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Isospin constraints on angular momentum truncated wave functions
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In this report we examine two topics relating to previous work. We feel that there are points to be made
which we have not made before. A common thread in the two problems is that they both involve the isospin
variable in an important way.
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In a publication by Devet al. [1] we calculated the exci- by McCullen et al. [6] that although seniority may be a
tation energies off =T;,+1 states in oddA nuclei and of pretty good quantum number for a system of identical nucle-
T=Tnnt2 states of even-even nuclei in the shell, where ons, e.g., the calcium isotopes, seniority is badly broken
Tmin=|N—Z|/2. We performed a linear fit to these excitation when we have both protons and neutrons in open shells. This
energies point has also been discussed in Lawson’s bk This

E(SA =b(T+X), formulgT(T+ 1.6 Iie§ in betwgen the two extremes—one of
seniority conservation for mixed protons and neutrons and
1 the other of the S limit in spin and isospin variables.
E(DA) = 2b(T+X+ —). (1) The next problem we consider takes note of the fact that
2 the angular momenturir=0 ground-state wave functions of
For a simple interaction of the form+b t(1)t(2), the value even-even Ti isotopes are dominated by terms in which the
of X is unity. protons couple to angular momentum zero and two, likewise

We point out that with a simple adjustment we can con-the neutrons. In Table | we show the MBZ wave functions
vert this to a formula for an isospin dependent term in thefor the J=0"T,,, ground states of**®*%i as well as the
binding energy. This is due to the fact that the excitationunique(in the singlej shell model T,,,+2 states. The wave
energy expressions in E(l) arise from differences of bind- function for a Ti isotope is written as
ing energy isospin dependence. We assume that the isospin-
dependent term is of the form

b
E(T)==-T(T+Y). (2) TABLE I. Wave functions ofl =0y, Ty, andl =0, T,n+2 states

2 of #Ti, %5Ti, and “®Ti. The asterisk means=4 (The phases have

Hence we obtain, for example, in the double analog case been adjusted to fit with the CFP conventions of Réf.and differ
’ ' in some way with those in Ref6]).

E(DA):g(T+2)(T+2+Y)_gT(T+Y)' () aa Jp I 1=0T=0 1=0T=2

We thus obtain the result=2X-1. We obtain the same re- 0 0 0.7608 0.5000

sult if we use the formula for th&(SA. For thet(1)t(2) 2 2 0.6090 -0.3727

interaction we haveX=1, Y=1. For the Wignef2,3] SU(4) 4 4 0.2093 -0.5000

limit, we haveX=2.5,Y=4. It is worthwhile to note that in 6 6 0.0812 ~0.6009

mean—field theories we cannot o_btain a linear ternT,irbut 467 I I 1=0T=1 1=0T=3

Itgrfnhe" model calculations it is impossible to avoid such a 0 0 0.8224 0.3162

In Ref. [1] we performed a fit to the singleshell calcu- 2 2 05420 ~0.4082
lation. We found that a good fit was obtained wiik2.32 2 2 0.0563 0.0

andX=1.3. This leads to an isospin dependent binding term 4 4 0.0861 -0.5477
in the singlej shell 4 g -0.1383 0.0

b 6 6 -0.0127 —-0.6583

E=-T(T+1.6. (4) i Jp In I=0T=2 1I=0T=4

2 0 0 0.9136 0.1890

In Talmi's book[4], expressions for the binding energy in 2 2 0.4058 -0.4226

both the SW4) limit and the seniority conserving limit are 4 4 0.0196 —0.5669

shown. In the former case the binding energy goed(@s 6 6 ~0.0146 ~0.6814

+4) and in the latter a3(T+1) [5]. It has been pointed out
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P =3D'(II)(D) (T, (5)  With the conditions that

wherel is the total angular momentum arm(J,J,) is the D°%(00)* + D°%(22)*=1. 9)
probability amplitude that the protons couple Xpand the

neutrons couple td,. For 1=0, J,=J,=J. The labela is We also impose the condition that the above wave function is
inserted to remind us that there are several states of the saraghonormal to theTl ., state

angular momentunh. For example irf*Ti there are threé

=0 states with isospiT=0 and one with isospiT=2; in DY00)(j"0;j20[}j"20) + D°(22)(j"2;j22|}j™20) = 0.

“¢Tj there are fivel =0 states with isospif=1 and one with 10
isospin T=3; in “Ti there are three with isospifi=2 and (10
one with isospinT=4. Note that in the singlg shell the . o
allowed isospins for the even-even Ti isotopes Be,=|N But these two conditions mean thaf(00) and D%22) are

~Z|12 andT = Tmin+ 2. There are nd=0 states with iso- completely determined—there is no freedom. We can show
Spin T=Ty+ 1. that the wavefunctions, written as two component vectors for

As seen in Table | the probability amplitude fdg=0, the various Ti isotopes are
Jn=0 in *Ti is 0.7608 and forJ,=2, J,=2 it is 0.6090.
Hence the probability os and d couplings only is 95%. 1 =
Similar results are obtained f¢fTi and “®Ti—indeed the Yuari= E(\B,B) =(0.5976,0.8018
percentages are even higher in these nuclei. Als$§Tinthe
percentage ad,=2, seniorityv =2 is much larger than that of
Jn=2, v=4. This serves as a motivation for truncating the 1 - =
ground state wave functions fi3=0 and 2 and),=0 and 2, ey = Tg(VS,\'3) =(0.7906,0.6124
v=2. We can say then that we have a model in which @nly v
andd couplings of fermions are considered. In the single
shell such model can serve as a starting point for the justifi-

1 ~
cation of those IBA models which involve only and d Yreri= —=(15,1) = (0.9129,0.408p
bosons. There are various versions of the interacting boson V6
approximation IBA1[8], IBA2 [9], and IBA3[10Q]. The for- This comes from a more general expressjam,12 of

mat of the Ti wave functions in MBZ6] most closely re-  zamjck, Mekjian, and Lee:
sembles that of IBA2.
In the singlej model space, the states with the higher

isospin Tha= Tmin+ 2 are not affected by any isospin con- 2j+1-n) DO(00) - M\/ 2n

serving two nucleon interaction. In fact for these states the (n+1)(2j +1) (n+1)(2j+1D(2j-1)
coefficients D'(JpJn) are two particle coefficients of frac- 0 T=T..

tional parentag€CFP). The reason for this is that these states = { ' min? (11)
in Ti are double analogs of corresponding states in Ca, and 1, T=Thin*2,

for Ca we are dealing with a system of identical particles,
i.e., only f;;» neutrons. A two particlefp will be an expan- _ 0 [53+1)
sion in which(n+2) neutrons are separated im@nd 2. We whereM=X,-,D%(1J)y(2J+1).

can then easily see the following for0: Comparing with the results of Table | we see that¥i

there is too mucld=2 coupling—more thad=0. However,
the trend as one goes through the Ti isotopes is quite reason-
D'Tmax(JJ) = (j"J;j2J[}j™20) . (6)  able and the wave functions f8¥Ti are remarkably similar.
The coefficientdD(22) play an important role in the cal-
From the fact that wave functions satisfy the orthonormalityculations ofM1 transitions in the singlg shell. The expres-
conditions we obtain sion forB(M1)7 from aJ=0" to J=1* in units of x5 is given
by [13]

23,3,D"“(Fpd)D" (p3n) = Sy (7) 3 , )

B(M1:0" — 1% = E(gp - 90?2 5D%(J,3,)D*(3,dy)

so that in particular anyl,, state is orthogonal to a state —_—

with T=T ot 2. e ’ x\IA+ D). (12)
For brevity we will drop the superscript on theD(JJ)’s.

We now truncate to onlyJ=0 andJ=2 couplings for the Hereg, andg, are the Schmidt values. If we sum over all

neutrons and protons for the ground-state wave function i.eJ=1" final states we obtaifil4]

go to thes-d pair model. We now have

= i _ 2 0 2
= D(00L(A0") 1+ DUR[(P(P. (@ F BN =52 G = G TR0 D (19
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Here we make a comparison of the MBZ and thed  spire to make the summeéi(M1)'s for MBZ about the same
truncation result for the summed strengths, using the effecas fors-d truncation.

tive value for(g,—g,)=1.89 as in Ref[12]. The important point we wish to make here is that for the
even-even Ti isotopes in the singleshell model, once we
2B(M1) MBZ sdonly  make the assumption that tAe=T,,, State consists of only
. J,=J,=0 and J,=J,=2 couplings, the relative amounts of
;MT! 2.881 3.289 tﬁe couplings ig fixed. There is no freedom. The reason for
oTi 1.977 1919  this is that the states witfi,;, must be orthogonal to the
487 0.857 0.853  states withT,,,,+2. A small amount of the highercouplings

restores the freedom to adjust the relative amountd=d

Note that in thes-d model only one term, corresponding to andJ=2.

J=2 contributes. This work was supported by the U.S. Department of En-
The values for*Ti and “Ti are remarkably similar for ergy under Grant No. DOE-FGO01-04ER04-02. S.J.Q.R.

MBZ ands-d truncation even though the values®f22) are  would like to acknowledge partial support from the Univer-

quite different. It appears that the highlecontributions con-  sity of Southern Indiana.
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