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Proton emission from triaxial nuclei
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Proton decay from triaxially deformed nuclei is investigated. The deformation parameters corresponding to
the mother nucleus are determined microscopically and the calculated decay widths are used to probe the
mean-field wave function. The proton wave function in the mother nucleus is described as a resonant state in
a coupled-channel formalism. The decay width, as well as the angular distribution of the decaying particle, are
evaluated and their dependence upon the triaxial deformation parameters is studied in the d&&ay arid
18%j. It is found that the decay width is very sensitive to the parameters defining the triaxial deformation while
the angular distribution is a universal function which does not depend upon details of the nuclear structure.
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The investigation of nuclei at the proton drip line is a very allow for sizable effects induced by triaxiality.
active field of present nuclear physigs-3]. One important In a very recent papdi26] the influence of they vibra-

facet of these investigations is the possibility it offers totions upon the proton decay rate was also analyzed.
probe nuclear mean fields in proton rich nuclei. Many spheri- The aim of this paper is to investigate the influence of
cal as well as deformed nuclei in the regionSA<82 are  triaxial deformation on the decay width as well as on the
proton emitters. Most of the measured transitions connecingular distribution of the emitted protons. We will show
ground state$4—9], but in the last years also decays to ex-that triaxial deformation is crucial to understand certain cases
cited states have been detec{&d,1]. of proton decay. Since the existence of triaxial deformation is
The study of proton emission has so far been performe@ne of the long-standing issues in nuclear structure, the study
mainly for decays from odd-even nuclei. The emitted protonof proton decay may evolve as an important tool to analyze
has been described by using two very different approachesnd determine those deformations. The formalism to be used,
which, nevertheless, provide similar results if the decaybased on the expansion of the wave function corresponding
width is very small. In one of these approaches one describas the triaxial field in spherical waves, will be presented very
the wave function corresponding to the decaying proton agriefly. Details are well known and given even in text books,
an outgoing solution of the Schrodinger equation. The protore.g., in Ref.[27]; see also the recent work in R¢R5].
energy thus obtained is complex, corresponding to the reso- Special emphasis will be given to the features which are
nant pole of theS matrix in the complex energy plane specific to the description of the resonance in the mother
[12-14. In the other approach one uses a coupled-channglucleus. An important ingredient in this type of calculations
formalism on the real-energy axis, i.e., by means of real scas, besides the triaxiality of the mean field, the microscopic
tering state$15-19. Since decay widths which can be mea- description of the decay process, including the shape of the
sured correspond to narrow resonandesng a relatively  mean field itself. We will achieve this by finding the minima
long time) stationarity is a very good approximation and the of the potential-energy surfageninimal energy, including
decay width can be determined in a standard way by evalupoth deformations and pairing interactiof2s).
ating the outgoing current at large distances. A critical com- et us then consider the proton emission from a mother
parison between the two approaches was performed in Refcleus which is odd in protons. The Schrédinger equation
[20]. Recently, also odd-odd nuclei have been measuregdescribing the motion of the emitted proton in the deformed
[21,22 and theoretically analyzefP3,24. However, in all  field of a rotating nucleus is given by
these cases it has been assumed that the mother and the

daughter nuclei are spherical or, if deformed, have cylindri- 72

cal symmetry. H‘I’(f,\%i(w.r,s) = —Z—Ar+T(w)+V(F.S) ‘I’(Jﬁ\)/.i(w,f,s)
During our work on proton decay from triaxially de- H

formed nuclei, a study with the same topic appeared by :Ep\pgif&i(w,r,s), (1)

Davids and Esbensd25]. Their work presents a formalism
for proton decay from triaxial nuclei, with particular empha-
sis in the intrinsic(K) and laboratory(R) representations.
However, the case of*'Ho studied in their work did not

where u denotes the reduced mass, is the energy of the
emitted proton,T describes the core rotation, aMlis the
nuclear plus Coulomb potential. Heseare the Euler angles.
Thus, we suppose that the rotational and single-particle mo-
tions are decoupled.

*Corresponding author. Email address: In the intrinsic representatio(with coordinater’) the
delion@theorl.theory.nipne.ro wave function is given by29]
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Here Dy  denotes the normalized Wigner function and where by\IfJ v, We denoted the wave function of the even-

Ala,J;,K;) is the mixing coefficient, labeled by the state gyen core, which is similar t®), but of course without the
numberea of the triaxial core Hamiltonian, i.e., proton wave functiond@ [29]. The identification of Egs.
s - (5) and (7), together with the orthonormality of the coeffi-
(@ J (@ (a) cientsA(«’,J;,K;), entering the wave function of the even-
T(@) Wi (1,9 = EE\I’JM (1,9 = €Wy (@15, even core, leads to the following relation for the radial com-

@ ponents in the laboratory system:
f(ad

where Z,, denote the moments of inertia in the intrinsic 'l
nuclear system. The corresponding eigenvalue linear system

of equations can be easily derived by using standard matrix (8)
elements of the angular momentum operators. Using the n
tationp=+1 for the eigenvaluesiiof the symmetry operator
R;(7) and expanding the intrinsic wave function in spherical
waves one obtains

= > A, K)Aa;dj, 30K K, KngiiZ=(r).
KiKK¢

We will investigate transitions to the ground state, with
=0, and therefore the coefficieM(a’,J;,K;) will be unity.
Moreover, the angular momentum of the emitted proton is
given by the initial spinJ;=j and the summation i5) is
restricted to equal intrinsic projectioks—K=K;=0. We will

Ot g => M)}EL(l/Z)](f',S), consider thap is a good quantum number and consequently
ljK (5) contains only one term.
(4) By using the expression of the wave function in the labo-
y(lllz(r 9 =[i'Y,(#’ ) ® X129 k.- ratory system given by Eqg5) and (7) one obtains in a

standard fashion the coupled system of differential equations

In order to determine the decay width we have to evaluatejescribing the radial motion of the proton in the field in-
the asymptotic behavior of the outgoing proton wave func-duced by the core in the intrinsic system. We want to stress
tion in the laboratory system of coordinates, where the prothat in our calculations the spin-orbit potential is deformed
ton is assumed to move with spjnwhich couples to the spin and, therefore, our system of equations contains also first-
J; of some rotational band of the even-even core, i.e., th@rder derivatives of the wave functiga9]. In order to inte-
daughter nucleus. The total spin of the system has to bgrate this system of equations in the intrinsic system for
conserved, i.e., it is the spij) of the mother nucleus. By positive energies we calculate a setMfinear independent
changing from the intrinsic to laboratory system of coordi-vector functions{R} which are regular at the origin, and
nates one obtains the total wave function from the outgoinginother sef?} which is outgoing at large distance, i.e.,
channel viewpoint, i.e.,

Rijkrjrkr (=06 6 St

JM(wyrys)_ /_E 2 ZA(Q!YJ“I ‘]annK Kf) (+) (+) (9)
V23 KKK, 1 Hjprjrr (N —=re: it 65y S Hy 7 (Kr)
(a 1) .
X{[DJKff*(w) ® 3,][|(1/2)](F,$)]Ji K g (r) = 811 6 6 k[ Gi(kr) +iF(kr)],

v 2] where F,(kr) and G,(kr) are the regular and irregular Cou-
+ (=)D (0) © I lomb functions.

gler="(r) The internal and external solutions can be written as
XE9m [ 5 t
gf}E)(r)= > Rijk1rjrer (NDByrjrkr s
where we introduced the following shorthand notation, RS 10
— (exdry = (+)
Al;33,1,35 K3 K K) = ()77 KA (@, 3, K) QR = 2 My (Crjne—r-CcH{ kD),
) I!j!KI
(3K § - K3 (8) o »
where for simplicity we dropped the upper indicesp. We
Here we used a formal summation over three projections determine the matching constants as usual, i.e., by using the
K, K¢, with the conditionK;=K;—K. In order to compute the continuity of the functions and their derivatives at some ra-
decay width we rewrite the above wave functi@by using  diusr,. In order to find a nontrivial solution one obtains the
the following ansatz: secular equation
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R(ro) H(rg)

def d d
aR(ro) _H(+)(ro)

r In
d =—W(0),
l (6)

0. 12 r(7) :hvuﬁrli_r]lf‘I’}iMi(w,r,s)\IfJiMi(w,r,s)rzdw

which may have regbound as well as complegesonance

solutions. These correspond to the poles of $hmatrix in W(6) =1+ > a P (cos6).
the complex energy plane. These solutions are the energies L=1

of the deformed Gamow states. However, if the CoulombFor transitions to the ground state, with=0, (J;=j) the
barrier is high, as it should be for the resonance to be meangular momentum of the emitted proton is given by the

surable(a mean life of a picosecond corresponds to a widthinitial spin J,=j and the coefficiena, has a simple expres-
of 6.6X 107*° MeV), the regular Coulomb functions are neg- sion, namely,

ligible and the solutions are virtually real functions. Vet1/2
Notice that the coefficient8 and C in Eq. (10) are fully a = (=)MTA23 + 1(J, - M 3, ML, 0)
determined by using the normalization of the wave function 1.9 _1
determ ! ; x(J1, 333, 3IL,0). (16)
in the internal region. Moreover, since the proton state cor-
responds to a very narrow resonance, one can evaluate tAd&is relation is simpler than the one corresponding to the
internal wave function by a diagonalization procedure usingx-particle angular distribution for transitions in odd-mass nu-
a harmonic-oscillator basis. The matching constant of thelei[31]. It does not depend upon nuclear structure details; in

(15

external part can be found by invertigg0), i.e., particular, it is independent of the deformation parameters.
The main reason for this is that in the case of favoted
1 h i of th I i h i
Cix = D [H&);I,j,w(ro)] 1g|(|/rj1t,)K,(r0). (12) decay the spinJ; of the odd nucleon is not changed during

the decay process, i.€;,=J;. Therefore, the angular momen-
tum of the emitted particle takes several values, namkly
-J|<I<J+J. In our case the odd proton is emitted with

I/J-/K/

The “exact” results, i.e., those corresponding to $hmatrix

oles(Gamow functiony are close to the approximated ones the same spin as the initial stgteJ; and the coefficients,
p L PP . ﬁio not depend upon the details of the nuclear structure, given
when, as in this case, the resonances are narrow. This well- —

known feature is shown, e.g., in R¢80]. by the amplitudes; ;. The angular distribution in this case

For bound states the outgoing solution is rep|ace(9)n provides only information about the initial distribution of the
by an exponentialy decreasing state. We label the solution&Pin projectionM;. A similar conclusion was reached for

of Eq. (11) (bound states and narrow resonandssthe ei-  axially deformed nuclei in Ref32].
genvalue index. We applied the formalism described above to analyze the

For large distances the radial functiéf) in Eq.(7) de-  decay of the proton emitter¥'Re, with aQ value %E Ep
fines the usual scattering amplitude. Due to the orthonormaF 11942) keV and a half-lifeT,=0.3714) ms [33], and *Bi
ity of the angular functions the decay width in tde=0  With E;=158%9) keV andT,=44(16) us [34]. Thus, the en-

channel is given by ergy of the decaying resonance has been measured but the
corresponding spird; is not experimentally known in this
nuclei yet.
T onij = fiwu2 lim f\If}iMi(w,r,s)\IfJiMi(w,r,s)rzd”rdw The triaxially deformed mean field corresponding to the
r—oo

even-even core was chosen to be of a Woods-Saxon-type
= Ao lim 2=hvuﬁ|f0n|j|2, (13) with the radius given by

r—oo

> foniic, -1, ()

Ki

R(6,¢) = Ro{l + B2 COSYY2o(6) + é sin ¥(Y22(6, ¢)
where we considered the scalar product over the spin vari- V2
able and we omitted the upper indices]; in the radial wave +Yoo(6, ¢,))} ) (17)
function. Here we assumed that the transition proceeds to the

final ground statd;=0. The numbeu, is the BCS amplitude

for the deformed leveh and Our potential-energy surface calculations reveal the inter-

esting feature that the ground state ‘6iRe has negative
_ . parity and the rather weak quadrupole deformation given by
fonij => (—)J'KiA(j,Ki,)<j,Ki;j,—Ki|0,0>Cn|jKi. (14 B,=0.110,y=0.7°. Instead, the first excited state has posi-

Ki tive parity and a strong quadrupole deformation, i@,

=0.100, y=-26.3°. We thus deal with a case of strong po-
Notice that in the above relation one has a coherent summéarizing effect of the single particle upon the core, where the
tion over intrinsic projection&; because all these terms have negative-parity ground state is axially symmetric and the ex-
a common angular function witk;—K=0 in (5). cited state of positive parity shows strong triaxial deforma-

To evaluate the angular distribution of the decaying pro-ion. A similar case emerges #iBi, where the first excited

ton one has to integrate over the rotational variakde®r  state has positive parity and a strong triaxial shape ith
each direction of decay, i.e., =0.156, y=-22.1°, whereas the ground state with negative
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TABLE I. Ratio T/ Ty, between the calculated and experimental ~ TABLE Il. Ratio T/Te,, between the calculated and experimen-
half-lives corresponding to proton decay from the Fermi level intal half-lives for proton decay from the lowest excited states in
161Re. The deformation parametsris given in degrees whilg,  !®'Re. Only the calculated values corresponding to the configuration
=0.1, 0.2, and 0.3 for the casés, (b), and(c), respectively. The s, with amplitude squareuﬁsllz, are given. The energy of the state
quantitybﬁIj is the wave-function amplitude squared correspondingis ¢, (in MeV). The deformation parameteris given in degrees.
to the single-particle angular momentuinj) in our basis.

€n B2 Y bﬁ T/ Tex
B y ] b2, e 2 :
0.916 0.100 0.0 0.670 39.7
(@ 0.491 0.100 -26.3 0.327 4.6
0.100 0.0 ho/2 0.003 1.9x10° 1.487 0.200 0.0 0.621 39.0
hyys2 0.994 3.4x10° 1.042 0.200 -26.3 0.232 7.0
0.100 -26.3 f212 0.016 1LX10° 2.197 0.300 0.0 0.583 40.2
hg/2 0.002 17 10° 2.051 0.300 -26.3 0.156 15.4
hi1/o 0.979 3.2 1P
(0) est in energy and provide comparable half-lives, but still
0.200 0.0 hej2 0.010 5.5¢10/ overestimating the experimental value by one order of mag-
0.200 -26.3 P3s2 0.001 4.6<10° Since the negative-parity ground state by no means can
f50 0.001 7.4<10° account for the decay width, we consider the first excited
2/ 0.049 3.7 10 state having positive parity. Its structure is dominated by the
ho/2 0.001 4.9<107 componentss, ar_1d dsj». Notice that the Ia_lrgest component,
hy1jo 0.922 4.0 10° given in Table Il is always,, for all considered cases.
© Agt:]alln, \I/ve adjust the gner?(nt(r)]f trée states to the expen_—rh.
mental value corresponding to the decaying resonance. This
0.300 0.0 oz 0.019 3.2107 is now an excited state with excitation energy=E,—Eg,
hi1r2 0.941 3.3¢10° whereEg is the Fermi energy provided by our calculation.
0.300 —26.3 S112 0.048 1.8<10° The remarkable feature in Table Il is that one finds that
daj2 0.288 2.2<107 the best value fo is obtained by using the deformation
ds2 0.172 1.4<10° parameters corresponding to the minimal energy. In addition,
972 0.202 1.1x10* this is the first excited state in the mother nucleus. One also
dosz 0.028 5.0< 10° sees that between the state corresponding to the triaxial case
11/ 0.012 5.1x 100 and the axial one there is a difference of one order of mag-

nitude. One thus finds that proton decay indeed is a powerful
tool to probe deformations in nuclei.
parity is close to axial symmetry, having a quadrupole defor- For the proton decay fronf™Bi we proceeded as before,
mation of 8,=0.100,y=-7°. Forthese deformations we di- i.e., we first evaluated the half-lives among g compo-
agonalized the triaxial rotator in order to compute thenents of the deformed proton wave function at the Fermi
A(j,K;) coefficients enteringl4). It turns out that the major level having negative parity. We found, again, that the cen-
component is given by the maximal intrinsic angular projec-trifugal barrier hinders the decay too much and, therefore,
tion for all values of the total spin=J;. the experimental value is best reproduced by the state with
We reproduced the energy of the proton resonant state ke lowest angular momentum. This can be seen in Table I,
adjusting the depth of the central Woods-Saxon potentialvhere we only show the case §=0.156, because the gen-
while the other parameters which are not determined by oueral tendency ofl as a function of3, is as before.
minimal-energy procedure correspond to the universal set of One sees that there is not aftyj) combination for which

parameter$35]. the calculated half-life from the ground state agrees with
We will now present the calculation of the half-lives cor- experiment. We therefore tried to evaludtstarting from the
responding to proton emission froth'Re. lowest excited states. The results are shown in Table IV.

One would(naively) expect that the most likely state in Once again we obtained the best agreement for the case of
which the proton would move while decaying is the ones,;, corresponding to the first excited state and for the defor-
corresponding to the largest component of the wave functiormation parameters predicted by the minimal energy.
However, our results, shown in Table | contradict strongly In summary, we have analyzed in this paper the influence
this expectation. One sees that, in general, the largest wavef triaxiality upon the half-life corresponding to proton de-
function componenbﬁ,j=EKBﬁ|-K, with Bk given by (10), cay. For this we solved the Schrddinger equation by using a
does not correspond to the lowest half-life. Instead, there is aoupled-channel approach. Our analysis showed that the an-
subtle interplay between the centrifugal barrier and the amgular distribution corresponding to transitions to the ground
plitude of the considered component. F85=0.1 and 0.2 state is not sensitive to nuclear structure details, a feature
one obtains a strong dependence upon the angular momewhich is at variance withe decay from odd-mass nuclei,
tum but the calculated values af are still too large. For where the anisotropy is proportional to the quadrupole defor-
B>=0.3,y=-26.3° thes;;, andds;, components become low- mation.
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TABLE Ill. The same as in Table I, but fot®Bi and B, TABLE IV. The same as in Table I, but fot®®Bi and 3,
=0.156. =0.156.
Y lj bﬁlj T/ Texp Y €n lj bﬁlj T/ Texp
0.0 P12 0.034 1.5¢ 107 0.0 1.028 Si2 0.677 11.4
P3/2 0.047 1.1x 10 dsj 0.226 1.0< 10
fs/ 0.202 1.0<10° ds/ 0.075 7.9 10*
21 0.058 2.0< 10° 97/ 0.020 9.8 10°
ho/2 0.616 1.2x10° Jo/2 0.002 1.7 10°
-22.1 P12 0.015 3.4x 107 -22.1 0.020 Si2 0.374 3.8
P32 0.015 3.5¢ 10 dan 0.158 7.1
fsr2 0.134 3.8 10* ds/2 0.046 1.3x 107
f210 0.028 3.2 10° 9712 0.095 3.5¢10°
ho/2 0.661 2.3x 10 Jo/2 0.004 2.3X10°

S . reproduces well the corresponding experimental value as-
We calculated the equilibrium deformation parameters byy ming that the ground state of the mother nucleus is a reso-

the proceéjure of nlgnlmal enerd®8] in the proton emitter  5nce . This is an impressive achievement of the model,
cases of “Re and**Bi. We found large triaxial deforma- particularly considering that the width can vary by many
tions in these nuclei, depending on the particular structure orders of magnitude by changing the deformation parameters
the odd particle. We adjusted the depth of the nuclear interas well as the configurations involved in the decay, as seen in
action to obtain the experimental proton energy. It turns outhe tables.

that the decay width is very sensitive to the triaxial deforma-  The high sensitivity of the calculated half-life upon angu-
tion. This becomes especially clear for the state. But the |lar momenta and deformation allows one to assert that proton
most important feature of our calculation is that the deformadecay is a powerful tool to determine spin, as well as to
tion predicted by the minimal energy provides a half-life thatuncover triaxial shapes in nuclei.
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