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We calculate the correlation functions needed to describe the linear response of superfluid matter, and go on
to calculate the differential cross section for neutral-current neutrino scattering in superfluid neutron matter and
in color-flavor-locked quark matter. We report the first calculation of scattering rates that includes neutrino
interactions with both pair-breaking excitations and low-lying collective excitations(Goldstone modes). Our
results apply both above and below the critical temperature, allowing use in simulations of neutrino transport
in supernovae and neutron stars.
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I. INTRODUCTION

The ground state of QCD at large densities is color super-
conducting quark matter[1–4]. When the effects of quark
masses can be neglected, three flavor quark matter will be in
a particularly symmetric phase called the color-flavor-locked
(CFL) phase, with BCS pairing involving all nine quarks[5].
In this phase the fermion excitation spectrum has a gapD,
and model calculations indicate thatD<10–100 MeV for
the quark chemical potentialm<300–500 MeV. This phase
breaks the SUs3dcolor3SUs3dL3SUs3dR3Us1dB symmetry
of QCD down to the global diagonal SUs3d symmetry. The
lightest excitations are an octet of pseudo-Goldstone bosons
and a true Goldstone boson associated with the breaking of
the global Us1dB symmetry. At some densities, however, the
strange quark mass may induce an appreciable stress on the
symmetric CFL state, and less symmetric phases may be pos-
sible. One possibility is the CFLK0 phase, which exhibits a
Bose condensate ofK0 in addition to the diquark condensate
of the CFL phase—this phase breaks hypercharge and iso-
spin symmetries[6,7]. Another possibility is the Larkin,
Ovchinnikov, Ferrel, and Fulde(LOFF) phase, which exhib-
its crystalline color superconductivity—the diquark conden-
sate varies periodically in space, breaking translation and
rotation symmetries[8–15]. Most recently, a superconduct-
ing phase of three-flavor quark matter with nontrivial gapless
fermionic excitations has been suggested[16].

The densities at which color superconducting quark mat-
ter exists could be attained in compact “neutron” stars or
core-collapse supernovae. It is therefore important to explore
the impact of color superconductivity on observable aspects
of these astrophysical phenomena. Investigations to that end
have included studies of magnetic properties of neutron stars
[17] and the equation of state of dense matter[18–23]. The
interactions of neutrinos with superconducting quark matter
has also been explored[24–26]. The emission of neutrinos
from CFL matter during the long-term cooling epoch was
studied in Ref.[27]. During this epoch the temperature isT
&1010 K, and most of the excitations of CFL matter have
small number densities. As a result, neutrino emission is
highly suppressed. Complementing Ref.[27] is Ref. [28],

which studied the emission of neutrinos from CFL matter in
a young, proto-neutron-star. During this epoch, the tempera-
ture is T<1011 K, and the number densities of the excita-
tions are significant. The authors of Ref.[28] only studied
the interactions of neutrinos with the Goldstone bosons, us-
ing the effective field theory relevant at energies small com-
pared to the gap. But one might expect the fermionic excita-
tions to become relevant atT<1011 K, since these
temperatures are close to the critical temperature of CFL
matter, and the gap will be suppressed.

These are the circumstances we analyze in this paper. We
study neutral-current neutrino scattering in quark matter,
above and below the critical temperature for CFL matter. We
do this by calculating the quark polarization tensor, including
the effects of pair-breaking, fermionic excitations. We also
include the effects of the collective, bosonic excitation asso-
ciated with the breaking of Us1dB by using the random phase
approximation(RPA) to build this mode out of microscopic
quark-quark interactions. This excitation has the largest con-
tribution of any of the bosonic modes. We begin setting up
the calculation in Sec. II. But before proceeding to study
CFL matter, we consider the case of nonrelativistic fermionic
modes, to make contact with previous work and to motivate
the use of RPA, arguing that consistency with current con-
versation requires the inclusion of the collective mode—we
do this in Sec. III, where we also go to calculate the differ-
ential cross section for neutrino scattering in superfluid neu-
tron matter. In Sec. IV we compute the medium polarization
tensor for a one-component relativistic superfluid. In Sec. V
we compute the medium polarization tensor for CFL matter,
and go on to calculate the differential cross section. We con-
clude in Sec. VI with reflections on this work. Further details
of the calculation for the one-component, relativistic super-
fluid can be found in Appendix A. Further details of the
calculation for CFL matter can be found in Appendix B.

II. PRELIMINARIES

The goal of this article is the calculation of the differential
cross section for neutral-current scattering of neutrinos in a
dense quark medium inside a proto-neutron-star. Neutrinos
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in a proto-neutron-star have typical energiesEn!MZ, so we
may write the neutrino coupling to quarks as the four-
fermion effective Lagrangian

LZ =
GF

Î2
lm jm, s1d

where lm= n̄gms1−g5dn is the neutrino current, andjm

= q̄gmscV−cAg5dq is the quark weak neutral current. The dif-
ferential cross section per unit volume in quark matter can be
expressed in terms of the quark current-current correlation
function, also called the polarization tensor,Pmn [29,30]:

1

V

d3s

d2V3dEn8
= −

GF
2

32p3

En8

En

f1 − nnsEn8dg
f1 − exps− q0/Tdg

ImsLmnPmnd,

s2d

where EnsEn8d is the incoming(outgoing) neutrino energy,
q0=En−En8 is the energy transferred to the medium, and
T is the temperature of the medium. The factor
f1−exps−q0/Tdg−1 ensures detailed balance. The factor
f1−nnsEn8dg, where

nsEd =
1

esE−md/T + 1
, s3d

enforces the blocking of final states for the outgoing neu-
trino. The neutrino tensorLmn is given by

Lmn = 8f2kmkn + sk ·qdgmn − skmqn + qmknd 7 iemnabkaqbg,

s4d

where the incoming four-momentum iskm and the momen-
tum transferred to the medium isqm. The minus(plus) sign
on the final term applies to neutrino(antineutrino) scattering.
The response of the medium is characterized by the polariza-
tion tensor,Pmn. In the case of free quarks,

PmnsQd = − i E d4P

s2pd4TrfS0sPdGmS0sP + QdGng, s5d

whereS0sPd is the free quark propagator at finite temperature
and chemical potential, andGm=gmscV−cAg5d. The inner
trace is over Dirac, flavor, and color indices. The free quark
propagator is[31]

S0sPd = dd
cdg

fSp0 + Ep

p0
2 − Ep

2Lp
+g0 +

p0 − Ēp

p0
2 − Ēp

2
Lp

−g0D , s6d

wherec,d and f ,g denote color and flavor indices, respec-
tively, and

Lp
± =

1

2
s1 ± g0gW · p̂d s7d

are the positive and negative energy projection operators.
The energies in the propagator are measured relative to the
Fermi surface. To wit,Ep=p−m for (massless) particle

states, andĒp=p+m for antiparticle states.
Since we are interested in the interaction of neutrinos with

a superconducting medium, we introduce the Nambu-
Gor’kov formalism[32,33], which allows the incorporation

of diquark correlations into the quark propagator. This is
done by artificially doubling the quark degrees of freedom by
introducing charge conjugate field operatorsqC and q̄C, de-
fined by

q = Cq̄C
T and q̄ = qC

TC,

where C= ig0g2 is the charge conjugation matrix(with C
=−C−1=−CT=−C† andCgmC−1=−gm

T). The Nambu-Gor’kov
field is given by

C ; S q

qC
D and C̄ ; sq̄q̄Cd. s8d

In terms of these fields, the weak interaction Lagrangian, Eq.
(1), becomes

LZ =
GF

Î2
n̄gms1 − g5dnC̄GZ

mC, s9d

where the neutrino-quark vertex in the Nambu-Gor’kov
space is

GZ
m = SgmscV − cAg5d 0

0 − gmscV + cAg5d
D . s10d

The Nambu-Gor’kov propagator that includes BCS diquark
correlations in the mean-field approximation is given by
[31,34,35]

SsPd = SG+sPd J−sPd
J+sPd G−sPd

D , s11d

where

G+sPd =
p0 + Ep

p0
2 − jp

2 Lp
+g0, G−sPd =

p0 − Ep

p0
2 − jp

2 Lp
−g0,

J+sPd =
− D

p0
2 − jp

2g5Lp
−, J−sPd =

D

p0
2 − jp

2g5Lp
+, s12d

and

jp = ÎEp
2 + D2.

We have suppressed any color-flavor indices, and we are
neglecting the contribution of antiparticles.

III. A NONRELATIVISTIC DETOUR

Although we will ultimately be interested in relativistic,
superconducting quark matter, we digress to consider a one-
component system of nonrelativistic superfluid baryons, such
as neutron matter with1S0 pairing, which is itself relevant to
neutrino transport in neutron stars and supernovae. This will
allow us to make contact with the vast body of published
work on superconductivity in nonrelativistic systems and
will serve as a pedagogical prelude to the relativistic case.

For nonrelativistic fermions the structure of the Nambu-
Gor’kov propagator greatly simplifies and is given by a 2
32 matrix [36]. We shall consider a simple model for the
pairing interaction. In this case the nonrelativistic Hamil-
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tonian, in terms of the fermion creation and annihilation op-
erators, is

H − mN = o
p

Ep apW
† apW + Go

p

apW
†a−pW

† a−pWapW , s13d

whereN=oa†a is the number operator,Ep=p2/2M −m, M is
the mass, andm is the nonrelativistic chemical potential. In
the mean field or BCS approximation, we replace the pair
operator by the space- and time-independent classical expec-
tation value. This defines the constant fieldD†

=−Gop apW
†a−pW

† and D=−Gop apWa−pW. The solution of the gap
equation, namely]sH−mNd /]D=0, determines the magni-
tude ofD. The propagator is given by

SsPd = SG+sPd J−sPd
J+sPd G−sPd

D , s14d

where

G+sPd =
p0 + Ep

p0
2 − jp

2 , G−sPd =
p0 − Ep

p0
2 − jp

2 ,

J+sPd =
D

p0
2 − jp

2 , J−sPd =
D†

p0
2 − jp

2 . s15d

The quasiparticle energy is given by

jp = ÎEp
2 + D2, where Ep =

p2

2M
− m.

The neutrinos couple to the weak neutral current of the
neutrons, which has a contribution from both the vector cur-
rent and the axial vector baryon current[see Eq.(1)]. The
neutral current carried by the neutrons is given by

jm = o
pW

C†spdfcV gmsp + q,pd + cA gm
Asp + q,pdg Csp + qd,

where cV=1/2 andcA=1.23/2. In the nonrelativistic limit

gmsp+q,pd=st3,0d and gm
Asp+q,pd=s0,sW 1̂d, with t3

=diags1,−1d and 1̂=diags1,1d in Nambu-Gor’kov space,
andsW is the Pauli matrix in spin space. To begin, we focus
on the vector current, though we will return to the axial
vector current.

Conservation of the vector baryon current means that the
vector response function

Pmn
V sq0,qWd ; − i E d4p

s2pd4TrfSspdgmsp,p + qdSsp + qd

3gnsp + q,pdg s16d

must satisfy the conservation equation

qm Pmn = Pmn qn = 0. s17d

The polarization function in Eq.(16) does not satisfy this
equation. This violation can be traced to the use of the
dressedmean-field Nambu-Gor’kov(NG) propagator on the
one hand, and the use of thebare vertex on the other. To
ensure local baryon conservation, we must use a dressed ver-

tex, G̃sp+q,pd, which must satisfy the generalized Ward
identity for the superfluid:

qmG̃msp + q,pd = t3S
−1spd − S−1sp + qdt3. s18d

That the bare vertexgmsp+q,pd is not sufficient to satisfy
current conservation was realized shortly after the develop-
ment of the theory of superconductivity by Bardeen, Cooper,
and Schrieffer[37] in independent articles by Bardeen[38],
Bogoliubov [39,40], Anderson[41], and Nambu[33]. It is
this correction that naturally leads us to incorporate the
Goldstone mode.

The dressed vertexG̃ compatible with Eq.(18) satisfies
the following integral equation,

G̃msp + q,pd = gmsp + q,pd + G iE d4p8

s2pd4t3Ssp8 + qd

3G̃msp8 + q,p8dSsp8dt3, s19d

whereG is the two-body contact interaction defined by the
Hamiltonian in Eq.(13). The behavior of the dressed vertex
function in the long-wavelength limit can be inferred from
the Ward identity in Eq.(18). The right-hand side of Eq.
(18), in theq→0 limit, reduces to

lim
qW→0

ft3S
−1spd − S−1sp + qdt3g = 2ı Dt2. s20d

The Ward identity therefore dictates that the vertex function
be singular for zero energy transfersq0=0d when the three-
momentum transfer vanishessqW →0d. This singularity is
characteristic of the presence of a zero energy collective
mode—the Goldstone mode expected on general grounds
[42]. One may obtain the dispersion relation for the Gold-
stone mode by inspecting the pole structure of the solutions
of Eq. (19). For the simplified interaction considered here,
the integral equation for the vertex function is represented by
the Feynman diagrams shown in Fig. 1.

Calculating the vertex function by retaining only the
terms shown in the figure is equivalent to the RPA[36]. Note
that it contains both the direct and exchange diagrams(the
second and third terms, respectively, on the right-hand side

of Fig. 1). We only need to solve forG̃0, rather than all four

components ofG̃m, since for smallqW the dominant response
of nonrelativistic neutrons is due to the coupling of the
baryon density to neutrinos; the coupling of the velocity-
dependent components of the baryon current to neutrinos is
suppressed by a factorq/M and may be neglected. An ana-

lytic solution for G̃0 exists and is given by

FIG. 1. Feynman diagram corresponding to the vertex equation
[Eq. (19)]. The squares represent the dressed weak interaction ver-
tex, and dashed lines represent the interaction between the fermi-
ons. The solid, directed lines represent Nambu-Gor’kov
propagators.
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G̃0 =
1

x0
t3 +

1

x
gH with gH = S 0 N1

N2 0
D ,

where

N1 = 2sP11:12+ P11:12P22:11− P12:11P12:12d,

N2 = 2sP12:11+ P12:11P11:22− P11:12P12:12d,

x0 = s1 + P12:12− P11:11d,

D = 1 −P12:12
2 + P11:22+ P22:11+ P11:22P22:11,

x = 4P11:12P12:11P12:12− s1 − P12:12dP12:12
2 − s1 + P11:22d

3s− 1 + 2P12:11
2 + P12:12d + P22:11− fP11:22s− 1 +P12:12d

+ P12:12gP22:11− 2P11:12
2 s1 + P22:11d + P11:11f1 − P12:12

2

+ P22:11+ P11:22s1 + P22:11dg

Pi j :kl = G iE d4p

s2pd4Sijsp + qdSklspd,

andSspd is the mean field propagator appearing in Eq.(14).
The complex functionxsq0,qd=0 when q0=qcs, where cs

=pF / sÎ3Md is the sound velocity of the neutron gas(for q
!pF). The vertex is singular at this point, indicating the
presence of the Goldstone mode in the response. Note that
the singularity does not appear in the vertex proportional to
t3 in NG space. The off-diagonal nature of the singularity is
characteristic of fluctuations of the phase ofD—which is the
Goldstone excitation. Further, at small energy transferq0
!D the expression forx simplifies and we find thatx
.x0D. The Goldstone singularity occurs whenD=0 and
x0Þ1 is a result of additional screening corrections included
in RPA in both the quasi-free and Goldstone-mode responses.

In RPA, the polarization tensor that satisfies the Ward
identity is

PV
RPAsq0,qWd = − i E d4p

s2pd4TrfSspdG̃0 Ssp + qdt3g. s21d

The simple form of the solution for the dressed vertex for
q0!eF allows us to write

PV
RPAsq0,qWd =

1

x0
PV

qfsq0,qWd + PHsq0,qWd, s22d

where

PV
qfsq0,qWd = − i E d4p

s2pd4TrfSspdt3 Ssp + qdt3g s23d

and

PHsq0,qWd = −
i

x0 D E d4p

s2pd4TrfSspdt3 Ssp + qdgHg.

s24d

Pqf is just the quasifree or mean-field response, andPH is
the response due to the Goldstone mode. We plot −ImPV

qf

and −ImPV
RPA in Fig. 2, as the dashed line and the solid line,

respectively, at various temperatures and ambient conditions
appropriate for the neutron superfluid in neutron stars,
namely, for chemical potentialm=pF

2 /2M =30 MeV, and gap
D=5 MeV, whereM andpF are the mass and Fermi momen-
tum, respectively, of neutrons. Note that the quasifree re-
sponse has support only forq0*2D at T!D, due to the gap
in the fermion excitation spectrum. Equation(22) has x0
Þ1 because correlations result in screening of the coupling
of quasifree excitations to the external current. In the weak-
coupling limit sD!md, this correction is small, but it be-
comes important even at moderate coupling strength, as seen
in the figure. At small but nonzero temperaturesT!Dd,
Im Dsq0,qdÞ0,exps−T/Dd due to a small contribution
from thermal quasiparticle excitations. This reduces the sin-
gular behavior to a resonant response(Lorentzian) with a
small but finite width. With increasing temperature, the col-
lective mode gets damped as the single-pair excitations be-
come increasingly important. This trend is clearly seen in
Fig. 2. Finally atTc, both the pair-breaking and Goldstone-
mode excitations disappear and the single-pair response
dominates. The slight enhancement seen at smallq0 is a char-
acteristic of attractive correlations induced by the strong in-
teractions in the normal phase[30].

The response in the axial vector channel can also be cal-
culated using the method described above. In this case, the
vertex does not exhibit any singular behavior, since there is
no Goldstone mode in this channel. In a homogeneous and
isotropic system, the axial polarization tensor is diagonal,
with equal components,P11

A =P22
A =P33

A =PA. An explicit cal-
culation shows that the axial polarization tensor in RPA is

PA
RPAsq0,qWd =

1

x0
PA

qfsq0,qWd, s25d

where

FIG. 2. (Color online) We plot −ImP as a function of the di-
mensionless variableq0/ sqcsd, wherecs=pF / sÎ3Md and with fixed
momentum transferq=0.1pF. The dashed line is the quasifree vec-
tor response, −ImPV

qf, and the solid line is the full RPA(that is,
quasifree plus collective with screening corrections) vector re-
sponse, −ImPV

RPA. The spike atq0/ sqcsd.1 is the Goldstone-mode
response. The dot-dashed line is the RPA axial response, −ImPA

RPA.
We use the neutron chemical potentialm=pF

2 / s2Md=30 MeV. The
gap at zero temperature isD=5 MeV, and the critical temperature is
Tc=2.8 MeV.
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PA
qfsq0,qWd = − i E d4p

s2pd4TrfSspd1̂Ssp + qd1̂g. s26d

The dot-dashed lines in Fig. 2 show the behavior of the
imaginary part of thePA

RPAsq0,qWd at fixedq as a function of
q0. The differential cross section for neutrino scattering in
the neutron matter can be written in terms of the imaginary
part of the polarization tensor. The differential cross section
per unit volume for a neutrino with energyEn to a state with
energyEn8=En−q0 and scattering angleu is given by

d2s

V dcosu dEn8
= −

GF
2

4p3En8
2 1 − nnsEn8d
1 − exps− q0/Td

3fcV
2s1 + cosudIm PV

RPAsq0,qd

+ cA
2s3 − cosudIm PA

RPAsq0,qdg. s27d

These expressions permit calculation of the neutrino opacity
in superfluid neutron matter at arbitrary temperature. The
results are shown in Fig. 3. The incoming neutrino energyEn

and the momentum transferq were set equal topT. This is
typical for thermal neutrinos. Note that the Goldstone mode
continues to play a role even whenT.Tc/2. Note also that
with increasing temperature the gap equation yields smaller
gaps—seen in the decreasing threshold for the quasifree re-
sponse. Although it is easy to deduce the relative importance
of RPA corrections to the response from Fig. 3, we present a
table to quantify the differences. The table below provides a
comparison between the differential cross sections integrated
over the energy transfer(area under the curves shown in
Fig. 3).

T
dsqf /Vdcosu

s10−5 m−1d
dsRPA/Vdcosu

s10−5 m−1d

0.5TC 0.1 0.5

0.85TC 2.6 4.9

1.1TC 12.8 12.9

Although scattering kinematics do not probe the response
in the timelike region, neutrino pair production does arise
from timelike fluctuations. As a result these same polariza-
tion functions can be used in calculations of the neutrino
emissivities in superfluid matter—a process that is com-
monly referred to as the pair-breaking process[43].

At low temperature and low energy, the response is domi-
nated by the Goldstone mode. In this regime it is appropriate
to use the low-energy effective theory involving only the
Goldstone mode. The effective Lagrangian for the Us1d
mode is given by

LGB =
fH
2

8
s]0U]0U

† − cs
2]iU]iU

†d, s28d

where U=exps2ıH / fHd, H is the Goldstone field, andfH
2

=M pF /p2 is a low-energy constant that is the equivalent of
the pion decay constant in the chiral Lagrangian. We can
compute the coupling of theH mode to the neutrinos by
matching to the weak current in the microscopic theory. We
find that the amplitude for the processn→H n is given by
[44]

An→Hn =
GF

Î2
cVfH]0Hn̄g0n. s29d

Using Eq.(29), we can compute the differential cross section
for neutrino scattering due to the “Cherenkov” processn
→Hn [28]. We find that

d2s

V dcosu dEn8
= −

GF
2

4p2 fH
2 cV

2 En8
2 1 − nnsEn8d
1 − exps− q0/Td

3s1 + cosudq0dsq0 − csqd. s30d

The low-energy and low-temperature limit of the RPA
response should agree with the above result obtained using
the effective theory. We show that this is indeed the case. We
begin by noting that the RPA vertex whenq0!D and q
!kF can be written as[33]

G̃0 =
2Dq0

q0
2 − cs

2q2it2. s31d

Substituting this result in Eq.(22) we find for q0ù0

Im PV
RPAsq0,qd = −

MpF

2p
q0dsq0 − csqd. s32d

The quasifree response is exponentially suppressed at low
temperature, and using Eq.(32) it is easily verified that the
differential cross section in RPA agrees with Eq.(30).

FIG. 3. We plot the differential cross section for neutral-current
neutrino scattering in superfluid neutron matter as a function of the
dimensionless variableq0/ sqcsd, wherecs=pF / sÎ3Md.0.15. The
solid curves are the RPA results, which include the Goldstone con-
tribution and the dashed lines are the mean-field results. The incom-
ing neutrino energy and the momentum transferq were set equal to
pT—typical of thermal neutrinos. The spike atq0/ sqcsd.1 is the
Goldstone-mode response. We use the neutron chemical potential
m=pF

2 / s2Md=30 MeV. The gap at zero temperature isD=5 MeV,
and the critical temperature isTc=2.8 MeV.
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IV. RESPONSE OF A ONE-COMPONENT RELATIVISTIC
SUPERFLUID

In the preceding section we argued that a consistent cal-
culation of the medium polarization tensor must include not
only the quasifree response of the medium associated with
the pair-breaking excitations, but also the collective response
associated with the massless excitationH arising from spon-
taneous breakdown of Us1dB. We then calculated the medium
polarization tensor for a one-component, nonrelativistic
superfluid—superfluid neutron matter. In this section we will
calculate the medium polarization tensor for a one-
component ultrarelativistic superfluid—as a warm up for the
CFL case, and also for its own sake—including both the
quasifree response and the collective response associated
with the Goldstone mode.

The interactions of interest are

Lint = LZ + LS. s33d

Here, LZ represents the interactions of neutrinos with the
medium and is given by Eqs.(9) and(10). For concreteness
we usecV=−1 andcA=−1.23.LS represents the strong inter-
actions in the medium that give rise to the superfluid modeH
associated with the breaking of Us1dB. Since we expect these
interactions to have the formHsq̄ig5qC+ q̄Cig5qd (see Refs.
[45–47]), we use a four-quark interactionsq̄ig5qC

+ q̄Cig5qd2. To express this in terms of Nambu-Gor’kov
spinors, we define

GH ; S 0 ig5

ig5 0
D . s34d

Then the relevant quark self-interactions are

LS= GsC̄GHCd2. s35d

We will calculate two contributions to the medium polar-
ization tensor, depicted in Fig. 4 using the Nambu-Gor’kov
propagator given in Eq.(11). Our formalism, notation, and
conventions closely follow those of Ref.[31].

The first term on the right-hand side corresponds to the
quasifree response of the medium. The second term captures
the collective response of the system associated with the su-
perfluid excitationH. The collective response can be ex-
pressed as the RPA sum depicted in Fig. 5. We will first
calculate the quasifree response, then the collective response.

The quasifree response of the medium comes from first
term on the right-hand side of Fig. 4. This diagram makes the
following contribution to the polarization tensor:

Pqf
mnsQd =

1

2
E d3p

s2pd3fAsEp,Ep+qdhscV
2 + cA

2dT+
mnsp,p + qd

− 2cVcAW+
mnsp,p + qdj + As− Ep,− Ep+qd

3hscV
2 + cA

2dT−
mnsp,p + qd + 2cVcAW−

mnsp,p + qdj

− D2BsEp,Ep+qdhscV
2 + cA

2dfU+
mnsp,p + qd + U−

mnsp,p

+ qdg + 2cVcAfV+
mnsp,p + qd − V−

mnsp,p + qdgjg.

s36d

The Matsubara sum led to the quantities

AsE8,Ed =
1

s2jds2j8dHfnsjd − nsj8dgS sj − Edsj8 − E8d
q0 + j − j8

−
sj + Edsj8 + E8d

q0 − j + j8
D+ f1 − nsjd − nsj8dg

3S sj + Edsj8 − E8d
q0 − j − j8

−
sj − Edsj8 + E8d

q0 + j + j8
DJ s37d

and

BsE8,Ed =
1

s2jds2j8dHfnsjd − nsj8dgS 1

q0 + j − j8

−
1

q0 − j + j8
D + f1 − nsjd − nsj8dgS−

1

q0 − j − j8

+
1

q0 + j + j8
DJ s38d

with

j8 = ÎE82 + D2 and j = ÎE2 + D2.

The trace over Dirac indices led to the quantities

FIG. 4. The two contributions to the medium polarization tensor.
The first term on the right-hand side of Fig. 4 corresponds to the
quasifree response of the medium to the neutrino probe. The second
term on the right-hand side corresponds to the collective response
associated with the Goldstone modeH.

FIG. 5. The collective response of the medium can be evaluated
in the random phase approximation by summing a series of
diagrams.
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T±
mnsp1,p2d =5

1 + p1
ˆ ·p2

ˆ if m = 0 and n = 0

±sp1
ˆ + p2

ˆ dn if m = 0 and n Þ 0

±sp1
ˆ + p2

ˆ dm if m Þ 0 and n = 0

dmns1 − p1
ˆ ·p2

ˆ d + sp1
ˆ dmsp2

ˆ dn + sp2
ˆ dmsp1

ˆ dn if m Þ 0 and n Þ 0

s39d

and

W±
mnsp1,p2d =H iemnabsp1

ˆ dasp2
ˆ db if m = 0 or n = 0

7 iemn0asp1
ˆ − p2

ˆ da if m Þ 0 and n Þ 0

s40d

and

U±
mnsp1,p2d =HT±

mnsp1,p2d if n = 0

− T±
mnsp1,p2d if n Þ 0

s41d

and

V±
mnsp1,p2d =H− W±

mnsp1,p2d for n = 0

W±
mnsp1,p2d for n Þ 0

. s42d

Details of this calculation are given in Appendix A 1.
Now we want to calculate the contribution to the polar-

ization tensor from the superfluid modeH. This contribution
is the sum of a series of terms, expressed diagrammatically
in Fig. 5. The series is a geometric series, and its sum is
expressed diagrammatically in Fig. 6. The contribution of
this geometric series to the polarization tensor is

PH
mnsQd = −

G

2

ImsQdIns− Qd
gsQd

, s43d

where

ImsQd =E d3p

s2pd3iDcVfCsEp,Ep+qdU+
m0sp,p + qd

+ Cs− Ep,− Ep+qdU−
m0sp,p + qdg s44d

with

CsE8,Ed =
1

s2jds2j8dHfnsjd − nsj8dgSE − E8 − j + j8

q0 + j − j8

−
E − E8 + j − j8

q0 − j + j8
D + f1 − nsjd − nsj8dg

3S−
E − E8 + j + j8

q0 − j − j8
+

E − E8 − j − j8

q0 + j + j8
DJ ,

s45d

and

gsQd = 1 + 2GE d3p

s2pd3s1 + p̂ ·p + q̂d
1

s2jp+qds2jpd

3Hfnsjp+qd − nsjpdgsjp+qjp − Ep+qEp − D2d

3S 1

q0 + jp+q − jp
−

1

q0 − jp+q + jp
D

+ f1 − nsjp+qd − nsjpdgsjp+qjp + Ep+qEp + D2d

3S 1

q0 − jp+q − jp
−

1

q0 + jp+q + jp
DJ . s46d

Details of the evaluation are given in Appendix A 2. We
should check thatgsQd vanishes forq0=0 andq=0; this will
indicate the presence of a massless excitation, namely, theH
boson. Settingq0=q=0, we need

0 = 1 – 2GE d3p

s2pd3f1 – 2nsjpdg
1

jp
. s47d

This is easily verified by noting it is the gap equation ob-
tained by minimizing the free energy:]V /]D=0.

In Fig. 7 we plot −ImP00 for various temperatures as a
function of q0/ sqcsd, wherecs=1/Î3, which is the expected
velocity of the Goldstone mode. The dashed line is the qua-
sifree response, and the solid line is the full(that is, quasifree
plus collective) response. The momentum transferred to the
medium is fixed atq=60 MeV. We use the chemical poten-
tial m=400 MeV. The gap at zero temperature isD
=50 MeV, and the critical temperature isTc=28.3 MeV. The
upper left panel illustratesT/Tc=0.50. At this temperature
the gap isD=47.9 MeV. We find a narrow peak about
q0/ sqcsd=1, confirming our expectation about the Goldstone
mode. The threshold seen atq0/ sqcsd=2.76 corresponds to
q0=95.8 MeV=2D. The middle panel illustratesT/Tc=0.85.
At this temperature the gap isD=32.2 MeV. The peak asso-
ciated with the Goldstone mode has widened, and its height
has shrunk relative to the response atq0=2D. Also note the
nonzero response forq0/ sqcsdø1.73, corresponding toq0

øq. The rightmost panel illustratesT/Tc=1.10. At this tem-
perature the gap isD=0. Only theq0øq response is seen, as

FIG. 6. The diagrams of the random phase approximation are a
geometric series.
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expected. Having studied the medium polarization tensor for
a one-component, relativistic superfluid, we turn to the case
of a multicomponent relativistic superfluid—color-flavor
locked quark matter.

V. RESPONSE OF CFL MATTER

We finally study CFL matter. The interactions can still be
written as Eq.(33), except that for three-flavor quark matter
we should use

cV =1
1

2
−

4

3
sin2 uW 0 0

0 −
1

2
+

2

3
sin2 uW 0

0 0 −
1

2
+

2

3
sin2 uW

2 ,

s48d

where the weak mixing angle is sin2 uW<0.231, and

cA =1
1

2
0 0

0 −
1

2
0

0 0 −
1

2

2 . s49d

Also, the four-quark interaction that gives rise to theH in
CFL matter is

LS= GsC̄GHCd2, s50d

using

GH = S 0 ig5M

ig5M 0
D with sMd fg

cd = ecdI e fgI, s51d

wherec,d are color indices, andf ,g are flavor indices. In
CFL matter the nine quarks form an octet with gapD8;D
and a singlet with gapD1;2D. We are neglecting conden-
sation in the color6 channel, keeping only the condensate in

the 3̄ channel. The propagator involves the energiesjm p

=Îsp−md2+Dm
2 . The propagator also involves the following

color-flavor matrices:

sP1d fg
cd = sP̃1d fg

cd =
1

3
d f

cdg
d, sP8d fg

cd = d fgdcd −
1

3
d f

cdg
d,

and sP̃8d fg
cd = − d f

ddg
c +

1

3
d f

cdg
d.

Now we can write down the quark propagator:

SsPd = SG+sPd J−sPd
J+sPd G−sPd

D ,

where

G+sPd =H P1

p0
2 − j1 p

2 +
P8

p0
2 − j8 p

2 Jsp0 + EpdLp
+g0,

G−sPd =H P1

p0
2 − j1 p

2 +
P8

p0
2 − j8 p

2 Jsp0 − EpdLp
−g0,

J+sPd = −H D1P̃1

p0
2 − j1 p

2 +
D8P̃8

p0
2 − j8 p

2 Jg5Lp
−,

and

J−sPd =H D1P̃1

p0
2 − j1 p

2 +
D8P̃8

p0
2 − j8 p

2 Jg5Lp
+.

We have neglected the contribution from antiquarks.
We now calculate the contributions to the medium polar-

ization tensor from the quasifree response and the collective
response, the two terms depicted on the right-hand side of
Fig. 4. The quasifree contribution to the polarization tensor
comes from the first term on the right-hand side of Fig. 4,
and its value is

Pqf
mnsQd =

1

2
E d3p

s2pd3 o
m,nPh1,8j

„ĀsEp,Ep+q,Dm,Dnd

3hRmn
s1d T+

mnsp,p + qd − Rmn
s2d W+

mnsp,p + qdj

+ Ās− Ep,− Ep+q,Dm,DndhRmn
s1d T−

mnsp,p + qd

+ Rmn
s2d W−

mnsp,p + qdj − DmDnB̄sEp,Ep+q,Dm,Dnd

3hR̃mn
s1dfU+

mnsp,p + qd + U−
mnsp,p + qdg + R̃mn

s2d

3fV+
mnsp,p + qd − V−

mnsp,p + qdgj…. s52d

The Matsubara sum led to the quantitiesĀ and B̄, where

FIG. 7. We plot −ImP00 for a one-component relativistic su-
perfluid at various temperatures, as a function of the dimensionless
variable q0/ sqcsd, where cs=1/Î3, with fixed q=60 MeV. The
dashed line is the quasifree response, and the solid line is the full
(that is, quasifree plus collective) response. We use chemical poten-
tial m=400 MeV. The gap at zero temperature isD=50 MeV, and
the critical temperature isTc=28.3 MeV.
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ĀsE8,E,D8,Dd =
1

s2jds2j8dHfnsjd − nsj8dgS sj − Edsj8 − E8d
q0 + j − j8

−
sj + Edsj8 + E8d

q0 − j + j8
D + f1 − nsjd − nsj8dg

3S sj + Edsj8 − E8d
q0 − j − j8

−
sj − Edsj8 + E8d

q0 + j + j8
DJ
s53d

and

B̄sE8,E,D8,Dd =
1

s2jds2j8dHfnsjd − nsj8dgS 1

q0 + j − j8

−
1

q0 − j + j8
D + f1 − nsjd − nsj8dg

3S−
1

q0 − j − j8
+

1

q0 + j + j8
DJ s54d

with

j8 = ÎsE8d2 + sD8d2 and j = ÎE2 + D2.

The trace over color-flavor indices led to the quantities

Rmn
s1d = S0.0556 0.2865

0.2865 2.4502
D, Rmn

s2d = S0.0556 0.2391

0.2391 2.1182
D ,

R̃mn
s1d = S 0.0556 − 0.2865

− 0.2865 − 0.1286
D, and

R̃mn
s2d = S 0.0556 − 0.2391

− 0.2391 − 0.0338
D . s55d

Note that these matrices include off-diagonal components:
the weak interactions can scatter the singlet fermionic quasi-
particle into one of the octet fermionic quasiparticles, and
vice versa. We discuss the color-flavor trace further in Ap-
pendix B 1.

We now want to calculate the contribution to the quark
polarization tensor from the collective response of the me-
dium. This is depicted in Fig. 6. Its value is

PH
mnsQd = −

G

2

ĪmsQdĪns− Qd
ḡsQd

, s56d

where

ĪmsQd =E d3p

s2pd3 o
mPh1,8j

iDmRm
s3dfC̄sEp,Ep+q,jm p,jm p+qd

3U+
m0sp,p + qd + C̄s− Ep,− Ep+q,jm p,jm p+qd

3U−
m0sp,p + qdg, s57d

with

C̄sE8,E,j8,jd =
1

s2jds2j8dHfnsjd − nsj8dgS− E + E8 + j − j8

q0 + j − j8

−
− E + E8 − j + j8

q0 − j + j8
D + f1 − nsjd − nsj8dg

3S−
− E + E8 − j − j8

q0 − j − j8

+
− E + E8 + j + j8

q0 + j + j8
DJ . s58d

The quantityRm
s3d arises from the color-flavor trace. Its value

is

R1
s3d = −

1

3
and R8

s3d = −
4

3
. s59d

Also,

ḡsQd = 1 + 2 GE d3p

s2pd3s1 + p̂ ·p + q̂d

3o
m

D̄sEp,Ep+q,DmdRm
s5d, s60d

where

D̄sE8,E,Dd =
1

s2jds2j8dHfnsjd − nsj8dgsjj8 − EE8 − D2d

3S 1

q0 + j − j8
−

1

q0 − j + j8
D

+ f1 − nsjd − nsj8dgsjj8 + EE8 + D2d

3S 1

q0 − j − j8
−

1

q0 + j + j8
DJ s61d

and

R1
s5d = 4 and R8

s5d = 8. s62d

We discuss the color-flavor traces further in Appendix B 2.
The quantitygsQd should vanish whenq0=q=0 in order

to describe a massless excitation. That is, we must have

0 = 1 – 2GE d3p

s2pd3Hf1 – 2nsj1 pdg
4

j1 p

+ f1 – 2nsj8 pdg
8

j8 p
J . s63d

This is the gap equation. It gives a critical temperatureTc
<0.71DsT=0d, in agreement with Ref.[48].

In Fig. 8 we plot −ImP00 for various temperatures as a
function of q0/ sqcsd, wherecs=1/Î3, which is the expected
velocity of the Goldstone mode. The dashed line is the qua-
sifree response, and the solid line is the full(that is, quasifree
plus collective) response. The momentum transferred to the
medium is fixed atq=60 MeV. We use the quark chemical
potential m=400 MeV. The gap at zero temperature isD
=50 MeV, and the critical temperature isTc=35.7 MeV. The
leftmost panel illustratesT/Tc=0.50. At this temperature the
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gap isD=46.7 MeV. As in the one-component case, we find
a narrow peak aboutq0/ sqcsd=1, confirming our expectation
about the Goldstone mode. There is a threshold atq0/ sqcsd
=2.69, corresponding toq0=2D, and there is an additional
small response forq0/ sqcsdø1.73, that is,q0øq. The CFL
response function is much more busy than that in the one-
component case(see Fig. 7) because of additional effects at
q0=D ,3D ,4D, arising from the fact that some fermionic qua-
siparticles in CFL matter have a gapD and some have a gap
2D. The upper right panel illustratesT/Tc=0.85. At this tem-
perature the gap isD=30.0 MeV. The peak associated with
the Goldstone mode has widened, and its height has shrunk
relative to the response atq0=2D, but it overlaps with the
q0øq response, which has grown. The lower panel illus-
tratesT/Tc=1.10. At this temperature the gap isD=0. Only
the q0øq response is seen, as expected.

In Fig. 9 we plot the differential cross section for neutral-
current neutrino scattering in CFL matter. The energy of the
incoming neutrino isEn=pT, the typical energy of a thermal
neutrino. The momentum transferred to the medium is set to
q=En. Kinematics demand −1.73øq0/ sqcsdø1.73. The pa-
rameters are otherwise as in Fig. 8. The leftmost panel is
againT/Tc=0.50. There are prominent peaks nearq0/ sqcsd
= ±1 corresponding to the Goldstone mode. The expected
feature atq0ù2D, corresponding to excitation of a particle-
hole pair, does not lie in the kinematically allowed region of
q0. There is a small peak, however, atq0/ sqcsd=−1.44, or
−q0=D, corresponding to scattering of a singlet quark, whose
gap is 2D, into an octet quark, whose gap isD. The middle
panel illustratesT/Tc=0.85. The Goldstone peak has wid-
ened, and the threshold atq0ù2D—corresponding to
q0/ sqcsdù1.09—now falls in the kinematically allowed re-
gion. The rightmost panel illustratesT/Tc=1.10. This is the
result for free quarks.

VI. CONCLUSION

We have calculated the differential cross section for
neutral-current neutrino scattering in superfluid neutron mat-

ter, plotted in Fig. 3 and in color-flavor locked quark matter,
plotted in Fig. 9, under conditions relevant to proto-neutron-
stars. Our results apply above and below the critical tempera-
ture. In both of these regimes our model for the interaction in
the medium includes the dominant contribution to the cross
section. Above the critical temperature, this comes from the
fermionic excitations, which become the pair-breaking exci-
tations below the critical temperature. Well below the critical
temperature the dominant contribution comes from the mass-
less bosonic mode associated with the breaking of Us1d. Al-
though we presented results for scattering cross sections with
spacelike kinematics, our polarization functions extend into
the timelike region where pair breaking(and recombination)
is the dominant source of the response. These could be em-
ployed in calculations of the neutrino emissivity. In particu-
lar, we have demonstrated the importance of vertex correc-
tions in these regions. Our results suggest that earlier
calculations of the neutrino emissivity from the pair recom-
inbation process in superfluid neutron matter[43] and quark
matter [25], which ignore these vertex(RPA) corrections,
need to be revised.

The analysis presented here is based on mean-field and
the random phase approximation. Its validity is restricted to
weak coupling,D!m. For strong coupling we can expect the
response to differ quantitatively. In particular, screening cor-
rections that were discussed earlier could be significant. An-
other drawback is our use of simplified interactions to de-
scribe superfluid neutron and quark matter. Our focus was to
explore the role of superfluidity and this motivated our
choice of a simple zero-ranges-wave interaction. In reality,
the nucleon-nucleon and quark-quark interactions are more
complex. These will induce additional correlations, which
will affect both the gap equation and the response.(For a
recent review on the role of strong interaction correlations on
neutrino opacities see Ref.[49].) Given the nonperturbative
nature of these corrections it is difficult to foresee how large
they may be.

FIG. 8. We plot −ImP00 for CFL matter at various temperatures
as a function ofq0/ sqcsd, wherecs=1/Î3, with fixed q=60 MeV.
The dashed line is the quasifree response, and the solid line is the
full (that is, quasifree plus collective) response. We use the quark
chemical potentialm=400 MeV. The gap at zero temperature isD
=50 MeV, and the critical temperature isTc=35.7 MeV.

FIG. 9. We plot the differential cross section for neutral-current
neutrino scattering in CFL matter as a function of the dimensionless
variableq0/ sqcsd, with cs=1/Î3 and with momentum transfer set to
the typical incoming neutrino energyq=En=pT. The spike at
q0/ sqcsd.1 is the Goldstone-mode response. We use the quark
chemical potentialm=400 MeV. The gap at zero temperature isD
=50 MeV, and the critical temperature isTc=35.7 MeV.
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Although our results are valid both above and below the
critical temperature, we have implicitly assumed that the
transition is a BCS-like second-order transition. Several ca-
veats must be borne in mind when using our results nearTc.
In the real system this transition may be first order either due
to gauge field fluctuations[50] or stresses such as the strange
quark mass and electric charge neutrality[51]. Also, fluctua-
tions of the magnitude of the order parameter dominate in a
region called the Ginsburg region aroundTc. In strong cou-
pling, the size of this region could be significant fraction
of Tc [52]. Our approach captures some of these fluctua-
tions through RPA. Nonetheless, a Landau-Ginsburg
approach—an effective theory foruDu, is more appropriate in
this regime[53]. In particular, there are precursor fluctua-
tions just aboveTc, which are not included in our response,
that may be relevant[54]. These effects are currently under
investigation and will be reported elsewhere.

Our primary goal was to provide expressions for the dif-
ferential cross sections that could be used in simulations of
the early thermal evolution of neutron stars born in the after-
math of a supernova explosion. The microphysics of neutrino
scattering affects the rate of diffusion, which in turn affects
macroscopic observables such as the cooling rate and the
neutrino emission from core-collapse supernovae. Our re-
sults, which extend both to the low- and high-temperature
regions, are well suited for use in simulations of core-
collapse supernovae and early thermal evolution of neutron
stars.
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APPENDIX A: CALCULATION OF THE POLARIZATION
TENSOR FOR THE RELATIVISTIC SUPERFLUID

In this appendix we detail the calculation of the medium
polarization tensor for the one-component relativistic super-
fluid. In Sec. A 1 we evaluate the contribution from the qua-
sifree response function. In Sec. A 2 we include the contri-
bution from the collective response.

1. Quasifree response

The contribution to the medium polarization tensor can be
associated with the first diagram on the right-hand side of
Fig. 4. That diagram has the value

Pqf
mnsQd = − i

1

2
E d4P

s2pd4TrfGZ
mSsPdGZ

nSsP + Qdg. sA1d

The factor of1
2 is due to the doubling of fermion degrees of

freedom in the Nambu-Gor’kov formalism. Evaluating the
trace over Nambu-Gor’kov indices gives

Pqf
mnsQd = − i

1

2
E d4P

s2pd4TrfgmscV − cAg5dG+sPd

3gnscV − cAg5dG+sP + Qd − gmscV − cAg5dJ−sPd

3gnscV + cAg5dJ+sP + Qd − gmscV + cAg5dJ+sPd

3gnscV − cAg5dJ−sP + Qd + gmscV + cAg5dG−sPd

3gnscV + cAg5dG−sP + Qdg, sA2d

where the remaining trace is over Dirac indices. We will
write down the value of each of the four traces above. First,

TrfgmscV − cAg5dG+sPdgnscV − cAg5dG+sP + Qdg

=
sp0 + Epdsp0 + q0 + Ep+qd
fp0

2 − jp
2gfsp + qd0

2 − jp+q
2 g

hscV
2 + cA

2dT+
mnsp,p + qd

− 2cVcAW+
mnsp,p + qdj,

whereT±
mn is defined by

T±
mnsp1,p2d = Trfg0gmLp1

± g0gnLp2

± g, sA3d

andW±
mn is defined by

W±
mnsp1,p2d = Trfg0gmLp1

± g0gnLp2

± g5g. sA4d

Explicit evaluation ofT±
mn andW±

mn gives Eqs.(39) and(40),
respectively. The second term in Eq.(A2) is

Trf− gmscV − cAg5dJ−sPdgnscV + cAg5dJ+sP + Qdg

=
− D2

fp0
2 − jp

2gfsp + qd0
2 − jp+q

2 g
hscV

2 + cA
2dU+

mnsp,p + qd

+ 2cVcAV+
mnsp,p + qdj,

whereU±
mn is defined by

U±
mnsp1,p2d = TrfgmLp1

± gnLp2

7 g, sA5d

andV±
mn is defined by

V±
mnsp1,p2d = Trfg0gmLp1

± g0gnLp2

± g5g. sA6d

Explicit evaulation ofU±
mn andV±

mn gives Eqs.(41) and(42),
respectively. The third term in Eq.(A2) is

Trf− gmscV + cAg5dJ+sPdgnscV − cAg5dJ−sP + Qdg

=
− D2

fp0
2 − jp

2gfsp + qd0
2 − jp+q

2 g
hscV

2 + cA
2dU−

mnsp,p + qd

− 2cVcAV−
mnsp,p + qdj.

And the final term in Eq.(A2) is

TrfgmscV + cAg5dG−sPdgnscV + cAg5dG−sP + Qdg

=
sp0 − Epdsp0 + q0 − Ep+qd
fp0

2 − jp
2gfsp + qd0

2 − jp+q
2 g

hscV
2 + cA

2dT−
mnsp,p + qd

+ 2cVcAW−
mnsp,p + qdj.

Next, we consider the Matsubara sums:
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AsE8,Ed =
1

b
o

n

sp0 + q0 + Edsp0 + E8d
fsp0 + q0d2 − j2gfp0

2 − j82g
sA7d

and

BsE8,Ed =
1

b
o

n

1

fsp0 + q0d2 − j2gfp0
2 − j82g

, sA8d

where p0=−is2n+1dp /b is a fermionic Matsubara fre-
quency; q0=−i2mp /b is a bosonic Matsubara frequency;
and

j8 = ÎE82 + D2 and j = ÎE2 + D2.

Explicit expressions forA andB are given in Eqs.(37) and
(38), respectively. Adding all the terms yields Eq.(36).

2. Collective Response

In this section we detail the evaluation of the quantity
depicted on the right-hand side of Fig. 6, corresponding to

the collective response of the medium. First we evaluate the
numerator of that quantity, then the denominator.

a. The numerator

The numerator of the right-hand side of Fig. 6 contributes

− G2
1

2

1

2
E d4P

s2pd4

d4K

s2pd4TrfGZ
mSsPdGHSsP + Qdg

3TrfGHSsKdGZ
nSsK + Qdg = −

G

2
ImsQdIns− Qd,

where

ImsQd ; E d4P

s2pd4TrfGZ
mSsPdGHSsP + Qdg. sA9d

To evaluateImsQd we first compute

TrfGZ
mSsPdGHSsP + Qdg = TrFSgmscV − cAg5d 0

0 − gmscV + cAg5d
DSG+sPd J−sPd

J+sPd G−sPd
DS 0 ig5

ig5 0
DSG+sP + Qd J−sP + Qd

J+sP + Qd G−sP + Qd
DG

=TrfigmscV − cAg5dG+sPdg5J+sP + Qd + igmscV − cAg5dJ−sPdg5G
+sP + Qd − igmscV + cAg5d

3J+sPdg5G
−sP + Qd − igmscV + cAg5dG−sPdg5J−sP + Qdg.

Now,

TrfigmscV − cAg5dG+sPdg5J+sP + Qdg =
sp0 + Epds− iDd

fp0
2 − jp

2gfsp + qd0
2 − jp+q

2 g
fcVU+

m0sp,p + qd + cAV+
m0sp,p + qdg.

Next,

TrfigmscV − cAg5dJ−sPdg5G
+sP + Qdg =

siDdfsp + qd0 + Ep+qg
fp0

2 − jp
2gfsp + qd0

2 − jp+q
2 g

fcVU+
m0sp,p + qd + cAV+

m0sp,p + qdg.

And

Trf− igmscV + cAg5dJ+sPdg5G
−sP + Qdg =

siDdfsp + qd0 − Ep+qg
fp0

2 − jp
2gfsp + qd0

2 − jp+q
2 g

fcVU−
m0sp,p + qd − cAV−

m0sp,p + qdg.

Finally,

Trf− igmscV + cAg5dG−sPdg5J−sP + Qdg =
sp0 − Epds− iDd

fp0
2 − jp

2gfsp + qd0
2 − jp+q

2 g
fcVU−

m0sp,p + qd − cAV−
m0sp,p + qdg.

To proceed we evaluate the Matsubara sums

C1sE8,Ed ;
1

b
o

n

p0 + E8

fsp0 + q0d2 − j2gfp0
2 − j82g

=
1

s2jds2j8dHfnsjd − nsj8dgS−
j8 − E8

q0 + j − j8
−

j8 + E8

q0 − j + j8
D + f1 − nsjd − nsj8dgS j8 − E8

q0 − j − j8
+

j8 + E8

q0 + j + j8
DJ

and
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C2sE8,Ed ;
1

b
o

n

p0 + q0 + E

fsp0 + q0d2 − j2gfp0
2 − j82g

=
1

s2jds2j8dHfnsjd − nsj8dgS−
j − E

q0 + j − j8
−

j + E

q0 − j + j8
D + f1 − nsjd − nsj8dgS−

j + E

q0 − j − j8
−

j − E

q0 + j + j8
DJ .

If we define

CsE8,Ed ; − C1sE8,Ed + C2sE8,Ed

=
1

s2jds2j8dHfnsjd − nsj8dgSE − E8 − j + j8

q0 + j − j8
−

E − E8 + j − j8

q0 − j + j8
D + f1 − nsjd − nsj8dg

3S−
E − E8 + j + j8

q0 − j − j8
+

E − E8 − j − j8

q0 + j + j8
DJ ,

then an expression forIm is

ImsQd =E d3p

s2pd3iDhCsEp,Ep+qdfcVU+
m0sp,p + qd + cAV+

m0sp,p + qdg + Cs− Ep,− Ep+qdfcVU−
m0sp,p + qd − cAV−

m0sp,p + qdgj.

After performing theed3p integral, the terms proportional tocA vanish, leaving

ImsQd =E d3p

s2pd3iD cVfCsEp,Ep+qdU+
m0sp,p + qd + Cs− Ep,− Ep+qdU−

m0sp,p + qdg.

This is Eq.(44).

b. The denominator

In this section we evaluate the denominator of the right-hand side of Fig. 6. It has the value

gsQd ; 1 + G2
1

2
E d4P

s2pd4TrfSsP + QdGHSsPdGHg

=1 +G2
1

2
E d4P

s2pd4TrfSsP + QdGHSsPdGHg

=1 +GE d4P

s2pd4TrFSG+sP + Qd J−sP + Qd
J+sP + Qd G−sP + Qd

DS 0 ig5

ig5 0
DSG+sPd J−sPd

J+sPd G−sPd
DS 0 ig5

ig5 0
DG

=1 −GE d4P

s2pd4TrfJ−sP + Qdg5J−sPdg5 + G+sP + Qdg5G
−sPdg5 + G−sP + Qdg5G

+sPdg5 + J+sP + Qdg5J+sPdg5g

=1 +GE d4P

s2pd4s1 + p̂ ·p + q̂d
fsp + qd0 + Ep+qgsp0 − Epd − D2 + fsp + qd0 − Ep+qgsp0 + Epd − D2

fsp + qd0
2 − jp+q

2 gfp0
2 − jp

2g

=1 + 2GE d3p

s2pd3s1 + p̂ ·p + qˆ d
1

s2jpds2jp+qdHfnsjpd − nsjp+qdgsjp+qjp − Ep+qEp − D2d

3S 1

q0 + jp − jp+q
−

1

q0 − jp + jp+q
D + f1 − nsjpd − nsjp+qdgsjp+qjp + Ep+qEp + D2dS 1

q0 − jp − jp+q
−

1

q0 + jp + jp+q
DJ .

This is Eq.(46).

APPENDIX B: COLOR-FLAVOR TRACES IN THE
POLARIZATION TENSOR FOR CFL MATTER

In Appendix A we evaluated the polarization tensor for
the one-component, relativistic superfluid. This involved
traces over Nambu-Gor’kov and Dirac indices, as well as a
sum over Matsubara frequencies. Similar calculations are re-

quired to evaluate the polarization tensor for CFL matter.
The two-gap color-flavor structure of the quark propagator
complicates things. We discuss in this appendix the color-
flavor traces that must be computed to evaluate the CFL
polarization tensor. First we discuss the color-flavor traces
involved in the evaluation of the quasifree response, and then
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we discuss the color-flavor traces involved in the evaluation
of the collective response.

1. Quasifree response

The contribution to the polarization tensor from the quasi-
free response of the medium comes from the first term on the
right-hand side of Fig. 6. Evaluating this diagram involves a
trace over Nambu-Gor’kov and Dirac indices, as well as a
Matsubara sum—these calculations are similar to those in
the relativistic case. The complication in the present case
comes from the trace over color-flavor indices, due to the
two-gap structure of CFL matter. The color-flavor trace in-
volves the quantities

Rmn
s1d = TrfcVPmcVPng + TrfcAPmcAPng,

Rmn
s2d = TrfcVPmcAPng + TrfcAPmcVPng,

R̃mn
s1d = TrfcVP̃mcVP̃ng + TrfcAP̃mcAP̃ng,

and

R̃mn
s2d = TrfcVP̃mcAP̃ng + TrfcAP̃mcVP̃ng.

Explicit values for these quantities are given in Eq.(55).

2. Collective response

We now want to calculate the contribution to the quark
polarization tensor from the collective response associated
with the H boson, depicted in Fig. 6. The color-flavor traces
involved in calculating this contribution are much simpler
than those involved in calculating the quasifree response,
since theH-quark coupling does not mix the singlet and octet
quasiquarks. To evaluate the numerator of Fig. 6, we only
need the coefficients

Rm
s3d = TrfcVPmMP̃mg = TrfcVP̃mMPmg = TrfcAPmMP̃mg

= TrfcAP̃mMPmg.

This is explicitly evaluated in Eq.(59). To evaluate the de-
nominator, we only need the coefficients

Rm
s5d = TrfMPmMPmg = TrfMP̃mMP̃mg.

This is explicitly evaluated in Eq.(62).
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