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We propose a fully quantum-mechanical method of treating four-body nuclear breakup processes in scatter-
ing of a projectile consisting of three constituents, by extending the continuum-discretized coupled-channels
method. The three-body continuum states of the projectile are discretized by diagonalizing the internal Hamil-
tonian of the projectile with the Gaussian basis functions. St&+'%C scattering at 18 and 229.8 MeV, the
validity of the method is tested by convergence of the elastic and breakup cross sections with respect to
increasing the number of the basis functions. Effects of the four-body breakup and the Borromean structure of
®He on the elastic and total reaction cross sections are discussed.
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The study on neutron-halo nuclei has become one of the Also for four-body breakup processes in scattering of the
central subjects in the unstable nuclear physics since the difiaree-body projectile, CDCC has to prepare three-body
covery of such nucl€fil]. In scattering of a two-neutron-halo bound and discretized-continuum states of the projectile. Be-
nucleus such a®He and!'Li, the projectile easily breaks up cause of the difficulty of preparing all the three-body states
into its three constituentén+n+cora, indicating that the with the Av method, CDCC so far analyz&Hle scattering
scattering should be described as a four-bddyn+core  within a limited model in which a two-neutron pair is treated
+targe} reaction. Then an accurate theory for treating such @s a single particle, di-neutrdfn) [11]. However, the accu-
four-body breakup is highly desirable. racy of the di-neutron model has not been confirmed yet,

So far the eikonal and adiabatic calculations were probecause of the absence of fully quantum-mechanical method
posed and applied tFHe and 'Li scattering around of treating four-body breakup.

50 MeV/nucleon[2-5]. Since these calculations are based In our previous work12] on three-body breakup in scat-
on semiclassical approaches, they work well at higher incitering of the two-body projectile, we proposed a new method
dent energies. In fact, the elastic cross sectiofHE+?C  of discretization, called the pseudosta®S method. In the
scattering at 229.8 MeV has recently been meas[8pdnd  method, continuum states of the projectile are replaced by
successfully analyzed by the eikonal calculation with the sixdiscrete pseudostates obtained by diagonalizing the internal
nucleon wave function ofHe [7]. However, these ap- Hamiltonian of the projectile in a space spanned by the
proaches seem not to be applicable for low-energy scattering?-type Gaussian basis functions. The CDCC solution calcu-
such as®He+™C scattering at 18 Me\[8] measured very lated by the PS method agrees with that by the Av method,
recently. which can be regarded as the exact solution. Thus, a reason-

In this Rapid Communication, we present a fully able number of Gaussian basis functions can form an ap-
guantum-mechanical method of treating four-body nucleaproximate complete set in a finite configuration space being
breakup. The method is constructed by extending thémportant for three-body breakup processes. It is very likely
continuum-discretized coupled-channels mett@BCC) [9]  that the approximate completeness persists also in the case of
that treats three-body breakup processes in scattering of tHeur-body breakup processes. Actually, as shown in the latter,
two-body projectile. In CDCC, the total scattering wavewe can see a clear convergence of calculated elastic and
function is expanded in terms of bound and continuum statebreakup cross sections with respect to an increasing number
of the projectile. The continuum states are classified by thef Gaussian basis functions. It should be noted that the
linear (k) and angular momenta, and they are truncated byGaussian basis functions are widely used to solve bound-
setting an upper limit to each quantum number. kheon-  state problems of few-body systeifis3], since the use of the
tinuum is then divided into small bins and the continuumbasis functions reduces numerical works much. Thus, the
states in each bin are averaged into a single state. This préeur-body breakup processes can be analyzed properly by
cedure of discretization is called the average) method. CDCC with the PS method. We refer to this new method as
The Smatrix elements calculated with CDCC converge asfour-body CDCC and the usual CDCC for three-body
the model space is extend¢®]. The converged CDCC so- breakup aghree-body CDCC
lution is the unperturbed solution of the distorted Faddeev The first application of four-body CDCC thus designed is
equations, and corrections to the solution are negligiblenade for®He+'%C scattering at 18 and 229.8 MeV, where
within the region of space in which the reaction takes placahe projectile has the Borromean structure and then easily
[10]. breaks up into two nucleons arftHe. In these scattering
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processes, the incident energigs are much higher than the 1 Hz M n: RNy, N2
Coulomb barrier energf~3 MeV), so only nuclear breakup s

processes become significant. We thus concentrate our appli- ¥s

cation on nuclear breakup. The calculated elastic cross sec- y2

tions well reproduce experimental data at b&. More-

over, effects of the four-body breakup and the Borromean 4He 4He 4He

structure of®He on the elastic and total reaction cross sec- c=1 c=9 c=3

tions are discussed in the caseEf=18 MeV.
12 A :
We assume th§1-4|e+ f: scattering is described as afour- g1, 1. Jacobian coordinates of three rearrangement channels
body systemn+n+"He+ “C. Then, the Schrodinger equa- (c=1-3 adopted for ther+n+*He model of°He structure.
tion can be written as

Imax Jmax

Krt+ 2 2 v +Ve(R)+He—E[W(£R) =0, (1) YOO =@ T X A yhrle v et
iePjeT MAS =1 j=1
1)
whereR and ¢ are, respectively, the coordinate of the center [[YX(yC) B Y(foly ® [771/2 ® 771/2 ]S]'m’
of mass ofHe relative to'“C and the internal coordinates of (4)

®He; Ky is the kinetic energy associated with Here,Hg is . . .
the internal Hamiltonian of théHe projectile, ancE is the wherex (¢) is the angular momentum regarding the Jacobian

sum of E,, and the ground state energy %e. Theu;; rep- coordinatesy,. (r), and 7y, is the spin wave function of

resent two-body nuclear interactions working between th&ach valence neutram, or ny). “He has been treated as an

SHe projectile (P) and thel?C target(T). Meanwhile, the inert core with the(0s)* internal configuration¢'®@. The

Coulomb potentiaV is treated approximately as a function Gaussian range parameters are taken to lie in geometric pro-

of Ronly, i.e., we neglect Coulomb breakup processes. ~ 9ression
The four—body wave function?’™, whereJ is the total

V- =V, (V. (i=D)/( )
angular momentum of the four-body system dvdis its Yi = Y1Ymadyn) T 5)
projection on thez axis, is expanded in terms of a finite o o
number of the internal wave functioms,,, of the ®He pro- [ =11 (Ma/T) I mac D), (6)
jectile,

Dmis anUsymr(r;etlrlzed for tlr)mlz exchange betweeg@andn,;
Yy we then haveA®" =(-)SA™™  and (-)*S=1 for c=3.
PHER) = EX”' L(Pni.RY/ “' L (2) Meanwhile, thelgféﬁange tl)?atevjtlseen each valence neutron and
each nucleon iffiHe is treated approximately by the orthogo-
nality condition model[15]. The eigenenergies,, of ®He
and the corresponding expansion coefficieN‘f%Q'As are de-
termined by diagonalizingls [16,17.

In the four-body CDCC calculation shown below, we take
I"=0" and 2 states for°He. Here we omit the 1and 3
states that do not contribute to the nuclear breakup processes.
The calculated,, are —0.98 MeV for the Dground state and
is determined by the conservation of the total enemBy: o 75 \ev for the 2 resonance state, which well reproduce
=Pf/2p+ €y, With u the reduced mass between the projec-he corresponding experimental values. We show in Table |
tile and the target. Multiplying Eq(L) by Y17 from the  the maximum values of the internal angular momeNgy.

Ieft one can obtain a set of coupled differential equations fo . andA ., and the Gaussian range parametersymae
Xmu called the CDCC equation; it should be noted that the;, andT,,,, used in the calculation ob,y,. It should be
CDCC equation for the four-body system is formally equalnoted that most of them depend thandc, while in Egs.
to that for the three-body system. Solving the CDCC equasf4)~(6) the dependence has been omitted for simplicity.
tion under the appropriate asymptotic boundary condition |n order to demonstrate the convergence of the four-body
[9,14, we can obtain the elastic and discrete breakupCDCC solution with an increasing number of Gaussian basis
Smatrix elements. Details of the formalism of CDCC are functions, we prepare three sets of the basis functions ie.,

shown in Ref[9]. ; . 7 (c)

; . . . sets I, Il, and Ill. Each set is specified ljy( andj One

In the Gaussian expansion methidd), ®nm is written as can calculate the total number of the e|genenrg?g|e31@f
/\/'n:ax, by using Egs(3)«(6) and the input parameters shown

D& = 2 © (9, (3) in Table I. The values of, ), j"© and Al for each set
are shown in Table II. In the actual CDCC calculation for

®He+'°C scattering at 18 MeV(229.8 MeV}, high-lying

wherec denotes a set of Jacobian coordinates in Fig. 1. Eacbtates withe,;> 12 MeV (e, >25 MeV) are found to give

l//fw(i:'n is expanded in terms of the Gaussian basis functions no effect on the elastic and breakBpnatrix elements. Thus,

where )\ =[@y(€) @i (R)];u. Herel is the total spin of
®He andm is its projection on the axis, anch stands for the
nth eigenstate. Th&,,,, satisfiesHg®,;m=€,Pnm and the
expansion coefficien}(ﬂ,yL in Eq. (1) represents the relative
motion between the projectile and the tardeis the orbital
angular momentum regardifi®y The relative momentur®,,,
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TABLE I. The maximum internal angular momenta and the clei [21,23, the prescription above was successful in

Gaussian range parameters for each Jacobian coordinate. reproducing experimental data.

The convergence of the four-body CDCC solution is

Vi Ymax 1 Tmax tested fo’He +1“C scattering at 18 MeV. Figure 2 shows the

c 1™ Nmax fmax  Amax (fm) (fm) (fm) (fm) energy-integrated breakup cross section, i.e., the sum of the
N cross sections to all breakup channels, calculated with sets
3 0 1 1 1 01 100 05 100 |y The results of sets Il and Il are in good agreement
12 0 1 1 1 05 100 0.5 100 with each other, but the result of set | is somewhat different
3 2 2 2 2 05 100 05 80 fromthem. Meanwhile, as for the elastic cross section shown
1,2 2 1 1 2 05 100 05 8.0 inFig. 3, the three sets give the same cross section, which is
shown by the solid line. Thus, the four-body CDCC solution
converges with set Il. Furthermore, we have confirmed that

the effective number of the eigenstates®bie, Nlmax' is re- Similar convergence is also seen with respect to extending

duced much for each of sets I-ll, as shown in Table II. Ymax @NdT ax The optimum value oN, determined from the
adopt the double-folding mod¢18] as follows: is the same as that f6Li scattering at vanouEIn [21 22. 1t
should be noted that all calculations shown in Figs. 2 and 3
Uj,g(R) :(NR+iN,)V2,§(R), (7)  use the same value d,. Also for ®He+'°C scattering at
229.8 MeV, we can see a similar convergence of the elastic
7)) and energy-integrated breakup cross sections with respect to
g(R) <y]'l’ L gsjlengT v'l@( extending the model space. Comparison between the calcu-

lated and measured elastic cross sections is shown in Fig. 4.
_ (P)IM T ~ In this case the optimum value bf is 0.3. In Figs. 3 and 4,
j pZ’) (1, R)PGR(r 1)onn(E,p, ) pR, the dotted lines re?present the elastic cross segtions due to the
) single-channel calculation. Then, the difference between the
solid and dotted lines shows the effect of the four-body
whererp (r1) is the coordinate of a nucleon in the projectile breakup on the elastic cross section. For W the effect
(targe) relative to the center of mass of the particle, and s sizable, the properties of which are discussed later.
=R+r;—rp. The quantum numbef represents’=(n,I,L), Recently, it was reported in Refl1] that the total reac-
and the elastic channel is denoted &y=(0,1,Lo) with I, tion cross section fotHe +*%%Bi is much larger than that for
-0 and Ly=) The ground state density dfC, p{T)(r) °Li+2%Bi at similar energies relative to the Coulomb barrier
_@ |E o) |¢(T)> where(l)m is the wave functlon energies because of the lafge ex0|tat|or1125trength diHe to
the continuum. Meanwhile, for"He+'"C scattering at

12
of C in the ground state is calculated by the microscopic 18 MeV, theE1 excitation OiﬁHe is negligible becauss, is

3a cluster mode[19]. In this study, we define the transition

q 6 (p)JM much higher than the Coulomb barrier energgbout
ensities ofHe, Py » 8 3 MeV). As shown in Fig. 5, however, we find that 15%
enhancement of the total reaction cross section is still left.
P)JIM i i i
p<§ ) (re,R) = O’Jr., L/|E Srp=r) VA0, (9)  The open circles represent the total reaction cross sections

for ®He+'%C at 18 and 229.8 MeV, calculated by four-body
o _ CDCC, while the filled circles show those fiiri+ *“C in the

As for the_nucleon-nucleon effectlve interactiofy, we use energy range 20—318 MeV, calculated by three-body CDCC
the realistic energy- and density-dependent MBDMS3Y) 151 53 \yhere the microscopid+*He model is assumed for
interaction[20]. Since the DDM3Y interaction is reaVJ the®Li structure. As mentioned above, the resulting optimum
has no imaginary part. Thus, we have multipheg, by a N, value for®Li+ 'C is about 0.5, i.e., almost independent of
complex factorNg+iN;. In the present analysis, we fiXg Ein.

=1 and optimizeN, to fit experimental data for elastic scat-  In order to investigate the origin of the 15% enhancement,
tering. It should be noted that in the three-body CDCC calwe perform the three-body CDCC calculation by assuming
culation made before fdiLi scattering on various target nu- the di-neutron model fofHe structure; in the model, the

TABLE II. The number of the Gaussian basis functigii andj'méf() for sets I, Il, and Ill. The corresponding number of eigenstates of

He, '/\/imaxr and the number of channels included in the CDCC equaﬂl{;{a are also showigsee the text for the detajls

18 MeV 18 MeV  229.8 MeV  229.8 MeV

.0%(3 .0%(3 .0%(1,2 .0%(1,2 * .2%(1,2, 2%(1,2, +

m;x) Jma(n() Im;x ) Jma(x ) Nr(r)lax Ima(X 3 Jma(x 3 NI%&X Nr%ax szax Nomax szax
Set | 8 6 6 6 204 6 6 288 17 21 28 39
Set Il 10 8 8 8 352 8 8 512 25 32 44 64
Set Il 12 10 10 10 540 10 10 800 32 42 60 85
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dashed, and solid lines are the results of the four-body CDCC cal-

culation with sets I, I, and Ill, respectively, of the Gaussian basisfrom 0.3 to 0.5 in four-body CDCC calculation fdiHe

+12C, and the resulting cross section almost reproduces the

functions.
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o . FIG. 4. The same as in Fig. 3 but f6He+*C scattering at
FIG. 2. Angular distribution of the energy-integrated breakup,og g MeV. The experimental data are taken from R@f.
cross section for’He+'%C scattering at 18 MeV. The dotted,

corresponding one fotLi+ '%C. The origin of the smalN,

®He scattering.

di-neutron density is assumed to be the same as that of tﬁ'@lue for the’He scattering is not clear at this moment, so

deuteron, and then the resultifige density is close to the

®Li one. The result of this calculation is shown by the open
triangle in Fig. 5. The difference between the open triangle[e
and the open circle at 18 MeV is due to the Borromean struc:

more systematic experimental data are highly desirable for

Finally, we calculate the dynamical polarizatidDP) po-

ntial induced by the four-body breakup processes, in order
ture of®He, which is referred to as the Borromean effect. The.tO uqrdherséind eﬁec_t‘zﬁ)f Fhe P rocetz)sses on the elastic scatter-
effect dominates about half the 15% enhancement. The rest?: ' ¢ potentialpp Is given by
of the enhancement is mainly due to the difference of the
Coulomb barrier energies betweéHe+'*C and °Li+ *°C.
Actually, when the Coulomb potential fdHe+°C is re-
placed artificially by that fofLi+ *°C, the CDCC calculation

based on the di-neutron modghe filled trianglé gives the

Upe(R) = U(R) - U] (R, (10

where U, is the so-called wave-function-equivalent local
potential derived using the elastic channel amplitl;vél%L0

total reaction cross section close to the filled circle atin the solution of the CDCC equation, ard; . is the

double-folding potential for the elastic channel. The detailed
As for ®He+'°C scattering at 229.8 MeV, we have con- definition of the DP potential is shown in R¢21]. Figure 6

firmed through the same analysis that the Borromean effecthows the DP potential for théHe+'*C scattering at

becomes negligible, as well as the effect of the difference of8 MeV with the total grazing angular momentuly=10.

the Coulomb barrier betweetHe +*?C and°Li+ *°C. This

20 MeV.

suggests no enhancement theoretically. Nevertheless, Fig. 5
shows that the total reaction cross section fee +'%C is o
even smaller than that féti+ *°C at a similar energy. This N
curious behavior is due to the fact tha§=0.3 for °*He z ", .
+12C while N;=0.5 for ®Li+ '%C at this high energy. In fact, E 0 T
the total reaction cross section is enhanced by chanigjng b§ '\\
.
1° He+'’C at 18MeV | 1000k o e
( Np=1.0, N;=0.5 ) . . . . .
0 100 200 300
L 107F E;, [MeV]
3
E B FIG. 5. The incident-energy dependence of the total reaction
] cross section for scattering 8ifle and®Li on %C. The open circles
....... 2o coupling show the results fo?H_e+12C at 18 and 229.8 MeV calculated by
10™F 0" and 2" coupling foluzr-body CDCC, while the filled circles represent those %or
T3 40 80 80 +“C at several energies calculated by three-body CDCC based on
8, [deg] the d+*He model for the®Li structure. The open triangle is the

result for®He +12C at 18 MeV calculated by three-body CDCC with
FIG. 3. Angular distribution of the elastic differential cross sec- the di-neutron model for th8He structure. The filled triangle is
tion for SHe+'%C scattering at 18 MeV. The solid and dotted lines based on the same calculation as the open triangle, except that the
show the results with and without breakup effects, respectively. Th€oulomb potential betweefHe and’C is replaced artificially by
experimental data are taken from RE].

that betweerfLi and *°C.
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sk "‘Hle+llzc 'm 1ls 1\|4ev ] with R, so the net effect oWé,(g) is negligibly small. Thus,
. \ (7 =10) one sees that inclusion of the four-body breakup processes
makes the real part of tHHe—1%C potential shallower and
5 the imaginary one deeper compared V\Ulhgo. In particular,
= 0 S the latter effect is important and can be assumed to come
= N S 7 from the Borromean structure 8fle. This is consistent with
~& / —E the fact that the total reaction cross section is enhanced by
= | N Wl the Borromean structure.
5| insensitive | / V‘}{}, In conclusion, a fully quantum-mechanical method of
- region |/ e treating four-body nuclear breakup is presented by extending
r ! - Wipp ; CDCC. The validity of the method called four-body CDCC
[ i == Im[Ug, ] is confirmed by clear convergence of the calculated elastic
_10 . L and energy-integrated breakup cross sections with respect to
0 5R [fm] 10 extending the modelspace. The four-body CDCC is found to

FIG. 6. The dynamical polarization potential fie+°C scat-

explain well the®He +'“C scattering at 18 and 229.8 MeV in
which ®He easily breaks up into two neutrons atte. We

tering at 18 MeV withJ=10. The solid and dotted lines, respec- find a 15% enhancement of the total reaction cross section of
tively, represent the real and imaginary parts of the DP potentiafHe +'%C at 18 MeV relative to that diLi+ *°C at the similar
calculated by four-body CDCC. The dashed and dot-dashed linegsnergy. Half of the 15% enhancement is due to the Bor-
correspond to those of three-body CDCC with the di-neutron modetomean structure dfHe. For the elastic scattering, the four-
for ®He structure. The dot-dot-dashed line represents the imaginanjody breakup processes make, in particular, the imaginary
part of Uy, . part of the®He -1°C potential deeper, which is originated in
the Borromean structure 8He. In the present analysis, four-
The “insensitive region” oR shown in the figure is defined body Coulomb breakup is neglected. However, it would be
with the condition tha‘ixé,o,Lol is less than 5% of its maxi- possible to treat the Coulomb breakup within the present
mum value in the asymptotic region. The DP potential isframework, if the complex-range Gaussian basis functions

almost independent of arounng in the peripheral region.

: J(4) A
In Fig. 6 the real parVyy (V,

WY (W¥) of UL, calculated by four-bodythree-body
CDCC are, respectively, shown by the sdlithshegland the
dotted (dot-dashejilines. Both of VAY and VY are repul-

sive and have almost the same strength which is about 30
of the real part otJjogo. TheW,]D(é) is about 20% of the imagi-

nary part oﬂJjOgo (dot-dot-dashed linewhile vv,’;? oscillates

bp) and the imaginary part

are taken[23]. Further work along this line is highly ex-
pected.
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