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The role of the Pauli principle in the formation of both the discrete spectrum and multichannel states of the
two-cluster nuclear systems is studied in the algebraic version of the resonating-group method. Solutions of the
Hill-Wheeler equations in the discrete representation of a complete basis of the Pauli-allowed states are
discussed for the4He+n, 3H+3H, and4He+4He binary systems. An exact treatment of the antisymmetrization
effects related to the kinetic energy exclusively is shown to result in either an effective repulsion or attraction
of the clusters. It also yields a change in the intensity of the centrifugal potential. Both factors significantly
affect the scattering phase behavior. Special attention is paid to the6He+6He multichannel two-cluster system
as well as to the coupled-channel calculation of the12Be nucleus(provided that6He+6He and4He+8He
clusterings are taken into account). In the latter case, the cluster-cluster interaction derived from the kinetic-
energy operator modified by the Pauli principle leads to inelastic processes and ensures the existence of both
the bound state and a resonance in the12Be compound nucleus.
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I. INTRODUCTION

The Pauli exclusion principle is known to significantly
influence the interaction of composite particles. The concept
of Pauli forbidden states has important consequences for the
structure of wave functions of relative motion of two nuclei
leading to damping the function in the interior region of
internuclear distances. Furthermore, the so-called “partly
Pauli-forbidden states”(the Pauli-allowed states whose ei-
genvalues are not equal to unity) play an important role in
two-cluster scattering affecting both positions and widths of
resonances[1–3].

The effect of the Pauli principle on the nucleus-nucleus
interaction can be consistently described by microscopic
methods such as the resonating-group method(RGM) [4]
and the generator-coordinate method(GCM) [5]. However,
the evaluation of exchange integrals is known to be a very
tedious part of two-cluster RGM calculations. That is why in
the commonly employed nuclear models the Pauli exclusion
principle is to some extent neglected.

There are several different approaches which approxi-
mately account for the influence of the Pauli principle in
collisions between composite nuclei(clusters). One of them
(see, for instance, Refs.[6–9]) is based on the fact that the
Pauli principle does not allow identical nucleons to be at the
same point in space, and hence the action of the antisymme-
trizer is simulated by introducing an additional repulsive po-
tential between clusters. Such a potential is not uniquely de-
termined. In Refs.[6–8], where the problems ofa-a
scattering and the scattering of thea particle by the12C, 16O,
20Ne nuclei were considered, the Pauli principle was simu-
lated with a phenomenological repulsive potential of infinite
strength. The parameters of this potential have been chosen
so as to reproduce the energies and widths of the resonance

states in the corresponding compound system. The authors of
paper [9] simulated the Pauli principle for a few-cluster
nuclear system within the method of hyperspherical func-
tions. As in Refs.[6–8], they used a phenomenological re-
pulsive potential. But within such an approximation a com-
plete and accurate exclusion of the forbidden states is not
ensured.

To eliminate the forbidden states, Saito suggested the or-
thogonality condition model[10]. In this model the allowed
states are found from the requirement of their orthogonality
to the forbidden states. In Refs.[11–13] phenomenological
potentials of a special kind were used. Such potentials con-
tain the operators of projection onto the forbidden states, and
in the limit of great potential depth these states are sup-
pressed. To construct these potentials, an explicit form of the
wave functions forbidden by the Pauli principle should be
used. The latter functions can be easily found for systems of
two closed shell ors0sd-shell nuclei. However, the influence
of the partly Pauli-forbidden states on nucleus-nucleus scat-
tering is disregarded. Nevertheless, the latter states may have
tangible effect on physically measurable quantities[2].

These approaches turned to be fruitful and provided im-
portant information about discrete and continuum states of a
number of few-cluster systems. However, the fundamental
problem of constructing a complete basis of the Pauli-
allowed states in the generator-parameter space has not been
resolved yet. The understanding of the influence of these
states on the dynamics of cluster systems(especially, multi-
channel ones) is still a matter of dispute.

The effects of antisymmetrization on the effective poten-
tial between two light nuclei have been studied in some de-
tail by other authors[1–3,14,15]. The importance of Pauli
effects apart from the elimination of the Pauli forbidden
states was pointed out in the fish-bone model by Schmid
[1,2]. In Ref. [14] the structure of the contributions of ki-
netic, Coulomb, and nuclear potential energy to the nucleus-
nucleus interaction is discussed for the example of thea-a
system in an orthogonalized representation of the RGM
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equation. The “renormalized RGM potentials” are calculated
for this system and compared with simple local nucleus-
nucleus potentials appearing in phenomenological models.
Lemereet al. [15] and Baldock and Robson[3] studied the
corrections brought in the nucleus-nucleus scattering by suc-
cessively increasing the number of nucleons exchanged be-
tween the clusters. In Ref.[15] resonating-group calculations
of 3He+a and16O+a systems have been performed. In Ref.
[3] an application of the natural boundary condition ap-
proach to16O+16O elastic scattering was reported.

The authors of all quoted papers concluded that the influ-
ence of the Pauli principle on the structure of nucleus-
nucleus potential is very sensitive to the choice of the
nucleon-nucleon interaction. Hence, it is difficult to make
general conclusions about the main features of the interac-
tion between clusters arising from the exchange potentials.
The study of the influence of the exchange effects on the
kinetic energy can, however, provide such information. But
careful analysis of the effect of the antisymmetrization on the
physical observables in the interaction between clusters aris-
ing solely from the kinetic energy has not been performed
yet. As the kinetic and potential energy enter the Hamiltonian
additively, the influence of the Pauli principle on the former
can be treated separately. Naturally, it is of importance to
know the magnitude and energy dependence of elastic and
inelastic scattering cross sections, phase shifts, wave func-
tions, etc., formed by the modified kinetic energy operator
exclusively. Such estimations allow one to judge when the
contribution from the kinetic energy is essential.

As mentioned above, the requirements of the Pauli prin-
ciple can be accurately met within the resonating-group
method. But the commonly used form of the norm kernel and
the Hamiltonian kernel entering the RGM dynamical equa-
tions complicates an analysis of the effects induced by the
influence of the Pauli principle, and thus many peculiarities
of the cluster behavior in the collision may be overlooked. A
detailed analysis of the exchange effects can be performed
with the use of the algorithm outlined in Refs.[16,17].

We assert that the contribution from the kinetic-energy
operator to exchange effects is significant, and that analyzing
the antisymmetrization effects related to the kinetic energy
one can obtain an important information about collisions of
composite nuclear systems. Of course, within the range of
nuclear forces the potential energy(with its exchange part)
plays an important role, and in this region it can change
(weaken or strengthen) the cluster-cluster interaction derived
from the kinetic-energy operator modified by the Pauli prin-
ciple. However, it is reasonable to expect that the basic fea-
tures of the antisymmetrization effects on the nucleus-
nucleus interaction may be learned by studying the exchange
effects on the kinetic energy operator exclusively. The analy-
sis of the antisymmetrization effects by Lemereet al. [15]
and Schmid[1] supports this point of view. Furthemore, the
range of the influence of the Pauli principle on the kinetic
energy appears to be significantly larger than that of the
cluster-cluster interaction generated by the nucleon-nucleon
potential, especially for heavier clusters or clusters with an
open shell. We thus conclude that there is a region where the
cluster-cluster interaction is dominated by the kinetic energy
operator modified by the Pauli principle.

In this paper, an algorithm of taking into account the Pauli
principle in the calculation of the matrix elements of the
Hamiltonian is proposed within the formalism of the
generator-coordinate method and the Hill-Wheeler equation.
For a given cluster structure of the system studied, or for
several coupled cluster configurations, a complete basis of
the Pauli-allowed states[classified with the use of the SU(3)
symmetry indices] is considered along with a complete set of
their eigenvalues. The eigenvalues are shown to indicate the
existence of the leading SU(3) irreducible representations(ir-
reps) that dominate in the wave function of the binary cluster
system.

The effective nucleus-nucleus potential induced by the ki-
netic energy operator modified by the Pauli principle is de-
rived here for a binary cluster system. We also discuss results
obtained for a zero-range nuclear force, when the potential is
switched on in the most compact configuration for each of
the systems studied, as a first step for the inclusion of the
potential energy in the calculations.

In a consistent microscopic approach, the forbidden states
do not enter an expression for the norm and the Hamiltonian
kernel. Therefore, an effective potential related to the anti-
symmetrization affects only the allowed states; and, as will
be shown later, it may be not a repulsive potential. A repul-
sion arises in the states whose eigenvalues are less than
unity, whereas an attraction appears in the states with the
eigenvalues exceeding unity. It has been noted before[3] that
the exchange terms behave repulsively or attractively de-
pending on the choice of the nucleon-nucleon interaction.
However the possibility for the kinetic exchange terms to
contribute attractively is found for the first time.

The paper is organized as follows. In Sec. II, we define a
complete discrete basis of the harmonic-oscillator states al-
lowed by the Pauli principle, following the procedure de-
scribed in Refs.[16,17]. Then we derive the Hill-Wheeler
equations in the representation of the discrete basis(Sec. III).
The general properties of the solutions of the latter equations
are also discussed in Sec. III. In Sec. IV, the range of the
influence of the Pauli principle on the kinetic energy is com-
pared with that of the cluster-cluster interaction generated by
the nucleon-nucleon potential. Some features of the effective
internuclear potential are analyzed. By considering some ex-
amples of the binary cluster systems with one open channel,
a physical interpretation of the phenomena directly related to
the antisymmetrization of the wave function is suggested
(Sec. V). Antisymmetrization effects in a multi-channel bi-
nary cluster system are studied at an example of continuum
states of12Be that are able to decay through6He+6He and
8He+4He channels(Sec. VI). The resonance structure of the
12Be nucleus is still unclear and the problem is only likely to
be resolved by a microscopic coupled-channel calculation
[18]. That is why this system is chosen as the main example
of a real and nontrivial application of our approach. Con-
cluding remarks are made in Sec. VII.

II. COMPLETE BASIS OF THE ALLOWED STATES

To derive the Hill-Wheeler integral equations, the trans-
formation from the coordinate(or momentum) representation
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to the representation in terms of generator parameters should
be done. Hence we begin with determining a generating
function of the system under consideration.

Let FsR ,r d be the generator function of the Hill-Wheeler
method, antisymmetric with respect to a permutation of the
nucleonic coordinates. Herer and R are the sets of the
single-particle position vectors and generator parameters, re-
spectively. These parameters describe the dynamics of the
degrees of freedom which are of interest for us. We construct
this function as the Slater determinant composed of the
single-particle orbitals to ensure its proper permutational
symmetry. Instead of constructing the basis of orthonormal
stateshfnsr dj defined in the coordinate space, it is expedient
to introduce its maphcnsRdj in the generator parameter rep-
resentation. Then an explicit form of the Pauli-allowed basis
functions can easily be found along with a set of quantum
numbersn. The simplification is attained due to the fact that
the number of generator parametersR is significantly smaller
than the number of single-particle variablesr of the func-
tions hfnsr dj.1

In order to construct functionscnsRd, let us introduce an
expression

IsS,Rd =E FsS,r dFsR,r ddt, s1d

which is usually called the norm kernel(the overlap integral
of the antisymmetric generating functions of the Hill-
Wheeler method). Integration in Eq.(1) is over all single-
particle vectors. The norm kernel is symmetric with respect
to permutations of the generator parametersR andS. Hence
it can be treated as a kernel of the integral equation

LcsRd =E IsS,RdcsS*ddmS. s2d

The symmetry of the kernel ensures the existence of its non-
trivial eigenfunctionscnsRd and eigenvaluesLn. Heren is a
set of quantum numbers of the basis functions. All that re-
mains is to define the integration domain of the generator
parametersR andS as well as the measuredmR.

Both problems can be solved, provided the Slater deter-
minant FsR ,r d is composed of the Bloch-Brink orbitals
which are known to be the generating functions for the
single-particle harmonic-oscillator basis. For the first time
the determinantFsR ,r d was used as a trial function(but in a
slightly different form) in the Brink’s a-cluster model, that
is, in the variational calculation of the spectrum of excited
states in8Be. There are two notable differences between the
Brink’s determinant and the one used here[16]. Firstly, the
latter is the generating function for the many-particle
harmonic-oscillator basis of the Pauli allowed states. Sec-
ondly, its vector generator parameters take complex values.

If we restrict ourselves to one complex vector

R =
j + ih

Î2
,

then the expression for the Bargmann measure takes the form

dmR = exph− sR ·R*dj
djdh

s2pd3 .

Herej andh are real vectors which are treated as indepen-
dent variables of the allowed states defined in the Fock-
Bargmann representation[19]. The eigenvalues and eigen-
functions of the kernel(1) are uniquely defined. Moreover,
kernel(1) is a sum of orthogonal degenerate kernels. Each of
them corresponds to definite values of the number of oscil-
lator quantan and SU(3) symmetry indicessl ,md, and there-
fore, these kernels are orthogonal. Therefore, solving Eq.(2)
is reduced to a standard algebraic procedure for an integral
equation with a degenerate kernel. In the most general case,
and only because the generator functions are constructed as
Slater determinants composed of the Bloch-Brink orbitals,
the eigenfunctions of the norm kernel are labeled by the total
number of the oscillator quantan, SU(3) symmetry indices
sl ,md, a multiplicity index asl,md when several different
sl ,md multiplets exist, the angular momentumL, its projec-
tion M, and, if necessary, one more additional quantum num-
ber aL. The latter is needed to label the states with the same
L in a givensl ,md multiplet. Then the Hilbert-Schmidt ex-
pansion of the kernel of the integral equation(2) is

IsS,Rd = o
n

LncnsSdcnsRd, s3d

where each of the eigenvaluesLn of the norm kernel corre-
sponds to the eigenfunctioncnsRd. Naturally, the eigenfunc-
tions of kernel(1) are orthogonal with respect to the Barg-
mann measure and normalized to the dimensionality of the
irrep sl ,md [20].

The second-order Casimir operator of the SU(3) group
commutes with the operator of permutation of the nucleon
position vectors. Hence, the SU(3) symmetry indices natu-
rally appear as the quantum numbers of the eigenfunctions
cnsRd. Any other classification of the basis states spoils the
diagonal form of Hilbert-Schmidt expansion(3). For in-
stance, keepingn as a quantum number, quantum numbers of
the angular-momentum-coupled(“physical”) basis can be in-
troduced instead of the SU(3) symmetry indicessl ,md. The
states of this new basis(referred to as the “l basis” in what
follows) are labeled by the number of quantan, the angular
momenta of each of the clustersl1 and l2, and the angular
momentum of their relative motionl (see, for example, Refs.
[16,17]). Then a unitary transformation should be applied to
the functionscnsRd. But it results in an off-diagonal form of
the expansion(3), because not all the eigenvaluesLn are
equal to unity. It is only in the asymptotic limit of the large
number of oscillator quantan that the eigenvalues are close
to unity. The unitary transformation from the SU(3) basis to
the l-basis leaves the expansion(3) intact, thus making the
calculations in the continuum possible in either basis[16].

In the absence of SU(3) degeneracy the eigenfunctions of
the kernel(1) can be constructed straightforwardly with the

1Indeed, the problem of the reduction of the number of indepen-
dent variables of the wave function without violation of the Pauli
principle was solved on the basis of the generator-coordinate
method suggested by Griffin and Wheeler[32].
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use of algebraic methods. In the case of SU(3) degeneracy,
the eigenfunctions are found by solving an integral equation
with the degenerate kernel(see, for example, Ref.[17]),
which is reduced to a set of homogeneous algebraic equa-
tions with the rank equal to the degree of the SU(3) degen-
eracy.

The eigenvaluesLn appear to be nonzero starting with
some minimal number of quantanmin, take only positive val-
ues and limit to unity whenn→`. They are equal for all the
states belonging to the same SU(3) irreducible representation
sl ,md, except for the case of SU(3) degeneracy. In the latter
case, the eigenvalues belonging to multiplets of the same
irrep sl ,md do differ, and an additional index is required to
distinguish between them.

We need to bring some order into this variety of SU(3)
multiplets and find the leading irreps that dominate in the
wave function of the binary cluster system. Here we shall
deal with irreps with even symmetry indicesl and m. The
lowest allowed SU(3) multiplet sl0,m0d appears atn=nmin. If
n=nmin+2, then the allowed states belong to several(in the
simplest case, two) irreps: sl0+2,m0d and sl0,m0+4d. With
n increasing, the number of the Pauli-allowed SU(3) irreps
grows to the greatest allowed value, which is the same for all
n starting withn1. In a three-cluster(or multicluster) system
the number of the Pauli-allowed SU(3) irreps infinitely in-
creases withn.

Irreps with different numbers of quanta can be arranged
into several branches, with all the states of the same branch
having the same symmetry indexm and differing only in
value of the first indexl. That is, the irrepssl0+n
−nmin,m0d are assumed to belong to the first branch,sl0+n
−nmin−2,m0+4d to the second, etc. A hierarchy among these
irreps is established by the magnitude of the eigenvalues
Ln,sl,md. The irreps with the maximal values ofLn,sl,md are
the leading ones. In particular, the irrepssl0+n−nmin,m0d
belong to the leading irreps.

For a number of binary cluster systems(for instance,
8He+4He and6He+6He), although not for all, the least sym-
metric SU(3) irreps correspond to the branchsl0+n
−n0,m0d. As for the most symmetric ones, they appear atn
=n1.

III. SOLUTION OF THE HILL-WHEELER EQUATION

With the generating functionsFsS,r d andFsR ,r d having
been constructed, we can express the Hamiltonian kernel of
the cluster system under consideration in terms of the basis
functions as follows:

HsS,Rd =E FsS,r dĤFsR,r ddt = o
n

o
ñ

cnsSdknuĤuñlcñsRd.

s4d

Let the wave functionFsr d of the generator-coordinate
method be defined as the Hill-Wheeler integral(see, for ex-
ample, Ref.[21])

Fsr d =E CsR*dFsR,r ddmR,

containing a new unknown functionCsR*d. The equation for
the latter follows from the variational principle for the func-
tional

E E CsS*dfHsS,Rd − EIsS,RdgCsR*ddmSdmR = 0, s5d

where the Lagrange multiplierE has the meaning of the en-
ergy.

In order to reduce the functional to an algebraic expres-
sion, let us expand the unknown functionsCsR*d fCsS*dg in
the basis of the Pauli-allowed states

CsR*d = o
n

Cn
*cnsR*d, CsS*d = o

ñ

CñcñsS*d.

Then making use of the expansions(3) and(4), we arrive at
the algebraic expression

o
n

o
ñ

Cn
*sknuĤuñl − ELndn,ñdCñ = 0. s6d

Variation of the functional(6) brings us to a set of the alge-
braic equations for the coefficientsCn,

o
ñ

knuĤuñlCñ − ELnCn = 0. s7d

Certainly, n takes all the values allowed for the Pauli-
allowed basis functions. Alternatively, the two quadratic
forms on the left-hand side of Eq.(6) can be diagonalized.
Redefining the coefficientsCn

* sCñd as

C̄n
* = ÎLnCn

* , C̄ñ = ÎLñCñ,

the following equation is obtained for the coefficients:

o
n

o
ñ
HC̄n

* knuĤuñl
ÎLnLñ

C̄ñ − Edn,ñC̄n
*C̄ñJ = 0 s8d

instead of Eq.(6). Then it remains to reduce the renormal-
ized matrix of the Hamiltonian to a diagonal form by means
of the unitary transformation.

Now let us discuss the general properties of the solutions
of the set of equations(7). For a binary cluster system the
components of discrete eigenstates with energyEk

=−k2/2,0 decrease exponentially with the number of radial
quantan=2k following the law

Cn
k = An

k
Î2 exps− Î2uEkuÎ4k + 2l + 3d

Îr0
Î44k + 2l + 3

.

Heren denotes the set of the quantum numbers of thel basis,
l is the angular momentum of the cluster relative motion,r0
is the oscillator length, andAn

k is the asymptotic normaliza-
tion coefficient [22]. The internal cluster functions are as-
sumed to be fixed and described by the translation-invariant
shell model wave functions with the same oscillator length
for both clusters.
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The asymptotic behavior(at large values of the number of
quantan) of the continuum eigenstateshCnsEdj with energy
E.0 is expressed in terms of Hankel functions of the first
and second kind, and the scatteringS-matrix elements or
Bessel and Neumann functions, and theK-matrix elements
[16,17]. Although the eigenvectors are orthonormalized, the
orthonormality conditions contain the eigenvaluesLn as the
weight coefficients.

With the eigenvectors determined, it is easy to proceed
either to the eigenfunctionsFksr d, FEsr d in the coordinate
representation or to the functionsCksRd, CEsRd in the Fock-
Bargmann space:

CksEdsRd = o
n

ÎLnCn
ksEdcnsRd. s9d

An expression for the density matrix in the Fock-Bargmann
representation can be written as

rsS,Rd = o
k
Ho

n

ÎLnCn
k*cnsSdo

ñ

ÎLñCñ
kcñsRdJ

+E dEHo
n

ÎLnCn
*sEdcnsSdo

ñ

ÎLñCñsEdcñsRdJ .

s10d

The summation in Eq.(10) is over the discrete states, while
the integration is over the continuum states. The density ma-
trix provides us with the information about the behavior of
the probability distribution function in the phase space. Note
that the number of independent variables in Eq.(10) is sig-
nificantly smaller than in the distribution functionrshr jd de-
fined in the coordinate space. This is the main advantage of
the generator-coordinate method and, in particular, of the
Fock-Bargmann representation.2

IntegratingrsR ,R*d over the phase space, we can reduce
it to the following sum

E rsR,R*ddmR = o
k

o
n

uCn
ku2Ln,

provided that all the states of the system belong to the dis-
crete part of the spectrum. Here

sCn
kd2Ln = UE cnsR*dCksRddmRU2

is the realization probability of the statecnsRd in the wave
function of the cluster systemCksRd.

Thus, employing the basis of the Pauli-allowed states, we
deal with a discrete representation of any state of the system,
whether belonging to the discrete or to the continuum spec-
trum. The expansion coefficients of the wave function in the
basis of the Pauli-allowed states arehÎLnCnj. The absolute
value of a coefficient squared gives us the probability for the
corresponding Pauli-allowed basis state; and a convergence
holds both for the bound states and the continuum.

IV. HOW DOES THE ANTISYMMETRIZATION
OPERATOR ACT

The RGM wave function belonging to the continuous
spectrum of a few-cluster system has a remarkably simple
form at large intercluster distances. In this region, the poten-
tial energy of the cluster-cluster interaction can be neglected;
and there is also no need for the antisymmetrizer. Then the
wave function is given by the product of the intrinsic cluster
wave functions and the wave function of the free motion of
the centers of the clusters.

With the intercluster distance decreasing, the wave func-
tion of the system is modified and no longer reducible to
such a simple form. Nucleons belonging to different clusters
are not isolated from each other any more, and hence, the
cluster radii can, in effect, change. The change of the radii of
the nuclear clusters results in changing both their internal
energies and the energy of their relative motion, even if the
potential energy of the cluster-cluster interaction is disre-
garded.

Among the factors coming into play at this stage, the most
important are those which are directly related to the influence
of the Pauli exclusion principle. As a result, a general picture
of the phenomenon becomes intricate, and to interpret it
completely, each factor determining the final result should be
carefully analyzed. Further we shall concentrate our attention
on the phenomena that reveal the characteristic features of
the fully antisymmetric RGM wave function at relatively
small intercluster distances. With that end in view, some con-
siderable simplifications will be introduced for the descrip-
tion of the potential energy of the cluster-cluster interaction.

All in all, there are, at least, two questions to be answered.
(1) What is the range of the nucleus-nucleus interaction gen-
erated by the Pauli exclusion principle?(2) What are the
main features of such an interaction?

As discussed in the Introduction, the kinetic energy modi-
fied by the Pauli principle is an important ingredient in the
formation of the observables. Consider the set of the alge-
braic equations(7) in which only the operator of the kinetic
energy of the relative motion(in the c.m. frame) is retained:

o
ñ

knuT̂uñlCñ − ELnCn = 0. s11d

Due to the particular simplicity of the kinetic energy opera-
tor, its generating matrix element can be written in the form

TsR,Sd = T̂RIsR,Sd = T̂Ro
n

LncnsRdcnsSd,

where

T̂R = −
"2

4mr0
2fR2 − 2sR ·¹Rd − 3 +¹R

2 g s12d

is the Fock-Bargmann map of the kinetic energy operator
(see, for example, Ref.[16]). m stands for the nucleon mass
from now on. From Eq.(12) it immediately follows that the
kinetic energy matrix in the harmonic-oscillator representa-
tion is tridiagonal, whence

2Thus, the Fock-Bargmann representation provides us with the
simplest means of realization of the generator-coordinate method
and opens new prospects of analysis of cluster systems.
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TsR,Sd = o
n

hLn−2Tn−2,ncn−2sRd + LnTn,ncnsRd

+ LnTn,n+2cn+2sRdjcnsSd.

HereTn,ñ are the matrix elements of the operatorT̂R between
the functionscnsRd (the latter functions are normalized to
unity with the Bargmann measure),

Tn,ñ =E dmRcñsR*dT̂RcnsRd.

A nonlocal kinetic energy operator is obtained. For simplic-
ity, the single-channel case is considered here, when the ba-
sis functions differ only in the number of oscillator quantan.

A typical set of the equations(11) can be written as

Ln−2Tn,n−2Cn−2 + LnsTn,n − EdCn + LnTn,n+2Cn+2 = 0.

s13d

A standard set of the discrete representation which disregards
the Pauli principle

Tn,n−2Cn−2 + sTn,n − EdCn + Tn,n+2Cn+2 = 0 s14d

differs from the set of equation(13) in two respects. First,
only the matrix elements between the allowed states enter the
latter. Therefore, there is no need to introduce any additional
potential in the initial Hamiltonian in order to remove the
Pauli-forbidden states. Such a term would give no contribu-
tion to Eq.(11).

Secondly, the elimination of the forbidden states still does
not resolve the problem in total. Indeed, the matrix of the set
(13) contains the eigenvaluesLn belonging to the Pauli-
allowed states, and, for this reason, it is not identical to the
matrix (14) of the kinetic-energy operator of the free motion
of clusters.

Equation(14) take asymptotic form at large values ofn
and are reduced to the Schrödinger differential equation of
free motion with definite angular momentuml (see Ref.[23]
for details). At large n, Eq. (13) take the same form as Eq.
(14), because there all eigenvaluesLn equal unity. But at
small values ofn the eigenvalues differ from unity, and the
asymptotic form of the equations becomes complicated. As a
result, Eq.(13) tend to the equations of motion in the field of
the “kinetic energy exchange potential.” Our purpose is to
find these equations in order to reveal the main features of
the cluster-cluster interaction in their collision.

An equation of the set(13) for a collision of clusters with
angular momentuml can be written in the form of the finite-
difference equation

−
1

2
HS1 +

Ln−2

Ln
DSn +

3

2
−

s2l + 1d2

8n
D + 1 −

Ln−2

Ln
J

3
1

4
sCn+2 − 2Cn + Cn−2d −

1

2
H1 +

Ln−2

Ln

+ S1 −
Ln−2

Ln
D

3Sn +
3

2
−

s2l + 1d2

8n
DJ1

4
sCn+2 − Cn−2d

+ HS1 +
Ln−2

Ln
D s2l + 1d2

32n
+

1

4
S1 −

Ln−2

Ln
DSn +

1

2
DJCn

=
mr0

2

"2 ECn.

The latter takes the form of the Bessel differential equation
in the limit n@1, where the eigenvaluesLn can be set to
unity:

S d2

dy2 +
1

y

d

dy
−

s2l + 1d2

4

1

y2 +
mr0

2

"2 2EDCsyd = 0,

y = Î2n + 2l + 3. s15d

The diagonal matrixiUn,ñ
Paulidn,ñi

Un,n
Pauli=

1

2
S1 +

Ln−2

Ln
D s2l + 1d2

16n
+

1

4
S1 −

Ln−2

Ln
DSn +

1

2
D
s16d

can be considered the matrix of the operator of the effective
cluster-cluster interaction derived from the kinetic-energy
operator modified by the Pauli principle. The physical mean-
ing of the first term in Eq.(16) is quite simple. It is the
centrifugal potential that is renormalized with the factor

1

2
S1 +

Ln−2

Ln
D .

The latter, along with the eigenvalues, limits to unity asn
→`. If the eigenvalues approach unity from below asn
increases, the renormalization factor does not exceed unity.
Therefore, partial suppression of the centrifugal potential is
observed in this case. If the eigenvalues approach unity from
above, the centrifugal potential gets stronger.

The second term,

1

4
S1 −

Ln−2

Ln
DSn +

1

2
D ,

represents a finite-range potential generated by the exchange
effects on the kinetic energy(referred to as “effective poten-
tial” in what follows). Its intensity decreases in magnitude as
the differenceLn−Ln−2 vanishes. If the latter remains nega-
tive as n grows (the eigenvalues monotonically approach
unity from above), then the effective potential turns to be
attractive. If the difference of the eigenvalues remains posi-
tive asn increases(the eigenvalues monotonically approach
unity from below), then the effective potential is repulsive.
Obviously, the range of such an interaction depends on the
width of the interval where the eigenvalues deviate from
unity.

Indeed, as was shown in Sec. III, the wave function of a
binary cluster system can be presented in the form of the
expansion(9). If Ln,1, the eigenvalues suppress the terms
with small values ofn in the expansion(9); that can be
naturally interpreted as the action of effective repulsive
forces at small intercluster distances. This leads to a decrease
of the ground state energy in absolute value and to a corre-
sponding change in the scattering phase shifts due to the
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appearance of the additional effective repulsion. On the con-
trary, if Ln.1, then the terms with smalln are more pre-
ferred; that can be considered an effective attraction.

Consequently, the antisymmetrization effects result not
only in the elimination of the forbidden states, but also in
changing the relative kinetic energy as clusters approach
each other. In the case of the free motion of two composite
particles in a state with definite angular momentuml, a cen-
trifugal potential is the sole term that changes the relative
velocity of the clusters in collision. It decreases the kinetic
energy of the relative motion of the clusters until they stop at
the turning point rn=r0

Î2n+2l +3 and then begin to fly
apart. The antisymmetrization renormalizes the strength of
the centrifugal potential, which is the first of the factors af-
fecting the relative velocity of the clusters. With the inter-
cluster distance decreasing, the effective potential also comes
into play.

If the eigenvalueLn is a monotonically increasing func-
tion of n, then the relative velocity of the clusters decreases
to a lesser degree than in the field of the centrifugal potential
of the free motion. But then, the clusters come within the
range of the repulsive effective potential which decreases the
kinetic energy of the relative motion. If the eigenvalueLn is
a monotonically decreasing function ofn, then a strength-
ened centrifugal potential slows down the cluster motion to a
greater degree than in the case of the free motion. But at a
smaller distance the relative velocity of the clusters increases
due to the action of the effective attractive potential.

It should be noted also that in the low-energy region the
elastic scattering phase-shift is affected by the effective po-
tential related to antisymmetrization. The change in the cen-
trifugal barrier caused by the Pauli principle affects, mainly,
the asymptotic behavior of the phase shift.

To estimate the range of influence of the antisymmetrizer
on the structure of the wave functions, it is appropriate to
consider two extreme values of the number of quantanmin
andnmax. As long asn,nmin, all the eigenvalues equal zero.
If the number of quanta satisfy the inequalitynminøn
ønmax, then the eigenvalues become positive, but deviate
from unity. Finally, provided that the inequalityn.nmax
holds, the eigenvalues can be considered to be approximately
equal to unity. The value ofnmax is defined in a rather ap-
proximate way, which demonstrates the diffuseness of the
range of the antisymmetrization operator. The quantityreff,

reff =ÎA1 + A2

A1A2
r0

Îs2nmax+ 2l + 3d,

defines the distance between the centers of the two nuclear
clusters (composed ofA1 and A2 nucleons, respectively)
where the antisymmetrization effects come into play. It is
appropriate to compare the range of the kinetic energy ex-
change potential with that of the cluster-cluster interaction
generated by the nucleon-nucleon potential.

The matrix elements of the potential energy operator,
which enter the equations of the algebraic version of the
RGM, can be extracted from the potential energy kernel
UsR ,Sd defined in the Fock-Bargmann space. This kernel is
an entire function ofR andS. Similar to the kinetic energy

kernel, it can be considered to be the result of the action of
some operator representing the nucleon-nucleon potential on
the norm kernel. To obtain the potential energy matrix ele-
mentskn , l uUuñ , ll, the interaction kernelUsR ,Sd needs to be
projected to the states with definite values of the oscillator
quanta, the SU(3) labels, and the angular momentum. This
can be done analytically. The antisymmetrizer eliminates the
matrix elements of the potential energy operator between the
forbidden states as well as those coupling the allowed and
the forbidden states.

At large values of the number of quantan the matrix of
the potential energy operator of the cluster-cluster interaction
is known to be equivalent to the diagonal matrixidn,ñUsrndi
(see Ref.[24]), the elements of which rapidly decrease with
n similar to the cluster-cluster potentialUsrd itself in the
coordinate space:

o
nmin

`

kn,l uUuñ,llCñ,l = UsrndCn,l . s17d

Hence, for a short-range cluster-cluster potential we con-
clude that matrix elements of the equivalent diagonal matrix
rapidly decrease. For a central nucleon-nucleon potential
having a Gaussian form we will have

Usrnd , U0 expH−
r0

2s2n + 2l + 3d
b0

2

A1 + A2

A1A2
J , s18d

whereb0 is the range of the Gaussian potential andU0 is its
strength.Usrnd contains both the direct and exchange inter-
action term. They are not given separately, because this
would destroy the symmetry of the potential energy kernel.

Strictly speaking, expression(18) also depends implicitly
on the eigenvaluesLn of the norm kernel. However, this
dependence cannot increase the range of the potential energy
operator of the cluster-cluster interaction estimated by ex-
trapolating the asymptotic relation(18) to the region of
smaller values ofn. With the number of nucleons in each
cluster increasing, the number of forbidden states grows.
Then the asymptotic estimate(18) appears to be valid even
for the minimal number of quanta allowed by the Pauli
principle.3 The number of partly forbidden states also in-
creases, which leads to the suppression of the potential en-
ergy matrix elements.

At large values of the number of oscillator quantan the
effective cluster-cluster interaction derived from the kinetic
energy operator modified by the Pauli principle vanishes as
the eigenvaluesLn tend to unity. Thus, the range of such an
interaction can be estimated with the help of the relation

Ln − 1 , bsnda−n = bsndexps− n ln ad. s19d

Parametera.1 is completely determined by the type of
clustering of the nuclear system considered; and that is why
it is the same for all the branches of the SU(3) irreps. As for
the parameterbsnd, its dependence on the number of quanta

3If the value of oscillator lenghtr0 is chosen in accordance with
the experimental values of the cluster radii.
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follows a power law and differs for different SU(3) irreps
even within one cluster configuration.

It follows from Eq. (19) that the kinetic energy exchange
potential decreases exponentially with the number of quanta,
and so is the cluster-cluster interaction generated by the
nucleon-nucleon forces. Comparing the decrements of the
expressions(18) and(19), it is possible to establish which of
the potentials has larger range. It appears to be that

A1 + A2

A1A2

2r0
2

b0
2 @ ln a

even for the simplest binary cluster systems composed ofs
clusters, such as4He+n, 4He+4He, etc. This means that as
the clusters approach each other, they first experience an in-
fluence of the effective interaction caused by the exchange
effects on the kinetic energy. And the potential of the cluster-
cluster interaction generated by the nucleon-nucleon forces
comes into play only at the smallest intercluster distances.

Further we shall explain how the eigenvalues(and, there-
fore, the parameters of the effective cluster-cluster interac-
tion) depend on the number of nucleons of a compound sys-
tem and on the type of clustering by considering some
examples of binary nuclear systems composed ofs and p
clusters.

V. EXAMPLES OF THE EFFECTIVE POTENTIALS:
SINGLE-CHANNEL CLUSTER SYSTEMS

In this section, we will consider the simplest examples of
two-cluster systems with one open channel in order to dem-
onstrate the influence of the kinetic-energy exchange effects
on the scattering phase shifts and on the wave functions in
the discrete representation. To reveal the main features of the
nucleus-nucleus interaction affected by the Pauli principle,
we shall concentrate our attention on studying the exchange
effects on the kinetic energy operator exclusively, although
we shall also discuss the results obtained in the approxima-
tion of zero-range nuclear force.

In addition, we shall compare our results with those which
can be obtained by simulating the Pauli principle with some
phenomenological potentials of the optical model. Not aim-
ing at a complete discussion of all the factors influencing the
choice of a nucleus-nucleus potential, we shall focus on
those features of optical model potentials which follow the
requirements of the Pauli principle.

Conventional optical model descriptions of nucleus-
nucleus scattering usually employ two kinds of effective lo-
cal nucleus-nucleus potentials which are phase-equivalent
with those derived on microscopic grounds: deep or shallow
potentials. Deep potentials are energy independent and vary
very gradually with angular momentum of the nuclei in-
volved. These potentials produce a number of unphysical
bound states which simulate the forbidden states of the mi-
croscopic approach. Indeed, it is exactly the number of the
forbidden states that determines the phase-shift variation be-
tween zero and infinite energy, and in optical model poten-
tials this must be accounted for. In contrast, shallow optical
potentials are often found to be strongly angular-momentum

dependent and do not have nonphysical states in their dis-
crete spectrum. However, they should be singular to repro-
duce the high-energy behavior of the microscopic phase
shifts [25]. In our approach, neither a deep potential with
unphysical states, nor a singular shallow potential is em-
ployed, in order to ensure the correct phase-shift variation.

In our equations, the forbidden states are excluded from
the very beginning, because their eigenvalues are equal to
zero, i.e.,Ln=0 for all n,nmin. The known asymptotic esti-
mate establishes a relation between the wave functionFlsqd
in the coordinate representation and coefficientsCn

l ,

Flsuqu = r0
Î2n + 3d =

ÎLnCn
l

Î2r0s2n + 3d1/4
, n @ 1.

From this it follows that the wave functionFl is rather close
to zero within the interval

0 , uqu , r0
Î2nmin + 3.

Such a wave function can be obtained in the calculations
with a model repulsive-core potential(see, for example,
Refs.[6,8]). The number of the forbidden states with angular
momentuml ,nmin equalsfsnmin− ld /2g. Hence, the elastic
scattering phase shiftdlsEd should be counted fromfsnmin

− ld /2gp, in order to make it vanish at high energy. Such
energy dependence of the scattering phase shift can also be
reproduced by means of a soft core, with its height being
determined by the phase-shift variation. The radius of the
core depends not only onnmin, but also on the angular mo-
mentuml; and can be estimated with the help of the relation
Rcore=r0

Î2nmin+3.
Note that for the states with angular momentuml ùnmin

the forbidden states are absent, and hence no core need to be
introduced. Certainly, the larger isnmin, the more accurate are
these considerations.

All this, however, does not mean that a core entirely re-
produces the action of the Pauli principle. As was explained
in the previous section, the eigenvalues of the norm kernel
deviate from unity atn.nmin and affect the RGM Hamil-
tonian in the discrete basis representation.

The two-cluster systems considered in this section have a
remarkable property: all states with a given number of
quantan belong to the same SU(3) multiplet sn ,0d. That
simplifies noticeably the explicit form of the Pauli-allowed
orthonormal basis functions in the Fock-Bargmann space
(they are constructed from even powers of one complex vec-
tor), and provides only two sets of the eigenvalues: one for
the even states, and the other for the odd ones. In addition,
the matrix elements of the kinetic energy operator take a
particularly simple form in this case.

In the absence of the operator of the nucleon-nucleon in-
teraction two different modes of behavior of the scattering
phases are observed in the energy region up to 50 MeV(in
the c.m. frame). Later we shall show that at low energies the
eigenvalues approaching unity from above produce a posi-
tive scattering phase, while those approaching unity from
below, a negative one.
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A. The n+4He system

The scattering of a neutron by ana-particle is one of the
simplest examples considered in the framework of the Hill-
Wheeler method. We wish to show that even for this system
the scattering phase cannot be reproduced in full by any op-
tical model potential which simulates the action of the Pauli
principle.

The norm kernel for thea+n system generating a com-
plete basis of the Pauli-allowed states or, in other words, the
kernel of an integral equation reads

In+asR,Sd = expsR ·Sd − expF−
1

4
sR ·SdG . s20d

The norm kernel does not contain the Pauli-forbidden states.
They are already excluded. Therefore, it can be compared
with the result of action of the model repulsive potential
which eliminates the forbidden states. But we should also
take account of the eigenvalues belonging to the allowed
states. Hence, provided that the Pauli principle is simulated
by some phenomenological potential, at this stage an addi-
tional interaction should be introduced to reproduce the dy-
namics of the system after the elimination of the forbidden
states. Later the main features of this additional phenomeno-
logical potential will be discussed.

The eigenvalues of the norm kernel fora+n system are
equal to

Ln = 1 −S−
1

4
Dn

.

Obviously, in the limitn→` the eigenvalues approach unity
from below, if the number of quanta is evensn=2kd; and
from above, if the number of quanta is oddsn=2k+1d. The
minimal number of quantanmin which corresponds to the
lowest Pauli-allowed basis state is equal to 1. This means
that the branch which belongs to the SU(3) irrep s2k+1,0d
appears first and its eigenvalues take the largest values.

To illustrate our conclusions about the characteristic fea-
tures of the effective interaction induced by the Pauli prin-
ciple, it is appropriate to consider the phase-shifts of the
elastic scattering of a neutron by thea particle4 in the states
with Lp=0+ [Fig. 1(a)] andLp=1− [Fig. 1(b)]. Zero angular
momentum corresponds to the eigenvaluesL2k,1, while the
eigenvaluesL2k+1 which exceed unity correspond to the mo-
mentumL=1. The behavior of the scattering phasesdL=0 and
dL=1 for the case when only antisymmetrization effects on the
kinetic energy are taken into account and in the approxima-
tion of zero radius for the nuclear force is presented in Fig. 1.
In this approximation the potential energy of the interaction
of the neutron anda particle is simulated with the single
parameter, the diagonal matrix element of the potential en-

ergy operatorÛ in the state with the minimal number of even
(for L=0) or odd (for L=1) quanta, i.e.,

ksn,0duUusn8,0dl

= 5 U0 = − 5.52 MeV if n = n8 = nmin = 2, L = 0,

Ū0 = − 11.05 MeV if n = n8 = nmin = 1, L = 1,

0 otherwise.
6

The parameterŪ0 was fitted to reproduce position of the
maximum of the total elastic scattering cross sectionEr
=0.92±0.04 MeV [26]. The half width G=1.3 MeV also
agrees well with the experimental value ofG=1.2 MeV, al-
though the maximum value of the total cross section is twice
as large as its experimental value of 7.6 b[26]. As regards
the parameterU0, it was chosen to provide a reasonable de-
scription of the experimentally observed phase of thea+n
elastic scattering withL=0 at low energies[34].

As long as the energyE of the relative motion of the
clusters is small, the phase shift of the elastic scattering with
angular momentumL obeys the law

4These phase shifts have already been calculated earlier[33], but
our purpose is to show to what extent they are influenced by the
antisymmetrization operator.

FIG. 1. Phase shifts of thea+n scattering for the states with(a)
L=0 and(b) L=1. Solid curve: phase shifts obtained in the zero-
range approximation for the nuclear force. Dashed curve: phase
shifts obtained by keeping the kinetic energy exchange potential
only (see text for details).
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dL , pn − aLs2EdL+1/2,

i.e., as for a standard short-range potential. Heren is the
number of bound states. IfL=0, a0 is the scattering length.
The systema+n has no bound states, but there is one Pauli-
forbidden state atk=0 with angular momentumL=0, which
is known to have the same influence on the behavior of the
scattering phased0 as a bound state[27]. Therefore, at zero
energy the scattering phased0 is naturally counted fromp.
There are no forbidden states having odd number of quanta,
and hence the scattering phased1 should be set to zero at
zero energy.

The positive sign of the scattering lengtha0 conforms to
the known general consideration that Pauli principle can be
simulated by a repulsive potential. Of course, the attraction

Ū0 appears not to be strong; otherwise it would change the
signs of the scattering phase and the scattering length.

As it can be seen from Fig. 1(b), aL=1,0. Therefore, the
effective interaction caused by the kinetic energy exchange
potential is attractive for the states with angular momentum
L=1. The intensity of the attraction induced by the antisym-
metrization effects arising solely from the kinetic energy is
not high enough to assure the existence of the experimentally
observedLp=1− resonance in the continuum of the5He
nucleus.5 But a contribution from the kinetic energy ex-
change potential is not neglible, because the range of the
latter potential exceeds that of the nuclear forces.

It should be stressed that this energy dependence of the
scattering phased1 cannot be reproduced by a simulation of
the action of the Pauli principle with a soft or hard core.
Such an approximation would be inappropriate, because it
will not be able to explain the positive sign of the phase shift
at low energies.

B. The 3H+ 3H system

Now let us consider a collision of the two nuclei3H with
opposite spins. As the total isospin of the system is equal to
unity, the even and odd number of quanta, obviously, corre-
sponds to the singlet and triplet states, respectively. The ei-
genvalues of the norm kernel are given by

Ln=2k
S=0 = 1 −S1

3
Dn

, Ln=2k+1
S=1 = 1 −S1

3
Dsn−1d

.

In contrast to the systemn+a, the eigenvalues with the even
and odd number of quanta are identical and tend to unity
from below. The minimal number of quanta allowed by the
Pauli principle increased by one compared with the previous
case.

Again, as for the systemn+a in the states withL2k,1,
the scattering phase shift determined only by the antisymme-
trized kinetic energy operator corresponds to the repulsion of
the clusters at small distances between them. Because of the
existence of the sole forbidden state in both channels, the

scattering phases at zero energy are counted fromp (see Fig.
2). The singlet scattering phase falls faster than the triplet
one, because the former has lower value of the angular mo-
mentum. For the singlet state andL=0 a version with zero-
range attractive potential has also been considered, assuming
that the interaction can be reproduced by just one diagonal
matrix element

ks2,0duÛus2,0dl = − 34.76 MeV.

This model potential provides the experimental value of the
6He→3H+3H decay threshold(12.3 MeV [26]) and a rea-
sonable value of the r.m.s. radius of the6He nucleus, equal to
2.24 fm. The singlet phase of the elastic scattering for the
potential which assures the existence of a bound state is
counted from 2p (Fig. 2). In the energy range being consid-
ered, this scattering phase is larger than those obtained in the
potential-free version.

C. The a+a system

Finally, let us address a well-known example of the scat-
tering of twoa particles; in other words, let us consider the
8Be nuclear system in thea-cluster model. The norm kernel
for the a-a system only contains basis functions with even
number of quanta, because the wave function of two identi-
cal bosons must be symmetric with respect to the interchange
of the clusters

L2k = 1 − 4S1

4
Dk

, L2k+1 = 0.

L2k,1 for any given number of quanta, and the minimal
allowed number of quanta takes the maximum valuenmin
=4 among all the cases considered in this section. As a re-
sult, the Pauli principle leads to the repulsion of clusters; and
the behavior of the scattering phase is similar to the one
discussed above for the states withL=0.

5As is well known, taking into account a spin-orbit interaction
leads to the splitting of the stateLp=1− and, as a result, two scat-
tering phasesd3/2 andd1/2 appear, each showing a resonance behav-
ior. In our case we have only one resonance.

FIG. 2. Phases of the3H+3H scattering. Solid curve: the phase
obtained in the zero-range approximation for nuclear force. Dotted
and dashed curves: the phases obtained by granting the kinetic en-
ergy exchange potential exclusively.
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We would like to note that the phase shifts of elastic
a-a scattering have been calculated[28] using the algebraic
version of the RGM. In that work, the exchange effects both
on the kinetic and potential energy have been taken into ac-
count, but the authors focused their attention on a possibility
to use the oscillator basis for the solution of the problems in
the continuum. A contribution to the phase shifts of the ki-
netic energy matrix modified by the Pauli principle was not
studied there. Now we can state that the high-energy behav-
ior of the phase shifts formed by the kinetic energy operator
(with its exchange part) is in perfect agreement with
Levinson’s theorem. Moreover, the latter phase shifts are of
the same order of magnitude as those obtained with the in-
clusion of the potential energy operator.

D. Comparison of the eigenvalues for different
nuclear systems

As has already been discussed in the previous section, for
a large number of quanta, the behavior of an effective poten-
tial related to the antisymmetrization is determined by the
expression(19). In a general case, at small intercluster dis-
tances an effective potential has rather a cumbersome form
and depends on several exponentially decreasing terms

Ln
sl,md − 1 =o

j

b j
sl,mdsndexph− n ln a j

sl,mdj,

a j
sl,md . 1. s21d

However, in the problem of scattering of twos clusters at a
givenn the SU(3) irrep sn ,0d appears to be the sole possible
representation; and in the sum(21) only one term survives.

In Table I the parameters of an effective interaction in-
duced by the kinetic energy operator modified by the Pauli
principle are presented for a number of binary nuclear sys-
tems composed ofs clusters. By analyzing the data listed in
Table I, some general conclusions about the dependence of
such an effective interaction on the number of nucleons in
the interacting clusters can be drawn.

The range of the antisymmetrizer can be determined by
the minimal number of quantanmin corresponding to the first
nonvanishing eigenvalue. It is easy to understand thatnmin
increases with the number of nucleons in the system under
consideration, because the number of the occupied states
grows. Indeed, in then+a system the first allowed state
appears already atnmin=1, while in the case of the twoa
particles it appears only atnmin=4. On the contrary, the pa-
rametera defining the decrement of the effective potential

essentially decreases with the number of nucleons. At the
same time, the parameterb increases, which is an evidence
of the increasing range of exchange effects. A negative sign
of b indicates that an effective interaction is repulsive. It is
attractive only for the states with odd number of quanta in
the system4He+n. Note that in the latter case it is exactly
the basis states corresponding to the eigenvaluesLn.1 that
dominate in the wave function of4He+n.

Finally, one more important parameter determining the
strength of an effective potential related to antisymmetriza-
tion is the value of this potential at the minimal number of
quanta. As seen from Table I, the strength of this effective
interaction is maximum in the states withn=nmin and in-
creases with the number of nucleons in the compound
nucleus.

VI. MULTICHANNEL BINARY CLUSTER SYSTEMS

A. The 6He+6He system

The cluster configuration6He+6He is a relatively simple
multichannel system, which well illustrates the role of the
Pauli principle in the coupling between different channels.
The 6He clusters have openp shell, and, therefore, a possi-
bility of excitation (to the 2+ resonance state) of these clus-
ters should be properly taken into account. We did not have
this feature in the previous examples. As a consequence, now
at a given even value of the total number of quantan=2k
.8 a basis of the Pauli-allowed states with the total orbital
angular momentumL=0 belongs to five SU(3) irreps with
even symmetry indicessl ,md: s2k−2,0d, s2k,2d1, s2k
−4,4d, s2k,2d2, s2k+4,0d. Notice that the multipletss2k,2d1

ands2k,2d2 have the same SU(3) symmetry indices, but dif-
ferent eigenvaluesLs2k, 2d1

andLs2k, 2d2
.

As a result, the norm kernelI6He+6Hefor the states withL
=0 takes the form

I6He+6He= o
k=2

`

Ls2k−2,0dcs2k−2,0dc̃s2k−2,0d

+ o
k=3

`

Ls2k,2d1
cs2k,2d1

c̃s2k,2d1

+ o
k=3

`

Ls2k−4,4dcs2k−4,4dc̃s2k−4,4d

+ o
k=4

`

Ls2k,2d2
cs2k,2d2

c̃s2k,2d2

+ o
k=5

`

Ls2k+4,0dcs2k+4,0dc̃s2k+4,0d.

These eigenfunctions, along with their eigenvalues, were
given in Ref.[17]. Hence, here we will restrict ourselves to
only those results from Ref.[17] which are relevant to the
problem discussed.

First, we present in Fig. 3 the dependence of the eigen-
values belonging to the five different branches(according to
their definition introduced in Sec. II) on k. As seen from this

TABLE I. Parameters of the effective interaction related to the
antisymmetrization fors-cluster systems.Lk−1=b exph−k ln aj.

nmin Lnmin
−1

n=2k n=2k+1

a b a b

n+a 1 1/4 16 −1 16 1/4
3H+3H 2 −1/9 9 −1 9 −1

a+a 4 −1/4 4 −4 0 0
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figure, all the eigenvalues exceptLs2,0d are less than unity
and, therefore, generate a repulsive effective potential. The
largest eigenvalues belong to the branchs2k−2,0d; while the
smallest ones, to the branchs2k+4,0d. In the states of the
latter branch a cluster repulsion caused by the action of the
Pauli principle is maximal, as well as the range of the anti-
symmetrization effects. The eigenvalues are close to unity
only if kù14. In addition, this branch starts withk=5, i.e.,
later than the others. The repulsion in the states of the branch
s2k,2d2, for which the minimal number ofk equals 4, is
somewhat less intensive; and its eigenvalues can be set to
unity, if kù13. The repulsion for the branchess2k−4,4d and
s2k,2d1, which appear atk=3, is even less pronounced. The
eigenvalues of these branches are rather close to unity, ifk
ù10. Of interest is the fact that in the absence of degeneracy
the higher U(3) symmetry[the larger the eigenvalues of the
second-order Casimir operator of U(3) group], the smaller
the eigenvalues.

The basis of the Pauli-allowed states for the6He+6He
system corresponds to five different channels. Above some
threshold energysE=3.6 MeVd all these channels are open.
But there is an energy range in the continuous part of the
spectrum where some channels are closed. The Pauli prin-
ciple manifests itself in making all the five channels coupled
at small intercluster distances. The range of this domain is
determined by the requirement that at its border all five dif-
ferent eigenvalues of the allowed states are almost equal to
unity. As soon as all eigenvalues approach unity, a unitary
transformation from the SU(3) basis to thel basis, which
allows us to decouple the channels of the latter basis, be-
comes possible[17]. Below we shall specify at what values
of k (and, therefore,rk) it occurs.

Coupling of the channels via the kinetic energy operator
directly results in the appearance of off-diagonal elements of
theSmatrix and, hence, in inelastic processes in the collision
of two 6He nuclei. Certainly, the potential energy of the
cluster-cluster interaction can also influence the inelastic
scattering cross sections. However, as before, we shall re-
strict our analysis to the contribution of the kinetic energy

exchange potential. A simple potential energy operator used
here does not couple different channels.

Information about the magnitude of the repulsion in the
states belonging to different branches is provided by the ex-
pansion coefficients(Fig. 4) of the ground state wave func-
tion of 12Be=6He+6He calculated in the zero-range approxi-
mation [17]. We assume that the interaction can be
reproduced by just two diagonal matrix elements in the
SU(3) representations2k−2,0d, i.e.,

ks2k − 2,0duUus2k8 − 2,0dl

= 5U0 = − 44.2 MeV if k = k8 = 2,

U1 = − 28.7 MeV if k = k8 = 3,

0 otherwise.
6

These values were fitted to the experimental values of the
r.m.s. radius of12Be (2.59±0.06 fm[29]) in its ground state,
and the6He+6He decay threshold energy(10.11 MeV[30]).
The oscillator length was fixed to 1.37 fm.

Comparing the coefficients belonging to different
branches, we come to the conclusion that the following in-
equality holds for them as well as for their eigenvalues

Ls2k−2,0d ù Ls2k,2,d1
ù Ls2k−4,4d ù Ls2k,2,d2

ù Ls2k+4,0d,

with a single exception: the coefficients of the branchs2k
−4,4d are somewhat larger than the coefficients of the
branchs2k,2d1, if rk.6.5 fm. Let us consider now the wave
function in the continuum[Fig. 5(a)]. The energy E
=0.885 MeV of this state is above the threshold of the12Be
decay into two6He nuclei in their ground statesE=0d, but
less than the threshold energysE=1.8 MeVd of the decay of
12Be into the channel where one of the clusters is in its ex-

FIG. 3. EigenvaluesLsl,md of the norm kernel for the system
6He+6He versus the number of quantak. Curves are labeled by the
SU(3) symmetry indicessl ,md.

FIG. 4. Ground state of 12Be=6He+6He: coefficients
ÎLsl,mdCE0

sl,mdsrkd of the WF expansion in the SU(3) basis, half-
logarithmic scale. Curves are labeled by the SU(3) symmetry indi-
cessl ,md.
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cited 2+ state.6 As long asrk,6 fm, the behavior of the
coefficients is determined by the magnitude of repulsion in
the corresponding SU(3) branches, as in the g.s. wave func-
tion. However, if rk.6 fm, then a rearrangement of their
values occurs. Namely, the coefficients of the irrepss2k,2d1

take the lead, followed by the irrepss2k−4,4d and s2k
−2,0d. An hierarchy among the coefficients is established by
the weights of corresponding SU(3) irreps in the wave func-
tion of the l basis belonging to an open channel. Thus, at
largerk the basis functions of the irrepss2k,2d2 contain only
those functions of thel basis which correspond to the closed
channels. Therefore, the expansion coefficients belonging to
the branchs2k,2d2 fall exponentially withrk increasing. Fi-
nally, consider the state with the energyE=3.3 MeV [Fig.
5(b)]. This state is above the threshold for the decay of12Be
into the two6He nuclei, with one of them excited. For the
expansion coefficients the same behavior is observed as in
the previous case, but the coefficients are nonzero only for

those SU(3) irreps which contain the basis functions of the
two open channels.

Important information about the multichannel continuous
spectrum of the6He+6He system is provided by its five(ac-
cording to the maximal number of the open channels) eigen-
phases, presented in Fig. 6. Just above the corresponding
thresholdEthr an eigenphasedl obeys the law

dlsEd = np + constEl+1/2, n = 0,1, . . . .

Heren is the number of forbidden states in the corresponding
channel. In Fig. 6 two quasicrossings of the phase curves are
seen. Eigenphases cannot cross, because a crossing would
contradict the unicity theorem for a solution of the wave
equation. Beyond the crossing point an eigenphase follows
the path that its counterpart had before the point. The fall of
the eigenphases with energy indicates a repulsion due to the
antisymmetrization effects, and is not compatible with the
assumption that a resonance exists in the system.

B. 4He+8He and 6He+6He clustering:
coupled-channel approach

Along with the 6He+6He clustering of12Be, let us con-
sider also the4He+8He cluster structure. The latter allows an
excitation of the8He nucleus to its 2+ state. Taking into
account the4He+8He clustering makes essential corrections
with respect to the results with the6He+6He clustering.

First of all, the number of the allowed states increases and
an additional SU(3) degeneration appears. As a result, the
number of the channels with the total angular momentum
L=0, total spinS=0, and isospinT=2 increases to 7. The
4He+8He clustering provides for the two additional branches
of the basis states having SU(3) symmetry s2k−2,0d and
s2k,2d. Basis states of different cluster configurations with
the same SU(3) symmetry indices are not orthogonal, while
the two states(2,0) are identical. The eigenfunctions of the
norm kernel for two coupled cluster configurations are the

6Its experimental width is only about 113 keV, so we treat it as a
bound state here.

FIG. 5. CoefficientsÎLsl,mdCE
sl,mdsrkd of the expansion of the

continuum states of12Be=6He+6He in the SU(3) basis at(a) E
=0.885 MeV and(b) E=3.3 MeV. Curves are labeled by the SU(3)
symmetry indicessl ,md.

FIG. 6. EigenphasesdlsEd of the 6He+6He system formed by
the kinetic energy operator modified by the Pauli principle. The
values of the angular momentuml of the cluster relative motion are
shown near the curves.
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superpositions of the basis functions of the4He+8He and
6He+6He channels.

Let us start with the Hilbert-Schmidt expansion of the
new norm kernelI s8,4d+s6,6d for the states withL=0. Seven
different sums are written down in descending order of the
eigenvaluesLsl,md,

I s8,4d+s6,6d = o
k=2

`

Ls2k − 2,0d1
cs2k − 2,0d1

c̃s2k − 2,0d1
+ o

k=3

`

Ls2k,2d1

3cs2k,2d1
c̃s2k,2d1

+ o
k=3

`

Ls2k−4,4dcs2k−4,4dc̃s2k−4,4d

+ o
k=3

`

Ls2k − 2,0d2
cs2k − 2,0d2

c̃s2k − 2,0d2
+ o

k=4

`

Ls2k,2d2

3cs2k,2d2
c̃s2k,2d2

+ o
k=4

`

Ls2k,2d3
cs2k,2d3

c̃s2k,2d3

+ o
k=5

`

Ls2k+4,0dcs2k+4,0dc̃s2k+4,0d.

Now the statess2k−2,0d become twofold degenerate, while
the degree of degeneracy for the statess2k,2d is increased to
3. The dependence on the number of quanta of the eigenval-
ues belonging to the different branches is shown in Fig. 7. Its
remarkable feature is that now the eigenvalues of the two
branches,Ls2k−2 ,0d1

and Ls2k, 2d1
, exceed unity. In the states

of these branches an effective potential related to antisym-
metrization corresponds to an attraction. This directly affects
the structure of the g.s. wave function of the12Be nucleus
causing the expansion coefficients belonging to the SU(3)
irrepss2k−2,0d1 to dominate in the latter function. The basis
functions of these irreps contain the6He+6He and the4He
+8He clustering on equal footing.

Now in order to reproduce the threshold energy
(8.95 MeV [31]) of the 12Be break up into4He and8He in

their ground states and the r.m.s. radius of the12Be nucleus,
r r.m.s.=2.66 fm, the magnitude of the parameterU0 of the
model zero-range potential should be reduced to 42.2 MeV,
while the parameterU1 should be set to zero. Such a change
of the potential parameters seems to be natural, because the
basis of the6He+6He configuration is supplemented with the
basis states of the4He+8He configuration. Contribution of
the latter to the energy of the ground state appears to be
rather considerable.

The coefficientsÎLsl,mdCE0

sl,mdsrkd are presented in Fig.
8(a). Comparing Fig. 8(a) with Fig. 7, we can conclude that
the smaller are the eigenvalues, the smaller are the corre-
sponding coefficients.

The version of the potential chosen provides for an exis-
tence of the second bound state at the energyE1

=−0.386 MeV. The coefficientsÎLsl,mdCE1

sl,mdsrkd are pre-
sented in Fig. 8(b). The coefficients of the irrepss2k,2d1

appear to be dominating for this state, while the coefficients
of the s2k−2,0d1 irreps take the second position, where they
compete with the coefficients of the irrepss2k−4,4d. The

FIG. 7. EigenvaluesLsl,md of the norm kernel for the12Be sys-
tem in the coupled-channel approach(cf. Fig. 3; see text for
details).

FIG. 8. Coefficients of the expansion of the discrete states of the
12Be nucleus in the SU(3) basis, when the6He+6He and the8He
+4He coupled cluster configurations are included and a zero-range
nuclear force is used.(a) g.s. wave function,E0=−8.95 MeV; (b)
excited state,E1=−0.386 MeV. The SU(3) symmetry indicessl ,md
are shown near the curves.
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contribution of the other coefficients again correlates with
the magnitude of their eigenvalues. Moreover, now even
without any cluster-cluster potential generated by the
nucleon-nucleon forces, a bound state of the12Be nuclear
system appears, with an energyE0

* =−0.75 MeV and r.m.s.
radiusr rms=4 fm. In Fig. 9 the expansion coefficients of the
wave function for this state are shown. At smallrk, the co-
efficients that correspond to the irrepss2k−2,0d1 and
s2k,2d1 possess the largest values among all the coefficients.
The bound state appears due to the attraction, for which the
latter two SU(3) branches are responsible. For simplicity, the
five threshold energies are assumed to be equal. Now the
question of the correct assignment of the seven eigenphases
at zero energy remains to be clarified. To answer this ques-
tion we calculate the total number of the forbidden states of
the l basis. The8He+4He configuration supplies three forbid-
den states. One of them corresponds to the channel with8He
and 4He clusters being in their ground states, zero angular
momentum of their relative motion and zero number of
quanta, i.e.,k=0. The other forbidden state corresponds to
the same channel, but withk=1. The last forbidden state
belongs to the channel withk=1 and the8He nucleus ex-
cited. We therefore conclude that there are eleven forbidden
states. At zero energy, the eigenphases of the three channels
with l =0 as well as the eigenphase for one of the three chan-
nels with l =2 should be set to 3p. The eigenphases for the
other channels withl =2 and the eigenphase of the channel
with l =4 begin at 2p. Note that the eigenphases discussed
above are calculated with due regard to the antisymmetriza-
tion effects in the kinetic energy solely. The energy depen-
dence of the eigenphases is presented in Fig. 10.

Let us recall that, for the6He+6He clustering, all eigen-
phases decrease monotonically with energy. For the case of
the coupled6He+6He and8He+4He configurations, but with-
out a nucleon-nucleon potential[Fig. 10(a)], two of the seven
eigenphases withl =2 first ascend, reach their maxima within

the energy range up to 1 MeV, and only beyond they begin
to decrease monotonically. We have already observed such a
behavior for thea+n scattering phase with the angular mo-
mentumL=1. In order to try to link these maxima to pos-
sible resonances, let us consider the wave function in the
continuum for the energy of 0.22 MeV(see Fig. 11). The
chosen energy is close to that at which one of the eigen-
phases has a pronounced peak. In this wave function the
states corresponding to the channels withl =2 prevail, and
that is compatible with the assumption on the existence of
the resonance.

The inclusion of the zero-range potential pulls down the
resonance under the break-up threshold of12Be into 8He
+4He [Fig. 10(b)]. As a result, along with the ground state of
the12Be nucleussE0=−8.95 MeV, an excited state appears at
the energyE1=−0.386 MeV. The energy behavior of the
eigenphases is otherwise similar to that which has already
been discussed for the6He+6He clustering.

FIG. 9. CoefficientsÎLsl,mdCE0
*

sl,mdsrkd of the expansion of the

g.s. wave function in the SU(3) basis, calculated in the coupled-
channel approach and with due regard to the exchange effects in the
kinetic energy exclusively. The SU(3) symmetry indicessl ,md are
shown near the curves.

FIG. 10. EigenphasesdlsEd of the 12Be system.(a) The eigen-
phases obtained by allowing only for the antisymmetrization effects
on the kinetic energy.(b) The eigenphases obtained in the zero-
range approximation for the nuclear force. The values of the angular
momentum l of the cluster relative motion are shown near the
curves.
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VII. CONCLUSIONS

The influence of the Pauli principle on the structure of the
continuum states of the compound systems populated at the
intermediate stage of collisions between light nuclei was
studied within the algebraic version of the resonating group
method. The exchange effects on the kinetic energy operator
were analyzed by the use of the discrete representation of the
complete basis of the Pauli-allowed many-particle harmonic-
oscillator states classified with the use of the SU(3) symme-
try indices. The eigenvalue problem for the norm kernel was
reduced to degenerate integral equations in the Fock-
Bargmann space.

The influence of the Pauli exclusion principle on the col-
lision of clusters through the kinetic energy was shown to be
reducible to three effects which affect the dynamics of the
cluster-cluster interaction. In the innermost region of inter-
cluster distances, the nucleus-nucleus interaction is domi-

nated by the elimination of the Pauli forbidden states that
drastically increases the scattering phase-shift variation and
may be simulated by a repulsive potential at small interclus-
ter distances. The larger is the number of the forbidden
states, the larger should be the strength and the range of such
a model potential. Outside of the latter region, the cluster-
cluster interaction derived from the kinetic energy(with its
exchange part) is shown to be repulsive or attractive, depend-
ing on whether the eigenvalues of the antisymmetrization
operator approach unity from below or from above. Such an
effective interaction can significantly affect the scattering
phase behavior. Finally, a decrease or an increase of the cen-
trifugal potential occurs in the same region. It also influences
the phase shift, especially at high energies. The range of the
influence of the Pauli principle on the kinetic energy appears
to be significantly larger than that of the cluster-cluster inter-
action generated by the nucleon-nucleon potential, especially
for heavier clusters or clusters with an open shell.

If there are several open channels, the exchange effects
arising from the kinetic energy influence the cross sections of
inelastic scattering channels belonging to the excitation of
the clusters or to their rearrangement. The eigenphases of the
multichannel systems that define the nature of inelastic col-
lisions have been calculated and quasiintersection of the
eigenphases was established.

A considerable intensification of the Pauli effects is ob-
served for coupled cluster configurations, such as6He+6He
and 4He+8He which are relevant to the12Be compound
nucleus. This phenomenon relates to the appearance of new
branches of excitation with the especially large eigenvalues,
greater than unity, belonging to the allowed states. As a re-
sult, an effective attraction arising from the kinetic energy
operator modified by the Pauli principle appears to be strong
enough to ensure the existence of both a bound state and a
resonance even without an interaction between nucleons of
different clusters.
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