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Proton decay from triaxially deformed nuclei is investigated. The deformation parameters corresponding to
the mother nucleus are determined microscopically and the calculated decay widths are used to probe the
mean-field wave function. The proton wave function in the mother nucleus is described as a resonant state in
a coupled-channel formalism. The decay width, as well as the angular distribution of the decaying particle, are
evaluated and their dependence upon the triaxial deformation parameters is studied in the decay of161Re and
185Bi. It is found that the decay width is very sensitive to the parameters defining the triaxial deformation while
the angular distribution is a universal function which does not depend upon details of the nuclear structure.
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The investigation of nuclei at the proton drip line is a very
active field of present nuclear physics[1–3]. One important
facet of these investigations is the possibility it offers to
probe nuclear mean fields in proton rich nuclei. Many spheri-
cal as well as deformed nuclei in the region 50,Z,82 are
proton emitters. Most of the measured transitions connect
ground states[4–9], but in the last years also decays to ex-
cited states have been detected[10,11].

The study of proton emission has so far been performed
mainly for decays from odd-even nuclei. The emitted proton
has been described by using two very different approaches
which, nevertheless, provide similar results if the decay
width is very small. In one of these approaches one describes
the wave function corresponding to the decaying proton as
an outgoing solution of the Schrödinger equation. The proton
energy thus obtained is complex, corresponding to the reso-
nant pole of theS matrix in the complex energy plane
[12–14]. In the other approach one uses a coupled-channel
formalism on the real-energy axis, i.e., by means of real scat-
tering states[15–19]. Since decay widths which can be mea-
sured correspond to narrow resonances(living a relatively
long time) stationarity is a very good approximation and the
decay width can be determined in a standard way by evalu-
ating the outgoing current at large distances. A critical com-
parison between the two approaches was performed in Ref.
[20]. Recently, also odd-odd nuclei have been measured
[21,22] and theoretically analyzed[23,24]. However, in all
these cases it has been assumed that the mother and the
daughter nuclei are spherical or, if deformed, have cylindri-
cal symmetry.

During our work on proton decay from triaxially de-
formed nuclei, a study with the same topic appeared by
Davids and Esbensen[25]. Their work presents a formalism
for proton decay from triaxial nuclei, with particular empha-
sis in the intrinsicsKd and laboratorysRd representations.
However, the case of141Ho studied in their work did not

allow for sizable effects induced by triaxiality.
In a very recent paper[26] the influence of theg vibra-

tions upon the proton decay rate was also analyzed.
The aim of this paper is to investigate the influence of

triaxial deformation on the decay width as well as on the
angular distribution of the emitted protons. We will show
that triaxial deformation is crucial to understand certain cases
of proton decay. Since the existence of triaxial deformation is
one of the long-standing issues in nuclear structure, the study
of proton decay may evolve as an important tool to analyze
and determine those deformations. The formalism to be used,
based on the expansion of the wave function corresponding
to the triaxial field in spherical waves, will be presented very
briefly. Details are well known and given even in text books,
e.g., in Ref.[27]; see also the recent work in Ref.[25].

Special emphasis will be given to the features which are
specific to the description of the resonance in the mother
nucleus. An important ingredient in this type of calculations
is, besides the triaxiality of the mean field, the microscopic
description of the decay process, including the shape of the
mean field itself. We will achieve this by finding the minima
of the potential-energy surface(minimal energy), including
both deformations and pairing interactions[28].

Let us then consider the proton emission from a mother
nucleus which is odd in protons. The Schrödinger equation
describing the motion of the emitted proton in the deformed
field of a rotating nucleus is given by

HCJiMi

sad sv,r ,sd ; F−
"2

2m
Dr + Tsvd + Vsr ,sdGCJiMi

sad sv,r ,sd

= EpCJiMi

sad sv,r ,sd, s1d

wherem denotes the reduced mass,Ep is the energy of the
emitted proton,T describes the core rotation, andV is the
nuclear plus Coulomb potential. Herev are the Euler angles.
Thus, we suppose that the rotational and single-particle mo-
tions are decoupled.

In the intrinsic representation(with coordinater 8) the
wave function is given by[29]
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CJiMi

sad sv,r 8,sd =
1
Î2

o
Ki

Asa,Ji,KidfDMi,Ki

Ji* svdFsar=1dsr 8,sd

− s− dJi+KiDMi,−Ki

Ji* svdFsar=−1dsr 8,sdg. s2d

Here DMi,Ki

Ji* denotes the normalized Wigner function and
Asa ,Ji ,Kid is the mixing coefficient, labeled by the state
numbera of the triaxial core Hamiltonian, i.e.,

TsvdCJiMi

sad sv,r ,sd ; o
k=1

3
Ĵk

2

2Ik
CJiMi

sad sv,r ,sd = eaCJiMi

sad sv,r ,sd,

s3d

where Ik denote the moments of inertia in the intrinsic
nuclear system. The corresponding eigenvalue linear system
of equations can be easily derived by using standard matrix
elements of the angular momentum operators. Using the no-
tationr= ±1 for the eigenvalues ±i of the symmetry operator
R3spd and expanding the intrinsic wave function in spherical
waves one obtains

Fsardsr 8,sd = o
l jK

gljK
sardsrd

r
Y jK

fls1/2dgsr̂8,sd,

s4d
Y jK

sl1/2dsr̂8,sd ; fi lYlsr̂8d ^ x1/2ssdg jK .

In order to determine the decay width we have to evaluate
the asymptotic behavior of the outgoing proton wave func-
tion in the laboratory system of coordinates, where the pro-
ton is assumed to move with spinj which couples to the spin
Jf of some rotational band of the even-even core, i.e., the
daughter nucleus. The total spin of the system has to be
conserved, i.e., it is the spinJi of the mother nucleus. By
changing from the intrinsic to laboratory system of coordi-
nates one obtains the total wave function from the outgoing
channel viewpoint, i.e.,

CJiMi

sad sv,r ,sd =
1
Î2

o
Jf

o
KiKKf

o
l j

Āsa, ;Ji, j ,Jf ;Ki,K,Kfd

3HfDKf

Jf*svd ^ Y j
fls1/2dgsr̂,sdgJiMi

gljK
sar=1dsrd

r

+ s− dJf+K−KifD−Kf

Jf* svd ^ Y j
fls1/2dg

3sr̂,sdgJiMi

gljK
sar=−1dsrd

r
J , s5d

where we introduced the following shorthand notation,

Āsa;Ji, j ,Jf ;Ki,K,Kfd ; s− dJi−Jf−KAsa,Ji,Kid

3kJi,Ki ; j ,− KuJf,Kfl. s6d

Here we used a formal summation over three projectionsKi,
K, Kf, with the conditionKf =Ki −K. In order to compute the
decay width we rewrite the above wave function(5) by using
the following ansatz:

CJiMi

sad sv,r ,sd = o
Jfl j

fCJf

sa8dsvd ^ Y j
fsl1/2dgsr̂,sdgJiMi

fa8Jfl j
saJid srd

r
,

s7d

where byCJfMf

sa8d we denoted the wave function of the even-
even core, which is similar to(2), but of course without the
proton wave functionFsard [29]. The identification of Eqs.
(5) and (7), together with the orthonormality of the coeffi-
cientsAsa8 ,Jf ,Kfd, entering the wave function of the even-
even core, leads to the following relation for the radial com-
ponents in the laboratory system:

fa8Jfl j
saJid srd = o

KiKKf

Asa8,Jf,KfdĀsa;Ji, j ,Jf ;Ki,K,KfdgljK
sar=1dsrd.

s8d

We will investigate transitions to the ground state, withJf
=0, and therefore the coefficientAsa8 ,Jf ,Kfd will be unity.
Moreover, the angular momentum of the emitted proton is
given by the initial spinJi = j and the summation in(5) is
restricted to equal intrinsic projectionsKi −K=Kf =0. We will
consider thatr is a good quantum number and consequently
(5) contains only one term.

By using the expression of the wave function in the labo-
ratory system given by Eqs.(5) and (7) one obtains in a
standard fashion the coupled system of differential equations
describing the radial motion of the proton in the field in-
duced by the core in the intrinsic system. We want to stress
that in our calculations the spin-orbit potential is deformed
and, therefore, our system of equations contains also first-
order derivatives of the wave function[19]. In order to inte-
grate this system of equations in the intrinsic system for
positive energies we calculate a set ofN linear independent
vector functionshRj which are regular at the origin, and
another sethHj which is outgoing at large distance, i.e.,

Rl jK ;l8 j8K8srd→r→0dll8d j j 8dKK8r
l+1,

s9d
Hl jK ;l8 j8K8

s+d srd→r→`dll8d j j 8dKK8Hl
s+dskrd

= dll8d j j 8dK8KfGlskrd + iFlskrdg,

whereFlskrd and Glskrd are the regular and irregular Cou-
lomb functions.

The internal and external solutions can be written as

gljK
sintdsrd = o

l8 j8K8

Rl jK ;l8 j8K8srdBl8 j8K8,

s10d
gljK

sextdsrd = o
l8 j8K8

Hl jK ;l8 j8K8
s+d srdCl8 j8K8→r→`CljKHl

s+dskrd,

where for simplicity we dropped the upper indicesa, r. We
determine the matching constants as usual, i.e., by using the
continuity of the functions and their derivatives at some ra-
dius r0. In order to find a nontrivial solution one obtains the
secular equation
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det3 Rsr0d Hs+dsr0d

d

dr
Rsr0d

d

dr
Hs+dsr0d 4 = 0, s11d

which may have real(bound) as well as complex(resonance)
solutions. These correspond to the poles of theS matrix in
the complex energy plane. These solutions are the energies
of the deformed Gamow states. However, if the Coulomb
barrier is high, as it should be for the resonance to be mea-
surable(a mean life of a picosecond corresponds to a width
of 6.6310−10 MeV), the regular Coulomb functions are neg-
ligible and the solutions are virtually real functions.

Notice that the coefficientsB andC in Eq. (10) are fully
determined by using the normalization of the wave function
in the internal region. Moreover, since the proton state cor-
responds to a very narrow resonance, one can evaluate the
internal wave function by a diagonalization procedure using
a harmonic-oscillator basis. The matching constant of the
external part can be found by inverting(10), i.e.,

CljK = o
l8 j8K8

fHl jK ;l8 j8K8
s+d sr0dg−1gl8 j8K8

sintd sr0d. s12d

The “exact” results, i.e., those corresponding to theS-matrix
poles(Gamow functions), are close to the approximated ones
when, as in this case, the resonances are narrow. This well-
known feature is shown, e.g., in Ref.[30].

For bound states the outgoing solution is replaced in(9)
by an exponentialy decreasing state. We label the solutions
of Eq. (11) (bound states and narrow resonances) by the ei-
genvalue indexn.

For large distances the radial functionfsrd in Eq. (7) de-
fines the usual scattering amplitude. Due to the orthonormal-
ity of the angular functions the decay width in theJf =0
channel is given by

G0nlj = "vun
2 lim

r→`
E CJiMi

† sv,r ,sdCJiMi
sv,r ,sdr2dr̂dv

= "vun
2 lim

r→`
Uo

Ki

f0nljKi−Ki
srdU2

= "vun
2u f̄0nlju2, s13d

where we considered the scalar product over the spin vari-
able and we omitted the upper indicesa, Ji in the radial wave
function. Here we assumed that the transition proceeds to the
final ground stateJf =0. The numberun is the BCS amplitude
for the deformed leveln and

f̄0nlj = o
Ki

s− d j−KiAs j ,Ki,dk j ,Ki ; j ,− Kiu0,0lCnljKi
. s14d

Notice that in the above relation one has a coherent summa-
tion over intrinsic projectionsKi because all these terms have
a common angular function withKi −K=0 in (5).

To evaluate the angular distribution of the decaying pro-
ton one has to integrate over the rotational variablesv for
each direction of decayr̂, i.e.,

Gnsr̂d = "vun
2 lim

r→`
E CJiMi

† sv,r ,sdCJiMi
sv,r ,sdr2dv

=
Gn

4p
Wsud,

s15d
Wsud = 1 + o

Lù1
aLPLscosud.

For transitions to the ground state, withJf =0, sJi = jd the
angular momentum of the emitted proton is given by the
initial spin Ji = j and the coefficientaL has a simple expres-
sion, namely,

aL = s− dMi+1/2s2Ji + 1dkJi,− Mi ;Ji,MiuL,0l

3kJi,
1
2 ;Ji,−

1
2uL,0l . s16d

This relation is simpler than the one corresponding to the
a-particle angular distribution for transitions in odd-mass nu-
clei [31]. It does not depend upon nuclear structure details; in
particular, it is independent of the deformation parameters.
The main reason for this is that in the case of favoreda
decay the spinJi of the odd nucleon is not changed during
the decay process, i.e.,Ji =Jf. Therefore, the angular momen-
tum of the emitted particle takes several values, namelyuJi
−Jfuø l øJi +Jf. In our case the odd proton is emitted with
the same spin as the initial statej =Ji and the coefficientsaL
do not depend upon the details of the nuclear structure, given

by the amplitudesf̄ Jfnlj. The angular distribution in this case
provides only information about the initial distribution of the
spin projectionMi. A similar conclusion was reached for
axially deformed nuclei in Ref.[32].

We applied the formalism described above to analyze the
decay of the proton emitters161Re, with a Q value of Ep
=1192s2d keV and a half-lifeTp=0.37s4d ms [33], and185Bi
with Ep=1585s9d keV andTp=44s16d ms [34]. Thus, the en-
ergy of the decaying resonance has been measured but the
corresponding spinJi is not experimentally known in this
nuclei yet.

The triaxially deformed mean field corresponding to the
even-even core was chosen to be of a Woods-Saxon-type
with the radius given by

Rsu,fd = R0F1 + b2 cosgY20sud +
b2

Î2
sing„Y22su,fd

+ Y2−2su,fd…G . s17d

Our potential-energy surface calculations reveal the inter-
esting feature that the ground state of161Re has negative
parity and the rather weak quadrupole deformation given by
b2=0.110,g=0.7°. Instead, the first excited state has posi-
tive parity and a strong quadrupole deformation, i.e.,b2
=0.100,g=−26.3°. We thus deal with a case of strong po-
larizing effect of the single particle upon the core, where the
negative-parity ground state is axially symmetric and the ex-
cited state of positive parity shows strong triaxial deforma-
tion. A similar case emerges in185Bi, where the first excited
state has positive parity and a strong triaxial shape withb2
=0.156,g=−22.1°, whereas the ground state with negative
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parity is close to axial symmetry, having a quadrupole defor-
mation ofb2=0.100,g=−7°. Forthese deformations we di-
agonalized the triaxial rotator in order to compute the
As j ,Kid coefficients entering(14). It turns out that the major
component is given by the maximal intrinsic angular projec-
tion for all values of the total spinj =Ji.

We reproduced the energy of the proton resonant state by
adjusting the depth of the central Woods-Saxon potential
while the other parameters which are not determined by our
minimal-energy procedure correspond to the universal set of
parameters[35].

We will now present the calculation of the half-lives cor-
responding to proton emission from161Re.

One would(naively) expect that the most likely state in
which the proton would move while decaying is the one
corresponding to the largest component of the wave function.
However, our results, shown in Table I contradict strongly
this expectation. One sees that, in general, the largest wave-
function componentbnlj

2 =oKBnljK
2 , with BnljK given by (10),

does not correspond to the lowest half-life. Instead, there is a
subtle interplay between the centrifugal barrier and the am-
plitude of the considered component. Forb2=0.1 and 0.2
one obtains a strong dependence upon the angular momen-
tum but the calculated values ofT are still too large. For
b2=0.3,g=−26.3° thes1/2 andd3/2 components become low-

est in energy and provide comparable half-lives, but still
overestimating the experimental value by one order of mag-
nitude.

Since the negative-parity ground state by no means can
account for the decay width, we consider the first excited
state having positive parity. Its structure is dominated by the
componentss1/2 andd3/2. Notice that the largest component,
given in Table II is alwayss1/2 for all considered cases.

Again, we adjust the energyEn of the states to the experi-
mental value corresponding to the decaying resonance. This
is now an excited state with excitation energyen=En−EF,
whereEF is the Fermi energy provided by our calculation.

The remarkable feature in Table II is that one finds that
the best value forT is obtained by using the deformation
parameters corresponding to the minimal energy. In addition,
this is the first excited state in the mother nucleus. One also
sees that between the state corresponding to the triaxial case
and the axial one there is a difference of one order of mag-
nitude. One thus finds that proton decay indeed is a powerful
tool to probe deformations in nuclei.

For the proton decay from185Bi we proceeded as before,
i.e., we first evaluated the half-lives among thesl j d compo-
nents of the deformed proton wave function at the Fermi
level having negative parity. We found, again, that the cen-
trifugal barrier hinders the decay too much and, therefore,
the experimental value is best reproduced by the state with
the lowest angular momentum. This can be seen in Table III,
where we only show the case ofb2=0.156, because the gen-
eral tendency ofT as a function ofb2 is as before.

One sees that there is not anysl , jd combination for which
the calculated half-life from the ground state agrees with
experiment. We therefore tried to evaluateT starting from the
lowest excited states. The results are shown in Table IV.
Once again we obtained the best agreement for the case of
s1/2 corresponding to the first excited state and for the defor-
mation parameters predicted by the minimal energy.

In summary, we have analyzed in this paper the influence
of triaxiality upon the half-life corresponding to proton de-
cay. For this we solved the Schrödinger equation by using a
coupled-channel approach. Our analysis showed that the an-
gular distribution corresponding to transitions to the ground
state is not sensitive to nuclear structure details, a feature
which is at variance witha decay from odd-mass nuclei,
where the anisotropy is proportional to the quadrupole defor-
mation.

TABLE I. Ratio T/Texpbetween the calculated and experimental
half-lives corresponding to proton decay from the Fermi level in
161Re. The deformation parameterg is given in degrees whileb2

=0.1, 0.2, and 0.3 for the cases(a), (b), and (c), respectively. The
quantitybnlj

2 is the wave-function amplitude squared corresponding
to the single-particle angular momentumsl , jd in our basis.

b2 g l j bnlj
2 T/Texp

(a)
0.100 0.0 h9/2 0.003 1.93108

h11/2 0.994 3.43105

0.100 −26.3 f7/2 0.016 1.13105

h9/2 0.002 1.73108

h11/2 0.979 3.23105

(b)
0.200 0.0 h9/2 0.010 5.53107

h11/2 0.974 3.23105

0.200 −26.3 p3/2 0.001 4.63106

f5/2 0.001 7.43106

f7/2 0.049 3.73104

h9/2 0.001 4.93107

h11/2 0.922 4.03105

(c)
0.300 0.0 h9/2 0.019 3.23107

h11/2 0.941 3.33105

0.300 −26.3 s1/2 0.048 1.83102

d3/2 0.288 2.23102

d5/2 0.172 1.43103

g7/2 0.202 1.13104

d9/2 0.028 5.03108

i11/2 0.012 5.131010

TABLE II. Ratio T/Texp between the calculated and experimen-
tal half-lives for proton decay from the lowest excited states in
161Re. Only the calculated values corresponding to the configuration
s1/2, with amplitude squaredbns1/2

2 , are given. The energy of the state
is «n (in MeV). The deformation parameterg is given in degrees.

en b2 g bns1/2

2 T/Texp

0.916 0.100 0.0 0.670 39.7
0.491 0.100 −26.3 0.327 4.6
1.487 0.200 0.0 0.621 39.0
1.042 0.200 −26.3 0.232 7.0
2.197 0.300 0.0 0.583 40.2
2.051 0.300 −26.3 0.156 15.4
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We calculated the equilibrium deformation parameters by
the procedure of minimal energy[28] in the proton emitter
cases of161Re and185Bi. We found large triaxial deforma-
tions in these nuclei, depending on the particular structure of
the odd particle. We adjusted the depth of the nuclear inter-
action to obtain the experimental proton energy. It turns out
that the decay width is very sensitive to the triaxial deforma-
tion. This becomes especially clear for thes1/2 state. But the
most important feature of our calculation is that the deforma-
tion predicted by the minimal energy provides a half-life that

reproduces well the corresponding experimental value as-
suming that the ground state of the mother nucleus is a reso-
nances1/2. This is an impressive achievement of the model,
particularly considering that the width can vary by many
orders of magnitude by changing the deformation parameters
as well as the configurations involved in the decay, as seen in
the tables.

The high sensitivity of the calculated half-life upon angu-
lar momenta and deformation allows one to assert that proton
decay is a powerful tool to determine spin, as well as to
uncover triaxial shapes in nuclei.
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