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Variational Monte Carlo calculations are carried out forLL
6 He using realisticNN, NNN, and phenomeno-

logical LN andLNN interactions. For theLL interaction we employ the various phase equivalent Nijmegen
interactions. By incorporating the various components ofL-nuclear interactions in stages, and keeping
BLsL

5 Hed around 3.12 MeV, it is demonstrated that the incremental energyDBLL for LL
6 He is sensitive to the

three-bodyLNN force and the exchange part of theLN interaction. TheLL interaction obtained is only
somewhat weaker than theLN interaction. We also report the results for the rearrangement energy of thea
core. We discuss the implications of our results.
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Recently, a number ofLL hypernuclei calculations have
been performed in thes- and p-shell regions. These studies
have been sparked by the recent identification of aLL

6 He
event [1] at the High Energy Accelerator Research Organi-
zation(KEK), which gives a considerably lower value for the
incrementalLL energy DBLL s1.01±0.20−0.11

+0.18MeVd com-
pared to the older[2] s<4.7 MeVd but doubtful[3] emulsion
event. TheLL interaction is one of the basicBB forces and
is fundamental for understanding the interaction between
strange baryons. The information on the multiply strange
system is of wide physics interest in the realm of QCD and
nuclear physics. In order to reliably obtain theLL interac-
tion we perform completesix-body variational Monte Carlo
VMC calculations forLL

6 He using realistic interactions with
highly flexible correlations. Earlier many-body calculations
of LL hypernuclei have been made either using centralNN
and LN interactions[4–6] or in three- or four-body(for
p-shellLL hypernuclei) cluster models in which the nuclear
clusters have been treated as inert[7,8]. We demonstrate that
six-body calculations ofLL

6 He with realistic interactions
present a different dynamics, which in turn requires a stron-
gerLL interaction than the one deduced froma−LL model
calculations. We show that the three-bodyLNN interaction
and the exchange two-bodyLN interaction have a large ef-
fect on the binding energy ofLL

6 He. For theLL scattering
length we obtainaLL<−1.24±0.5 fm, whereas from thea
−LL model calculations one gets onlyaLL<−0.8 fm [7,8].
Experimentally, the LN scattering length isaLN=−1.5
±0.15±0.3 fm [9,10]. Thus, our conclusion thatuVLLu
ø uVLNu violates the flavor SU(3) requirementuVLLu! uVLNu
implying that SU(3) symmetry is broken. A relatively stron-
gerLL force will perhaps lead to a boundLL

4 H [11–14]. The
results for this hypernucleus shall be reported elsewhere.
Within the variational framework[15], we also report the
results of rearrangement energy calculations and discuss
their implications on the results of the cluster
a−LL model calculations.

For the nuclear part of the Hamiltonian, corresponding to
strangenessS=0, we use ArgonneV18 two-bodyNN [16] and

Urbana IX three-body[17] NNN potentials ArgonneV18 ac-
counts well for theNN scattering data up to 350 MeV and
when combined with Urbana IXNNN, gives an excellent
account for all thes-shell nuclei[18].

For the sectorS=−1, we use the phenomenological poten-
tials of Ref. [19] which consist of central, Majorana space
exchange, and spin-spinLN components

VLN = fVcsrd − V̄Tp
2srdgs1 − e + ePxd +

1

4
VsTp

2srdsL · sN

s1d

wherePx is the Majorana space-exchange operator ande is

the exchange parameter.Vcsrd is a Woods-Saxon core,V̄ and
Vs are, respectively, the spin-average and spin-dependent
strength, andTp is a one-pion tensor shape factor.

TheLNN interaction consists of a two-pion exchange and
a dispersive part[19,20]. These arise mainly from the elimi-
nation of theS degrees of freedom. TheVLNN is found to be
essential for a consistent phenomenology ofs-shell hypernu-
clei, when use is made ofVLN Eq. (1), which accounts for the
low-energyLp scattering data. This is also borne out by the
recent calculations of Nemuraet al. and Noggaet al. [21],
who explicitly consider theS degrees of freedom in their
calculations of thes-shell hypernuclei.

Following [19], we use e=0.20, which is consistent,
though slightly on the low side, with the forward to back-
ward ratio of the low-energyLp scattering data[22]. Usmani
and Bodmer[20], and also Millener[23], however, consider
a valuee=0.25, which is consistent with the hypernuclear
spectroscopic data ofp-shell and higher mass hypernuclei.
The effects which arise fore=0.20 would be somewhat
larger if higher values are used.

In Table I we give sets ofLN andLNN potential param-
eters which we use in the present study.Cp andW0 are the
strength parameters of the two pion and the dispersive parts
of the LNN potential. The first interactionLN1 is our full
interaction with all components, namely, space exchange and
the LNN parts.

In Table II, we present results fors-shell hypernuclei for
our preferred modelLN1. These results are slightly different,*Corresponding author Email address: usmani@jamia-physics.net
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but consistent, with those of[19] due to use of more flexible
correlations and better statistics[24]. The charge symmetry
breaking in theLN interaction is unimportant for the present
study. We therefore take the average ofBL of L

4 H and L
4 He.

We also give the space-exchange contribution, SEC, which
arises due to an approximately equivalent weakLN interac-
tion in the relativep state.

The rearrangement energyER arises because of the modi-
fication of thea core due to the presence of theLs. This
modification is through the change in the nucleonic part of
the wave function from minimizing the energy of the hyper-
nucleus.ER is obtained from

ER <
kCmuHNuCml

kCmuCml
−

kCuHNuCl
kCuCl

, s2d

where Cm represents the core nucleus wave function as
modified due to the presence of one or twoLs in a hyper-
nucleus, andC is the optimized wave function of the isolated
core nucleus.HN is the nuclear Hamiltonian. The present
estimate ofER is an approximation to the rigorous definition
given in [15], but is much simpler to implement.

For theLL potential, we use low-energy phase equivalent
Nijmegen interactions represented by a sum of three Gauss-
ians [7,25,26],

VLL = vs1d exp„− r2/bs1d
2
… + gvs2d exp„− r2/bs2d

2
…

+ vs3d exp„− r2/bs3d
2
…, s3d

where the strength parametervi and the range parameterbi
are taken from[7]. The values ofg=0.5463, 1.0, and 1.2044
correspond to Nijmegen interactions NSC97e, ND, and
NEC00, respectively.

Our variational wave function is of the form

uCvsLLdl = F1 + o
i, j,k

sUijk + Uijk
TNId + o

i, j ,L
Uij ,L + o

i, j

Uij
LSG

3uCpsLLdl, s4d

where the pair wave functionuCpsLLdl is

uCpsLLdl = Sp
i, j

s1 + UijdSp
i,L

s1 + UiLduCJsLL
A Zdl . s5d

The operatorS symmetrizes the various noncommuting op-
erators which occur inU. The Jastrow wave function
uCJsLL

A Zdl for the s-shell LL hypernucleus consists of two-
and three-body central correlations represented by variousfs,

uCJsLL
A Zdl = fc

LLp
i,L

fc
iL p

i, j,k

fc
ijkp

i, j

fc
ij uCJTsA−2ZdlAu↓L↑Ll,

s6d

whereuCJTsA−2Zdl represents the spin and isospin wave func-
tion of thes-shell nucleus with definite total angular momen-
tum J and isospinT, and Au↓L↑Ll is the antisymmetric
wave function of the twoL particles coupled to total angular
momentum zero. The correlationfc

LL between the twoLs is
obtained through a solution of a Schrödinger-type two-body
equation with an effective potential containing a number of
variational parameters. All the correlation components of the
wave function were determined using techniques described
in [18,19,24]. We also incorporate additional flexibility in the
correlations by adding to each linkf a correction through
cosine polynomials

f → f + o
n=1

4

an cosSnpr

rd
D for r ø rd. s7d

Thean are variational parameters. We vary three of them; the
remaining one is fixed by the condition that the correction
term in Eq.(8) becomes zero atr =rd, the healing distance
which is also a variational parameter. The cosine series has
the property that its first derivative at the boundaries is zero,
which is essential for applying the correction.

In Table III and Fig. 1, we present results for the incre-
mental energyDBLL=BLL−2BL for LL

6 He, whereBLL is the
separation of the twoLs from the core nucleus. The quantity
DBLL is closely related to the interaction energy of the two
L’s. We have made calculations forg=0.773 an intermediate
value between NSC97e and ND, and have called it NM. This
is done to facilitate better interpolation. We also give expec-
tation values ofVLNN and SEC to emphasize their impor-
tance. For the interactionLN3, which consists of a two-body
centralLN potential only, our results forDBLL are in close

TABLE I. LN andLNN interaction parameters.aLN and ro are the spin-averaged scattering length and
effective range in fm. Except fore, other quantities are in MeV.

LN V̄ Vs e Cp W0 BLsL
5 Hed −aLN ro

LN1 6.15 0.176 0.2 1.50 0.028 3.17(3) 1.69 5.65

LN2 6.11 0.0 0.0 1.50 0.028 3.19(3) 1.56 3.83

LN3 6.025 0.0 0.0 0.0 0.0 3.13(2) 1.32 4.25

TABLE II. L separation energyBL, space-exchange contribu-
tion (SEC), three body contributionkVLNNl, and the rearrangement
energy,ER for s-shell hypernuclei. All values are in MeV.

Pot. L
4 H L

4 H*
L
5 He

LN1 BL 2.15(2) 1.06(2) 3.17(3)

SEC 0.22(1) 0.18(1) 0.49(3)

−kVLNNl 1.39(2) 0.61(2) 0.87(2)

ER 0.39(6)

Experiment BL 2.22(4) 1.12(4) 3.12(2)
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agreement with the three-body Faddeev calculations of Fil-
ikhin and Gal[7,8], who use ana−LL model for LL

6 He in
which thea core is treated as inert. However, forLN2 and
LN1, significant differences arise because of the importance
of LNN and exchangeLN contributions.

In an a−LL model thea−L potential plays a crucial
role. By using differenta−L potentials, fitted toBLsL

5 Hed
=3.12 MeV, one gets quite different values ofDBLL. This
was demonstrated quite some time ago by Bodmer and Us-
mani [27], who performed accurate variational calculations
for LL

6 He in an a−LL model. They obtained values for
DBLL from 2.71 to 4.65 MeV for a givenLL potential, but
using mostly different Isle typea−L potentials fitted to
BLsL

5Hed=3.12 MeV. Their study was partly based on ex-
tracting thea−L potential from VMC calculations ofL

5 He
using simplifiedNN,LN, andLNN potentials. In particular,
with LNN potentials, they found a decrease inDBLL by
,0.4 MeV. We notice similar trends in the present complete
six-body calculations also. We demonstrate the accuracy of

the variational calculations of Ref.[27] by using the same
type of product wave function ina−LL model, namely

uCvsLL
6 Hedl = faLsraL1

dfaLsraL2
dfLLsrL1L2

d s8d

with the local Isle potential of[7]. The results of the present
VMC calculations are in excellent agreement with theexact
Faddeev calculations of[7,8] as evident from the last two
rows of Table III. For NSC97e and ND interactions, Faddeev
calculations are for the angular momentum states up to,aL

=6 and,LL=6 [8], whereas for model NEC00,aL=0 and
,LL=0, and is not strictly comparable. In the VMC calcula-
tions all angular momentum states are included.

It therefore follows from above that both in the complete
six-body calculations as well as in thea−LL cluster model
the various components ofLN interaction play significant
roles inLL

6 He, in the latter through thea−L potential.
The effect of the exchange potential is much more pro-

nounced forLN1 in decreasingDBLL, particularly for larger
values of g. Large positive values of the space-exchange
contributions arise, because of the differences in theLN
+LNN+LL and NN+NNN correlations, since correspond-
ing interactions are very different. With simplifiedNN and
LN interactions the space-exchange contribution will be
much smaller[4,28].

It is evident from Table III that the rearrangement ener-
gies for LL

6 He are substantial. ForLN1 the rearrangement
energy for L

5 He is ,0.4 MeV, whereas forLL
6 He it is

,2.0 MeV, a fourfold to fivefold increase. In ana−LL
cluster model where thea is treated as inert, it may be hard

TABLE III. DBLL for LL
6 He with variousLN+LNN and LL Nijmegen interactions. For NM see text.

Except forg, other quantities are in MeV. The* refers to thes-wave Faddeev calculations of[7].

Potential NSC97e NM ND NEC00

g 0.5463 0.773 1.0 1.2044

LN1 DBLL 0.24(8) 0.84(7) 1.90(8) 3.90(8)

−kVLNNl 2.33(2) 2.44(4) 2.40(2) 2.78(4)

SEC 1.27(2) 1.59(1) 2.12(1) 2.72(2)

ER 1.70(6) 1.81(6) 2.01(6) 2.27(6)

LN2 DBLL 0.42(7) 1.05(8) 2.44(7) 4.20(7)

−kVLNNl 2.36(4) 2.45(4) 2.82(4) 3.03(5)

ER 1.42(6) 1.73(6) 1.82(6) 2.09(6)

LN3 DBLL 0.58(6) 1.42(6) 2.95(6) 4.75(9)

ER 1.03(6) 1.06(6) 1.14(6) 1.28(6)

a−LL with

Isle Pot.

VMC DBLL 0.69 2.96 4.84

Present

Faddeev DBLL 0.71 2.99 4.51*

(Ref. [7,8])

FIG. 1. DBLL vs g. The full circles are the values from Table III.
The lines are the best fit results as described in the text.
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to simulate this large change in theER for L
5 He andLL

6 He,
even if one has reliable knowledge of thea−L potential.
Thus the comments in the preceding two paragraphs, com-
bined with the rearrangement energy effects, limit the use-
fulness of the cluster model calculations especially for more
complex interactions.

For the three interactions, we fitted the calculatedDBLL

values byDBLL=a+bg+cg2 (Fig. 1). From these fits, we
obtain the values ofg and the scattering lengthsaLL corre-
sponding toDBLL=1.01±0.20,

LN1:g = 0.816−0.055
+0.050, aLL = − 1.36−0.24

+0.28 fm

LN2:g = 0.762−0.052
+0.044, aLL = − 1.12−0.18

+0.20 fm

LN3:g = 0.681−0.056
+0.047, aLL = − 0.84−0.15

+0.13 fm. s9d

For s-shell nuclei, the VMC energies are generally higher
compared to Green’s function Monte Carlo[18] calculations
by less than 3%. The hyperonic part of the wave function has
a much simpler correlation structure than the nuclear wave
function, since the corresponding interaction is much sim-
pler. In addition, theLN correlations are weaker compared to
NN correlations. It is therefore reasonable to assume that the
calculated hypernuclear energies will also be higher, roughly
by 3% as compared to the exact values. Thus the errors being
systematic and small, because of the variational nature of the
problem and the reasons mentioned above, one may expect
that the values ofBL andBLL (and hence ofDBLL) would be
greater than, but close to, 3% of the exact values of these
quantities.

If we combine the uncertainties associated withLN inter-
action, MC errors, and the experimental result, we obtain

aLL = − 1.24−0.40
+0.50 fm. s10d

In (10), we have excluded the results for the purely central
LN potential LN3 as this interaction considerably un-
derbinds the mass four hypernuclei[24]. The valueaLL

=−1.24 fm represents the average ofLN1 and LN2. This
value is considerably closer toaLN<−1.5 fm and in absolute
value larger than<−0.80 fm [7,8], the value deduced from
a−LL cluster calculations. It should be noted from Eq.(9)
that LN3 givesaLL very close to that obtained from thea
−LL model [7,8]. This is perhaps not surprising since a
folding model for thea−L potential works very well in this
case[27].

We have ignored the effects ofNJ and SS channels.
Their contribution inLL

6 He is presumably repulsive[29], im-
plying a more attractiveLL interaction in free space. We
believe that these and other many-body effects are covered in
the uncertainties of(10).

In summary, we have made completesix-body calcula-
tions forLL

6 He using realisticNN andNNN, and phenomeno-
logical LN andLNN interactions, and have demonstrated the
limitations of the clustera−LL model calculations. A more
attractiveLL interaction has implications for the stability of

LL
4 H [12,13]; the role of coupling betweenLL ,NJ, andSS
channels[29], properties of strange hadronic matter in bulk
[30], and the breaking of SU(3) symmetry in baryonic inter-
actions.
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