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The multifractal analysis of nuclear fragmentation data obtained from muon-nucleus interactions at
420±45 GeV is performed usingG-moment and Takagi-moment methods. The generalized fractal dimensions
Dq are determined from these methods and also are compared with those obtained from intermittency expo-
nents. The analysis reveals the multifractal behavior of target fragments in lepton-nucleus interactions.
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I. INTRODUCTION

To search for the dynamical origin of large local fluctua-
tions in a single event of very high multiplicity recorded by
the JACEE Collaboration[1], the anomalous scaling of fac-
torial moments with phase space bin size called intermit-
tency has been proposed by Bialas and Peschanski[2]. Such
a kind of anomalous scaling has recently been observed in
various experiments[3–7]. The concept of intermittency is in
turn intimately connected to the fractal geometry of the un-
derlying physical process[8]. Mandelbrot[9], the pioneer,
showed a new way of looking into the world of apparent
irregularities or fractals. Fractal geometry allows us to math-
ematically describe systems that are intrinsically irregular at
all scales. A fractal structure has the property that if one
magnifies a small portion of it, this shows the same complex-
ity as the entire system. The idea is therefore to construct a
formalism that is able to describe systems with local proper-
ties of the self-similarity. Different methods have been pro-
posed for studying the fractal structures in multiparticle data
[10–14].

The most notable property of fractals is their dimensions
[15]. We have used two different methods for extracting the
fractal dimensions: theG-moment method[12–14,16] and
Takagi-moment method[17].

TheG moments are constructed to reveal the fractal prop-
erties of the multiplicity distribution by Hwa and others
[12,16]. TheseG moments are, however, dominated by sta-
tistical fluctuations when the event multiplicity is very low.
Hwa and Pan modified the old form of theG moments by
introducing a step function, which can act as a filter for the
low-multiplicity events.10,11,16,18

Recently Takagi17 proposed a novel method for studying
the fractal structure where the difficulties faced in the con-
ventional methods have been overcome. Takagi has pointed
out that in the common methods the experimental data do not
show the expected linear behavior in a log-log plot, and this
is partially due to the fact that most of the methods are un-
able to satisfy the required mathematical limit, the number of
points tends to infinity.

These two methods have their own merits and demerits,
yet these are the most widely accepted methodologies for
extracting the fractal dimensions in studies of multiparticle
production.

Multifractality has become the focal point of a number of
theoretical and experimental investigations in high-energy

nuclear collisions[12,13,16,18,19] in order to discern the
proper dynamics of multiparticle production. Most of the in-
vestigations on multifractality have been carried out on the
produced pions with the common belief that they are the
most informative about the collisional dynamics. Analysis of
target-associated particles that manifest themselves as gray
and black tracks in emulsion experiments in high-energy in-
teractions is scanty. In fact, whatever knowledge we have
about these particles is based on hadron-emulsion and heavy-
ion–emulsion interactions and suggests that the gray and
black tracks are of the same origin in the emulsion. The
black tracks, of interest to us in the present analysis, are
identified as target evaporation particles in a model referred
to as the “evaporation model”[20].

In the evaporation model, the shower and gray tracks are
emitted from the nucleus very soon after the instant of im-
pact, leaving the hot residual nucleus in an excited state.
Emission of black particles from this state takes place rela-
tively slowly [21]. In order to escape from this residual
nucleus, a particle must await a favorable situation. Random
collisions between the nucleons within the nucleus some-
times take the particle close to the nuclear boundary, travel-
ing in an outward direction and with a kinetic energy greater
than the binding energy of the nucleus. After the evaporation
of this particle, a second particle is brought to the favorable
condition for evaporation and so on, until the excitation en-
ergy of the residual nucleus becomes very small. After that,
transition to the ground state is likely to be affected by the
emission of theg rays only. In the rest system of the nucleus
in this model, the directions of the emission of the evapora-
tion particles are distributed isotropically. In different experi-
ments, however, the isotropicity has been found to be dis-
turbed, which may be due to the loss of kinetic energy of the
residual nucleus through ionization, following the impulse of
collision, before the evaporation process is completed. The
evaporation model is based on the assumption that statistical
equilibrium has been established in the decaying system and
that the lifetime of the system is much longer than the time
taken to distribute the energy among the nucleons in the
nucleus.

This model is not free of irregularities. Takibaevet al.and
Adamovichet al., analyzing the experimental data of proton
emulsion experiments at the incident energies 67–400 GeV
[22], observed the dominance of nonstatistical fluctuation
over the statistical part in angular distribution of “black”
particles. In this recent study also, the angular distribution of
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black particles from muon-nucleus interactions could not be
explained very satisfactorily by the evaporation model. Re-
sults from our analyses of fragmentation data of muon-
nucleus interactions at 420±45 GeV in terms of scale facto-
rial moments[23] and also the possibility of the existence of
nonequilibrium processes of emission of slow, target-
associated particles motivate us to use theG moments and
Takagi sTd moments as a diagnostic tool of the dynamical
phenomenon, in analyzing the angular distribution of these
so-called “target-evaporation particles.”

The present paper reports the results of analysis of the
angular distribution of the target fragments emitted from
muon-nucleus interactions in terms of theT andG moments.
No doubt it would be interesting to explore for the first time
if the emission process of the target-evaporated slow par-
ticles in the case of lepton-nucleus interactions also exhibits
a multifractal structure. This investigation has been done in
emission angle space as well as in azimuthal angle space.

II. EXPERIMENTAL DETAILS

The fractal study is performed with the help of the emul-
sion technique because of the high spatial resolution with 4]
geometry.

A. Exposure

In this emulsion experiment we have exposed stacks of
G5 nuclear emulsion plates to the main muon beam at
420±45 GeV at the Fermi Laboratory(USA) [24]. The
emulsions were allowed to warm to room temperature for
4 h before the exposure. The two boxes were leveled to
about ±2 mrad. The beam intensity on the emulsion was
monitored with a scintillator telescope with a circular aper-
ture of 1.25 cm(in more detail, a counter with a 1.25-cm-
diam hole in anticoincidence with two counters 2.5
32.5 cm2). The density of the integrated exposure is 0.98
3106 muons/cm2 at the center, tapering off quadratically to
0.60 at 5 cm from the center(the edge of the emulsion
sheets). The beam was deliberately defocused with quadru-
poles to get a fairly even density on all parts of the emulsion.

B. Scanning and measurement

The scanning of the events was done with the help of a
high-resolution Leitz metalloplan microscope provided with
an on-line computer system using objectives 103 in con-
junction with a 103 ocular lens. The scanning is done by
independent observers to increase the scanning efficiency,
which turns out to be 98%.

Criteria for selecting the events were
(i) The events within 20mm thickness from the top or

bottom surface of the plates were not analyzed.
(ii ) The beam track did not exceed 3° from the mean beam

direction in the pellicle.
(iii ) Following the above selection procedure, we have

chosen 353 events from our sample plates of muon-nucleus
interactions.

All the tracks of each event are classified as usual:

(a) The target fragments with ionization.1.4I0 (I0 is the
plateau ionization) produced either black or gray tracks. The
black tracks with range,3 mm represent target evaporation
(the light nuclei evaporated from the target) of b,0.3, sin-
gly or multiply charged particles.

(b) The gray tracks with a rangeù3 mm and having ve-
locity 0.7ùbù0.3 are mainly images of target recoil pro-
tons of the energy range up to 400 MeV.

FIG. 1. The dependence of lnkGql on lnM for orderq=2,3,4 in
(a) cosu space and(b) f space for muon-nucleus interactions at
420±45 GeV.
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(c) The relativistic shower tracks with ionization,1.4I0
are mainly produced by pions and are not generally confined
within the emulsion pellicle. They are believed to carry im-
portant information about the nuclear reaction dynamics.

The azimuthal anglesfd and the emission anglesud in the
laboratory frame of all the black tracks are calculated by
taking the readings of the space coordinatessx,y,zd of a
point on the track, another point on the incident beam, and
the production point by using oil immersion objectives
(1003 in conjunction with a 103 ocular lens). The detailed
characteristics for each event were obtained. The emulsion
technique possesses the highest spatial resolution and thus is
the most effective for this type of analysis.

III. THE G-MOMENT ANALYSIS

The selected phase-space interval of lengthx has been
divided in to M bins of equal size, the width of each bin
being dx=x/M, n being the total multiplicity of target-
associated slow particles in thex interval. Let nm be the
multiplicity of the particles distributed in themth bin. When
M is large, some bins may have no particles(i.e., “empty
bins”). Let M8 be the number of nonempty bins, which con-
stitute a set of bins that have fractal properties. Hwa pro-
posed a set of fractal moments,Gq, defined as[13]

Gq = o
m=1

M8

Pm
q , s1d

wherePm=nm/n with n=om=1
M8 nm andq is the order number.

The summation is carried over the nonempty bins only, so
that q can cover the whole spectrum of real numbers.

In an attempt to circumvent the problem of statistical
noise, Hwa and Pan[16] proposed a modified definition of
the G moment as

Gq = o
m=1

M8

Pm
q Qsnm − qd, s2d

where Qsnm−qd is the usual step function that has been
added to the old definition in order to filter statistical noise:

TABLE I. Parameters of theG-moment analysis forq=2,3,4 in
cosu space.

q tq tq
stat tq

dyn Dq
dyn

2 0.77±0.009 0.89±0.019 0.88±0.021 0.88±0.021

3 1.21±0.049 2.10±0.082 1.11±0.095 0.56±0.047

4 1.06±0.081 3.62±0.174 0.44±0.191 0.15±0.063

TABLE II. Parameter of theG-moment analysis forq=2,3,4 in
f space.

q tq tq
stat tq

dyn Dq
dyn

2 0.67±0.022 0.86±0.019 0.81±0.029 0.81±0.029

3 1.02±0.077 1.67±0.036 1.35±0.085 0.67±0.042

4 1.11±0.185 2.90±0.243 1.21±0.305 0.40±0.102

FIG. 2. The dependence of lnknql and kn ln nl / knl on lnknl for
orderq=2,3,4 in(a) cosu space and(b) f space for muon-nucleus
interactions at 420±45 GeV.
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Qsnm − qd = H1 if nm ù q

0 if nm , q
J .

For very large multiplicityn/M @q, the step function is es-
sentially unity and so the two definitions coincide. But in the
case of target fragmentation,n is a relatively small number
and theE function exerts a crucial influence on theG mo-
ments. It imposes a nonanalytical cutoff at positive integer
values of q. Thus is the real environment of high-energy
collisions, where the multiplicity is rather low and theG
moments are dominated by statistical fluctuactions.

For an ensemble of events, the averaging is done as

kGql =
1

V
o Gq, s3d

whereV is the total number of events in the ensemble. Ac-
cording to the theory of multifractals, a self-similar particle

emission process is characterized by a power law behavior
[13,14],

kGql ~ M−tq, s4d

wheretq is the fractal index and can be obtained from the
slope of the lnkGqsMdl versus lnM plot:

tq = d ln kGqsMdl/d ln sMd. s5d

We have divided the cosu space andf space intoM
=2,3,4, . . . ,20bins. For each event we have calculated the
G moments of orderq=2,3,4using Eq.(2). The logarithm
of event-averagedG moments of the orderq=2,3,4 have
been plotted against lnM in Figs. 1(a) and 1(b) in emission
angle space(cosu as the phase-space variable) and azi-
muthal angle space(f as the phase-space variable), respec-
tively. A linear dependence of lnkGql on lnM is observed,
indicating self-similarity in the particle emission process.

FIG. 3. Theq dependence of generalized dimensionDq in cosu space obtained from(a) factorial-moment analysis,(b) G-moment
analysis,(c) Takagi-moment analysis.
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The exponenttq of the power-law behavior is obtained by a
linear least-square fitting of the data points. The values are
listed in Tables I and II for the cosu and f space, respec-
tively.

For the estimation of statistical contribution tokGql, we
distributen particles randomly in the considered interval, and
using the same procedure we calculatekGq

stl as in Eq.(3) and
tq

st as in Eq.(5). The best-fitted lines for lnkGq
stl versus lnM

plots are shown by the solid lines in Figs. 1(a) and 1(b). The
slopestq

st are listed in Tables I and II correspondingly. The
dynamical component ofkGql can be estimated from the for-
mula given by Chiu, Fialkowaski, and Hwa[25],

kGqldyn = fkGql/kGq
stlgM1−q,

which gives

tq
dyn = tq − tq

st + q − 1. s6d

If kGql is purely statistical, thenkGqldyn is M1−q, which is the
result for trivial dynamics. Under such a conditiontq

dyn=q
−1. Any deviation oftq

dyn from q−1 indicates the presence of
dynamical information.

A relation between theGq moment and theFq moment
has been developed[16], thus providing a fractal interpreta-
tion for intermittency. The fractal indextq measures the
strength of multifractality, while the intermittency indexaq
is a measure of the strength of the intermittency. Thus, a
correspondence between intermittency and multifractality
can be obtained by relating the indicesaq and tq. The two
indices have been shown to be approximately related as[16]

aq < q − 1 −tq
dyn. s7d

The relationship is not exact becauseFq and Gq are dif-
ferent moments and approach each other only in the limiting
case of infinite multiplicity. It is clear from Eq.(7) that the
deviation ofaq from zero is equivalent to the deviation of
tq

dyn from q−1. Thus to compare the fractal behavior ofkFql
and kGql, we should compareaq andq−1−tq

dyn.
We have plotted the value foraq (solid circles) and the

value forq−1−tq
dyn (open circles) with the orderq in Figs.

2(a) and 2(b) for the cosu and f space, respectively. It is
observed from these figures that in each case the two values
aq and q−1−tq

dyn are not equal, but both of them increase
with the orderq.

FIG. 4. Theq dependence of
generalized dimensionDq in f
space obtained from(a) factorial-
moment analysis,(b) G-moment
analysis, (c) Takagi-moment
analysis.
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The generalized fractal(Renyi) dimensions are obtained
from the relation

Dq
dyn = tq

dyn/sq − 1d. s8d

For muon-nucleus interactions at 420±45 GeV, the values of
Dq

dyn have been calculated using Eqs.(6) and (8) and are
listed in Tables I and II for the cosu and f space, respec-
tively. The corresponding values oftq, tq

st, andDq
dyn are also

included in Tables I and II.

IV. THE TAKAGI-MOMENT ANALYSIS

Consider a single event that containsn particles. The mul-
tiplicity n changes from event to event according to the dis-
tribution Pnsxd. The selected phase-space interval of length
Dx has been divided toM bins of equal size, the width of
each bin beingdx=Dx/M. Then the multiplicity distribution
for a single bin is denoted asPnsdxd for n=0,1,2,3. . .,
where we assume that the inclusive particle distribution
dn/dx is constant andPnsdxd is independent of the location
of the bin.n particles contained in a single event is distrib-
uted in the interval xmin,x,xmax. The multiplicity n
changes from event to event according to the distribution
PnsDxd, whereDx=xmax−xmin. If the number of independent
events isV, then the particles emitted from those events are
distributed inVM bins of sizedx. Let N be the total number
of target-associated slow particles produced in theseV
events andnaj the multiplicity of black particles in thej th bin
of the ath event.

The theory of multifractals[26,27] motivates one to con-
sider the normalized densityPaj defined byPaj=naj /N. This
is of course also true whenN→`. Then one has to consider
the quantity

Tqsdxd = ln o
a=1

V

o
j=1

M

Paj
q for q . 0,

which behaves like a linear function of the logarithm of the
“resolution” Rsdxd, andq is the order number.

Tqsdxd = Aq + Bq ln Rsdxd,

whereAq andBq are constants independent ofdx. If such a
behavior is observed for a considerable range ofRsdxd, a
generalized dimension may be determined as

Dq = Bq/sq − 1d. s9d

Now evaluating the double sum ofPij
q for sufficiently large

V, Takagi[17] expects a linear relation

lnknql = Aq + sBq + 1dln Rsdxd.

While analyzing real data[28] it was observed[29] that plot
of lnknql againstdx saturates for the large-x region. This
deviation may be due to the nonflat behavior ofdn/dx in the
large-x region. Bailas and Gazdzicki and also Takagi sug-
gested thatknl would be a better choice of the “resolution”
Rsdxd becausedn/dknl is flat by definition[26,29]. Choosing
Rsdxd=knl one has

TABLE III. Comparative study of generalized fractal dimen-
sions in the cosu space obtained from different methods.

Order of
momentq

Dq

Fq moment Gq moment Tq moment

2 0.97±0.048 0.88±0.021 0.69±0.029

3 0.89±0.045 0.56±0.047 0.67±0.034

4 0.79±0.039 0.15±0.063 0.66±0.037

FIG. 5. Comparison ofF andG moments in(a) cosu and(b) f
space.
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lnknql = Aq + sBq + 1dlnknl, s10d

a simple linear relation between lnknql and lnknl. The gener-
alized dimensionDq can be obtained from the slope values
using Eq.(9).

The case withq=1 can be obtained by taking an appro-
priate limit [27]. The value of information dimensionD1 can
also be determined from a new and simple relation suggested
by Takagi[17],

kn ln nl/knl = C1 + D1 lnknl, s11d

whereC1 is a constant.
In the present case the cosine of emission angle of black-

track intervalsD cosu=1d is divided into overlapping bins,
whose size is increased symmetrically in steps of 0.2 around
the central value 0(zero) and the azimuthal angle interval
sDF=360°d is divided into overlapping bins, whose size is
increased symmetrically in steps of 20° around the central
value 180°. For each bin we have calculatedknql and
kn ln nl /n for both spaces. Figures 3(a) and 3(b) represent
the nature of the variation of lnknql (for q=2,3,4) and
kn ln nl / knl with lnknl for cosu as the phase-space variable
andf as the phase-space variable, respectively. All the plots

show excellent linear behavior. We have performed best lin-
ear fits to the experimental data points and have calculated
the values of generalized dimensionsDq sq=2,3,4d using
Eqs.(9) and the value of information dimensionD1 using Eq.
(11) (Figs. 4 and 5).

Table III presents the values of generalized dimensionsDq
obtained from theG-moment, T-moment, and also from
F-moment methods(from our earlier work[23]) for the cosu
space. Table IV presents the corresponding values of gener-
alized dimensionsDq for f space.

V. CONCLUSIONS

In this paper we have made an attempt to study the frac-
tality and to extract the fractal dimension of target fragmen-
tation processes in muon-nucleus interactions at
420±45 GeV. One should appreciate the fact that it is very
difficult to extract the exact fractal dimension in an unam-
biguous way. However, there exist three different approaches
(F moment,G moment, andT moment) for extracting the
fractal dimension. We have already pointed out earlier that
each method has its own merits and demerits. It has been
observed in the works of different groups[30–32] that dif-
ferent methods give different values of fractal dimension.
The present analysis also does not show any exception in this
regard. Nevertheless, it is interesting to note that each
method shows a decrease of fractal dimension with the order
of moment indicating multifractal nature of the fragmenta-
tion process in both cosu space andf space. One should
note the rationale behind the analysis in two phase spaces.
Since the analysis in one phase spacescosud can give re-
stricted information of the fluctuation pattern of the emission
process, it is essential to study in other phase spaces, i.e., in
the azimuthal angle spacesfd also, to have a clear idea of
multifractal nature of the slow target-evaporated particles.
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