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We present a useful procedure for calculating the Coulomb potential between deformed nuclei. The corre-
sponding results are compared with those obtained from the numerical resolution of the six-dimensional
integral involved in double-folding calculations.
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I. INTRODUCTION

The forces between extended objects is an important sub-
ject in heavy-ion collisions, where the double-folding poten-
tial plays a fundamental role in the description of the corre-
sponding interaction. The folded Coulomb potential between
heavy ions involves a six-dimensional integral which can
easily be solved for two spherically symmetric charge distri-
butions. However, for deformed densities the corresponding
numerical resolution requires lengthy calculations. There-
fore, faster methods for obtaining good approximations to
the deformed potential are quite convenient. In a recent work
[1], we presented a procedure for calculating in an approxi-
mate form the Coulomb and nuclear potentials between de-
formed nuclei. That procedure provides precise results for
the Coulomb interaction at large distances but only reason-
able estimates in the inner region. In this work, we have
improved the method with the aim of obtaining good accu-
racy also at small distances.

II. THE COULOMB POTENTIAL

Denoting the projectile and target densities byr1 andr2,
the Coulomb interaction between them is given by

VsRW ,ad =E drW1drW2
e2

uRW + rW2 − rW1u
r1srW1dr2srW2d, s1d

where RW is the position vector of the center of mass of
nucleus 2 measured from that of nucleus 1, anda represents
the ensemble of intrinsic coordinates, implicit inr1 and r2.
The densities are appropriately normalized as

E risrWddrW = Zi . s2d

We express the interaction in terms of the Fourier trans-
form representation[2],

VsRW ,ad =
e2

2p
E dkWE drW1drW2r1srW1dr2srW2d

eikW·sRW+rW2−rW1d

k2 , s3d

and, for simplicity, we assume the projectile and target to be
uniformly charged objects with a sharp surface,

risrWd = roiQ„RisVd − r…. s4d

The angle-dependent radius is given in terms of the deforma-
tion parameters as

RisVd = RiS1 + o
lm

alm
sid Ylm

* sVdD , s5d

where the sum is performed forlù2. To second-order
terms, the normalization can be expressed by

4p

3
Ri

3roiS1 +
3

4p
o
lm

ualm
sid u2D = Zi . s6d

We use the spherical decomposition of the plane wave,

eikW·rW = 4po
lm

il jlskrdYlm
* sVkdYlmsVrd, s7d

to obtain a multipole expansion of the interaction,

VsRW ,ad = 32pe2 o
ll1l2

mm1m2

il+l2−l1E
0

`

dkE drW1drW2

3 r1srW1dr2srW2d jlskRd jl1
skr1d jl2

skr2d

3 Ylm
* sVRdYl1m1

sVr1
dYl2m2

sVr2
d

3E dVkYlmsVkdYl1m1

* sVkdYl2m2

* sVkd. s8d

Defining an angular momentum coupling coefficient,
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Fl1 l2 l3

m1 m2 m3
G =E dVkYlmsVkdYl1m1

* sVkdYl2m2

* sVkd

= s− 1dm3Îs2l1 + 1ds2l2 + 1ds2l2 + 1d
4p

3 Sl1 l2 l3

0 0 0
DSl1 l2 l3

m1 m2 − m3
D s9d

and the multipoles of the densities,

Mlm
sid skd =E drWrisrWd jlskrdYlmsVrd, s10d

we can rewrite the expression for the interaction as

VsRW ,ad = 32pe2 o
ll1l2

mm1m2

Ylm
* sVRdil+l2−l1Fl1 l2 l

m1 m2 m
G

3 E
0

`

dkjlskRdMl1m1

s1d skdMl2m2

s2d skd. s11d

Substituting the sharp-radius approximation to the density
in the expression for the multipoles, we can rewrite the latter
as

Mlm
sid skd =

roi

k3 E dVrYlmsVrdE
0

kRisVrd

x2jlsxddx. s12d

To evaluate these, we expand them to second order in the
deformations,

Mlm
sid skd =

roi

k3 5dl0
Î4pE

0

xi

y2j0syddy+ xi
3jlsxidalm

sid

+ xi
2Sxi jlsxid +

xi
2

2

djl
dxi

D o
lalb

mamb

alama

sid albmb

sid

3E dVrYlmsVrdYlama

* sVrdYlbmb

* sVrd6 , s13d

where xi =kRi. Using the angular coupling coefficients and
the normalization condition, Eq.(6), we obtain

Mlm
sid skd =

3Zi

4pS1 −
3

4p
o
lm

ualm
sid u2D5dl0

Î4p
j1sxid

xi
+ jlsxidalm

sid

+ S jlsxid +
xi

2

djl
dxi

D
3 o

lalb

mamb

Fla lb l

ma mb m
Galama

sid albmb

sid 6 . s14d

We now substituteMlm
sid skd in Eq. (11) and retain only

terms to second order in the deformations. We can system-
atize the resulting expression by defining the following inte-
grals:

F0
s0dsR,X,Yd =

18

p
E

0

`

dkj0skRd
j1skXd

kX

j1skYd
kY

, s15d

Fl
s1dsR,X,Yd =

18

p
E

0

`

dkjlskRd jlskXd
j1skYd

kY
, s16d

Fl
s2dsR,X,Yd =

18

p
E

0

`

dkjlskRdF jlskXd +
kX

2

djl
dskXdG j1skYd

kY
,

s17d

Fllalb

s3d sR,X,Yd =
18

p
E

0

`

dkjlskRd jla
skXd jlb

skYd. s18d

Properties and methods for the efficient numerical evaluation
of these integrals can be found in Refs.[3,4].

Furthermore, to simplify the angular dependence, we take

as the reference axis the one defined byRW . We then assume
that the deformation parameters are defined through the in-
dependent rotations of a set of axially symmetric deforma-
tions determined by the parametersbli. In this scenario,uli
andfli represent the orientation of the symmetry axis of the

l deformation of nucleusi relative toRW . Thus, the Coulomb
potential can be obtained from

VsRW ,ad = V0sRd + VCorsRW ,ad, s19d

VCorsRW ,ad = V1sRW ,ad + V2
s0dsRW ,ad + V2sRW ,ad, s20d

where

V0sRd = Z1Z2e
2F0

s0dsR,R1,R2d, s21d

V1sRW ,ad = Z1Z2e
2o

l

fFl
s1dsR,R1,R2dYl0

* sul1,0dbl1

+ s− 1dlFl
s1dsR,R2,R1dYl0

* sul2,0dbl2g, s22d

V2
s0dsRW ,ad = −

Z1Z2e
2

4p
o
l

f3sbl1
2 + bl2

2 dF0
s0dsR,R1,R2d

− F0
s2dsR,R1,R2dbl1

2 − F0
s2dsR,R2,R1dbl2

2

− F0ll
s3d sR,R1,R2dbl1bl2g, s23d

V2sRW ,ad = Z1Z2e
25 o

lÞ0

lalb

s2l + 1dSla lb l

0 0 0
D

3fFl
s2dsR,R1,R2dbla1blb1

3Hllalb
sula1,fla1;ulb1,flb1d

+ s− 1dlFl
s2dsR,R2,R1dbla2blb2
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3Hllalb
sula2,fla2;ulb2,flb2d

+ il+lb−laFllalb

s3d sR,R1,R2dbla1blb2

3Hllalb
sula1,fla1;ulb2,flb2dg6 , s24d

Hllalb
su1,f1;u2,f2d = o

mamb

Sla lb l

ma mb 0
DYlama

* su1,f1d

3 Ylbmb

* su2,f2d. s25d

The termV0 is just the Coulomb potential between two
uniformly charged spheres. The potentialV1 does not depend
on the azimuthal anglesfli, since it is the contribution of the
deformation perturbation of one nucleus with the spherical
distribution of the other. The monopole termV2

s0d arises from
the normalization of the densities, Eq.(6). This term was not
present in Ref. [1], since it was assumed there that
4pRi

3roi /3<Zi.
An analysis of the asymptotic behaviorsR.X+Y=R1

+R2d of our expressions shows that

F0sR,X,Yd =
1

R
, s26d

Fl
s1dsR,X,Yd =

3

2l + 1

Xl

Rl+1 , s27d

Fl
s2dsR,X,Yd =

3

2

sl + 2d
s2l + 1d

Xl

Rl+1 , s28d

Fllalb

s3d sR,X,Yd = 0, l Þ la + lb. s29d

In particular, we haveF0
s2dsR,X,Yd=3/R and F0ll

s3d sR,X,Yd
=0 so that the termV2

s0d vanishes and the monopole potential
reduces toV0sRd=Z1Z2e

2/R as it should. The first-order cor-
rection becomes

V1sRW ,ad = 3Z1Z2e
2o

l

1

s2l + 1dRl+1fR1
lbl1Yl0

* sul1,0d

+ R2
lbl2Yl0

* sp − ul2,0dg. s30d

The angular momentum sums inV2 cannot be reduced, in
general, so we do not attempt to write a simplified form for
it.

We now generalize our expressions for nonvanishing dif-
fuseness. We represent the density by a deformed two-
parameter Fermi distribution,

risrWd =
roi

1 + expS r − RisVd
a

D . s31d

We define the corresponding nondeformed density by

ri
s0dsrd =

roi
s0d

1 + expS r − Ri

a
D . s32d

One should observe that, due to the normalization given in
Eq. (2), roiÞroi

s0d. The Coulomb potential can be obtained
using the same set of equations(19)–(25), but substituting
the termsj1skRid /kRi with r̂iskd /3 in the form factors of Eqs.
(15)–(17), where

r̂iskd =
4p

Zi
E

0

`

J0skrdr2ri
s0dsrddr. s33d

In Ref. [1] this procedure was applied only to theV0 term,

V0sRd =
2Z1Z2e

2

p
E

0

`

J0skRdr̂1skdr̂2skddk. s34d

The present method implies thatVCor also depends on the
value of the diffuseness parameter.

We point out that, in Refs.[1,5], we provided an extensive
systematics for the radius, diffuseness, and deformation pa-
rameters of the densities. We found that the radii of the
charge distributions are well represented by

Ri = 1.76Zi
1/3 − 0.96 fm, s35d

with an average diffuseness value ofa=0.53 fm.

III. DISCUSSION AND CONCLUSION

We have calculated Eq.(1) using a Monte Carlo method

and obtained the corresponding values forVCorsRW ,ad

FIG. 1. The figure presents the correction of the Coulomb po-
tential obtained through the numerical resolution of the six-
dimensional integral, Eq.(1), for a=0 (open circles) and a
=0.53 fm (closed circles). The calculations were performed for the
58Ni+ 58Ni system, considering only quadrupole and octupole defor-
mations:b2=0.205 andb3=0.235 for both nuclei. The angles of the
deformation axes are indicated in the figure. The lines correspond to
the approximate expressions forVCor presented in Ref.[1] and in
the present work. The arrows indicate the position of thes-wave
barrier radius.
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=VsRW ,ad−V0sRd. These results thus have statistical uncer-
tainties. Figure 1 shows theVCor values obtained fora=0
(open circles) anda=0.53 fm(closed circles) for four differ-
ent sets of deformation angles in the case of the58Ni+ 58Ni
system. The dotted lines represent the approximate results
for VCor obtained with the method presented in Ref.[1],
while the dashedsa=0d and solidsa=0.53 fmd lines corre-
spond to the results of the present work. Clearly, the new
method provides much better approximations than those ob-
tained in Ref.[1], and reproduces with very good accuracy
the exact results from the surface region to quite internal
distances. However, the major differences appear at distances
smaller than the barrier radius(see Fig. 1). This inner region
can be probed through scattering experiments only at high
bombarding energies. Even so, the method presented in this
work is superior to that of Ref.[1], because it provides better

precision with approximately the same amount of numerical
calculation. In fact, the calculation ofVCor through the six-
dimensional integral of Eq.(1) required about five days of
CPU time for each configuration of the deformation angles,
while the corresponding calculation with the approximate ex-
pressions presented in this work(and also with those of Ref.
[1]) took less than a minute.
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