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The low-momentum nucleon-nucleon interactionVlow k is applied to three- and four-nucleon systems. We
investigate the3H, 3He, and4He binding energies for a wide range of the momentum cutoffs. By construction,
all low-energy two-body observables are cutoff independent, and therefore, any cutoff dependence is due to
missing three-body or higher-body forces. We argue that for reasonable cutoffsVlow k is similar to high-order
interactions derived from chiral effective field theory. This motivates augmentingVlow k by corresponding
three-nucleon forces. The set of low-momentum two- and three-nucleon forces can be used in calculations of
nuclear structure and reactions. We find that three-nucleon force contributions are perturbative for small
cutoffs.
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Microscopic nuclear many-body calculations are compli-
cated by the short-distance repulsion in nuclear forces, which
leads to strong high-momentum components in nuclear wave
functions. Usually, one solves this problem by introducing an
effective interaction, the BruecknerG matrix, which resums
in-medium particle-particle scattering. TheG matrix is a soft
interaction, which is both energy and nucleus dependent and
typically requires approximations in practice.

An alternative strategy to construct a soft interaction by
integrating out the high-momentum components in free
space has been formulated in[1]. Using a renormalization-
group(RG) approach, phenomenological two-body potential
models can be evolved to an effective low-momentum inter-
action, calledVlow k, which is energy independent, Hermit-
ian, and preserves the on-shellT matrix below a cutoffL in
momentum space as well as the deuteron binding energy. For
L&2 fm−1, the matrix elements ofVlow k are practically in-
dependent of the potential model it is derived from and thus
unifies all nuclear forces used in microscopic nuclear struc-
ture calculations[2]. By construction,Vlow k is much softer
than the modern potential models, and thus can be used di-
rectly for microscopic nuclear calculations in different mass
regions[3,4] or for different densities[5,6]. This is clearly
important to theoretically extrapolate to the drip lines.

Over the last few years, there has also been an immense
progress in our understanding of nuclear interactions from
chiral effective field theory(EFT). The spontaneous breaking
of the approximate chiral symmetry leads to the appearance
of light Goldstone bosons, the pions. Their masses are well
below any other hadronic excitation and they drive the long-
range nuclear interaction. Due to their derivative coupling
one can formulate a power counting that restricts the dia-
grams contributing to the nuclear interaction at low energy.
This approach qualitatively explains the hierarchy of two-
nucleon (2N), three-nucleon(3N), and higher-body forces

[7], which is observed using phenomenological models. On a
quantitative level, it was shown that the resulting 2N and
consistent higher-body interactions lead to a quite good de-
scription of 2N as well as 3N observables[8–12]. In the
pion-full EFT approach, the Lippmann-Schwinger equation
is regularized by imposing a cutoffL<2.5–3.0 fm−1. Thus,
the chiral potentials are also low-momentum interactions,
and with the universal property ofVlow k, this suggests that
Vlow k effectively parametrizes higher-order chiral 2N inter-
actions. While EFT offers the only known systematic ap-
proach to consistent 2N and higher-body forces,Vlow k can
be evolved to arbitrary cutoffs with cutoff-independent 2N
observables.

SinceVlow k is constructed within the 2N system, one ne-
glects many-body forces due to degrees of freedom missing
in the effective theory(contributions from theD) as well as
due to the truncation to low momenta(contributions from
high-momentum nucleons). In any effective theory, these ef-
fects are inseparable. In this Communication, we use cutoff
dependence as a tool to assess the effects of many-body
forces. Motivated by the similarities betweenVlow k and chi-
ral low-momentum interactions, we combineVlow k with the
leading chiral 3N force to absorb the cutoff dependence in
Aø4 binding energies. Finally, we examine the expectation
values of the various force components to check that the
hierarchy of nuclear two- and three-body forces is main-
tained.

We first calculate 3N and 4N binding energies by solving
the Faddeev-Yakubovsky equations with only the two-body
Vlow k. We include electromagnetic and isospin-breaking ef-
fects and vary the cutoff over a wide range. Our results are
numerically stable for the studied cutoff values, which re-
quire a careful treatment of the necessary interpolations in
the vicinity of the sharp cutoff. We also checked the conver-
gence with respect to the included partial waves. We estimate
an accuracy of 2 keV for the3H and3He and 50 keV for the
4He calculations. More details about the numerical method
can be found in[13].

In Fig. 1, we give results for binding energies of the 3N
system. We show results for theVlow k derived from the CD-

*Email address: nogga@phys.washington.edu
†Email address: bogner@phys.washington.edu
‡Email address: aschwenk@mps.ohio-state.edu

PHYSICAL REVIEW C 70, 061002(R) (2004)

RAPID COMMUNICATIONS

0556-2813/2004/70(6)/061002(4)/$22.50 ©2004 The American Physical Society061002-1



Bonn 2000[14] and Argonnev18 [15] interactions. In both
cases electromagnetic interactions were included. The cutoff
dependence is due to missing three-body forces. For large
cutoffs, we reproduce the known binding energies obtained
with the bare interactions only. For intermediate cutoffs, we
find a stronger binding withVlow k. This could be expected,
because softer interactions generally lead to stronger bind-
ing. It is also consistent with the correlation between the
triton binding energy and the deuteronD-state probability
observed for phenomenological potentials[16]. For Vlow k

the D-state probability decreases monotonically with a de-
creasing cutoff. Therefore, this correlation evidently breaks
down for cutoffs belowL<1.6 fm−1. The binding then de-
creases, as attractive parts of the bare interactions are inte-
grated out.

For cutoffsL&2mp, truly model-independent results are
obtained and the binding-energy curves for the CD-Bonn
2000 and Argonnev18 Vlow k interactions collapse. In Fig. 1,
we also show the cutoff dependence of the difference in3He
and triton binding energies, which is due to electromagnetic
and isospin-breaking contributions. The difference varies by
60 keV and correlates with the binding energy, since the lat-
ter is related to the charge radius[17]. For special choices of
the cutoff, both experimental binding energies can be repro-
duced simultaneously without a 3N interaction. We empha-
size that 3N forces will contribute to other observables.

Our results indicate that 3N forces due to the truncation to

low momenta are of the same order as adjusted 3N forces
due to missing excitations of nucleons, although these effects
cannot be separated. The bare 3N forces provide about
0.7–1 MeV of binding in conventional models, whereas the
binding energies given byVlow k change by 1 MeV over the
large cutoff range. In this sense the truncation to low mo-
menta does not induce strong three-body forces in low-
energy observables, such as nuclear binding energies. We
note that this is in contrast to the interpretation given in[18].
There, the size of 3N forces was assessed by comparing the
Vlow k binding energies to the results of the bare 2N potential
model. This neglects the uncertainty in the binding-energy
predictions of traditional 2N forces and misses that, in effec-
tive theory approaches, the effects of the truncation to small
cutoffs are inseparable from those of missing degrees of free-
dom like theD. Because these two contributions to higher-
body forces cannot be disentangled at low energies, we will
absorb both by augmentingVlow k with a chiral 3N force
below.

For further insight, we have calculated thea-particle
binding energy. To obtain an overview, calculations are per-
formed for the smallest cutoff considered,L=1.0 fm−1, in
the maximum of the triton binding energy atL=1.6 fm−1, for
two cutoffs which lead to 3N binding energies close to the
experimental one,L=1.3 fm−1 and L=1.9 fm−1 (Argonne
v18), or L=2.1 fm−1 (CD-Bonn 2000), and for a cutoff in the
tail at L=3.0 fm−1. The focus of our studies is whether the
cutoff dependence ofVlow k can be related to correlations
observed when traditional two-body interactions are used.
From [13,19,20], it is well known that there is an almost
linear relation between 3N and 4N binding energies, known
as the Tjon line. This correlation holds with very good accu-
racy for all modern interactions, but is slightly broken by the
action of 3N forces. As can be seen in Fig. 2, the various
Vlow k results do not differ significantly more from the phe-
nomenological Tjon line than calculations with adjusted 3N
forces. We see that as a further indication that 3N and 4N
contributions are not unexpectedly large due to the low-
momentum truncation, at least for the triton anda particle.
Already at L=3.0 fm−1 the Vlow k prediction is almost ex-

FIG. 1. (Color online) Cutoff dependence of the 3N binding
energies and the binding-energy difference of3H and 3He. Results
are shown for the Argonnev18 and the CD-Bonn 2000 potential.
The horizontal solid lines represent results for the bare two-body
interactions and the dotted lines denote the experimental binding
energies.

FIG. 2. (Color online) Correlation of the3H and 4He binding
energies. The results are shown for several modern potential models
alone (pluses) and with adjusted 3N forces(diamonds) [20]. The
Vlow k results are for the Argonnev18 (squares) and the CD-Bonn
2000 potential(crosses). The solid line is a linear fit to the 2N force
model results only.
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actly on the Tjon line given by the phenomenological mod-
els.

As also seen in Fig. 2, even if a cutoff is chosen that leads
to a good description of the 3N binding energies, the 4N
binding energy deviates from experiment. Clearly, 3N or
higher-body forces must act for these values of the cutoff. In
the following, we construct a low-momentum 3N interaction
by fitting the leading chiral 3N force toVlow k. For simplicity
we restrict ourselves to theVlow k derived from the Argonne
v18 potential. The chiral 3N force to leading order contains a
long-range 2p exchange part, an intermediate range 1p ex-
change(D term), and a zero-range contact interaction(E
term), (see[11,12]). For the operator form and the definition
of the strength constants, we refer the reader to Eqs.(2) and
(10) in [12]. The interaction is regularized by exponential
cutoff functions of the form expf−sp/Ld8g with the cutoff
taken fromVlow k. The very high exponent guarantees a very
sharp drop to zero atp=L. The 2p exchange part is deter-
mined by strength constantsci, which we take from[21],
where they were obtained by a fit to NN data.The dimension-
less strength constantscD andcE were obtained from a fit to
the3H and4He binding energies. First, a relation betweencD
andcE was established by requiring that the3H binding en-
ergy of −8.482 MeV is described accurately. The resulting
dependence for various cutoffs is shown in Fig. 3. For small
cutoffs we obtain a linear relationship, which suggests that
the D and E terms are perturbative in this region. We have
checked explicitly and also for thec terms that these are
perturbative forL&2 fm−1. This could be useful for appli-
cations, where it is practically impossible to include the 3N
force into the dynamical equations, but a perturbative treat-
ment is feasible.

In Fig. 4, we show the eigenvalueh of the Yakubovsky
equation for4He versuscD. In all casescE was chosen ac-
cording to Fig. 3. The binding energy of4He agrees with the
experimental one of −28.3 MeV forh=1. In the considered
range forcD, we find a unique solution for the cutoff choices
up toL=1.9 fm−1. For L=2.5 fm−1, the relation ofh andcD
is strongly nonlinear and we find two solutions. We observed
a very similar behavior, when the N3LO chiral interaction of
[10] was augmented by the same 3N force. ForL
=3.0 fm−1, we cannot describe the3H and4He binding ener-
gies simultaneously. For this cutoff, we choosecD=7.5, for

which h is minimal and the binding energy is best described.
The resultingcD /cE pairs are compiled in Table I, where the
(p) indicates that the4He binding energy is reproduced only
approximately as −28.8 MeV forL=3.0 fm−1, and (a) and
(b) label the two possible solutions forL=2.5 fm−1.

A very important task is to estimate the size of 3N forces
in a systematic way. We decided to calculate the expectation
values of the 2N and the different parts of the 3N interactions
and compare their magnitude. The results are summarized in
Table II. As a worst case scenario, we compare the maximum
of the individual 3N force terms to the 2N interaction for
4He. As expected from Fig. 3, forL&2 fm−1, all 3N parts
are perturbative. For these cutoffs, we obtain contributions of
4 %–10 %, which are comparable to 3N forces for phenom-
enological models[13,22]. For larger cutoffs, the 2p ex-
change contribution(c terms) grows rapidly, which is can-
celed by theE term. We take this as an indication that, in this
range, our ansatz for the 3N force is not reliable.

In summary, we have thoroughly assessed the size of 3N
forces in theVlow k approach. Based on theVlow k results for
the 3H and 4He binding energies, we found that the depen-
dence on the cutoff is not unnaturally large forL
ù1.0 fm−1. This suggests that higher-body interactions are
small. We emphasize that the large cutoff range, for which
Vlow k is available, will enable similar studies for other low-
energy observables, e.g., all binding and excitation energies,

FIG. 3. (Color online) Relation betweencD andcE obtained by
requiring thatVlow k augmented by the 3N force predicts the3H
binding energy correctly.

FIG. 4. (Color online) Dependence of the eigenvalueh of the
Yakubovksy equation oncD for various cutoffs. A deviation ofh
−1=0.01 corresponds to a deviation of approximately 600 keV
from the experimental value.

TABLE I. Fit results for cD and cE for various cutoffs of the
Vlow k derived from the Argonnev18 potential[for (a), (b), and(p)
see text]. The strength of the 2p exchange part is determined by
c1=−0.76 GeV−1, c3=−4.78 GeV−1, andc4=3.96 GeV−1 [21].

L sfm−1d cD cE

1.0 3.621 5.724

1.3 11.889 2.265

1.6 2.080 0.230

1.9 −1.225 −0.405

2.5sad −0.560 −0.707

2.5sbd −3.794 −1.085

3.0(p) −7.500 −2.151
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and that this is a powerful tool to isolate missing parts in
effective interactions. Furthermore, we have extendedVlow k

by the leading chiral 3N force and fitted the two unknown
parameters to the3H and4He binding energies. We assessed
the strength of the 3N force by calculating expectation values
of its individual parts. By requiring that not only the sum, but
also the individual parts are of natural size, we found that our
ansatz for the 3N force is reliable for cutoffsL&2 fm−1. It
turned out that the 3N force contribution can be treated per-
turbatively for this range of cutoffs. This completes a soft

nuclear interaction model, which will be important for many-
body calculations. Applications to symmetric nuclear matter
are in preparation.
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TABLE II. Expectation values of the kinetic energysTd, 2N interactionsVlow kd, 2p exchange part of the 3N force(c terms), andD and
E term for 3H and4He [for (a), (b), and(* ) see text]. All energies are in MeV.

L sfm−1d

3H 4He

T Vlow k c terms D term E term T Vlow k c terms D term E term

1.0 21.06 −28.62 0.02 0.11 −1.06 38.11 −62.18 0.10 0.54 −4.87

1.3 25.71 −34.14 0.01 1.39 −1.46 50.14 −78.86 0.19 8.08 −7.83

1.6 28.45 −37.04 −0.11 0.55 −0.32 57.01 −86.82 −0.14 3.61 −1.94

1.9 30.25 −38.66 −0.48 −0.50 0.90 60.84 −89.50 −1.83 −3.48 5.68

2.5sad 33.30 −40.94 −2.22 −0.11 1.49 67.56 −90.97 −11.06 −0.41 6.62

2.5sbd 33.51 −41.29 −2.26 −1.42 2.97 68.03 −92.86 −11.22 −8.67 16.45

3.0(p) 36.98 −43.91 −4.49 −0.73 3.67 78.77 −99.03 −22.82 −2.63 16.95
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