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Accurate approximation for the Coulomb potential between deformed nuclei
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We present a useful procedure for calculating the Coulomb potential between deformed nuclei. The corre-
sponding results are compared with those obtained from the numerical resolution of the six-dimensional
integral involved in double-folding calculations.
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l. INTRODUCTION KR,
) . ) V( Jdkfdrdr (ry) (r) , (3
The forces between extended objects is an important sub- apiiup2ttz

ject in heavy-ion collisions, where the double-folding poten-

tial plays a fundamental role in the description of the corre-and, for simplicity, we assume the projectile and target to be
sponding interaction. The folded Coulomb potential betweeruniformly charged objects with a sharp surface,

heavy ions involves a six-dimensional integral which can

easily be solved for two spherically symmetric charge distri- pi(1) = pei®(R(Q) —1). (4)
butions. However, for deformed densities the corresponding

numerical resolution requires lengthy calculations. ThereThe angle-dependent radius is given in terms of the deforma-
fore, faster methods for obtaining good approximations taion parameters as

the deformed potential are quite convenient. In a recent work

[1], we presented a procedure for calculating in an approxi- R(Q)=R(1 +> PNOAYA (Q)) (5)
mate form the Coulomb and nuclear potentials between de- ' A" Mt ’

formed nuclei. That procedure provides precise results for

the Coulomb interaction at large distances but only reasonyhere the sum is performed for=2. To second-order

able estimates in the inner region. In this work, we haveterms, the normalization can be expressed by
improved the method with the aim of obtaining good accu-

racy also at small distances. (
_R1 Poi 1+4_2 |a|) . (6)
A
Il. THE COULOMB POTENTIAL ) .
We use the spherical decomposition of the plane wave,

Denoting the projectile and target densitiesdyand p,,

the Coulomb interaction between them is given by el =4m> i J)\(kr)YM(Q WY au(Q), (7)
A
- - L : : : . .
V(R @) = | diidi,————py(F)pa(F), (1)  to obtain a multipole expansion of the interaction,
R + Fz - Fl

. y V(R a)=327€? >, M2 Mj dkf dr,dr,
where R is the position vector of the center of mass of ANy
nucleus 2 measured from that of nucleus 1, amépresents iy
the ensemble of intrinsic coordinates, implicit gp and p,. ~ L . .
The densities are appropriately normalized as X paT) (P (KR, (Kry)jy (k)

X Yy QR)Y L ()Y ()

JPi(F)dF:Zi- ) fkoYW(Qk)Y)\ ,ul(Qk)Y’\zM( W. (8

We express the interaction in terms of the Fourier trans-
form representatiofi2], Defining an angular momentum coupling coefficient,
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and the multipoles of the densities,

M) (k) = f dip (D (KDY, L), (10)

we can rewrite the expression for the interaction as

i N IV
V(R ) =328 3, YW(QR)IMZ_M{ N }
AN iAo M1 Mo M

Mty

X J dkj\(KRM, (M2, (K). (11)

PHYSICAL REVIEW @0, 057602(2004)

We now substitutel\/lfL(k) in Eq. (11) and retain only
terms to second order in the deformations. We can system-
atize the resulting expression by defining the following inte-
grals:

FORX,Y) = —f dk;j O(kR)Jl(kX) Jll(::(Y), (15)
FORX,Y) = =2 f " ki kR0 Y (1)
a 0 kY
@ _1_8f°° - [ kX _dij, }jl(kv)
FY(RX,Y) = ya dkj\ (KR [ j,(kX) + 2 dkx) | Ky
(17)

FL(RX.Y) = —f dkj\(kR)j, (kX)j, (KY). (18)

Properties and methods for the efficient numerical evaluation
of these integrals can be found in Ref3,4].
Furthermore, to simplify the angular dependence, we take

Substituting the sharp-radius approximation to the densitys the reference axis the one definedrby\Ve then assume
in the expression for the multipoles, we can rewrite the latteihat the deformation parameters are defined through the in-

as

KR(Q,)
M® (k)_”"' f dQ,Y, () f 2, (dx.  (12)

To evaluate these, we expand them to second order in the

deformations,

M0 =22 o [ ity i e

(I)
At

E a(l)

Naka
Aalp
Hatp

X ( |J)\(X|) + __>

x [ 03,00, 0%, 001, a3

where x;=kR. Using the angular coupling coefficients and
the normalization condition, Eg6), we obtain

—ia(%
M(')(k)— ( an 2|a|)|z> ShoVA4m = I)+J)\(X|)am
)\/.L i
|dJ)\)
(])\( |)+ 2 dX,
Na Ao Mg o)
. xzx [Ma Mo u}aka“a Mol 1
ab

Haltp

dependent rotations of a set of axially symmetric deforma-
tions determined by the parametgs. In this scenariog,;
and ¢,; represent the orientation of the symmetry axis of the

\ deformation of nucleus relative toR. Thus, the Coulomb
potential can be obtained from

V(R,@) = Vo(R) + Voo R @), (19
VeoR @) =Vi(R @) +VO(R a) + Vo(Ra),  (20)
where

Vo(R) = Z,Z,eF (R R, Ry), (22)

Vl(F-év a) =Z,Z,62, [Fil)(R, RlvRZ)Y;\O(a)\laO)IB)\l

A

+ (= D'FPR R R)Y (62,0 82],  (22)

VO(R,a) = - 142 3 (3065 B RRuR)

- FP(RRy,R) B — FP(RRy R B2,
- F(s)x(R R1,R2) Br1Br2l, (23

Ny A
Vo(R@) =Z,Z,82) > (2n+ 1)( )
%0 0 00
X[FPRRy, Ro) By 1B, 1
XHip,(On 115 On, 10 D1, 0)

+ (= D'FP(R Ry R) By 2By 2
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XHup,(0h 20 B 25 Oh 20 Dy, 2) 8 leo,=6,=30° 6,=8,=75]

+ i“)\b‘}‘aFS\)a)\b(R, Ri.Ro) By 1822 %; 4 . I fa.ﬁ : b 4 0"
_ 2 o Ref. [1]

XHyn (1 &0 15 0,260 211 (24) ) 2 :: 8.53 - e R,

Na Ap N s 0,=90° ¢, =0 |
Han, (01 @15 02, 2) = > ( O>Y>\aﬂa(91, ¢1) o < 45° ¢2'= 90°]
Malh :U'a /‘Lb 3 3
° * 8l o 22" Va2 ] 0= 60° =0 |
X Yy, (02, b2)- (25) > P ba? 0= 90° 9= 0
The termV, is just the Coulomb potential between two 0 5 1015 0 5 1015 20
R (fm) R (fm)

uniformly charged spheres. The potentigldoes not depend
on the azimuthal angleg,;, since it is the contribution of the
dgformgtlon perturbation of one nucleus Wl}h t.he Sphencalential obtained through the numerical resolution of the six-
distribution of the other. The monopole ter\_réo arises from i onsional integral, Eq(l), for a=0 (open circley and a
the normgllzatlon of the. dens!tles, E@). This term was not =0.53 fm(closed circles The calculations were performed for the
present in Ref.[1], since it was assumed there that sey;. 58\ system, considering only quadrupole and octupole defor-

FIG. 1. The figure presents the correction of the Coulomb po-

47TRi3Poi/3%Z.i- . _ mations;3,=0.205 andB3;=0.235 for both nuclei. The angles of the
An analysis of the asymptotic behavigR>X+Y=R;  deformation axes are indicated in the figure. The lines correspond to
+R,) of our expressions shows that the approximate expressions fdg,, presented in Ref{1] and in

the present work. The arrows indicate the position of shveave

1 . .
Fo(RX,Y) = E (26) barrier radius.
p(Q)
. 3 A= —7 Y (32
FY(RX,Y) = s 1R (27) 1+ ex[( " )
3+2) X One should observe that, due to the normalization given in
FARX,Y)== ( ) = (28) Eq. (2, poi;&pg?). The Coulomb potential can be obtained
2(A+ DR using the same set of equatio(f)—<25), but substituting
the termg;(kR)/kR with p;(k)/3 in the form factors of Egs.
FRLLRXY) =0, N # Na+ \p, (290 (19—17), where
In particular, we haveFf)Z)(R,X,Y)=3/R and F&(R,X,Y) pi(K) = A'Z—Wf Jo(kn)r2pO(r)dr. (33
0

=0 so that the terriv/zo) vanishes and the monopole potential i

reduces to/o(R)=Z,Z,€?/R as it should. The first-order cor- |, Ref. [1] this procedure was applied only to thg term,
rection becomes

22,72,6% [~
Vo(R) === f Jo(kRp(Kp(Kdk.  (34)
0

Vl(li, a) = 32,Z,6*, R Yol 6h1.0)

~ (o) + DR
. The present method implies thet,, also depends on the
+R3B\2 Yol = 6,2,0)]. (30)  value of the diffuseness parameter.
) ) We point out that, in Refg§1,5], we provided an extensive
The angular momentum sums Wy, cannot be reduced, in gystematics for the radius, diffuseness, and deformation pa-
general, so we do not attempt to write a simplified form for 3 meters of the densities. We found that the radii of the

it . . . _.charge distributions are well represented by
We now generalize our expressions for nonvanishing dif-

fuseness. We represent the density by a deformed two- Ri=1.7&i1’3—0.96 fm, (35

rameter Fermi distribution . .
parameter Fermi distribution, with an average diffuseness valueasf0.53 fm.

Poi
pi(f) = > . (31)
1+ exr(" - Ri(Q)) 11l. DISCUSSION AND CONCLUSION
a We have calculated Eq@l) using a Monte Carlo method
We define the corresponding nondeformed density by and obtained the corresponding values fogy (R, @)
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=V(R,a)-V,y(R). These results thus have statistical uncer-Precision with approximately the same amount of numerical
tainties. Figure 1 shows théc,, values obtained for=0  Calculation. In fact, the calculation &fc, through the six-
(open circlesanda=0.53 fm(closed circlesfor four differ- ~ dimensional integral of Eq(1) required about five days of
ent sets of deformation angles in the case of Xing + 28N CPU time for each configuration of the deformation angles,
system. The dotted lines represent the approximate resulyhile the corresponding calculation with the approximate ex-
for Vcor Obtained with the method presented in REf], pressions presented in this waind also with those of Ref.
while the dasheda=0) and solid(a=0.53 fm) lines corre- [1]) took less than a minute.

spond to the results of the present work. Clearly, the new

method provides much better approximations than those ob-

tained in Ref.[1], and reproduces with very good accuracy ACKNOWLEDGMENTS
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