,… are
neglected, as they can be chosen to be real and would only
induce a renormalization of the two-body interaction. We
have checked[3,4] that their influence on the binding energy
of light helium isotopes is negligible. On the other hand, the
1s1/2 antibound neutron s.p. state is important in the heaviest
Li isotopess10Li, 11Li d and plays a significant role in explain-
ing the halo ground-state(g.s.) configuration of11Li [9,30].
At present, however, solving a GSM problem for11Li in the
full psdGHF space is not possible within a reasonable com-
puting time.

Having defined a discretized GHF basis, we construct the
many-body Slater determinants from all s.p. basis states

TABLE I. Binding energies of the He and Li isotopes(in MeV) calculated in the GSM using the GHF
basis with(i) the uniform-filling approximation potentialUuf or (ii ) the UM potential. See Sec. IV A for
definitions.

6He 7He 9He 7Li 8Li 9Li 10Li 11Li

Uuf −1.038 −0.048 −2.357 −14.266 −15.521 −20.288 −18.082 −15.649

UM −0.984 −0.475 −2.418 −13.008 −15.094 −20.181 −17.749 −15.634
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(resonant and scattering), keeping only those with at most
two particles in the nonresonant continuum. Indeed, accord-
ing to our tests, as the two-body Hamiltonian is diagonalized
in its optimal GHF basis, the weight of configurations in-
volving more than two particles in the continuum is usually
quite small, and they are neglected in the following. To illus-
trate this point, let us consider theJp=3/2− ground state of
7Li. Since, in this case, there are only three valence particle,
the complete calculation is possible. As seen in Table II, the
weight of the component with three particles in the nonreso-
nant continuum,L+

s3dfpn2g, is indeed two orders of magnitude
smaller than other configuration weights. The presence of
L+

s3dfpn2g modifies the weights of other configurations on a
very minor way. For the leading configuration
0p3/2fpg0p3/2

2 fng, without any particles in the nonresonant
continuum, the effect is,8%. As a consequence, the neglect
of theL+

s3dfpn2g component leaves the overall structure of the
state unchanged, and one can safely truncate the shell-model
space while slightly renormalizing the two-body residual in-
teraction.

The algorithm that has been adopted by us[4] to isolate
many-body resonances is based on the pole approximation,
i.e., the diagonalization of the Hamiltonian in a smaller basis
consisting of resonant states only. Therefore, in some cases,
it is necessary to include in the GSM basis very broad reso-
nant states. Let us consider, for instance, the first 2+sT=0d
state in6Li and the two lowest 5/2− states in7Li. Without
explicitly taking into account the 0p1/2 broad Gamow state,
the 21

+sT=0d level of 6Li does not appear in the pole approxi-
mation; hence it is very difficult to determine. Similarly, in
the same pole approximation, there appears only one 5/2−

level in 7Li. Consequently, in order to identify those excited
states, we included the resonant 0p1/2 level in the GSM basis.
In order to further reduce discretization effects, we doubled
the number of discretization points along the corresponding
0p1/2 contours. To check whether these two Berggren en-
sembles are equivalent, we performed calculations for the
lowest 1+,0+, and 2+sT=1d levels in6Li. (The lowest 3+ state
has not been considered in this exercise, as nop1/2 state,
resonant or scattering, can enter its decomposition for obvi-
ous geometrical reasons.) The results are shown in Fig. 5,
from which its is clear that the two GSM bases are practi-
cally equivalent.

C. The lithium chain

As a pilot example of GSM calculations in the space of
protonand neutron states, we have chosen to investigate the
Li chain. The continuum effects are very important in these
nuclei, both in their ground states and in excited states. The
nucleus11Li is also a well-known example of a two-neutron
halo. In ourp-space(s) calculation, we consider the one-body
Coulomb potential of the4He core, which is given by a uni-
formly charged sphere having the radius of the WS potential.
It turns out that the inclusion of the one-body Coulomb po-
tential modifies the GHF basis in lithium isotopes as com-
pared to the helium isotopes, an effect which is usually ne-
glected in the standard SM calculations.

Recent studies of the binding energy systematics in the
sd-shell nuclei using the shell model embedded in the con-
tinuum(SMEC) [31,32] have reported a significant reduction
of the neutron-protonT=0 interaction with respect to the
neutron-neutronT=1 interaction in the nuclei close to the
neutron drip line[5,33]. In the SMEC, this reduction is as-
sociated with a decrease in the one-neutron emission thresh-
old when approaching the neutron drip line, i.e., it is a genu-
ine continuum coupling effect. The detailed studies in
fluorine isotopes have shown that the reduction of theT=0
neutron-proton interactioncannotbe corrected by any adjust-
ment of the monopole components of the effective Hamil-
tonian. To account for this effect in the standard SM, one
would need to introduce a particle-number dependence of the
T=0 monopole terms. Interestingly, it has recently been sug-

TABLE II. Squared amplitudes of different configurations in the ground state of7Li without truncation
(second column) and with truncation to at most two particles in the non-resonant continuum(third column).
The sum of squared amplitudes of all Slater determinants withn particles(protonsfpg or/and neutronsfng)
in the non-resonant continuum is denoted byL+

snd.

Configuration No truncation Truncation

0p3/2fpg0p3/2
2 fng 0.561−i2.783310−4 0.612−i2.285310−4

L+
s1dfpg 0.096+i4.732310−5 0.096+i4.980310−5

L+
s1dfng 0.184+i1.203310−4 0.164+i1.077310−4

L+
s2dfn2g 0.064+i2.419310−5 0.054+i1.600310−5

L+
s2dfpng 0.088+i7.032310−5 0.075+i5.508310−5

L+
s3dfpn2g 0.088+i1.621310−5 0

FIG. 5. The lowest 1+,0+, and 2+sT=1d levels in6Li calculated
with and without the 0p1/2 s.p. resonant state in the GSM basis.
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gested[34] that a linear reduction ofT=0 two-body mono-
pole terms is expected if one incorporates three-body inter-
actions into the two-body framework of a standard SM.

Our GSM studies of lithium isotopes indicate that the re-
duction of T=0 neutron-proton interaction with increasing
neutron number is essential. For example, if one uses the
V0sJ,T=0d strength adjusted to6Li to calculate7Li, the g.s.
of 7Li becomes overbound by 13 MeV, and the situation
becomes even worse for heavier Li isotopes. To reduce this
disastrous tendency, in the first approximation, we have used
a linear dependence ofT=0 couplings on the number of
valence neutronsNn:

V0sJ = 1,T = 0d = a10f1 − b10sNn − 1dg, s39d

V0sJ = 3,T = 0d = a30f1 − b30sNn − 1dg, s40d

with a10=−600 MeV fm3, b10=−50 MeV fm3, a30=−625
MeV fm3, andb30=−100 MeV fm3. This linear dependence
is probably oversimplified, as shown in Refs.[5,33] where
the proton-neutronT=0 interaction first decreases fast with
increasing neutron number and then saturates for weakly
bound systems near the neutron drip line. For theT=1 inter-
action, we have taken parametersV0sJ=0,T=1d and V0sJ
=2,T=1d determined for the He ground states[6], as they
provide reasonable results in the He chain.

The results of our GSM calculations for the neutron-rich
Li isotopes are shown in Fig. 6. One obtains a reasonable
description of the g.s. energies of lithium isotopes relative to
the g.s. energy of4He, but excited states are reproduced
roughly. Clearly, the particle-number dependence of the ma-
trix elements has to be further investigated in order to
achieve the detailed description of the data. The absence of

an antibounds1/2 state in the Berggren basis is also likely
responsible for large deviations with the data seen for10Li
and11Li.

In a number of cases, excited GSM states are calculated to
lie above several decay thresholds, i.e., they are predicted to
be unstable to single-nucleon, deutron, proton+neutron
emission, and/ora decay. The total decay width of a nucleus
in a given GSM eigenstate is given by an imaginary part of
its complex eigenenergy. Different open decay channels con-
tribute incoherently to the total decay width and their respec-
tive partial width cannot be separated easily[2]. In practical
applications, however, one may calculate the spectroscopic
factors for the separation of nucleon(s) or nucleon groups in
a given GSM eigenstate, following the well-known proce-
dures of the standard shell model[38,39], i.e., by calculating
the probability to find a certain one- or many-particle con-
figuration formed byA-k and k nucleons in a state of the
A-nucleon system. We intend to implement this option in the
future.

Due to the explicit presence of the Coulomb potential in
the GSM, isospin is no longer conserved. In order to assess
the isospin-mixing effect, for each shell-model stateuCl we
define the average isospin quantum numberTav in the fol-
lowing way:

Tav =
− 1 +Î1 + 4kCuT̂2uCl

2
s41d

where the isospin raising and lowering operators inT̂2 act on
single-proton and single-neutron states with explicitlydiffer-
ent asymptotic behavior. As seen in Table III, the values of
Tav indicate very small isospin-mixing effects. The imagi-
nary part for 2+ of 6Li and 3/2− of 7Li comes from the fact
these states are unbound. This result demonstrates that de-

FIG. 6. Experimental(EXP) and predicted
(GSM) binding energies and spectra of lithium
isotopes obtained with the SGI Hamiltonian. The
resonance widths are indicated by shading. The
energies are given with respect to the core of4He.
Experimental data are taken from[35–37].

TABLE III. Average isospin(41) calculated in GSM for various states in6,7Li.

Jp 1+ 21
+ 22

+ 3/2− (g.s.) 1/2− 5/2− 7/2− 3/2−

Tav 0.01 0.023+i0.020 1+i0.015 0.509 0.514 0.507 0.505 1.503+i0.011
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spite the presence of the Coulomb potential and despite a
large coupling to the continuum in some cases, the isospin
quantum number is still almost nearly conserved. That is,
isospin is a very good characteristic of nuclear states, even if
they are unbound, such as the second 3/2− state of 7Li
(which is aT=3/2 isobaric analog of the7He ground state)
or the lowestT=1,Jp=2+ state of6Li (which can be viewed
as aT=1 isobaric analog of the first excited state of6He).

The identification of many-body resonances can be diffi-
cult if they lie close in energy and have the same angular
momentum and parity. Sometimes isospin can come to the
rescue. For instance, the approximate isospin quantum num-
ber (41) was used to characterize the two 2+ states in6Li and
assign their experimental counterparts(see Fig. 6). This
method does not work for the two 5/2− levels in7Li, which
have bothT=1/2. Experimentally, one of these levels is a
broad resonance with a width of 880 keV, while the second
state has a much smaller width of 89 keV. In our GSM cal-
culations, however, the two lowest 5/2− levels in 7Li differ
in their 0p1/2 content; in the pole approximation one of them
contains the 0p1/2 broad Gamow state while the other does
not. Consequently, the latter state can be associated with the
5/22

− experimental level while the former can be assigned to
the broad 5/21

− resonance.

VI. CONCLUSIONS

The Gamow shell model, which has been introduced only
very recently[3,4], has proven to be a reliable tool for the
microscopic description of weakly bound and unbound
nuclear states. In the He isotopes, the GSM, with either SDI
or SGI interactions, was able to describe fairly well binding
energy patterns and low-energy spectroscopy, in particular
the Borromean features in the chain4-8He [4,6]. Using the
finite-range SGI interaction made it possible to perform cal-
culations in the GHF basis, thus designing the optimal Berg-
gren basis for each nucleus.

In the Li isotopes, the results crucially depend on theT
=0 interaction channel. It was found that theT=0 force
should contain a pronounced density(particle-number) de-
pendence which originates from the coupling to the con-
tinuum and leads to an effective renormalization of the

neutron-proton coupling. This effect cannot be absorbed by
the modification ofT=0 monopole terms in the standard SM
framework. The effective renormalization ofsJ=1,T=0d and
sJ=3,T=0d couplings, and, to a lesser extent, other coupling
constants found in the present GSM studies have to be fur-
ther investigated. To better take into account all these effects,
calculations with a finite-range, density-dependent interac-
tion inspired by the Gogny force[29] are now in progress.
The three main problems related to the realistic GSM calcu-
lations are the treatment of the center of mass(essential,
especially in the context of halo nuclei), the inclusion of
antibound states[9,30,40,41], and the handling of very large
shell-model spaces.

For that matter, the successful application of GSM to
heavier nuclei is ultimately related to the progress in optimi-
zation of the GSM basis, related to the inclusion of the non-
resonant continuum configurations. A promising develop-
ment is the adaptation of the density matrix renormalization
group method[42] to the genuinely non-Hermitian SM prob-
lem in the complex-k plane using thej scheme[6,43].

In summary, in this paper we report proof-of-principle
proton-neutron calculations using the Gamow shell model.
Our single-particle proton Hamiltonian contains the Cou-
lomb term that explicitly breaks isospin symmetry. In order
to extend GSM calculations to open-proton systems, the
Berggren completeness relation has been extended to the
case of the Coulomb potential. The completeness relation has
also been derived for nonlocal interactions that naturally ap-
pear in the GHF method, a Hartree-Fock-inspired procedure
to optimize the s.p. basis. According to the GSM, the isospin
mixing effects are very weak, even for high-lying unbound
states of Li isotopes.
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