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Multifractal behavior of nuclear fragments in high-energy leptonic interactions
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The multifractal analysis of nuclear fragmentation data obtained from muon-nucleus interactions at
420+45 GeV is performed usin@-moment and Takagi-moment methods. The generalized fractal dimensions
D, are determined from these methods and also are compared with those obtained from intermittency expo-
nents. The analysis reveals the multifractal behavior of target fragments in lepton-nucleus interactions.
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[. INTRODUCTION nuclear collisions[12,13,16,18,1Pin order to discern the
To search for the dynamical origin of large local fluctua- ProPer dynamics of multiparticle production. Most of the in-
tions in a single event of very high multiplicity recorded by vestigations on mqltlfractahty have bee_n carried out on the
the JACEE Collaboratiofil], the anomalous scaling of fac- Produced pions with the common belief that they are the
torial moments with phase space bin size called intermitMOSt informative about the collisional dynamics. Analysis of
tency has been proposed by Bialas and Pesché2sksuch target-assomated_ partlcles that ma_nlfest t_hem_selves as gray
a kind of anomalous scaling has recently been observed {ind black tracks in emulsion experiments in high-energy in-
various experimenti8—7]. The concept of intermittency is in (cractions is scanty. In fact, whatever knowledge we have
turn intimately connected to the fractal geometry of the un-%?lgr:]hj;’% rﬁ)alimg;sclisogzsgﬂoclmsnSgg':;em:!c&t%réag:ja;]e:xg_
gﬁgb’\;gg ghgg\';a\l\/g;og?slgki%a?lgtgllig%\}(’)JQGOEESSZIENblack tracks are.of the same origin in the emulsmn.. The
black tracks, of interest to us in the present analysis, are

wregglantles or fractals. Fractal geometry al!ows us to math"|dentified as target evaporation particles in a model referred
ematically describe systems that are intrinsically irregular a

X {o as the “evaporation mode[20].
all scales. A fractal structure has the property that if one | the evaporation model, the shower and gray tracks are
magnifies a small portion of it, this shows the same complexgmitted from the nucleus very soon after the instant of im-

ity as the entire system. The idea is therefore to construct gact, leaving the hot residual nucleus in an excited state.
formalism that is able to describe systems with local propergmission of black particles from this state takes place rela-
ties of the self-similarity. Different methods have been pro-tively slowly [21]. In order to escape from this residual
posed for studying the fractal structures in multiparticle datanucleus, a particle must await a favorable situation. Random
[10-14. collisions between the nucleons within the nucleus some-
The most notable property of fractals is their dimensiongimes take the particle close to the nuclear boundary, travel-
[15]. We have used two different methods for extracting theing in an outward direction and with a kinetic energy greater
fractal dimensions: th&s-moment method12-14,16 and than the binding energy of the nucleus. After the evaporation
Takagi-moment methofil7]. of this particle, a second particle is brought to the favorable
The G moments are constructed to reveal the fractal propeondition for evaporation and so on, until the excitation en-
erties of the multiplicity distribution by Hwa and others ergy of the residual nucleus becomes very small. After that,
[12,16. TheseG moments are, however, dominated by sta-transition to the ground state is likely to be affected by the
tistical fluctuations when the event multiplicity is very low. emission of they rays only. In the rest system of the nucleus
Hwa and Pan modified the old form of tl& moments by in this model, the directions of the emission of the evapora-
introducing a step function, which can act as a filter for thetion particles are distributed isotropically. In different experi-
low-multiplicity events01116.18 ments, however, the isotropicity has been found to be dis-
Recently Taka(ji7 proposed a novel method for studying turbed, which may be due to the loss of kinetic energy of the
the fractal structure where the difficulties faced in the con+esidual nucleus through ionization, following the impulse of
ventional methods have been overcome. Takagi has pointembllision, before the evaporation process is completed. The
out that in the common methods the experimental data do navaporation model is based on the assumption that statistical
show the expected linear behavior in a log-log plot, and thisquilibrium has been established in the decaying system and
is partially due to the fact that most of the methods are unthat the lifetime of the system is much longer than the time
able to satisfy the required mathematical limit, the number otaken to distribute the energy among the nucleons in the
points tends to infinity. nucleus.
These two methods have their own merits and demerits, This model is not free of irregularities. Takibaetal. and
yet these are the most widely accepted methodologies fohdamovichet al, analyzing the experimental data of proton
extracting the fractal dimensions in studies of multiparticleemulsion experiments at the incident energies 67—400 GeV
production. [22], observed the dominance of nonstatistical fluctuation
Multifractality has become the focal point of a number of over the statistical part in angular distribution of “black”
theoretical and experimental investigations in high-energyarticles. In this recent study also, the angular distribution of
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black particles from muon-nucleus interactions could not be 0
explained very satisfactorily by the evaporation model. Re- |
sults from our analyses of fragmentation data of muon- .
nucleus interactions at 420+45 GeV in terms of scale facto- -2 4
rial momentg 23] and also the possibility of the existence of
nonequilibrium processes of emission of slow, target-
associated particles motivate us to use @enoments and o
Takagi (T) moments as a diagnostic tool of the dynamical A 4
phenomenon, in analyzing the angular distribution of these ¢ -51
so-called “target-evaporation particles.” }A 1
The present paper reports the results of analysis of the — ]
angular distribution of the target fragments emitted from -7
muon-nucleus interactions in terms of fhandG moments.
No doubt it would be interesting to explore for the first time

if the emission process of the target-evaporated slow par- o
ticles in the case of lepton-nucleus interactions also exhibits |
a multifractal structure. This investigation has been done in -10

emission angle space as well as in azimuthal angle space. ]

A2 e ————————1——

Il. EXPERIMENTAL DETAILS 00 05 10 15 20 25 30 35 40
The fractal study is performed with the help of the emul- InM
sion technique because of the high spatial resolution with 4 0

geometry.

A. Exposure

In this emulsion experiment we have exposed stacks of
G5 nuclear emulsion plates to the main muon beam at -3 1
420+45 GeV at the Fermi LaboratorgJSA) [24]. The ]
emulsions were allowed to warm to room temperature for
4 h before the exposure. The two boxes were leveled to
about 2 mrad. The beam intensity on the emulsion was
monitored with a scintillator telescope with a circular aper-
ture of 1.25 cm(in more detail, a counter with a 1.25-cm- |
diam hole in anticoincidence with two counters 2.5 -7
X 2.5 cnf). The density of the integrated exposure is 0.98 1
X 10° muons/cm at the center, tapering off quadratically to -8 1
0.60 at 5 cm from the centegithe edge of the emulsion 1
sheets The beam was deliberately defocused with quadru-
poles to get a fairly even density on all parts of the emulsion.

-10 - -

-1 7 —
00 05 10 15 20 25 30 35 40
The scanning of the events was done with the help of a InM
high-resolution Leitz metalloplan microscope provided with
an on-line computer system using objectives<1th con- FIG. 1. The dependence of1@,) on InM for orderq=2,3,4 in
junction with a 1 ocular lens. The scanning is done by (a) cosé space andb) ¢ space for muon-nucleus interactions at
independent observers to increase the scanning efficienc§20+45 GeV.
which turns out to be 98%.
Criteria for selecting the events were
(i) The events within 2Qum thickness from the top or (a) The target fragments with ionization1.4l, (I is the

B. Scanning and measurement

bottom surface of the plates were not analyzed. plateau ionizationproduced either black or gray tracks. The
(i) The beam track did not exceed 3° from the mean beamblack tracks with range<3 mm represent target evaporation
direction in the pellicle. (the light nuclei evaporated from the target 8<0.3, sin-

(i) Following the above selection procedure, we havegly or multiply charged particles.
chosen 353 events from our sample plates of muon-nucleus (b) The gray tracks with a range3 mm and having ve-
interactions. locity 0.7=3=0.3 are mainly images of target recoil pro-
All the tracks of each event are classified as usual: tons of the energy range up to 400 MeV.
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TABLE I. Parameters of th&-moment analysis fog=2,3,4 in LI L A A B A
cos# space. 8+

stat dyn dyn
Tq q Tq Dq

0.77+0.009 0.89+0.019 0.88+0.021 0.88+0.021
1.21+0.049 2.10+£0.082 1.11+0.095 0.56+0.047
1.06+0.081 3.62+0.174 0.44+0.191 0.15+0.063

A wWw N | Q

(c) The relativistic shower tracks with ionizationl1.4l,
are mainly produced by pions and are not generally confined
within the emulsion pellicle. They are believed to carry im-
portant information about the nuclear reaction dynamics.

The azimuthal anglég) and the emission angl@) in the
laboratory frame of all the black tracks are calculated by
taking the readings of the space coordinatesy,z) of a
point on the track, another point on the incident beam, and 14
the production point by using oil immersion objectives
(100X in conjunction with a 1& ocular len$. The detailed 0 i
characteristics for each event were obtained. The emulsion . . . . . .
technique possesses the highest spatial resolution and thus is 05 00 0.5 1.0 15 2.0 2.5
the most effective for this type of analysis.

In<n®>

Ill. THE G-MOMENT ANALYSIS 8 .

The selected phase-space interval of lengthas been 74
divided in to M bins of equal size, the width of each bin J
being &x=x/M, n being the total multiplicity of target- 6
associated slow particles in theinterval. Letn,, be the
multiplicity of the particles distributed in theth bin. When
M is large, some bins may have no particlée., “empty
bins”). Let M’ be the number of nonempty bins, which con-
stitute a set of bins that have fractal properties. Hwa pro-
posed a set of fractal moments,, defined ag§13]

in<n®™>

M!
Gq= 2 P, (1)
m=1 <n In n>/<n>

whereP,,=n.,/n with n:E,'}”;lnm andq is the order number.
The summation is carried over the nonempty bins only, so -1 ————— —— T ————
thatg can cover the whole spectrum of real numbers. -0 05 00 05 10 15 20 25
In an attempt to circumvent the problem of statistical In<n>
noise, Hwa and Pafil6] proposed a modified definition of
the G moment as FIG. 2. The dependence of{iify and(nIn n)/(n) on In(n for
orderg=2,3,4 in(a) cos# space andb) ¢ space for muon-nucleus
TABLE Il. Parameter of th&s-moment analysis fog=2,3,4 in  interactions at 420+45 GeV.

¢ space.
q pe 7_stat 7_dyn Ddyn _ M q B
‘ 4 a 4 Gq= 2 P1O(Nm 1), @
2 067£0022 086:0.019 081£0.029 0.81+0.029 m=1
3 102£0077 167+0.036 135+0.085 0.67+0.042
4 111:0185 290£0.243 1210305 0.40+0.102 WNer€ O(Nn=q) is the usual step function that has been

added to the old definition in order to filter statistical noise:
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FIG. 3. Theq dependence of generalized dimensiDg in cosf space obtained frong) factorial-moment analysigb) G-moment
analysis,(c) Takagi-moment analysis.

1 ifn,=q emission process is characterized by a power law behavior

O(ny-9) ={ [13,14,

0 ifn,<qg
For very large multiplicityn/M > q, the step function is es- (Gg) = M, )
sentially unity and so the two definitions coincide. But in thewhere 7, is the fractal index and can be obtained from the
case of target fragmentation,is a relatively small number slope of the I§G,(M)) versus InM plot:
and theE function exerts a crucial influence on tk& mo-
ments. It imposes a nonanalytical cutoff at positive integer 7q= 61N (Gy(M))/S1n (M). (5)
values ofq. Thus is the real environment of high-energy We have divided the cog space and¢ space intoM
collisions, where the multiplicity is rather low and ti@ =2 3 4,...,20bins. For each event we have calculated the
moments are dominated by statistical fluctuactions. G moments of ordeg=2,3,4using Eq.(2). The logarithm
For an ensemble of events, the averaging is done as  of event-averageds moments of the ordeq=2,3,4 have
1 been plotted against M in Figs. ¥a) and Xb) in emission
<Gq>:52 Gq» (3) angle spacgcosé as the phase-space varigblend azi-
muthal angle spacép as the phase-space varighleespec-
where() is the total number of events in the ensemble. Ac-tively. A linear dependence of {G,) on InM is observed,
cording to the theory of multifractals, a self-similar particle indicating self-similarity in the particle emission process.
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The exponentr, of the power-law behavior is obtained by a A relation between thé&, moment and thdé=; moment
linear least-square fitting of the data points. The values arbas been developdd6], thus providing a fractal interpreta-
listed in Tables | and Il for the cog and ¢ space, respec- tion for intermittency. The fractal index, measures the
tively. strength of multifractality, while the intermittency index,

For the estimation of statistical contribution ¢(G,), we is a measure of the strength of the intermittency. Thus, a
distributen particles randomly in the considered interval, andcorrespondence between intermittency and multifractality
using the same procedure we calcuk@g) as in Eq(3)and ~ can be obtained by relating the indiceg and 7,. The two
7' as in Eq.(5). The best-fitted lines for §&F) versus Invi indices have been shown to be approximately relateid @ls
plots are shown by the solid lines in Figgalland b). The
S|OpeSTZt are listed in Tables | and Il correspondingly. The ag=~(q-1- Tgy“- (7)
dynamical component dfG,) can be estimated from the for-

. L . The relationship i if-
mula given by Chiu, Fialkowaski, and Hvias], e relationship is not exact becausgand G, are di

ferent moments and approach each other only in the limiting

dyn — stTn g1 case of infinite multiplicity. It is clear from Eq.7) that the
Gy [<Gq>/<GQ>]M ' deviation of a; from zero is equivalent to the deviation of
which gives rgy” from g-1. Thus to compare the fractal behavior(Bf)
and(Gg,), we should compare, andq—l—rgy”.
rgy”: Tq~ r§‘+q— 1. (6) We have plotted the value fag, (solid circleg and the

value forq-1-7"" (open circley with the orderq in Figs.

If (Gg) is purely statistical, thetGy)®"is M*™4, which isthe  2(a) and 2b) for the cosd and ¢ space, respectively. It is
result for trivial dynamics. Under such a conditioﬁV”:q observed from these figures that in each case the two values
—1. Any deviation ofrgy” from g-1 indicates the presence of a, and q—l—rgy“ are not equal, but both of them increase
dynamical information. with the orderq.
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space.

The generalized fractgRenyi) dimensions are obtained

from the relation

D=7~ 1).
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TABLE IIl. Comparative study of generalized fractal dimen-
sions in the co® space obtained from different methods.

Dq
Order of
momentq Fq moment Gy moment Ty moment
2 0.97+0.048 0.88+£0.021 0.69+0.029
3 0.89+0.045 0.56+0.047 0.67+0.034
4 0.79+0.039 0.15+0.063 0.66+0.037

IV. THE TAKAGI-MOMENT ANALYSIS

Consider a single event that contamparticles. The mul-
tiplicity n changes from event to event according to the dis-
tribution P,(x). The selected phase-space interval of length
Ax has been divided td1 bins of equal size, the width of
each bin beingx=Ax/M. Then the multiplicity distribution
for a single bin is denoted aB,(&x) for n=0,1,2,3...,
where we assume that the inclusive particle distribution
dn/dx is constant andP,(5X) is independent of the location
of the bin.n particles contained in a single event is distrib-
uted in the interval X, <X<Xmax The multiplicity n
changes from event to event according to the distribution
P.(AX), where AX=Xmnax=Xmin- |f the number of independent
events iX), then the particles emitted from those events are
distributed inQQM bins of sizedx. Let N be the total number
of target-associated slow particles produced in th€se
events anah,; the multiplicity of black particles in théth bin
of the ath event.

The theory of multifractal§26,27] motivates one to con-
sider the normalized densify),; defined byP,;=n,;/N. This
is of course also true whed— . Then one has to consider
the quantity

Q M
Tq(@ozlnEl}‘inj for >0,
a=1j=

which behaves like a linear function of the logarithm of the
“resolution” R(8x), andq is the order number.

To(8%) = Ag+ By In R(X),

whereA, and B, are constants independent &. If such a
behavior is observed for a considerable rangeRofx), a
generalized dimension may be determined as

Dy=By(q-1). (9)

Now evaluating the double sum @lﬂ for sufficiently large
), Takagi[17] expects a linear relation

In(n% = Aq + (Bq + 1in R(X).

While analyzing real datf28] it was observed29] that plot
of In(nY) againstx saturates for the large-region. This

For muon-nucleus interactions at 420+45 GeV, the values oflieviation may be due to the nonflat behaviodaf dx in the

DM have been calculated using Eq§) and (8) and are
listed in Tables | and Il for the cao# and ¢ space, respec-
tively. The corresponding values of

included in Tables | and Il.

7,s'[

v g

and Dgy” are also

largex region. Bailas and Gazdzicki and also Takagi sug-
gested thatn) would be a better choice of the “resolution”
R(8x) becausa&ln/d(n) is flat by definition[26,29. Choosing
R(8x)=(n) one has
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TABLE IV. Comparative study of generalized fractal dimen- show excellent linear behavior. We have performed best lin-

sions in theg space obtained from different methods. ear fits to the experimental data points and have calculated
the values of generalized dimensiobg (q=2,3,4 using
Dq Egs.(9) and the value of information dimensi@ using Eq.
(12) (Figs. 4 and &
Values ofq’s Fqmoment Gy moment T, moment Table 11l presents the values of generalized dimensians
obtained from theG-moment, T-moment, and also from
2 0.82£0.041  0.812£0.029  0.59£0.039  F_moment methodgrom our earlier work23]) for the cos#
3 0.75+0.038  0.67£0.043  0.57+0.046 space. Table IV presents the corresponding values of gener-
4 0.72+0.036 0.40+0.102 0.56+0.055 alized dimension®, for ¢ space.

In this paper we have made an attempt to study the frac-
tality and to extract the fractal dimension of target fragmen-
tation processes in muon-nucleus interactions at
L . . 420+45 GeV. One should appreciate the fact that it is very
Th withg=1 can tain taking an ro- .- . S

e case withg=1 can be obtained by taking an appro difficult to extract the exact fractal dimension in an unam-

priate limit[27]. The value of information dimensidb; can . ; )
also be determined from a new and simple relation suggeste?’iguous way. However, there exist three different gpproaches
by Takagi[17], mom«_ant,G moment, andlT momenj f_or extracting _the
fractal dimension. We have already pointed out earlier that
(nIn n)/{n) = Cy + D, In{n), (11)  each method has its own merits and demerits. It has been
i observed in the works of different group30-33 that dif-
whereC, is a constant. , o ferent methods give different values of fractal dimension.
In the present case the cosine of emission angle of blackrhe present analysis also does not show any exception in this
track interval(A cos¢=1) is divided into overlapping bins, reqard. Nevertheless, it is interesting to note that each
whose size is increased symmetrically in steps of 0.2 aroungheihod shows a decrease of fractal dimension with the order
the central value @zerg and the azimuthal angle interval of moment indicating multifractal nature of the fragmenta-
(Ad>=360°) is d|V|dgd mtg overlapping bins, whose size is jgn process in both ca% space andp space. One should
increased symmetrically in steps of 20° around the centrahgte the rationale behind the analysis in two phase spaces.
value 180°. For each bin we have calculatg®) and  gjnce the analysis in one phase spécesf) can give re-
(nIn)/n for both spaces. Figures&@ and 3b) represent  stricted information of the fluctuation pattern of the emission
the nature of the variation of {n% (for q=2,3,4 and  process, it is essential to study in other phase spaces, i.e., in
(nInny/{ny with In{n) for cosé as the phase-space variable the azimuthal angle spad@) also, to have a clear idea of
and ¢ as the phase-space variable, respectively. All the plotsnultifractal nature of the slow target-evaporated particles.

a simple linear relation betweerh¥) and Inn). The gener-
alized dimensiorD, can be obtained from the slope values
using Eq.(9).
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