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We propose a fully quantum-mechanical method of treating four-body nuclear breakup processes in scatter-
ing of a projectile consisting of three constituents, by extending the continuum-discretized coupled-channels
method. The three-body continuum states of the projectile are discretized by diagonalizing the internal Hamil-
tonian of the projectile with the Gaussian basis functions. For6He+12C scattering at 18 and 229.8 MeV, the
validity of the method is tested by convergence of the elastic and breakup cross sections with respect to
increasing the number of the basis functions. Effects of the four-body breakup and the Borromean structure of
6He on the elastic and total reaction cross sections are discussed.
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The study on neutron-halo nuclei has become one of the
central subjects in the unstable nuclear physics since the dis-
covery of such nuclei[1]. In scattering of a two-neutron-halo
nucleus such as6He and11Li, the projectile easily breaks up
into its three constituentssn+n+cored, indicating that the
scattering should be described as a four-bodysn+n+core
+targetd reaction. Then an accurate theory for treating such a
four-body breakup is highly desirable.

So far the eikonal and adiabatic calculations were pro-
posed and applied to6He and 11Li scattering around
50 MeV/nucleon[2–5]. Since these calculations are based
on semiclassical approaches, they work well at higher inci-
dent energies. In fact, the elastic cross section of6He+12C
scattering at 229.8 MeV has recently been measured[6] and
successfully analyzed by the eikonal calculation with the six-
nucleon wave function of6He [7]. However, these ap-
proaches seem not to be applicable for low-energy scattering
such as6He+12C scattering at 18 MeV[8] measured very
recently.

In this Rapid Communication, we present a fully
quantum-mechanical method of treating four-body nuclear
breakup. The method is constructed by extending the
continuum-discretized coupled-channels method(CDCC) [9]
that treats three-body breakup processes in scattering of the
two-body projectile. In CDCC, the total scattering wave
function is expanded in terms of bound and continuum states
of the projectile. The continuum states are classified by the
linear skd and angular momenta, and they are truncated by
setting an upper limit to each quantum number. Thek con-
tinuum is then divided into small bins and the continuum
states in each bin are averaged into a single state. This pro-
cedure of discretization is called the average(Av) method.
The S-matrix elements calculated with CDCC converge as
the model space is extended[9]. The converged CDCC so-
lution is the unperturbed solution of the distorted Faddeev
equations, and corrections to the solution are negligible
within the region of space in which the reaction takes place
[10].

Also for four-body breakup processes in scattering of the
three-body projectile, CDCC has to prepare three-body
bound and discretized-continuum states of the projectile. Be-
cause of the difficulty of preparing all the three-body states
with the Av method, CDCC so far analyzed6He scattering
within a limited model in which a two-neutron pair is treated
as a single particle, di-neutrons2nd [11]. However, the accu-
racy of the di-neutron model has not been confirmed yet,
because of the absence of fully quantum-mechanical method
of treating four-body breakup.

In our previous work[12] on three-body breakup in scat-
tering of the two-body projectile, we proposed a new method
of discretization, called the pseudostate(PS) method. In the
method, continuum states of the projectile are replaced by
discrete pseudostates obtained by diagonalizing the internal
Hamiltonian of the projectile in a space spanned by the
L2-type Gaussian basis functions. The CDCC solution calcu-
lated by the PS method agrees with that by the Av method,
which can be regarded as the exact solution. Thus, a reason-
able number of Gaussian basis functions can form an ap-
proximate complete set in a finite configuration space being
important for three-body breakup processes. It is very likely
that the approximate completeness persists also in the case of
four-body breakup processes. Actually, as shown in the latter,
we can see a clear convergence of calculated elastic and
breakup cross sections with respect to an increasing number
of Gaussian basis functions. It should be noted that the
Gaussian basis functions are widely used to solve bound-
state problems of few-body systems[13], since the use of the
basis functions reduces numerical works much. Thus, the
four-body breakup processes can be analyzed properly by
CDCC with the PS method. We refer to this new method as
four-body CDCC and the usual CDCC for three-body
breakup asthree-body CDCC.

The first application of four-body CDCC thus designed is
made for6He+12C scattering at 18 and 229.8 MeV, where
the projectile has the Borromean structure and then easily
breaks up into two nucleons and4He. In these scattering
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processes, the incident energiesEin are much higher than the
Coulomb barrier energys,3 MeVd, so only nuclear breakup
processes become significant. We thus concentrate our appli-
cation on nuclear breakup. The calculated elastic cross sec-
tions well reproduce experimental data at bothEin. More-
over, effects of the four-body breakup and the Borromean
structure of6He on the elastic and total reaction cross sec-
tions are discussed in the case ofEin=18 MeV.

We assume that6He+12C scattering is described as a four-
body system,n+n+4He+12C. Then, the Schrödinger equa-
tion can be written as

FKR + o
iPP

o
jPT

vi j + VCsRd + H6 − EGCsj,Rd = 0, s1d

whereR andj are, respectively, the coordinate of the center
of mass of6He relative to12C and the internal coordinates of
6He; KR is the kinetic energy associated withR. Here,H6 is
the internal Hamiltonian of the6He projectile, andE is the
sum ofEin and the ground state energy of6He. Thevi j rep-
resent two-body nuclear interactions working between the
6He projectile (P) and the12C target (T). Meanwhile, the
Coulomb potentialVC is treated approximately as a function
of R only, i.e., we neglect Coulomb breakup processes.

The four-body wave functionCJM, whereJ is the total
angular momentum of the four-body system andM is its
projection on thez axis, is expanded in terms of a finite
number of the internal wave functionsFnIm of the 6He pro-
jectile,

CJMsj,Rd = o
nI,L

xnI,L
J sPnI,Rd/RYnI,L

JM , s2d

whereYnI,L
JM =fFnIsjd ^ iLYLsR̂dgJM. HereI is the total spin of

6He andm is its projection on thez axis, andn stands for the
nth eigenstate. TheFnIm satisfiesH6FnIm=enIFnIm and the
expansion coefficientxnI,L

J in Eq. (1) represents the relative
motion between the projectile and the target;L is the orbital
angular momentum regardingR. The relative momentumPnI
is determined by the conservation of the total energy:E
=PnI

2 /2m+enI, with m the reduced mass between the projec-
tile and the target. Multiplying Eq.(1) by Yn8I8,L8

*JM from the
left, one can obtain a set of coupled differential equations for
xnI,L

J , called the CDCC equation; it should be noted that the
CDCC equation for the four-body system is formally equal
to that for the three-body system. Solving the CDCC equa-
tion under the appropriate asymptotic boundary condition
[9,14], we can obtain the elastic and discrete breakup
S-matrix elements. Details of the formalism of CDCC are
shown in Ref.[9].

In the Gaussian expansion method[13], FnIm is written as

FnImsjd = o
c=1

3

cnIm
scd sjd, s3d

wherec denotes a set of Jacobian coordinates in Fig. 1. Each
cnIm

scd is expanded in terms of the Gaussian basis functions

cnIm
scd sjd = wsad o

l,LS
o
i=1

imax

o
j=1

jmax

Ail j,LS
scdnI yc

lrc
,e−syc/ȳid

2
e−src/r̄ jd

2

3 ffYlsŷcd ^ Y,sr̂ cdgL ^ fh1/2
sn1d

^ h1/2
sn2dgSgIm,

s4d

wherel s,d is the angular momentum regarding the Jacobian
coordinatesyc sr cd, and h1/2 is the spin wave function of
each valence neutron(n1 or n2). 4He has been treated as an
inert core with thes0sd4 internal configuration,wsad. The
Gaussian range parameters are taken to lie in geometric pro-
gression

ȳi = ȳ1sȳmax/ȳ1dsi−1d/simax−1d, s5d

r̄ j = r̄1sr̄max/r̄1ds j−1d/s jmax−1d. s6d

FnIm is antisymmetrized for the exchange betweenn1 andn2;
we then haveAil j,LS

s2dnI =s−dSAil j,LS
s1dnI , and s−dl+S=1 for c=3.

Meanwhile, the exchange between each valence neutron and
each nucleon in4He is treated approximately by the orthogo-
nality condition model[15]. The eigenenergiesenI of 6He
and the corresponding expansion coefficientsAil j,LS

scdnI are de-
termined by diagonalizingH6 [16,17].

In the four-body CDCC calculation shown below, we take
Ip=0+ and 2+ states for6He. Here we omit the 1− and 3−

states that do not contribute to the nuclear breakup processes.
The calculatedenI are −0.98 MeV for the 0+ ground state and
0.72 MeV for the 2+ resonance state, which well reproduce
the corresponding experimental values. We show in Table I
the maximum values of the internal angular momenta,lmax,
,max, andLmax, and the Gaussian range parameters,ȳ1, ȳmax,
r̄1, and r̄max, used in the calculation ofFnIm. It should be
noted that most of them depend onIp and c, while in Eqs.
(4)–(6) the dependence has been omitted for simplicity.

In order to demonstrate the convergence of the four-body
CDCC solution with an increasing number of Gaussian basis
functions, we prepare three sets of the basis functions, i.e.,

sets I, II, and III. Each set is specified byimax
Ipscd and jmax

Ipscd. One
can calculate the total number of the eigenenergies ofH6,

Nmax
Ip

, by using Eqs.(3)–(6) and the input parameters shown

in Table I. The values ofimax
Ipscd, jmax

Ipscd, andNmax
Ip

for each set
are shown in Table II. In the actual CDCC calculation for
6He+12C scattering at 18 MeVs229.8 MeVd, high-lying
states withenI.12 MeV senI.25 MeVd are found to give
no effect on the elastic and breakupS-matrix elements. Thus,

FIG. 1. Jacobian coordinates of three rearrangement channels
sc=1–3d adopted for then+n+4He model of6He structure.
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the effective number of the eigenstates of6He, Nmax
Ip

, is re-
duced much for each of sets I–III, as shown in Table II.

As for the coupling potentials in the CDCC equation, we
adopt the double-folding model[18] as follows:

Uz8z
J sRd = sNR + iNIdVz8z

J sRd, s7d

Vz8z
J sRd ; kYn8I8,L8

JM
Fg.s.

sTduo
iPP

o
jPT

vi j uFg.s.
sTdYnI,L

JM l

=E rz8z
sPdJMsr P,R̂drg.s.

sTdsr TdvNNsE,r,sddr Tdr PdR̂,

s8d

wherer P sr Td is the coordinate of a nucleon in the projectile
(target) relative to the center of mass of the particle, ands
=R+r T−r P. The quantum numberz representsz=sn,I ,Ld,
and the elastic channel is denoted byz0;s0,I0,L0d with I0

=0 and L0=J. The ground state density of12C, rg.s.
sTdsr Td

;kFg.s.
sTduo j=1

12 dsr T−r jduFg.s.
sTdl, whereFg.s.

sTd is the wave function
of 12C in the ground state, is calculated by the microscopic
3a cluster model[19]. In this study, we define the transition
densities of6He, r

z8z

sPdJM, as

rz8z
sPdJMsr P,R̂d = kYn8I8,L8

JM uo
i=1

6

dsr P − r iduYnI,L
JM lj. s9d

As for the nucleon-nucleon effective interactionvNN, we use
the realistic energy- and density-dependent M3Y(DDM3Y)
interaction[20]. Since the DDM3Y interaction is real,Vz8z

J

has no imaginary part. Thus, we have multipliedVz8z
J by a

complex factorNR+ iNI. In the present analysis, we fixNR
=1 and optimizeNI to fit experimental data for elastic scat-
tering. It should be noted that in the three-body CDCC cal-
culation made before for6Li scattering on various target nu-

clei [21,22], the prescription above was successful in
reproducing experimental data.

The convergence of the four-body CDCC solution is
tested for6He+12C scattering at 18 MeV. Figure 2 shows the
energy-integrated breakup cross section, i.e., the sum of the
cross sections to all breakup channels, calculated with sets
I–III. The results of sets II and III are in good agreement
with each other, but the result of set I is somewhat different
from them. Meanwhile, as for the elastic cross section shown
in Fig. 3, the three sets give the same cross section, which is
shown by the solid line. Thus, the four-body CDCC solution
converges with set II. Furthermore, we have confirmed that
similar convergence is also seen with respect to extending
ȳmax and r̄max. The optimum value ofNI determined from the
measured elastic cross section is 0.5 atEin=18 MeV, which
is the same as that for6Li scattering at variousEin [21,22]. It
should be noted that all calculations shown in Figs. 2 and 3
use the same value ofNI. Also for 6He+12C scattering at
229.8 MeV, we can see a similar convergence of the elastic
and energy-integrated breakup cross sections with respect to
extending the model space. Comparison between the calcu-
lated and measured elastic cross sections is shown in Fig. 4.
In this case the optimum value ofNI is 0.3. In Figs. 3 and 4,
the dotted lines represent the elastic cross sections due to the
single-channel calculation. Then, the difference between the
solid and dotted lines shows the effect of the four-body
breakup on the elastic cross section. For bothEin, the effect
is sizable, the properties of which are discussed later.

Recently, it was reported in Ref.[11] that the total reac-
tion cross section for6He+209Bi is much larger than that for
6Li+ 209Bi at similar energies relative to the Coulomb barrier
energies because of the largeE1 excitation strength of6He to
the continuum. Meanwhile, for6He+12C scattering at
18 MeV, theE1 excitation of6He is negligible becauseEin is
much higher than the Coulomb barrier energy(about
3 MeV). As shown in Fig. 5, however, we find that 15%
enhancement of the total reaction cross section is still left.
The open circles represent the total reaction cross sections
for 6He+12C at 18 and 229.8 MeV, calculated by four-body
CDCC, while the filled circles show those for6Li+ 12C in the
energy range 20–318 MeV, calculated by three-body CDCC
[21,22], where the microscopicd+4He model is assumed for
the6Li structure. As mentioned above, the resulting optimum
NI value for6Li+ 12C is about 0.5, i.e., almost independent of
Ein.

In order to investigate the origin of the 15% enhancement,
we perform the three-body CDCC calculation by assuming
the di-neutron model for6He structure; in the model, the

TABLE I. The maximum internal angular momenta and the
Gaussian range parameters for each Jacobian coordinate.

c Ip lmax ,max Lmax

ȳ1

(fm)
ȳmax

(fm)
r̄1

(fm)
r̄max

(fm)

3 0+ 1 1 1 0.1 10.0 0.5 10.0

1,2 0+ 1 1 1 0.5 10.0 0.5 10.0

3 2+ 2 2 2 0.5 10.0 0.5 8.0

1,2 2+ 1 1 2 0.5 10.0 0.5 8.0

TABLE II. The number of the Gaussian basis functions,imax
Ipscd and jmax

Ipscd for sets I, II, and III. The corresponding number of eigenstates of

H6, Nmax
Ip

, and the number of channels included in the CDCC equation,Nmax
Ip

, are also shown(see the text for the details).

imax
0+s3d jmax

0+s3d imax
0+s1,2d jmax

0+s1,2d Nmax
0+

imax
2+s1,2,3d jmax

2+s1,2,3d Nmax
2+

18 MeV

Nmax
0+

18 MeV

Nmax
2+

229.8 MeV

Nmax
0+

229.8 MeV

Nmax
2+

Set I 8 6 6 6 204 6 6 288 17 21 28 39

Set II 10 8 8 8 352 8 8 512 25 32 44 64

Set III 12 10 10 10 540 10 10 800 32 42 60 85
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di-neutron density is assumed to be the same as that of the
deuteron, and then the resulting6He density is close to the
6Li one. The result of this calculation is shown by the open
triangle in Fig. 5. The difference between the open triangle
and the open circle at 18 MeV is due to the Borromean struc-
ture of6He, which is referred to as the Borromean effect. The
effect dominates about half the 15% enhancement. The rest
of the enhancement is mainly due to the difference of the
Coulomb barrier energies between6He+12C and 6Li+ 12C.
Actually, when the Coulomb potential for6He+12C is re-
placed artificially by that for6Li+ 12C, the CDCC calculation
based on the di-neutron model(the filled triangle) gives the
total reaction cross section close to the filled circle at
20 MeV.

As for 6He+12C scattering at 229.8 MeV, we have con-
firmed through the same analysis that the Borromean effect
becomes negligible, as well as the effect of the difference of
the Coulomb barrier between6He+12C and 6Li+ 12C. This
suggests no enhancement theoretically. Nevertheless, Fig. 5
shows that the total reaction cross section for6He+12C is
even smaller than that for6Li+ 12C at a similar energy. This
curious behavior is due to the fact thatNI =0.3 for 6He
+12C while NI =0.5 for 6Li+ 12C at this high energy. In fact,
the total reaction cross section is enhanced by changingNI

from 0.3 to 0.5 in four-body CDCC calculation for6He
+12C, and the resulting cross section almost reproduces the
corresponding one for6Li+ 12C. The origin of the smallNI
value for the6He scattering is not clear at this moment, so
more systematic experimental data are highly desirable for
6He scattering.

Finally, we calculate the dynamical polarization(DP) po-
tential induced by the four-body breakup processes, in order
to understand effects of the processes on the elastic scatter-
ing. The DP potentialUDP

J is given by

UDP
J sRd = Ueq

J sRd − Uz0z0

J sRd, s10d

where Ueq
J is the so-called wave-function-equivalent local

potential derived using the elastic channel amplitudex0I0,L0

J

in the solution of the CDCC equation, andUz0z0

J is the
double-folding potential for the elastic channel. The detailed
definition of the DP potential is shown in Ref.[21]. Figure 6
shows the DP potential for the6He+12C scattering at
18 MeV with the total grazing angular momentumJgr=10.

FIG. 2. Angular distribution of the energy-integrated breakup
cross section for6He+12C scattering at 18 MeV. The dotted,
dashed, and solid lines are the results of the four-body CDCC cal-
culation with sets I, II, and III, respectively, of the Gaussian basis
functions.

FIG. 3. Angular distribution of the elastic differential cross sec-
tion for 6He+12C scattering at 18 MeV. The solid and dotted lines
show the results with and without breakup effects, respectively. The
experimental data are taken from Ref.[8].

FIG. 4. The same as in Fig. 3 but for6He+12C scattering at
229.8 MeV. The experimental data are taken from Ref.[6].

FIG. 5. The incident-energy dependence of the total reaction
cross section for scattering of6He and6Li on 12C. The open circles
show the results for6He+12C at 18 and 229.8 MeV calculated by
four-body CDCC, while the filled circles represent those for6Li
+12C at several energies calculated by three-body CDCC based on
the d+4He model for the6Li structure. The open triangle is the
result for6He+12C at 18 MeV calculated by three-body CDCC with
the di-neutron model for the6He structure. The filled triangle is
based on the same calculation as the open triangle, except that the
Coulomb potential between6He and12C is replaced artificially by
that between6Li and 12C.
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The “insensitive region” ofR shown in the figure is defined
with the condition thatux0I0,L0

J u is less than 5% of its maxi-
mum value in the asymptotic region. The DP potential is
almost independent ofJ aroundJgr in the peripheral region.
In Fig. 6 the real partVDP

Js4d sVDP
Js3dd and the imaginary part

WDP
Js4d sWDP

Js3dd of UDP
J calculated by four-body(three-body)

CDCC are, respectively, shown by the solid(dashed) and the
dotted (dot-dashed) lines. Both ofVDP

Js4d and VDP
Js3d are repul-

sive and have almost the same strength which is about 30%
of the real part ofUz0z0

J . TheWDP
Js4d is about 20% of the imagi-

nary part ofUz0z0

J (dot-dot-dashed line), while WDP
Js3d oscillates

with R, so the net effect ofWDP
Js3d is negligibly small. Thus,

one sees that inclusion of the four-body breakup processes
makes the real part of the6He−12C potential shallower and
the imaginary one deeper compared withUz0z0

J . In particular,
the latter effect is important and can be assumed to come
from the Borromean structure of6He. This is consistent with
the fact that the total reaction cross section is enhanced by
the Borromean structure.

In conclusion, a fully quantum-mechanical method of
treating four-body nuclear breakup is presented by extending
CDCC. The validity of the method called four-body CDCC
is confirmed by clear convergence of the calculated elastic
and energy-integrated breakup cross sections with respect to
extending the modelspace. The four-body CDCC is found to
explain well the6He+12C scattering at 18 and 229.8 MeV in
which 6He easily breaks up into two neutrons and4He. We
find a 15% enhancement of the total reaction cross section of
6He+12C at 18 MeV relative to that of6Li+ 12C at the similar
energy. Half of the 15% enhancement is due to the Bor-
romean structure of6He. For the elastic scattering, the four-
body breakup processes make, in particular, the imaginary
part of the6He−12C potential deeper, which is originated in
the Borromean structure of6He. In the present analysis, four-
body Coulomb breakup is neglected. However, it would be
possible to treat the Coulomb breakup within the present
framework, if the complex-range Gaussian basis functions
are taken[23]. Further work along this line is highly ex-
pected.
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