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Peculiar properties of the cluster-cluster interaction induced by the Pauli exclusion principle
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The role of the Pauli principle in the formation of both the discrete spectrum and multichannel states of the
two-cluster nuclear systems is studied in the algebraic version of the resonating-group method. Solutions of the
Hill-Wheeler equations in the discrete representation of a complete basis of the Pauli-allowed states are
discussed for théHe+n, 3H+3H, and*He+*He binary systems. An exact treatment of the antisymmetrization
effects related to the kinetic energy exclusively is shown to result in either an effective repulsion or attraction
of the clusters. It also yields a change in the intensity of the centrifugal potential. Both factors significantly
affect the scattering phase behavior. Special attention is paid &the®He multichannel two-cluster system
as well as to the coupled-channel calculation of tA@e nucleus(provided that®He +°He and“He+®He
clusterings are taken into accopnin the latter case, the cluster-cluster interaction derived from the kinetic-
energy operator modified by the Pauli principle leads to inelastic processes and ensures the existence of both
the bound state and a resonance in’ffize compound nucleus.
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[. INTRODUCTION states in the corresponding compound system. The authors of

) ) . . o paper [9] simulated the Pauli principle for a few-cluster
__The Pauli exclusion principle is known to significantly ,ciear system within the method of hyperspherical func-
influence the interaction of composite particles. The concepfyns As in Refs[6-8], they used a phenomenological re-
of Pauli forbidden state.s has |mpor.tant consequences for t,'}ﬁjlsive potential. But within such an approximation a com-
structure of wave functions of relative motion of two nuclei plete and accurate exclusion of the forbidden states is not
leading to damping the function in the interior region of onq red.
internuclear distances. Furthermore, the so-called “partly 14 gliminate the forbidden states, Saito suggested the or-
Pauli-forbidden states(the Pau_ll-allowed_ states Whose_el- thogonality condition mode]10]. In this model the allowed
genvalues are not equal to unitylay an important role in  giateq are found from the requirement of their orthogonality
two-cluster scattering affecting both positions and widths o, ihe forbidden states. In Refil1-13 phenomenological
resonancegl-3). o potentials of a special kind were used. Such potentials con-
__The effect of the Pauli principle on the nucleus-nucleusiyin the operators of projection onto the forbidden states, and
interaction can be con5|stentl_y described by microscopig, ihe fimit of great potential depth these states are sup-
methods such as the resonating-group mettRGM) [4]  ressed. To construct these potentials, an explicit form of the
and the generator-coordinate meth@CM) [5]. HOwever, \yaye functions forbidden by the Pauli principle should be
the evaluation of exchange integrals is known to be a Very,geq The latter functions can be easily found for systems of
tedious part of two-cluster RGM calculations. That is why inyq closed shell of0s)-shell nuclei. However, the influence
th? c_orlnn_worsly employetd r:ucle?r rtnc:jdels the Paull EXCIUS'O%f the partly Pauli-forbidden states on nucleus-nucleus scat-
principie Is to some extent negiected. . tering is disregarded. Nevertheless, the latter states may have

There are several dlfferent approaches W.h'ch e?ppro.x'fangible effect on physically measurable quantifigls

mat.e!y account for the |nflluence O.f the Pauli principle in These approaches turned to be fruitful and provided im-
coII|S|cf)ns'between ;orpposnel ntéctllésters.ho?e of rt}herr;} portant information about discrete and continuum states of a
(see,_ or instance, Re §6-9) Is based on the fact that the ,,\per of few-cluster systems. However, the fundamental
Pauli principle does not allow identical nucleons to be at th roblem of constructing a complete basis of the Pauli-

same point 'T sp(zjacbe, _and Sen.ce the a(;:(tjlp_n oflthe a?t!symm llowed states in the generator-parameter space has not been
trizer Is simulated by Introducing an additional repulsive po-roqqyeqd yet. The understanding of the influence of these

tential between clusters. Such a potential is not uniquely dez . : .
; States on the dynamics of cluster systeespecially, multi-
termined. In Refs.[6-8], where the problems ofa-« Y ystel 4

; : . 16 channel onegis still a matter of dispute.
ioca“e““g qnd the scattering of thepartm_le b_y t_helzc, O, The effects of antisymmetrization on the effective poten-
Ne nuclei were considered, the Pauli principle was simuy;,

. . X ) > o | between two light nuclei have been studied in some de-
lated with a phenomenological repulsive potential of infinite ;) by other authorg1-3,14,15. The importance of Pauli

strength. The parameters of this potential have been chosgiects apart from the elimination of the Pauli forbidden
so as to reproduce the energies and widths of the resonange i< was pointed out in the fish-bone model by Schmid
[1,2]. In Ref. [14] the structure of the contributions of ki-
netic, Coulomb, and nuclear potential energy to the nucleus-
*Electronic address: dfilippov@bitp.kiev.ua nucleus interaction is discussed for the example ofdhe
"Electronic address: lashko@univ.kiev.ua system in an orthogonalized representation of the RGM
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equation. The “renormalized RGM potentials” are calculated In this paper, an algorithm of taking into account the Pauli
for this system and compared with simple local nucleusjrinciple in the calculation of the matrix elements of the
nucleus potentials appearing in phenomenological modelHamiltonian is proposed within the formalism of the
Lemereet al. [15] and Baldock and Robsoji8] studied the  generator-coordinate method and the Hill-Wheeler equation.
corrections brought in the nucleus-nucleus scattering by sugor a given cluster structure of the system studied, or for
cessively increasing the number of nucleons exchanged bgeveral coupled cluster configurations, a complete basis of
tween the clusters. In RefL5] resonating-group calculations the pauli-allowed stateslassified with the use of the $8)
of *He+a and O +a systems have been performed. In Ref. symmetry indicekis considered along with a complete set of
[3] an application of the natural boundary condition ap-tneijr eigenvalues. The eigenvalues are shown to indicate the
proach to™0+™0 elastic scattering was reported. .. existence of the leading $B) irreducible representatiors-

The authors of ?‘” q_uot_ed papers concluded that the 'nﬂufeps that dominate in the wave function of the binary cluster
ence of the Pauli principle on the structure of nUdeus'system.

nucleus potential is very sensitive to the choice of the The effective nucleus-nucleus potential induced by the ki-
nucleon-nucleon interaction. Hence, it is difficult to make P y

general conclusions about the main features of the interaup:etIC energy ope'rator modified by the Pauli p”f.‘c'p'e is de-
tion between clusters arising from the exchange potentiald!Ved here for a binary cluster system. We also discuss results
The study of the influence of the exchange effects on th@btained for a zero-range nuclear force, when the potential is
kinetic energy can, however, provide such information. ButSWitched on in the most compact configuration for each of
careful analysis of the effect of the antisymmetrization on thdn€ systems studied, as a first step for the inclusion of the
physical observables in the interaction between clusters arigotential energy in the calculations. .

ing solely from the kinetic energy has not been performed N @ consistent microscopic approach, the forbidden states
yet. As the kinetic and potential energy enter the Hamiltoniarflo Not enter an expression for the norm and the Hamiltonian
additively, the influence of the Pauli principle on the former k€rmnel. Therefore, an effective potential related to the anti-
can be treated separately. Naturally, it is of importance tYmmetrization affects only the allowed states; and, as will
know the magnitude and energy dependence of elastic arRf Shown later, it may be not a repulsive potential. A repul-
inelastic scattering cross sections, phase shifts, wave fun8ion arises in the states whose eigenvalues are less than
tions, etc., formed by the modified kinetic energy operatofnity, whereas an attraction appears in the states with the
exclusively. Such estimations allow one to judge when theéigenvalues exceeding unity. It has been noted b¢gjrenat
contribution from the kinetic energy is essential. the exchange terms behave repulsively or attractively de-

As mentioned above, the requirements of the Pauli prinpending on the ch.oi_c.e of the nu.cleqn—nucleon interaction.
ciple can be accurately met within the resonating-grougiowever the possibility for the kinetic exchange terms to
method. But the commonly used form of the norm kernel andfontribute attractively is found for the first time. _
the Hamiltonian kernel entering the RGM dynamical equa- 1N€ paper is organized as follows. In Sec. Il, we define a
tions complicates an analysis of the effects induced by th&omplete discrete t.)as[s Qf the harm.onlc—oscnlator states al-
influence of the Pauli principle, and thus many peculiaritiesowed by the Pauli principle, following the procedure de-
of the cluster behavior in the collision may be overlooked. AScribed in Refs[16,17. Then we derive the Hill-Wheeler
detailed analysis of the exchange effects can be performegduations in the representation of the discrete i&ss. Ill).
with the use of the algorithm outlined in Refd.6,17. The genergl propertl_es of the solutions of the latter equations

We assert that the contribution from the kinetic-energy@'® also discussed in Sec. lll. In Sec. IV, the range of the
operator to exchange effects is significant, and that analyzingfluence of the Pauli principle on the kinetic energy is com-
the antisymmetrization effects related to the kinetic energ)pared with that of the cluste_r-cluster interaction generated Iby
one can obtain an important information about collisions ofth€ nucleon-nucleon potential. Some features of the effective
composite nuclear systems. Of course, within the range dftérnuclear potential are analyzed. By considering some ex-
nuclear forces the potential energyith its exchange payt amples_ of Fhe bmary_cluster systems with one open channel,
plays an important role, and in this region it can change? phyS|9aI |nterpr.eta.t|on of the phenomena.dwe_ctly related to
(weaken or strengthgtthe cluster-cluster interaction derived the antisymmetrization of the wave function is suggested
from the kinetic-energy operator modified by the Pauli prin-(sec- \). Antisymmetrization 'effects ina multl-channell bi-
ciple. However, it is reasonable to expect that the basic fed?a"y cluster system are studied at an example of continuum
tures of the antisymmetrization effects on the nucleusStates of“Be that are able to decay througHe+°He and
nucleus interaction may be learned by studying the exchanggi€+"He channelgSec. V). The resonance structure of the
effects on the kinetic energy operator exclusively. The analy- B€ nucleus is still unclear and the problem is only likely to
sis of the antisymmetrization effects by Lemezeal. [15] b€ resolved by a microscopic coupled-channel calculation
and Schmid1] supports this point of view. Furthemore, the [18]. That is why this system is chosen as the main example
range of the influence of the Pauli principle on the kineticOf @ real and nontrivial application of our approach. Con-
energy appears to be significantly larger than that of th&luding remarks are made in Sec. VL.
cluster-cluster interaction generated by the nucleon-nucleon
potential, especially for heavier clusters_ or clugters with an | cOMPLETE BASIS OF THE ALLOWED STATES
open shell. We thus conclude that there is a region where the
cluster-cluster interaction is dominated by the kinetic energy To derive the Hill-Wheeler integral equations, the trans-
operator modified by the Pauli principle. formation from the coordinat@r momentumrepresentation
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to the representation in terms of generator parameters should E+iyg
be done. Hence we begin with determining a generating R= B
function of the system under consideration. v

Let ®(R,r) be the generator function of the Hill-Wheeler then the expression for the Bargmann measure takes the form
method, antisymmetric with respect to a permutation of the
nucleonic coordinates. Here and R are the sets of the d,uR:exp{—(R-R*)}dgdn.
single-particle position vectors and generator parameters, re- (2m)°
spectively. These parameters describe the dynamics of ﬂﬁereg and » are real vectors which are treated as indepen-
degrees of freedom which are of interest for us. We construct /.7 - iobie o Of the allowed states defined in the Fock-
this function as the Slater determinant composed of th argmann representatiqiid]. The eigenvalues and eigen-
single-p;artifletorlcaiita;s to ?nSlt'!re Ittr? pgop.er ?errtnhutationa unctions of the kerne(l) aré uniquely defined. Moreover,
symmetry. Instead of constructing the basis of orthonorm .
states{,(r)} defined in the coordinate space, it is expedientt ernel(1) is a sum of orthogonal degenerate kernels. Each of

. . : hem corresponds to definite values of the number of oscil-
to introduce its mag#,(R)} in the generator parameter rep- lator quantas and SU3) symmetry indiceg\, u), and there-
resentation. Then an explicit form of the Pauli-allowed basi e

funci iiv be found al ith t of i Sfore, these kernels are orthogonal. Therefore, solving(Bq.
unctions can easlly be found aiong with a set of quantuMg o4 ced to a standard algebraic procedure for an integral

?humbersg. Thfe S|mpln;|cat|on IS a;té?_me(_j d.L;.e tot}he facltl that equation with a degenerate kernel. In the most general case,
the nLtJrr]n ero t?enefra or ;l)aramt(_a | & sugrgllca? t% srpa e and only because the generator functions are constructed as
an the nurmber of single-particle variableot the Tunc- qjater determinants composed of the Bloch-Brink orbitals,

; 1

tions {hn(1)}- . . the eigenfunctions of the norm kernel are labeled by the total
In orQer to construct functiong,(R), let us introduce an number of the oscillator quanta SU3) symmetry indices

expression

(N, w), a multiplicity index «, ,, When several different
(N, ) multiplets exist, the angular momentum its projec-
[(S,R) =f d(S,r)d(R,r)dr, (1)  tion M, and, if necessary, one more additional quantum num-
ber ;. The latter is needed to label the states with the same
which is usually called the norm kernghe overlap integral L in a given(x, 1) multiplet. Then the Hilbert-Schmidt ex-
of the antisymmetric generating functions of the Hill- pansion of the kernel of the integral equati@ is
Wheeler methog Integration in Eq.(1) is over all single-

particle vectors. The norm kernel is symmetric with respect I(SR) =2 An(¥n(R), ©)
to permutations of the generator paramefrandS. Hence "
it can be treated as a kernel of the integral equation where each of the eigenvaluds, of the norm kernel corre-
sponds to the eigenfunctiof,(R). Naturally, the eigenfunc-
AUR) :f 1(S,R)¥(S")dps. (2)  tions of kernel(1) are orthogonal with respect to the Barg-
mann measure and normalized to the dimensionality of the

. . irrep (A, u) [20].
The symmetry of the kernel ensures the existence of its non- The second-order Casimir operator of the ($Ugroup

trivial eigenfunctions/,(R) and eigenvaluea,. Heren is a commutes with the operator of permutation of the nucleon
set of quantum numbers of the basis functions. All that re-«iion vectors. Hence. the §&) symmetry indices natu-
mains is to define the integration domain of the generato ally appear as the quantum numbers of the eigenfunctions
parameterR ands as well as the meas_ume. Un(R). Any other classification of the basis states spoils the
.BOth problems can be solved, provided thg Slater.deterdiagonal form of Hilbert-Schmidt expansiof8). For in-
mlqant ©(R.r) is composed of the BIoch-Brmk orbitals stance, keeping as a quantum number, quantum numbers of
Wh'Ch are.known to t.)e th? generating functlons_ for _thethe angular-momentum-couplégbhysical”) basis can be in-
single-particle harmonic-oscillator basis. For the first timey. o quced instead of the $B) symmetry indices\, x2). The
th.e determnan@(R,r) was useq a,s a trial functigbut in a states of this new basiseferred to as thel“basis” in what
.S“g.htly d'ﬁer?”F form in the .Brlnks a-cluster model, thqt follows) are labeled by the number of quantathe angular
is, in the variational calculation of the spectrum of excited o 0ana of each of the clustersand,, and the angular
states ir’Be. There are two notable differences between the, omentum of their relative motion(see Zi‘or example, Refs
:Brlnks.detﬁrmmant an.d th? one usefd h{elhé]. Firstly, the' | [16,17). Then a unitary transformation should be applied to
atter Is the generating function for the many-particle .o g nctionsy,(R). But it results in an off-diagonal form of

harmonic-oscillator basis of the Pauli allowed states. Sect'he expansior(3), because not all the eigenvaluds, are
ondly, its vector generator parameters take complex values !

if trict | ¢ | " equal to unity. It is only in the asymptotic limit of the large
We restrict ourselves 1o one compiex vector number of oscillator quanta that the eigenvalues are close

to unity. The unitary transformation from the &) basis to
Yindeed, the problem of the reduction of the number of indepenthe I-basis leaves the expansig8) intact, thus making the
dent variables of the wave function without violation of the Pauli calculations in the continuum possible in either ba#.
principle was solved on the basis of the generator-coordinate In the absence of S3) degeneracy the eigenfunctions of
method suggested by Griffin and Whee[ag]. the kernel(1) can be constructed straightforwardly with the
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use of algebraic methods. In the case of(®Hegeneracy, .
the eigenfunctions are found by solving an integral equation O(r) = f C(R)®(R,r)dug,
with the degenerate kerngtee, for example, Refl17]),
which is reduced to a set of homogeneous algebraic equaontaining a new unknown functid®(R"). The equation for
tions with the rank equal to the degree of the($ldegen- the latter follows from the variational principle for the func-
eracy. tional
The eigenvalues\, appear to be nonzero starting with

some minimal number of quanig,;,, take only positive val- * _ * _
ues and limit to unity whemw— <. They are equal for all the j f CENHER) ~BISRICR )dusdur =0, (5)
states belonging to the same @Wirreducible representation
(N, u), except for the case of §B) degeneracy. In the latter
case, the eigenvalues belonging to multiplets of the samg'? he f ional | .
irrep (A, u) do differ, and an additional index is required to _. In order to reduce the functiona to an a*gebral*c expres-

L sion, let us expand the unknown functioB&R") [C(S)] in
distinguish between them.

We need to bring some order into this variety of (S the basis of the Pauli-allowed states
multiplets and find the leading irreps that dominate in the © * * £ S -
wave function of the binary cluster system. Here we shall CR) % CotnlR), - CS) Eﬁ: CR(S)-
deal with irreps with even symmetry indicasand x. The
lowest allowed SIB) multiplet (A, uo) appears at=wvy,. If ~ Then making use of the expansio@® and(4), we arrive at
v=v,+2, then the allowed states belong to sevéirathe the algebraic expression
simplest case, twairreps: (\g+2,u0) and (\g, uo+4). With o A
v increasing, the number of the Pauli-allowed (3pirreps > Z, Co((n[HIM) ~ EAnd,7)Cr = 0. (6)
grows to the greatest allowed value, which is the same for all nen
v starting withv;. In a three-clustefor multiclustej system  Variation of the functional6) brings us to a set of the alge-
the number of the Pauli-allowed $8) irreps infinitely in-  braic equations for the coefficien®;,,
creases with. R

Irreps with different numbers of quanta can be arranged > (n|HM)Cx - EA,C,=0. (7)
into several branches, with all the states of the same branch A
having the same symmetry index and differing only in

where the Lagrange multiplide has the meaning of the en-

. . ; i Certainly, n takes all the values allowed for the Pauli-
value of the first index). That is, the irreps(Ap+v allowed basis functions. Alternatively, the two quadratic

~ Vmin, o) are assumed to belong to the first bran@y+v  ¢5ms on the left-hand side of E@6) can be diagonalized.
- vmin— 2,0+ 4) to the second, etc. A hierarchy among theseRedefining the coefficient§’, (C

w) as
irreps is established by the magnitude of the eigenvalues g

A, - The irreps with the maximal values &, , , are 6;: \A_nCn Eﬁz \’,Tﬁcﬁ,

the leading ones. In particular, the irrePgy+ v— v, mo)

belong to the leading irreps. the following equation is obtained for the coefficients:
For a number of binary cluster systeni®r instance, .

8He +*He and®He +°He), although not for all, the least sym- ST —*<”|H|”>E~ CEs-CCt=0 ®)

metric SU3) irreps correspond to the brancti\g+v - ”\/m n n=nn g

-, Mg)- As for the most symmetric ones, they appeaw at
=1. instead of Eq(6). Then it remains to reduce the renormal-

ized matrix of the Hamiltonian to a diagonal form by means
of the unitary transformation.
ll. SOLUTION OF THE HILL-WHEELER EQUATION Now let us discuss the general properties of the solutions
of the set of equationér). For a binary cluster system the
With the generating function®(S,r) and®(R,r) having components of discrete eigenstates with energy
been constructed, we can express the Hamiltonian kernel af—«?/2<0 decrease exponentially with the number of radial
the cluster system under consideration in terms of the basiguantar=2k following the law
functions as follows: - _—
_N2exgd-V2|E,[\V4k+ 2 +3)

CE=A :
" Vrodak+21+3

H(SR) :f O(S,NHD(R,1dr= 3 3 yn(SNHMYHR).

Heren denotes the set of the quantum numbers of thasis,

| is the angular momentum of the cluster relative motign,

is the oscillator length, and; is the asymptotic normaliza-
tion coefficient[22]. The internal cluster functions are as-
Let the wave functiond(r) of the generator-coordinate sumed to be fixed and described by the translation-invariant
method be defined as the Hill-Wheeler integisée, for ex- shell model wave functions with the same oscillator length
ample, Ref[21]) for both clusters.

4)
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The asymptotic behavidat large values of the number of IV. HOW DOES THE ANTISYMMETRIZATION
guantav) of the continuum eigenstaté€,(E)} with energy OPERATOR ACT

E>0 is expressed in terms of Hankel functions of the first The RGM wave function belonging to the continuous

and second kind, and the scatteriBgnatrix elements or .
Bessel and Neumann functions, and #enatrix elements spectrum of a few-cluster.system has a remgrkably simple
' form at large intercluster distances. In this region, the poten-

[16,17. Although the eigenvectors are orthonormalized, the

orthonormality conditions contain the eigenvalugsas the gilje{rl]eer?ey'(s)f;;?s%Crzlés;eé-e(ijlufi[re;r:giﬁgstlor::g?r'bgrn?r?::ﬁt?ﬁé
weight coefficients. ! Isy izer.

With the eigenvectors determined, it is easy to proceeéfvave functi.on is given by the produ_ct of the intrinsic cl_uster
either to the eigenfunction® (r), ® (r’) in the coordinate  ave functions and the wave function of the free motion of
K ’ E

: : . the centers of the clusters.
ga;rge;zr;?t;%réger.to the functiols(R), ¥e(R) in the Fock- ~ With the intercluster distance decreasing, the wave func-
: tion of the system is modified and no longer reducible to
V. e(R)= > V’ECS(E)wn(R). (99  such asimple form. Nucleons belonging to different clusters
n are not isolated from each other any more, and hence, the
cluster radii can, in effect, change. The change of the radii of
"the nuclear clusters results in changing both their internal
energies and the energy of their relative motion, even if the
p(SR) =2 {E VACE (9 \"Kﬁdﬁgpﬁ(R)} potgn;ilal energy of the cluster-cluster interaction is disre-
« | n i garded.
Among the factors coming into play at this stage, the most
+ f dE{ > \"XHCE(E) (9> \'Xﬁcﬁ(E)%(R)}. important are thos_e Whiqh are directly related to the ianL_Jence
n 7 of the Pauli exclusion principle. As a result, a general picture
(10) of the phenomenon becomes intricate, and to interpret it
completely, each factor determining the final result should be
The summation in Eq(10) is over the discrete states, while carefully analyzed. Further we shall concentrate our attention
the integration is over the continuum states. The density meen the phenomena that reveal the characteristic features of
trix provides us with the information about the behavior ofthe fully antisymmetric RGM wave function at relatively
the probability distribution function in the phase space. Notesmall intercluster distances. With that end in view, some con-
that the number of independent variables in Ed) is sig-  siderable simplifications will be introduced for the descrip-
nificantly smaller than in the distribution functigit{r}) de-  tion of the potential energy of the cluster-cluster interaction.
fined in the coordinate space. This is the main advantage of Allin all, there are, at least, two questions to be answered.
the generator-coordinate method and, in particular, of thél) What is the range of the nucleus-nucleus interaction gen-

An expression for the density matrix in the Fock-Bargman
representation can be written as

Fock-Bargmann representatif)n. erated by the Pauli exclusion principl€¢2) What are the
Integratingp(R,R") over the phase space, we can reducemain features of such an interaction?
it to the following sum As discussed in the Introduction, the kinetic energy modi-
fied by the Pauli principle is an important ingredient in the
fP(R,R*)d,U«R =3 IC2A,, forr_natlon o_f the o_bser\(ables. Consider the set of the a_llge-
< n braic equationg7) in which only the operator of the kinetic

) _energy of the relative motio(in the c.m. framgis retained:
provided that all the states of the system belong to the dis-
crete part of the spectrum. Here & _

nTn)G; - EA,C,=0. 11
2 §< | | > n n~n ( )

(CH?A,=

f In(R)W (R)dug

Due to the particular simplicity of the kinetic energy opera-
is the realization probability of the state(R) in the wave O, its generating matrix element can be written in the form
function of the cluster systen¥f ,(R). . .

Thus, employing the basis of the Pauli-allowed states, we T(R,S) =Trl(R,S) = Tr > Anth(R)¥(S),

deal with a discrete representation of any state of the system, n
whether belonging to the discrete or to the continuum SPeC here
trum. The expansion coefficients of the wave function in the
basis of the Pauli-allowed states gr\,C,}. The absolute R 72
value of a coefficient squared gives us the probability for the Tr=- >
corresponding Pauli-allowed basis state; and a convergence 4mrg
holds both for the bound states and the continuum.

[R?-2(R -Vg) - 3+V2] (12

is the Fock-Bargmann map of the kinetic energy operator
(see, for example, Ref16]). m stands for the nucleon mass

Thus, the Fock-Bargmann representation provides us with th&om now on. From Eq(12) it immediately follows that the
simplest means of realization of the generator-coordinate metholinetic energy matrix in the harmonic-oscillator representa-
and opens new prospects of analysis of cluster systems. tion is tridiagonal, whence
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T(R,S) = 2 {Av—ZTv—Z,vwv—Z(R) + A'VTV,Vl?[/V(R) + {(1 + AL_2> (2| + 1)2 + }<1 _ AL_Z)(V+ l) }C
v A, ) 320 4\T A, 2]
+ AvTv,v+2¢/v+2(R)}i/’v(S)- mr%
= ?ECV.

HereT,; are the matrix elements of the operaf@rbetween
the functionsy,(R) (the latter functions are normalized to The latter takes the form of the Bessel differential equation

unity with the Bargmann measyre in the limit »>1, where the eigenvalues, can be set to
unity:
Tv,;=fduR%(R*)?R¢V(R)- (d_? Lld @+ 1)2£+m_r(2)2E)C( 120
dy? ydy 4 y* p? =5
A nonlocal kinetic energy operator is obtained. For simplic-
ity, the single-channel case is considered here, when the ba- y=1\2v+2 +3. (15)
sis functions differ only in the number of oscillator quamta _ o paul
A typical set of the equation&ll) can be written as The diagonal matrifU; 5"s, 5|
2
AV—ZTV,V—ZCV—Z + AV(TV,V - E)CV + AVTV,V+2CV+2 =0. UPaUIiZ }<1 + AL_Z) w + }(1 - AV_Z) ( v+ 1-)
v 2 A 16v 4 A 2
(13) v v
(16)

A standard set of the discrete representation which disregards _ _ _
the Pauli principle can be considered the matrix of the operator of the effective

cluster-cluster interaction derived from the kinetic-energy
T,,2Cpt(T,,—E)C,+T,,.2C,u=0 (14)  operator modified by the Pauli principle. The physical mean-
’ ' ’ ing of the first term in Eq(16) is quite simple. It is the
differs from the set of equatiofil3) in two respects. First, centrifugal potential that is renormalized with the factor

only the matrix elements between the allowed states enter the 1 A
latter. Therefore, there is no need to introduce any additional _<1 + L2> )
potential in the initial Hamiltonian in order to remove the 2 A,

Pauli-forbidden states. Such a term would give no contribuq latter, along with the eigenvalues, limits to unity &s

tionto Eq.(1D. = _ _ — o, If the eigenvalues approach unity from below as
Secondly, the elimination of the forbidden states still doe§, e 4565, the renormalization factor does not exceed unity.
not resolve the problem in total. Indeed, the matrix of the Setrperefore, partial suppression of the centrifugal potential is

(13) contains the eigenvalues, belonging to the Pauli- ,hqereq in this case. If the eigenvalues approach unity from
allowed states, and, for this reason, it is not identical to theabove the centrifugal potential gets stronger.

matrix (14) of the kinetic-energy operator of the free motion 115 second term

of clusters.
Equation(14) take asymptotic form at large values of 1 1- A, . 1
and are reduced to the Schrddinger differential equation of 4 A, To )

free motion with definite angular momentunisee Ref[23] o )
for detaily. At large », Eq. (13) take the same form as Eq. represents a fln_lte-r_ange potential generated by_the exchange
(14), because there all eigenvaluds, equal unity. But at €ffects on the kinetic energyeferred to as “effective poten-
small values ofv the eigenvalues differ from unity, and the tial” in what follows). Its intensity decreases in magnitude as
asymptotic form of the equations becomes complicated. As &€ differenceA, - A, _, vanishes. If the latter remains nega-
result, Eq(13) tend to the equations of motion in the field of tive as » grows (the eigenvalues monotonically approach
the “kinetic energy exchange potential.” Our purpose is tounity from above, then the effective potential turns to be
find these equations in order to reveal the main features gittractive. If the difference of the eigenvalues remains posi-
the cluster-cluster interaction in their collision. tive asv increasegthe eigenvalues monotonically approach
An equation of the sef13) for a collision of clusters with ~ Unity from below, then the effective potential is repulsive.
angular momenturhcan be written in the form of the finite- Obviously, the range of such an interaction depends on the

difference equation width of the interval where the eigenvalues deviate from
unity.

1 A, 3 (21+1)? A, Indeed, as was shown in Sec. lll, the wave function of a

T2 1+ A v 27 gy +1- A binary cluster system can be presented in the form of the

expansion9). If A,<1, the eigenvalues suppress the terms
Ao A, with small values ofy in the expansion(9); that can be
L1 -—r= . X ; .
A A naturally interpreted as the action of effective repulsive
’ forces at small intercluster distances. This leads to a decrease
3_ (2 +1) 1 - of the ground state energy in absolute value and to a corre-
X{v+ (Ci2—=Cy2) . - . .
4 sponding change in the scattering phase shifts due to the

1 1
X Z(Cv+2 - 2Cv+ Cv—Z) - 5 1+

14 14

2 8v
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appearance of the additional effective repulsion. On the conkernel, it can be considered to be the result of the action of
trary, if A,>1, then the terms with small are more pre- some operator representing the nucleon-nucleon potential on
ferred; that can be considered an effective attraction. the norm kernel. To obtain the potential energy matrix ele-
Consequently, the antisymmetrization effects result noments(v,I|U[7,l), the interaction kernal(R,S) needs to be
only in the elimination of the forbidden states, but also inprojected to the states with definite values of the oscillator
changing the relative kinetic energy as clusters approachuanta, the S(B) labels, and the angular momentum. This
each other. In the case of the free motion of two compositean be done analytically. The antisymmetrizer eliminates the
particles in a state with definite angular momentyra cen-  matrix elements of the potential energy operator between the
trifugal potential is the sole term that changes the relativéforbidden states as well as those coupling the allowed and
velocity of the clusters in collision. It decreases the kineticthe forbidden states.
energy of the relative motion of the clusters until they stop at At large values of the number of quantathe matrix of
the turning pointr,=royV2v+2/+3 and then begin to fly the potential energy operator of the cluster-cluster interaction
apart. The antisymmetrization renormalizes the strength o known to be equivalent to the diagonal matf;U(r,)||
the centrifugal potential, which is the first of the factors af-(see Ref[24]), the elements of which rapidly decrease with
fecting the relative velocity of the clusters. With the inter- , similar to the cluster-cluster potenti&l(r) itself in the
cluster distance decreasing, the effective potential also comegordinate space:

into play.

If the eigenvalueA, is a monotonically increasing func- ~
tion of », then the relative velocity of the clusters decreases > wlUfG; =U(r,)C,,. (17)
to a lesser degree than in the field of the centrifugal potential Vmin

of the free motion. But then, the clusters come within theHence, for a short-range cluster-cluster potential we con-

range of the repulsive effective potential which decreases thg|,de that matrix elements of the equivalent diagonal matrix

kinetic energy of the relative motion. If the eigenvaldgis  ranigly decrease. For a central nucleon-nucleon potential
a monotonically decreasing function of then a strength- having a Gaussian form we will have

ened centrifugal potential slows down the cluster motion to a
greater degree than in the case of the free motion. But at a r§(2y+ 2+3) A +A,
smaller distance the relative velocity of the clusters increases U(r,) ~ Upexp| - b2 AN | (19
due to the action of the effective attractive potential. 0 ol

It should be noted also that in the low-energy region thewhereb, is the range of the Gaussian potential dhgis its
elastic scattering phase-shift is affected by the effective postrength.U(r,) contains both the direct and exchange inter-
tential related to antisymmetl’ization. The Change in the CeNgction term. They are not given Separate|y, because this
trifugal barrier caused by the Pauli principle affects, mainly,would destroy the symmetry of the potential energy kernel.
the asymptotic behavior of the phase shift. Strictly speaking, expressiqii8) also depends implicitly

To estimate the range of influence of the antisymmetrizepn the eigenvalueg\, of the norm kernel. However, this
on the structure of the wave functions, it is appropriate togependence cannot increase the range of the potential energy
consider two extreme values of the number of quantda  operator of the cluster-cluster interaction estimated by ex-
and vyay As long asv<uwy, all the eigenvalues equal zero. trapolating the asymptotic relatiol8) to the region of
If the number of quanta satisfy the inequalityn<v  smaller values ofv. With the number of nucleons in each
<7max then the eigenvalues become positive, but deviatg|yster increasing, the number of forbidden states grows.
from unity. Finally, provided that the inequality> s Then the asymptotic estimat@8) appears to be valid even
holds, the eigenvalues can be considered to be approximatefyr the minimal number of quanta allowed by the Pauli
equal to unity. The value ofy,y is defined in a rather ap- principle® The number of partly forbidden states also in-
proximate way, which demonstrates the diffuseness of thgreases, which leads to the suppression of the potential en-
range of the antisymmetrization operator. The quamtity ergy matrix elements.

At large values of the number of oscillator quantdahe
AptA, —————— effective cluster-cluster interaction derived from the kinetic
Vet = "\/ ;A 2r o\ (2umaxt 21 +3),
172

energy operator modified by the Pauli principle vanishes as
the eigenvalued , tend to unity. Thus, the range of such an
defines the distance between the centers of the two nuclearteraction can be estimated with the help of the relation
clusters (composed ofA; and A, nucleons, respectively
where the antisymmetrization effects come into play. It is Ay=1~BWa™”=pvexp-vina). (19
appropriate to compare the range of the kinetic energy exﬁ)

change potential with that of the cluster-cluster interaction Iar"’tm:i?emfihl 'z czIJm;r)IeteIty r;iete;migerd dt'>y rtnrc]iethtyfie \?Jh
generated by the nucleon-nucleon potential. clustering of the nuciear Systeém considered, a at Is why

The matrix elements of the potential energy operatorit is the same for a!l the branches of the SVirreps. As for
which enter the equations of the algebraic version of théhe paramete(»), its dependence on the number of quanta
RGM, can be extracted from the potential energy kernel
U(R,S) defined in the Fock-Bargmann space. This kernel is 3if the value of oscillator lenght, is chosen in accordance with
an entire function oR andS. Similar to the kinetic energy the experimental values of the cluster radii.
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follows a power law and differs for different $8) irreps  dependent and do not have nonphysical states in their dis-
even within one cluster configuration. crete spectrum. However, they should be singular to repro-

It follows from Eq.(19) that the kinetic energy exchange duce the high-energy behavior of the microscopic phase
potential decreases exponentially with the number of quantahifts [25]. In our approach, neither a deep potential with
and so is the cluster-cluster interaction generated by thanphysical states, nor a singular shallow potential is em-
nucleon-nucleon forces. Comparing the decrements of thployed, in order to ensure the correct phase-shift variation.
expressiong$l18) and(19), it is possible to establish which of In our equations, the forbidden states are excluded from
the potentials has larger range. It appears to be that the very beginning, because their eigenvalues are equal to

) zero, i.e.,A =0 for all v<wy,;,. The known asymptotic esti-
At A2 >1na mate establishes a relation between the wave funcbiog)
AN, b in the coordinate representation and coefficielis

even for the simplest binary cluster systems composesl of —
clusters, such afHe+n, “He+*He, etc. This means that as (|| = roV2r + 3) = VA,C, S 1
the clusters approach each other, they first experience an in- A= oy \,”’2_[’0(21/+ 314’ '
fluence of the effective interaction caused by the exchange
effects on the kinetic energy. And the potential of the clusterfrom this it follows that the wave functiod, is rather close
cluster interaction generated by the nucleon-nucleon forces zero within the interval
comes into play only at the smallest intercluster distances.
Further we shall explain how the eigenvalgesad, there- [0 12
fore, the parameters of the effective cluster-cluster interac- 0 <l < rov2viin+ 3.
tion) depend on the number of nucleons of a compound SYSSuch a wave function can be obtained in the calculations

tem and on the type of clustering by considering SOM&yith a model repulsive-core potentigbee, for example,
examples of binary nuclear systems composed ahd p Refs.[6,8]). The number of the forbidden states with angular
clusters. momentuml < v, equals[(vmin—1)/2]. Hence, the elastic
scattering phase shif§(E) should be counted from(v,,
—1)/2]a, in order to make it vanish at high energy. Such
energy dependence of the scattering phase shift can also be
reproduced by means of a soft core, with its height being
In this section, we will consider the simplest examples ofdetermined by the phase-shift variation. The radius of the
two-cluster systems with one open channel in order to demeore depends not only on;,, but also on the angular mo-
onstrate the influence of the kinetic-energy exchange effectgientuml; and can be estimated with the help of the relation
on the scattering phase shifts and on the wave functions iRcore=roV2%mint 3.
the discrete representation. To reveal the main features of the Note that for the states with angular momentusav,,
nucleus-nucleus interaction affected by the Pauli principlethe forbidden states are absent, and hence no core need to be
we shall concentrate our attention on studying the exchangi@troduced. Certainly, the larger ig;,, the more accurate are
effects on the kinetic energy operator exclusively, althoughhese considerations.
we shall also discuss the results obtained in the approxima- All this, however, does not mean that a core entirely re-
tion of zero-range nuclear force. produces the action of the Pauli principle. As was explained
In addition, we shall compare our results with those whichin the previous section, the eigenvalues of the norm kernel
can be obtained by simulating the Pauli principle with somedeviate from unity atv> v, and affect the RGM Hamil-
phenomenological potentials of the optical model. Not aim-tonian in the discrete basis representation.
ing at a complete discussion of all the factors influencing the The two-cluster systems considered in this section have a
choice of a nucleus-nucleus potential, we shall focus onmemarkable property: all states with a given number of
those features of optical model potentials which follow thequantav belong to the same S§B) multiplet (v,0). That
requirements of the Pauli principle. simplifies noticeably the explicit form of the Pauli-allowed
Conventional optical model descriptions of nucleus-orthonormal basis functions in the Fock-Bargmann space
nucleus scattering usually employ two kinds of effective lo-(they are constructed from even powers of one complex vec-
cal nucleus-nucleus potentials which are phase-equivalenbr), and provides only two sets of the eigenvalues: one for
with those derived on microscopic grounds: deep or shallowhe even states, and the other for the odd ones. In addition,
potentials. Deep potentials are energy independent and vatlie matrix elements of the kinetic energy operator take a
very gradually with angular momentum of the nuclei in- particularly simple form in this case.
volved. These potentials produce a number of unphysical In the absence of the operator of the nucleon-nucleon in-
bound states which simulate the forbidden states of the miteraction two different modes of behavior of the scattering
croscopic approach. Indeed, it is exactly the number of thgphases are observed in the energy region up to 50 kiteV
forbidden states that determines the phase-shift variation béhe c.m. framg Later we shall show that at low energies the
tween zero and infinite energy, and in optical model poteneigenvalues approaching unity from above produce a posi-
tials this must be accounted for. In contrast, shallow opticative scattering phase, while those approaching unity from
potentials are often found to be strongly angular-momentunibelow, a negative one.

V. EXAMPLES OF THE EFFECTIVE POTENTIALS:
SINGLE-CHANNEL CLUSTER SYSTEMS
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A. The n+*He system 3.0 , ' . . . . . .

The scattering of a neutron by anpatrticle is one of the A @)
simplest examples considered in the framework of the Hill- 25 )
Wheeler method. We wish to show that even for this system "
the scattering phase cannot be reproduced in full by any op ~ 20F 1
tical model potential which simulates the action of the Pauli — . 1
principle. g 15t

The norm kernel for thex+n system generating a com- 2|
plete basis of the Pauli-allowed states or, in other words, the® ;oL
kernel of an integral equation reads

05 F

1
lio(R,S) =expR -S)—exp{—Z(R -S)}. (20)
0'00 10 20 30 40 50

The norm kernel does not contain the Pauli-forbidden states
They are already excluded. Therefore, it can be compare( E (MeV)
with the result of action of the model repulsive potential
which eliminates the forbidden states. But we should also
take account of the eigenvalues belonging to the allowed
states. Hence, provided that the Pauli principle is simulatec
by some phenomenological potential, at this stage an addi
tional interaction should be introduced to reproduce the dy-
namics of the system after the elimination of the forbidden _
states. Later the main features of this additional phenomeno'g,

2.0 T T v T T T T T

1.5

logical potential will be discussed. e
The eigenvalues of the norm kernel far-n system are s 5
equal to
AV:l—<—E>V. 00
4

Obviously, in the limitv— o the eigenvalues approach unity
from below, if the number of quanta is evén=2k); and

f“.’”.‘ above, if the number of quan.ta is ofte=2k+1). The FIG. 1. Phase shifts of the+n scattering for the states witla)
minimal number of quan_ta’min Wh_'Ch corresponds _to the L=0 and(b) L=1. Solid curve: phase shifts obtained in the zero-
lowest Pauli-allowed basis state is equal to 1. This meang,nge approximation for the nuclear force. Dashed curve: phase
that the branch which belongs to the @Wirrep (2k+1,0)  shifts obtained by keeping the kinetic energy exchange potential
appears first and its eigenvalues take the largest values. only (see text for details

To illustrate our conclusions about the characteristic fea-
tures of the effective interaction induced by the Pauli prin- (,0|U[(+',0))
ciple, it is appropriate to consider the phase-shifts of the & v
elastic scattering of a neutron by theparticlé in the states Up=-5.52 MeV ifv=v =y,,=2,L=0,
with L™=0" [Fig. 4(@)] andL™=1" [Fig. 1(b)]. Zero angular = e, _ _
momentum corresponds to the eigenvaliigs< 1, while the =1Uo=-11.05 MeV if v=2"=vpn=1, L =1,
eigenvalues\ ,,; which exceed unity correspond to the mo- 0 otherwise.
mentumL=1. The behavior of the scattering phages, and
8.1 for the case when only antisymmetrization effects on the — ) .
kinetic energy are taken into account and in the approximal "€ Parametel, was fitted to reproduce position of the
tion of zero radius for the nuclear force is presented in Fig. 1MaXimum of the total elastic scattering cross sectign

In this approximation the potential energy of the interaction- 0-920-04 MeV[26]. The half width I'=1.3 MeV also

of the neutron andv particle is simulated with the single 29r€es well with the experimental value I6£:1.2 MeV, al-

parameter, the diagonal matrix element of the potential enthough the maximum value of the total cross section is twice

. . . as large as its experimental value of 7.§26]. As regards
ergy operatot) in the state with the mlnlmal number of even the parametet,, it was chosen to provide a reasonable de-
(for L=0) or odd(for L=1) quanta, i.e.,

scription of the experimentally observed phase of dhen
elastic scattering witl.=0 at low energie$34].

E (MeV)

“These phase shifts have already been calculated eg88grbut As long as the energ§ of the relative motion of the
our purpose is to show to what extent they are influenced by th€lusters is small, the phase shift of the elastic scattering with
antisymmetrization operator. angular momentunh obeys the law
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5|_ ~an— a,_(2E)L+l/2, 7 T T T T T T T T
i.e., as for a standard short-range potential. Heris the 6
number of bound states. If=0, a, is the scattering length.
The systemx+n has no bound states, but there is one Pauli- 5

forbidden state at=0 with angular momenturh=0, which
is known to have the same influence on the behavior of the 4

scattering phasé, as a bound stat@7]. Therefore, at zero g
energy the scattering phagg is naturally counted fromr. ~ 3F
There are no forbidden states having odd number of quanta® 5
and hence the scattering phageshould be set to zero at 21"
zero energy. i
The positive sign of the scattering lengih conforms to 1

the known general consideration that Pauli principle can be
simulated by a repulsive potential. Of course, the attraction 0

U, appears not to be strong; otherwise it would change the E
signs of the scattering phase and the scattering length. MeV)

ﬁAS.lt can be seen from E'%'(n)hale(_1<Q' Therefore, tEe FIG. 2. Phases of théH+3H scattering. Solid curve: the phase
effective Interaction caused by the kinetic energy exc aN88ptained in the zero-range approximation for nuclear force. Dotted

potential is_ attra_ctive for the Sta,tes With angular mom‘?ntu”}md dashed curves: the phases obtained by granting the kinetic en-
L=1. The intensity of the attraction induced by the antisym-grqy exchange potential exclusively.

metrization effects arising solely from the kinetic energy is
not high enough to assure the existence of the experimental
observedL”=1" resonance in the continuum of théle

nucleus But a contribution from the kinetic energy ex-

change potential is not neglible, because the range of th . . .
latter potential exceeds that of the nuclear forces. mentum. For the singlet state ahe0 a version with zero-

It should be stressed that this energy dependence of ﬂ}rélntg?hatt_ra}[ctlvet_potentlalbhas als% bee(r; gon_&dtered, g_ssumlr}g
scattering phasé; cannot be reproduced by a simulation of at the Interaction can be reproduced by just one diagona
the action of the Pauli principle with a soft or hard core.matr'x element
Such an approximation would be inappropriate, because it " __
will not be able to explain the positive sign of the phase shift (2.0/U[(2,0)=~34.76 MeV.
at low energies. This model potential provides the experimental value of the

®He—°3H+3H decay threshold12.3 MeV [26]) and a rea-
B. The ®H+3H system sonable value of the r.m.s. radius of fiée nucleus, equal to
2.24 fm. The singlet phase of the elastic scattering for the

Now let us consider a collision of the two nucfiél with . . . ;
80tent|al which assures the existence of a bound state is

opposite spins. As the total isospin of the system is equal t . : .
unity, the even and odd number of quanta, obviously, corre(—:oumecj from 2 (Fig. 2. In the energy range being consid-

sponds to the singlet and triplet states, respectively. The eﬁg?gh:gls_ ffé:st\t/eerrlgi%rﬁ)hase is larger than those obtained in the
genvalues of the norm kernel are given by P '

I9./cattering phases at zero energy are counted frgsee Fig.
2). The singlet scattering phase falls faster than the triplet
ane, because the former has lower value of the angular mo-

$=0 1) (st 1) C. The a+a system
Arx=1- 3/ A =1~ 3 . ' 4
Finally, let us address a well-known example of the scat-
In contrast to the system+ «, the eigenvalues with the even tering of two « particles; in other words, let us consider the
and odd number of quanta are identical and tend to unityBe nuclear system in the-cluster model. The norm kernel
from below. The minimal number of quanta allowed by thefor the a-a system only contains basis functions with even
Pauli principle increased by one compared with the previousiumber of quanta, because the wave function of two identi-

case. cal bosons must be symmetric with respect to the interchange
Again, as for the system+a in the states with, <1,  of the clusters

the scattering phase shift determined only by the antisymme- 1\

trized kinetic energy operator corresponds to the repulsion of Ay=1 4( ) . Apyep=0.

the clusters at small distances between them. Because of the

existence of the sole forbidden state in both channels, th32k<l for any given number of quanta, and the minimal

allowed number of quanta takes the maximum valyg,
®As is well known, taking into account a spin-orbit interaction =4 among all the cases considered in this section. As a re-
leads to the splitting of the state"=1" and, as a result, two scat- Sult, the Pauli principle leads to the repulsion of clusters; and
tering phases,, and 8,, appear, each showing a resonance behavthe behavior of the scattering phase is similar to the one
ior. In our case we have only one resonance. discussed above for the states wlith 0.
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TABLE I. Parameters of the effective interaction related to theessentially decreases with the number of nucleons. At the

antisymmetrization fos-cluster systemsA,—1=gexp{-kIn a}. same time, the parametgrincreases, which is an evidence
of the increasing range of exchange effects. A negative sign

v=2K v=2k+1 of B indicates that an effective interaction is repulsive. It is

Vmin A, -1 a B a B attractive only for the states with odd number of quanta in

min

the systenfHe+n. Note that in the latter case it is exactly

3”*‘31 1 1/4 16 -1 16 174 the basis states corresponding to the eigenvalyes1 that
H+*H 2 -1/9 9 -1 9 -1 dominate in the wave function §He+n.
ata 4 -1/4 4 -4 0 0 Finally, one more important parameter determining the

strength of an effective potential related to antisymmetriza-

tion is the value of this potential at the minimal number of
We would like to note that the phase shifts of elasticquanta. As seen from Table I, the strength of this effective

a-a scattering have been calculati@8] using the algebraic interaction is maximum in the states withe v, and in-

version of the RGM. In that work, the exchange effects bothcreases with the number of nucleons in the compound

on the kinetic and potential energy have been taken into aqiucleus.

count, but the authors focused their attention on a possibility

to use the oscillator basis for the solution of the problems in  \; MULTICHANNEL BINARY CLUSTER SYSTEMS

the continuum. A contribution to the phase shifts of the ki-

netic energy matrix modified by the Pauli principle was not A. The *He +°He system

studied there. Now we can state that the high-energy behav- The cluster configuratiofiHe +°He is a relatively simple

ior of the phase shifts formed by the kinetic energy operatopytichannel system, which well illustrates the role of the

(with its exchange partis in perfect agreement with payii principle in the coupling between different channels.

Levinson’s theorem. Moreover, the latter phase shifts are ofpe éHe clusters have opem shell, and, therefore, a possi-

the same order of magnitude as those obtained with the INyility of excitation (to the 2 resonance statef these clus-

clusion of the potential energy operator. ters should be properly taken into account. We did not have
this feature in the previous examples. As a consequence, now
D. Comparison of the eigenvalues for different at a given even value of the total number of quanta2k
nuclear systems >8 a basis of the Pauli-allowed states with the total orbital

As has already been discussed in the previous section fgrngular momentunt. =0 belongs to five S(B) irreps with

y nep i ' “even symmetry indices\,u): (2k-2,0), (2k,2);, (2k
a large number of quanta, the behavior of an effective poten;4 4, (2k.2),, (2k+4.0). Notice that the multipleté2k, 2)
tial related to the antisymmetrization is determined by the "7 "</ T : uftip 1

expression(19). In a general case, at small intercluster dis-2"d(2K,2); have the same S8) symmetry indices, but dif-

tances an effective potential has rather a cumbersome forf§"eNt €igenvalues 2, and Ay z),. _
and depends on several exponentially decreasing terms As a result, the norm kernéde.s.cfor the states withl
=0 takes the form

o]

A(V)"”“) -1 :Z B})““)(V)exp[— vin aJO"'“)},
J

60461 Aau-2,0¥2k-2,0¥2k-2.0
k=2

alM > 1, (21) -
Hlowever, in the problem of scattering of tvecclusters at a + A(Zk,Z)llp(Zk,Z)lTﬂ(Zk,Z)l
given v the SU3) irrep (v,0) appears to be the sole possible k=3
representation; and in the su@l) only one term survives. o

In Table | the parameters of an effective interaction in-
duced by the kinetic energy operator modified by the Pauli
principle are presented for a number of binary nuclear sys-
tems composed of clusters. By analyzing the data listed in
Table I, some general conclusions about the dependence of
such an effective interaction on the number of nucleons in
the interacting clusters can be drawn. ~

The range of the antisymmetrizer can be determined by +2 Aara,0¥iakea 0 ¥iakea,0-

.. . . k=5
the minimal number of quanta,,, corresponding to the first
nonvanishing eigenvalue. It is easy to understand that These eigenfunctions, along with their eigenvalues, were
increases with the number of nucleons in the system undagiven in Ref.[17]. Hence, here we will restrict ourselves to
consideration, because the number of the occupied statesly those results from Refl7] which are relevant to the
grows. Indeed, in then+a system the first allowed state problem discussed.
appears already at,,,=1, while in the case of the twe First, we present in Fig. 3 the dependence of the eigen-
particles it appears only at,,=4. On the contrary, the pa- values belonging to the five different branclascording to
rametera defining the decrement of the effective potential their definition introduced in Sec.)lbnk. As seen from this

+ 2 Aakea g Wiok-a.0Vok-a.4
k=3

o0

+ Ak 2,2k, 2,2k, 2),
k=4

oo
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FIG. 3. Eigenvalues\, , of the norm kernel for the system oo i 6 o

®He +°He versus the number of quarkaCurves are labeled by the ~_FIG- (A4- Ground state of “Be="He+"He: coefficients

SU3) symmetry indices\, ). \;’A(A,mCEO'“)(rk) of the WF expansion in the $B) basis, half-
logarithmic scale. Curves are labeled by the(3bymmetry indi-

figure, all the eigenvalues except,  are less than unity ces(\,u).

and, therefore, generate a repulsive effective potential. The

largest eigenvalues belong to the brazk—2,0); while the  exchange potential. A simple potential energy operator used

smallest ones, to the bran¢Bk+4,0). In the states of the here does not couple different channels.

latter branch a cluster repulsion caused by the action of the Information about the magnitude of the repulsion in the

Pauli principle is maximal, as well as the range of the anti-states belonging to different branches is provided by the ex-

symmetrization effects. The eigenvalues are close to unitpansion coefficientgFig. 4) of the ground state wave func-

only if k=14. In addition, this branch starts wik¥5, i.e.,  tion of 2Be=°He +°He calculated in the zero-range approxi-

later than the others. The repulsion in the states of the brandhation [17]. We assume that the interaction can be

(2k,2),, for which the minimal number ok equals 4, is reproduced by just two diagonal matrix elements in the

somewhat less intensive; and its eigenvalues can be set 8U(3) representatiori2k—2,0), i.e.,

unity, if k=13. The repulsion for the branchéz-4,4) and

(2k,2)1, which appear ak=3, is even less pronounced. The )

eigenvalues of these branches are rather close to unity, if ((2k=2,0[U[(2K" - 2,0))

=10. Of interest is the fact that in the absence of degeneracy Up=-44.2 MeV ifk=k' =2,

the higher W3) symmetry[the larger the eigenvalues of the —{U,=-28.7 MeV ifk=K =3,

second-order Casimir operator of(3) group], the smaller

the eigenvalues. 0 otherwise.

The basis of the Pauli-allowed states for tiée+°He

system corresponds to five different channels. Above som@peqe yalues were fitted to the experimental values of the
threshold energyE=3.6 MeV) all these channels are open. | o, ¢ adius of?Be (2.59+0.06 fm[29]) in its ground state,

But there is an energy range in the continuous part of the,q thefHe +°He decay threshold energg0.11 MeV/[30)).
spectrum where some channels are closed. The Pauli prifpe oscillator length was fixed to 1.37 fm.

ciple manifests itself in making all the five channels coupled Comparing the coefficients belonging to different

at small intercluster distances. The range of this domain i$aches we come to the conclusion that the following in-
determined by the requirement that at its border all five dif‘equality h’olds for them as well as for their eigenvalues
ferent eigenvalues of the allowed states are almost equal to

unity. As soon as all eigenvalues approach unity, a unitary

transformation from the S@3) basis to thel basis, which Aoy-2,0 = A(2k,2,)l> Aoy-a,0 = A(zk,z,)2> Akea0

allows us to decouple the channels of the latter basis, be-

comes possiblgl7]. Below we shall specify at what values ) ) .

of k (and, thereforer,) it occurs. with a single exception: the coefficients of thg brari@k
Coupling of the channels via the kinetic energy operator4.4) are somewhat larger than the coefficients of the

directly results in the appearance of off-diagonal elements opranch(2k, 2),, if r,>6.5 fm. Let us consider now the wave

the Smatrix and, hence, in inelastic processes in the collisiorfunction in the continuum[Fig. Xa]. The energy E

of two ®He nuclei. Certainly, the potential energy of the =0.885 MeV of this state is above the threshold of tfge

cluster-cluster interaction can also influence the inelastiglecay into two®He nuclei in their ground statéE=0), but

scattering cross sections. However, as before, we shall rdéess than the threshold enerffy=1.8 MeV) of the decay of

strict our analysis to the contribution of the kinetic energy'?Be into the channel where one of the clusters is in its ex-
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FIG. 6. Eigenphases(E) of the ®He+°He system formed by
the kinetic energy operator modified by the Pauli principle. The
values of the angular momentunof the cluster relative motion are
shown near the curves.

those SW3) irreps which contain the basis functions of the
two open channels.

Important information about the multichannel continuous
spectrum of théHe +°He system is provided by its fiv@c-
. cording to the maximal number of the open channeigen-
] phases, presented in Fig. 6. Just above the corresponding
J thresholdE,, an eigenphasé, obeys the law

-0.10

P SR S S S S S &(E) =nw+constE*¥2 n=0,1, ... .

r. (fm) Heren is the number of forbidden states in the corresponding
channel. In Fig. 6 two quasicrossings of the phase curves are
FIG. 5. Coeﬁicientsvr’mcg'”)(rk) of the expansion of the Seen. Eigenphasg; cannot cross, becausg a crossing would

continuum states oF?Be="He+°He in the SU3) basis at@ E  contradict the unicity theorem for a solution of the wave

=0.885 MeV andb) E=3.3 MeV. Curves are labeled by the @  €quation. Beyond the crossing point an eigenphase follows

symmetry indices\ , w). the path that its counterpart had before the point. The fall of
the eigenphases with energy indicates a repulsion due to the

cited 2 state® As long asr,<6 fm, the behavior of the antisymmetrization effects, and is not compatible with the

coefficients is determined by the magnitude of repulsion inassumption that a resonance exists in the system.

the corresponding SB3) branches, as in the g.s. wave func-

tion. However, ifr,>6 fm, then a rearrangement of their

values occurs. Namely, the coefficients of the irréds 2), B. *He+®He and ®He+°He clustering:

take the lead, followed by the irrep@k—4,4) and (2k coupled-channel approach

—2,0. An hierarchy among the coefficients is established by  Ajong with the ®He+®He clustering of'2Be, let us con-

the weights of corresponding $8) irreps in the wave func-  sjder also thédHe +®He cluster structure. The latter allows an
tion of thel basis belonging to an open channel. Thus, alexcitation of the®He nucleus to its 2 state. Taking into
larger  the basis functions of the irrefg8k,2), contain only  account theé'He +8He clustering makes essential corrections
those functions of thébasis which correspond to the closed yith respect to the results with tifele +°He clustering.
channels. Therefore, the expansion coefficients belonging to First of all, the number of the allowed states increases and
the branch(2k, 2), fall exponentially withr, increasing. Fi-  an additional S(B) degeneration appears. As a result, the
nally, consider the state with the ener§y¥3.3 MeV [Fig.  number of the channels with the total angular momentum
5(b)]. This state is above the threshold for the decay’Be L=0, total spinS=0, and isospinT=2 increases to 7. The
into the two°He nuclei, with one of them excited. For the “He+8He clustering provides for the two additional branches
expansion coefficients the same behavior is observed as #f the basis states having 8) symmetry (2k-2,0) and
the previous case, but the coefficients are nonzero only fofok 2). Basis states of different cluster configurations with
the same S{(B) symmetry indices are not orthogonal, while
8its experimental width is only about 113 keV, so we treat it as athe two stateg2,0) are identical. The eigenfunctions of the
bound state here. norm kernel for two coupled cluster configurations are the
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Now the state$2k—2,0) become twofold degenerate, while
the degree of degeneracy for the stdféls 2) is increased to
3. The dependence on the number of quanta of the eigenv

ues belonging to the different branches is shown in Fig. 7. It o
remarkable feature is that now the eigenvalues of the two 1he coefficients,

PHYSICAL REVIEW C70, 064001(2004

4 6 8 10 12 14 16 18
1, (fm)

20

FIG. 8. Coefficients of the expansion of the discrete states of the
12Be nucleus in the S(3) basis, when théHe+°He and the’He
+*He coupled cluster configurations are included and a zero-range
nuclear force is useda) g.s. wave functionEy=-8.95 MeV; (b)
excited statefF;=-0.386 MeV. The S(B) symmetry indicesA , u)
are shown near the curves.

their ground states and the r.m.s. radius of & nucleus,
r.ms=2.66 fm, the magnitude of the parametdy of the
model zero-range potential should be reduced to 42.2 MeV,
while the parameteld; should be set to zero. Such a change
of the potential parameters seems to be natural, because the
basis of théHe +°He configuration is supplemented with the
basis states of théHe+®He configuration. Contribution of

(,H_]e latter to the energy of the ground state appears to be
gather considerable.

A(A,M)C%M)(rk) are presented in Fig.

branchesA 2,0, @nd Ay 2, €xceed unity. In the states 8(&). Comparing Fig. &) with Fig. 7, we can conclude that
of these branches an effective potential related to antisynthe smaller are the eigenvalues, the smaller are the corre-
metrization corresponds to an attraction. This directly affect$Ponding coefficients.

the structure of the g.s. wave function of th@e nucleus
causing the expansion coefficients belonging to theg3%U
irreps(2k-2,0); to dominate in the latter function. The basis
functions of these irreps contain tfiele+°He and the*He
+8He clustering on equal footing.

Now in order to
(8.95 MeV [31]) of the Be break up intd'He and®He in

The version of the potential chosen provides for an exis-
tence of the second bound state at the enefy
=-0.386 MeV. The coeﬁicientsvr’mC(E*l'“)(rk) are pre-
sented in Fig. ). The coefficients of the irrep&k,2);

appear to be dominating for this state, while the coefficients

reproduce the threshold energyof the (2k—2,0), irreps take the second position, where they

compete with the coefficients of the irrefak-4,4). The
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FIG. 9. Coefficients\;’A(A,mC(Eﬁ‘”)(rk) of the expansion of the
0
g.s. wave function in the S@) basis, calculated in the coupled-
channel approach and with due regard to the exchange effects in th
kinetic energy exclusively. The §B) symmetry indiceg\,u) are
shown near the curves.

contribution of the other coefficients again correlates with ~
the magnitude of their eigenvalues. Moreover, now eveng
without any cluster-cluster potential generated by the .~
nucleon-nucleon forces, a bound state of tA@e nuclear
system appears, with an ener&B:—OJS MeV and r.m.s.
radiusr,,s=4 fm. In Fig. 9 the expansion coefficients of the
wave function for this state are shown. At smigll the co-
efficients that correspond to the irreg2k-2,0); and
(2k,2); possess the largest values among all the coefficients
The bound state appears due to the attraction, for which the
latter two SU3) branches are responsible. For simplicity, the _ 1 )
five threshold energies are assumed to be equal. Now the FIG. 10. Eigenphases(E) of the “Be system(a) The eigen-
question of the correct assignment of the seven eigenphas@gases o.btallned by allowing on!y for the antlsymmetrlgatlon effects
at zero energy remains to be clarified. To answer this que<? the Kinetic energy(b) The eigenphases obtained in the zero-
tion we calculate the total number of the forbidden states of2N9e @Pproximation for the nuclear force. The values of the angular
thel basis. ThéHe +*He configuration supplies three forbid- momentum| of the cluster relative motion are shown near the
den states. One of them corresponds to the channelPtith curves.
and “*He clusters being in their ground states, zero angular
momentum of their relative motion and zero number ofthe energy range up to 1 MeV, and only beyond they begin
quanta, i.e.k=0. The other forbidden state corresponds toto decrease monotonically. We have already observed such a
the same channel, but witk=1. The last forbidden state behavior for thea+n scattering phase with the angular mo-
belongs to the channel witk=1 and the®He nucleus ex- mentumL=1. In order to try to link these maxima to pos-
cited. We therefore conclude that there are eleven forbiddesible resonances, let us consider the wave function in the
states. At zero energy, the eigenphases of the three channéntinuum for the energy of 0.22 Me¥see Fig. 11 The
with =0 as well as the eigenphase for one of the three charehosen energy is close to that at which one of the eigen-
nels withl=2 should be set to® The eigenphases for the phases has a pronounced peak. In this wave function the
other channels with=2 and the eigenphase of the channelstates corresponding to the channels witf2 prevail, and
with 1=4 begin at 2r. Note that the eigenphases discussedhat is compatible with the assumption on the existence of
above are calculated with due regard to the antisymmetrizg¢he resonance.
tion effects in the kinetic energy solely. The energy depen- The inclusion of the zero-range potential pulls down the
dence of the eigenphases is presented in Fig. 10. resonance under the break-up threshold*4e into ®He

Let us recall that, for théHe+°He clustering, all eigen- +*He [Fig. 1Qb)]. As a result, along with the ground state of
phases decrease monotonically with energy. For the case #fe'’Be nucleugE,=-8.95 MeV, an excited state appears at
the couplefHe +°He and®He +*He configurations, but with- the energyE;=-0.386 MeV. The energy behavior of the
out a nucleon-nucleon potentidig. 10a)], two of the seven eigenphases is otherwise similar to that which has already
eigenphases with= 2 first ascend, reach their maxima within been discussed for tifle +°He clustering.
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FIG. 11. Coefficientscgl"Z")(rk) of the expansion of the con-
tinuum states of thé?Be system in thd basis atE=0.22 MeV.
®He+°He clustering: line A—=1,=1=0; line B—I;=1,=2, 1=0;
line C—1;=2(0), 1,=0(2), 1=2; line D—I,=1,=1=2; line E—,
=1,=2, 1=4; ®He+*He clustering: line G—h=1,=1=0; line
F—|1:|:2, |2:0.

VII. CONCLUSIONS

PHYSICAL REVIEW C70, 064001(2004

nated by the elimination of the Pauli forbidden states that
drastically increases the scattering phase-shift variation and
may be simulated by a repulsive potential at small interclus-
ter distances. The larger is the number of the forbidden
states, the larger should be the strength and the range of such
a model potential. Outside of the latter region, the cluster-
cluster interaction derived from the kinetic energyith its
exchange payis shown to be repulsive or attractive, depend-
ing on whether the eigenvalues of the antisymmetrization
operator approach unity from below or from above. Such an
effective interaction can significantly affect the scattering
phase behavior. Finally, a decrease or an increase of the cen-
trifugal potential occurs in the same region. It also influences
the phase shift, especially at high energies. The range of the
influence of the Pauli principle on the kinetic energy appears
to be significantly larger than that of the cluster-cluster inter-
action generated by the nucleon-nucleon potential, especially
for heavier clusters or clusters with an open shell.

If there are several open channels, the exchange effects
arising from the kinetic energy influence the cross sections of
inelastic scattering channels belonging to the excitation of
the clusters or to their rearrangement. The eigenphases of the
multichannel systems that define the nature of inelastic col-
lisions have been calculated and quasiintersection of the
eigenphases was established.

The influence of the Pauli principle on the structure of the A considerable intensification of the Pauli effects is ob-
continuum states of the compound systems populated at ttg"ved for coupled cluster conflguratlons,zsucrﬂae+ He
intermediate stage of collisions between light nuclei was2nd ‘He+°He which are relevant to thé’Be compound
studied within the algebraic version of the resonating grougitcleus. This phenomenon relates to the appearance of new
method. The exchange effects on the kinetic energy operatdfanches of excitation with the especially large eigenvalues,
were analyzed by the use of the discrete representation of trF€ater than unity, belonging to the allowed states. As a re-
complete basis of the Pauli-allowed many-particle harmonicSult, an effective attraction arising from the kinetic energy

oscillator states classified with the use of the(®lsymme-

operator modified by the Pauli principle appears to be strong

try indices. The eigenvalue problem for the norm kernel wa€hough to ensure the existence of both a bound state and a
reduced to degenerate integral equations in the Fock€Sonance even without an interaction between nucleons of

Bargmann space.

The influence of the Pauli exclusion principle on the col-
lision of clusters through the kinetic energy was shown to be

different clusters.
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