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A direct derivation of the operator structure for two spin-1
2 particles is presented subject to invariance under

basic symmetries and Galilean frame transformation. The partial wave decomposition for coefficient functions,
valid on- and off-shell, is explicitly deduced. The momentum transfer representation and angular momentum
decomposition for general spin-dependent potentials are obtained.
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I. INTRODUCTION

Two-body operators are the basic elements defining the
properties of interacting systems. The on- and off-shell scat-
tering operators(S,−T matrices), the two-body interaction,
the optical potential between particles, etc., supply examples
of such operators. Figure 1 shows a schematic representation
of a two-body operatorUsk18 ,k28 ;k1,k2d in momentum space.
The initial and final momenta(spin projections) of particle i
are denoted byki snid andki8 sni8d, respectively. The operator
dependence on any parameters(for example, energyE) is not
shown explicitly. The particle momenta or their combina-
tions are the operator arguments and the operator
Usk18 ,k28 ;k1,k2d is a matrix in the spin space of particles. It is
convenient to choose relative and total momenta of two par-
ticles in the initialsk ,Pd and finalsk8 ,P8d states as indepen-
dent operator variables

k =
m1m2

m1 + m2
S k1

m1
−

k2

m2
D, P = k1 + k2

k8 =
m1m2

m1 + m2
S k18

m1
−

k28

m2
D, P8 = k18 + k28,

where mi are the particle masses. Thus, the operator
Usk18 ,k28 ;k1,k2d;UsP8 ,k8 ;P,kd must be constructed from
its arguments and a complete set of spin matrices. In order to
be physically relevant, the operator structure must be com-
patible with the restrictions imposed upon it by general sym-
metry principles and frame transformations. Implementation
of symmetries reduces a number of independent arguments
and constrains the allowed operator forms.

The general structure of a two-body operator in a nonrel-
ativistic case is usually constructed in the following way
[1,2]. The condition of invariance under rotations requires
that the operatorU should be a scalar. For spin12 particles,U
is a matrix in the four-dimensional spin space. This matrix
can be represented by a combination of any sixteen linearly
independent matrices. A convenient set of such matrices can
be formed from the unit and Pauli spin matricessi arranged
into scalars, axial vectors, and symmetric tensors of the sec-
ond rank

1, ss1 · s2d,ss1 + s2d,ss1 − s2d,fs1 Ã s2g1m,fs1 Ã s2g2m

where ss1·s2d and fs1Ãs2glm denote scalar and direct
products of thes-operators

ss1 · s2d = o
n

s− 1dnss1dnss2d−n

fs1 Ã s2glm = o
n1,n2

s1n11n2ulmdss1dn1
ss2dn2

.

Overall scalars can be formed by contraction of the spin
vectors with appropriate momentum vectors and also by con-
traction of the spin tensors with second-rank tensors con-
structed from the available momentum vectors. Any of these
terms may be multiplied by arbitrary scalar functions that
depend on scalars formed from momenta. Additional restric-
tions on the operator structure follow from the implications
of symmetries like the translational, parity, and reciprocity
(time reversal) invariance, and the Pauli principle. The op-
erator structure compatible with general symmetries was de-
duced [1,2] for on-shell operators and a broad variety of
applications in nuclear physics was found. The generaliza-
tion to the case of relativistic scattering operators for Dirac
particles can be found in Ref.[3]. So five (six) terms are
necessary to define the on-shell operator completely if par-
ticles are identical(not identical). The number of indepen-
dent terms is increased off shell to six and eight for identical
and nonidentical particles, respectively[4,5]. Nevertheless,
the two drawbacks are present at approach like this. One is
that the structure of arbitrary functions remains undefined.
Taking the traces over the Pauli spin matricess1 and s2
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from products of theU-operator with spin tensors, these
functions can be expressed for theon-shellcase by different
combinations of the operator matrix elements with the
known partial wave decomposition. Thus, arbitrary functions
can be related with the partial wave structure of the operator
U. The NN on-shell amplitude is the well-known example
[6]. For off-shell momenta the set of unit momentum vectors
usually used in spin-tensors becomes nonorthogonal. Also
the time reversal invariance gives only some relations be-
tween the amplitudes, but it does not restrict the number of
amplitudes as for instance takes place on the energy shell.
Thus the off-shell relations become rather complicated and
the numerical matrix inversion is used[7]. The second dis-
advantage is that for off-shell situation the above derivation
does not exclude appearance of arbitrary scalar functions be-
coming zero at on-shell momenta.

Below the general structure of the two-body operatorU,
valid for the on- and off-shell momenta, is directly derived
from the operator partial-wave decomposition within the
framework of nonrelativistic dynamics. This derivation is
rather transparent, follows straightforwardly from algebraic
manipulations and gives a complete structure. The method
does not require the special selection of a coordinate system
and is equally applicable to on- and off-shell situations. As
result, the operator splits into two parts, one conserves parity
and the other does not. The scalar functions of the operator
structure are explicitly defined by the partial wave compo-
nents of theU operator. The momentum transfer representa-
tion of the operator structure is also given and the angular
momentum decomposition for spin-dependent potentials is
developed in the analytical form. In the Appendix, the
method is applied to derive the operator structure in the case
of particles with spin-0 and spin-1

2.

II. GENERAL STRUCTURE OF A TWO-BODY OPERATOR

A. Translation and Galilean invariance

The translation invariance implies that a coordinate space
representation of a two-body operatorUsr18 ,r28 ; r1,r2d is in-
dependent of a shift of all space coordinates on an arbitrary
vectora

Usr18,r28;r1,r2d = Usr18 + a,r28 + a;r1 + a,r2 + ad.

In momentum space this relation dictates conservation of the
total momentum of two particlesP8=P. Therefore, only
three momenta of the four are independent in the two-body
operatorUsP8 ,k8 ;P,kd→UsP;k8 ,kd. The operator depen-
dence on total momentumP is excluded by the invariance
with respect to Galilean frame transformations[4]. Hence,
the relative momenta of two particles in the initialk and final
k8 states are the independent operator variablesUsP;k8 ,kd
→Usk8 ,kd.

B. Rotation invariance

The condition of invariance under rotations requires that
an operatorUsk8 ,kd should be a scalar. Assuming the trans-
lation, rotation, and Galilean invariance the general partial

wave decomposition of a two-body operatorUsk8 ,kd can be
written as

Usk8,kd = o
LSL8S8JM

ıL−L8FL8S8
JM sk̂8dUL8L

J,S8Ssk8,kdFLS
JMsk̂d+

s1d

wherek= uku is the absolute value of the momentum vector,

k̂=k /k denotes the unit vector. The quantum numbersJ and
M are the total angular momentum and its projection on the
quantization axisz, LsL8d and SsS8d are the orbital angular
momentum of relative motion and the total spin of two par-
ticles before (after) interaction, respectively. The tensor

spherical harmonicsFLS
JMsk̂d are given as

FLS
JMsk̂d = o

ML, MS

sLMLSMSuJMdYLML
sk̂duSMSl s2d

uSMSl = o
m1, m2

S1

2
m1

1

2
m2uSMSDU1

2
m1L

1
U1

2
m2L

2
, s3d

where the wave functionuSMSl describes the spin state of
two particles with the total spinS and its projection
MS, u 1

2mili is the spin state of particlei. The spherical har-

monics YLML
sk̂d, the Clebsch-Gordon and all other recou-

pling coefficients below are defined according to Ref.[8].

UL8L
J,S8Ssk8 ,kd depends only on the absolute values of relative

momentauku and uk8u. Below we will suppress this depen-
dence and forS8=S will show only one indexUL8L

J,SS;UL8L
J,S .

For any value of the total momentumJ there are sixteen
different combinations of allowed values of quantum num-
bersL ,L8 ,S andS8: one withS=S8=0, nine withS=S8=1,
and six withSÞS8. Since the parity of each term is equal to
s−1dL+L8, there are eight terms that are even under the parity
transformation and eight that are odd. The spherical harmon-

ics YLML
sk̂d can be coupled in the bipolar harmonics

Ylml

L,L8sk̂ , k̂8d. Thus, the decomposition(1) takes the form

Usk8,kd = o
LSL8S8JlmlMSMS8

ıL−L8 l̂ Ĵ
2

Ŝ
H L S J

S8 L8 l
J

3UL8L
J,S8S

Ylml

L,L8sk̂,k̂8d p s− 1dJ+L+L8+S8

3slmlS8MS8uSMSduS8MS8lkSMSu s4d

Ylml

L,L8sk̂,k̂8d = o
ML,ML8

sLMLL8ML8ulmldYLML
sk̂dYL8ML8

sk̂8d,

s5d

where the caret over a quantum numberĴ is a standard ab-

breviationĴ=Î2J+1. The product operatoruS8MS8lkSMSu is a
matrix in the two-body spin space. It is convenient to express
this matrix as a combination of the Pauli spin matricessi
which act on the spin coordinate of particlei. In the one-
body spin space the expansion of the product operator in
terms of spin matrices is well known[8]
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U1

2
n8LK1

2
nU =

1

2
Hdn,n8 − Î3S1n8 − n

1

2
nu

1

2
n8Dssdn8−nJ .

s6d

Using this relation, after some straightforward algebra one
finds

o
MSMS8

slmS8MS8uSMSduS8MS8lkSMSu

= dS,S8dl,0sPS=0 + PS=1d + dS,S8dS,1
s− 1dm

2

3H− dl,1
1
Î2

ss1 + s2d−m + dl,2Î3

5
fs1 Ã s2g2−mJ

+ dl,1
s− 1dm

4 Hss1 − s2d−mSdS,1dS8,0 −
dS,0dS8,1

Î3
D

− Î2fs1 Ã s2g1−mSdS,1dS8,0 +
dS,0dS8,1

Î3
DJ , s7d

wherePS=0 and PS=1 are the spin singlet and triplet projec-
tion operators

PS=0 = 1
4s1 − s1 · s2d s8d

PS=1 = 1
4s3 + s1 · s2d. s9d

Introducing the notationm=sk̂ ·k̂8d and substituting Eq.
(7) into Eq. (4) gives

Usk8,kd = ask,k8,mdPS=0 + bsk,k8,mdPS=1 +
1

2Î2
o

J,L,L8

ıL−L8s− 1dJ+L+L8Ĵ2HL 1 J

1 L8 1
JUL8L

J,1 sss1 + s2d · Y1
L,L8sk̂,k̂8dd

−
1

2 o
J,L,L8

ıL−L8s− 1dJ+L+L8Ĵ2HL 1 J

1 L8 2
JUL8L

J,1 sfs1 Ã s2g2 · Y2
L,L8sk̂,k̂8dd −

1

4Î3
o
J,L8

ıJ−L8s− 1dJĴUL8J
J,10sss1 − s2

+ Î2fs1 3 s2g1d · Y1
J,L8sk̂,k̂8dd −

1

4Î3
o
J,L

ıL−Js− 1dJĴUJL
J,01sss1 − s2 − Î2fs1 3 s2g1d · Y1

L,Jsk̂,k̂8dd s10d

wherea andb are scalar functions

ask,k8,md =
1

4p
o
J

Ĵ2UJJ
J,0PJsmd s11d

bsk,k8,md =
1

4p
o
L,J

Ĵ2

3
ULL

J,1PLsmd s12d

that are invariant under rotations, andPLsmd is the Legendre
polynomials. In the last four lines of Eq.(10), in contrast to
the first one, the spin and angular degrees of freedom are
intertwined in a complex way. We will simplify these struc-
tures and single out the spin dependence in the form of dif-
ferent tensor operators multiplied by scalar functions. To

achieve this goal, the bipolar harmonicsYlm
L,L8sk̂ , k̂8d are ex-

pressed in terms of a basis set of bipolar harmonics with a
minimal angular index, times the derivatives of the Legendre
polynomials of argumentm [9,10]. Using the relationk̂m

=Î4p /3Y1msk̂d and defining the vectorn by the vector prod-

uct of k̂ and k̂8 sn=fk̂Ã k̂8g , sn ·nd=1−m2d, the reduction
formulas of Ref.[9] for the total orbital momentuml equal to
1 and 2 can be rewritten as

Y1m
L,L8sk̂,k̂8d = dL,L8

s− 1dL+1

4p
Î6s2L + 1d

LsL + 1d
PL8smdfk̂ Ã k̂8g1m

+ dL±1, L8
s− 1dL+1

4p
Î 3

M̃
sk̂1mPL8smd

− k̂1m8 PL8
8 smdd s13d

Y2m
L,L8sk̂,k̂8d = dL,L8

s− 1dL

4p
Î 30s2L + 1d

LsL + 1ds2L − 1ds2L + 3d
p hPL9smdsfk̂ Ã k̂g2m + fk̂8 Ã k̂8g2md − s2mPL9smd + PL8smddfk̂ Ã k̂8g2mj

+ ıdL±1, L8
s− 1dL

4p
Î 10

M̃sM̃ − 1dsM̃ + 1d
sfk̂ Ã ng2mPL9smd − fk̂8 Ã ng2mPL8

9 smdd

+ dL±2, L8
s− 1dL

4p
Î 5

LsL + 1ds2L + 1d
p sPL9smdfk̂ Ã k̂g2m + PL8

9 smdfk̂8 Ã k̂8g2m − 2P
L̃
9smdfk̂ Ã k̂8g2md, s14d
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where M̃ =maxhL ,L8j , L̃= 1
2sL+L8d , PL8smd=sd/dmdPLsmd,

etc. It is useful to define the tensor operatorSsa,bd by the
relation

Ssa,bd = sfs1 Ã s2g2 · faÃ bg2d =
1

2
sss1 ·adss2 ·bd

+ ss1 ·bdss2 ·add − 1
3sa ·bdss1 · s2d

that for identical unit vectors reduces to the usual tensor
operatorSsâd

Ssâd ; Ssâ,âd = ss1 · âdss2 · âd − 1
3ss1 · s2d.

Substituting the reduction formulas into Eq.(10), after some
algebra we find the general decomposition of the two-body
operatorU. For convenience, we present this decomposition
as a sum of two parts which are evenUevenor oddUodd under
the parity transformation

Usk8,kd = Uevensk8,kd + Uoddsk8,kd. s15d

The even partUevensk8 ,kd has eight terms

Uevensk8,kd = aPS=0 + bPS=1 + igsss1 + s2d ·nd + dSsk̂d

+ eSsk̂8d + hSsk̂,k̂8d + iksss1 − s2d ·nd

+ ilsfs1 Ã s2g1 ·nd s16d

where the coefficientsa , b , g, etc., are functions of the sca-
larsk, k8 , m (mention of this dependence will be often omit-
ted). The coefficients have the explicit representation

g =
1

16p
o
J

hDJ + 2sUJ J
J+1,1− UJ J

J−1,1djPJ8smd s17d

d =
1

8p
o
J
HDJ −

1
ÎsJ − 1dJ

UJ−2 J
J−1,1

−
1

ÎsJ + 1dsJ + 2d
UJ+2 J

J+1,1JPJ9smd s18d

e =
1

8p
o
J
HDJ −

1
ÎsJ − 1dJ

UJ J−2
J−1,1

−
1

ÎsJ + 1dsJ + 2d
UJ J+2

J+1,1JPJ9smd s19d

h =
1

8p
o
J

h2sSJ − mDJdPJ9smd − DJPJ8smdj s20d

k =
1

16p
o
J

2J + 1
ÎJsJ + 1d

hUJ J
J,10+ UJ J

J,01jPJ8smd s21d

l =
Î2

16p
o
J

2J + 1
ÎJsJ + 1d

hUJ J
J,10− UJ J

J,01jPJ8smd, s22d

whereDJ andSJ denote the next combinations of the matrix
elements

DJ =
1

J
UJ J

J−1,1−
2J + 1

JsJ + 1d
UJ J

J,1 +
1

J + 1
UJ J

J+1,1

SJ =
1

ÎJsJ + 1d
sUJ+1 J−1

J,1 + UJ−1 J+1
J,1 d.

Correspondingly, the odd partUodd of the two-body operator
has the following structure:

Uoddsk8,kd = isss1 + s2d · snk̂ + jk̂8dd + isss1 − s2d · s%k̂

+ fk̂8dd + isfs1 Ã s2g1 · swk̂ + xk̂8dd + cSsk̂,nd

+ vSsk̂8,nd s23d

where for the scalar functionsn , j, etc., we find

n =
− 1

16p
o
J
HĴSÎJ + 1

J
UJ−1 J

J,1 +
ÎJ

J + 1
UJ+1 J

J,1 D
+

Îs2J + 3dsJ + 2d
J + 1

UJ+1 J
J+1,1

+
Îs2J − 1dsJ − 1d

J
UJ−1 J

J−1,1JPJ8smd

j =
1

16p
o
J
HĴSÎJ + 1

J
UJ J−1

J,1 +
ÎJ

J + 1
UJ J+1

J,1 D
+

Îs2J + 3dsJ + 2d
J + 1

UJ J+1
J+1,1 +

Îs2J − 1dsJ − 1d
J

UJ J−1
J−1,1JPJ8smd

r =
1

16p
o
J
HĴSUJ−1 J

J,10

ÎJ
−

UJ+1 J
J,10

ÎJ + 1
D +Î2J + 3

J + 1
UJ+1 J

J+1,01

−Î2J − 1

J
UJ−1 J

J−1,01JPJ8smd

f =
− 1

16p
o
J
HĴSUJ J−1

J,01

ÎJ
−

UJ J+1
J,01

ÎJ + 1
D +Î2J + 3

J + 1
UJ J+1

J+1,10

−Î2J − 1

J
UJ J−1

J−1,10JPJ8smd

w =
Î2

16p
o
J
HĴSUJ−1 J

J,10

ÎJ
−

UJ+1 J
J,10

ÎJ + 1
D −Î2J + 3

J + 1
UJ+1 J

J+1,01

+Î2J − 1

J
UJ−1 J

J−1,01JPJ8smd
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x =
Î2

16p
o
J
HĴSUJ J−1

J,01

ÎJ
−

UJ J+1
J,01

ÎJ + 1
D −Î2J + 3

J + 1
UJ J+1

J+1,10

+Î2J − 1

J
UJ J−1

J−1,10JPJ8smd

c =
1

8p
o
J
H Ĵ

JsJ + 1d
sÎJ + 1UJ−1 J

J,1 − ÎJUJ+1 J
J,1 d

+
1

J + 1
Î2J + 3

J + 2
UJ+1 J

J+1,1 −
1

J
Î2J − 1

J − 1
UJ−1 J

J−1,1JPJ9smd

v =
− 1

8p
o
J
H Ĵ

JsJ + 1d
sÎJ + 1UJ J−1

J,1 − ÎJUJ J+1
J,1 d

+
1

J + 1
Î2J + 3

J + 2
UJ J+1

J+1,1 −
1

J
Î2J − 1

J − 1
UJ J−1

J−1,1JPJ9smd.

s24d

Notice that the operatorsfs1Ãs2g1·nd in Eq. (16)
has a different representations−ıÎ2dsfs1Ãs2g1·nd
=ss1·kdss2·k8d−ss1·k8dss2·kd. The derived formulas
present the general structure of a two-body operator as a sum
of products of simple spin operators and scalar functions
with the known structure. In the case of nuclear forces, terms
with the spin singletPS=0 and spin tripletPS=1 projectors in
the even part of the operator(16) correspond to central forces
acting between the two-particle singlet and triplet states, re-
spectively. Thess1+s2d ·n term is the spin-orbital part;

Ssk̂d , Ssk̂8d andSsk̂ , k̂8d are tensor forces, while the last two
terms ss1−s2d ·n and sfs1Ãs2g1·nd mix the two-particle
singlet and triplet states. In the odd part of operator(23) four

terms sss1+s2d ·k̂d ,sss1+s2d ·k̂8d, Ssk̂ ,nd, and Ssk̂8 ,nd
have nonzero matrix elements only between the triplet states
while the others mix the states with different total spins.

The direct method used above for derivation of the opera-
tor structure for spin-12 particles can be useful in many other
cases. In the Appendix, for example, it is employed to get the
operator structure for particles with spin-0 and spin-1

2.

C. Reciprocity invariance

The reciprocity (for non-Hermitian operators) or time-
reversal (for Hermitian operators) invariance suggests
[11,12] that an operator should satisfy the following relation:

Uss1,s2,k,k8d = Us− s1,− s2,− k8,− kd, s25d

where operator dependence on particle spins is shown explic-
itly. This relation gives the constraints on scalar functions.
The functionsa , b , g , h, and k of the even operator(16)
are symmetric with respect to exchange ofk andk8; l must
change the sign, whiled is equal toe

ask,k8,md = ask8,k,md,…

lsk,k8,md = − lsk8,k,md s26d

dsk,k8,md = esk8,k,md.

From expressions(11), (12), and(17)–(22) of these functions
there follows that relations(26) are satisfied if the evensL8
=L ,L±2d partial wave components have the following sym-
metry:

UL8 L
J,S8Ssk,k8d = UL L8

J,SS8sk8,kd. s27d

The scalar functions of the odd operator(23) have the fol-
lowing constraints under the reciprocity invariance

nsk,k8,md = jsk8,k,md

rsk,k8,md = fsk8,k,md

wsk,k8,md = − xsk8,k,md s28d

csk,k8,md = vsk8,k,md.

To comply with these relations, the oddsL8=L±1d partial
wave components, as follows from decompositions(24),
must transform in the following way

UL8 L
J,S8Ssk,k8d = − UL L8

J,SS8sk8,kd. s29d

The difference in sign for the even(27) and odd(29) com-
ponents with respect to the reciprocity invariance is due to
the factorıL−L8 in our definition of the operator partial wave
decomposition(1).

D. Identical particles

For two identical particles an operator is symmetric with
respect to the particle exchange

Uss1,s2,k,k8d = Uss2,s1,− k,− k8d. s30d

This symmetry constrains the even and odd operators in a
different way. In the even part(16), two structuressss1

−s2d ·nd and sfs1Ãs2g1·nd change sign under this opera-
tion. Therefore, the functionsk and l must be identically
zero. From the partial wave decompositions(21) and(22) of

these functions we get thatUL8 L
J,S8S=0 for SÞS8. Hence, the

total spin S is conserved by the even operator. For the

odd operator (23) four structures sss1+s2d ·k̂d ,sss1

+s2d ·k̂8d ,Ssk̂ ,nd, and Ssk̂8 ,nd change sign, and the func-
tions n , j , c, and v must be zero, respectively. It follows

from Eq. (24) that the odd componentsUL8 L
J,S8S=0 for S=S8.

Hence, only transitions between states with different spins
are allowed in odd operators between identical particles.

In total, if a two-body operator is Galilean, translation,
parity, and reciprocity(time reversal) invariant, then the op-
erator has eight independent terms(16) for off-shell mo-
menta. For the on-shell case the functionl is identically
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zero, and two terms(d and e) are equal. So only six terms
remain to be independent for on-shell momenta. If particles
are identical, then thek andl coefficients are zero(total spin
S is conserved) and six terms are independent for off-shell
momenta. This number reduces to five for the on-shell case
sd=ed.

E. Momentum transfer representation

Another set of momenta is often used in applications

q = k − k8, P = k + k8, n = fk 3 k8g = 1
2fqÃ Pg, s31d

where q is the momentum transfer. For on-shell scattering
sk=k8d the vectorsq andP are orthogonal,sq·Pd=0. Below
we restrict our discussion to operators invariant under space
inversion. Extension to the odd parity operators is straight-
forward. Under the transformation of momenta the scalars
k, k8, andm are the functions of the scalar variablesq, P and

sq̂·P̂d. Hence, only the structure of the tensor parts are modi-
fied. In the new coordinates the tensor operators take the
following form:

Ssk̂d =
1

4k2sP2SsP̂d + q2Ssq̂d + 2qPSsq̂,P̂dd

Ssk̂8d =
1

4k82sP2SsP̂d + q2Ssq̂d − 2qPSsq̂,P̂dd s32d

Ssk̂,k̂8d =
1

4kk8
sP2SsP̂d − q2Ssq̂dd.

Using these relations Eq.(16) can be rewritten as

Uevensq,Pd = aPS=0 + bPS=1 + igsss1 + s2d ·nd + d̃Ssq̂d

+ ẽSsP̂d + h̃Ssq̂,P̂d + iksss1 − s2d ·nd

+ ilsfs1 3 s2g1 ·nd, s33d

where the new coefficientsd̃ , ẽ and h̃ are given by

d̃ = S q

kk8
D2 1

32p
o
J
HDJsP2PJ9smd + kk8PJ8smdd − F1

4
sq2 + P2d

3sSJ−1 + SJ+1d +
1

2
sq ·PdsAJ−1 − AJ+1d + 2kk8SJGPJ9smdJ

s34d

ẽ = S P

kk8
D2 1

32p
o
J
HDJsq2PJ9smd + kk8PJ8smdd − F1

4
sq2 + P2d

3sSJ−1 + SJ+1d +
1

2
sq ·PdsAJ−1 − AJ+1d − 2kk8SJGPJ9smdJ

s35d

h̃ =
qP

32pskk8d2o
J
Hsq ·PdsSJ−1 + SJ+1 − 2DJd +

1

2
sq2 + P2d

3sAJ−1 − AJ+1dJPJ9. s36d

The coefficientAJ denotes the following combination of par-
tial wave elementsUL8L

J,S

AJ =
1

ÎJsJ + 1d
sUJ+1 J−1

J,1 − UJ−1 J+1
J,1 d.

If we assume the reciprocity(time reversal) invariance, then
the coefficientsSJ and AJ are symmetric and antisymmetric
under an interchange of momentak and k8, respectively.
Hence, on-shell theh̃ andl terms are identically equal zero.
It is also interesting to examine in detail the mechanism how
the functionh̃ becomes zero at on-shell momenta. We see
from Eq.(36) thath̃ has two parts that are proportional to the
sq·Pd and sq2+P2d coefficients, respectively. Whenk=k8,
the first part is equal to zero due to the coefficientsq·Pd
while the second is zero since theAJsk,kd=0 by construc-
tion. Sometimes only the tensor part with thesq·Pd coeffi-
cient is introduced[15] as off-shell extension of a two-body
interaction and the off-shell behavior similar to one in the
second part of Eq.(36) is not taken into account.

Equation(33) with eight terms describes a general struc-
ture of the operator for two spin-1

2 particles. In applications,
the most frequent case is the nucleon-nucleon scattering. For
identical nucleons(nn or pp), six terms in the first line of Eq.
(33) (or a set of equivalent operators) characterize com-
pletely the off-shell scattering[4]. Two terms,sss1−s2d ·nd
and sfs13s2g1·nd that mix the spin-singlet and spin-triplet
states, must be added for the neutron-proton interaction.
These small terms are usually neglected in practice due to the
additional assumption related to the isotopic invariance of
nuclear forces. Only if a high accuracy is required and a
breaking of the charge independence or charge symmetry
becomes important then the spin mixing terms are included.
An example, where the full structure of Eq.(33) must be
considered and plays an important role, is an elastic scatter-
ing of polarized proton from a polarized3He at intermediate
energies. The on-shellp-3He T-matrix depends on six ampli-

tudes (a , b , g , d̃ , ẽ, and k) and their knowledge defines
elastic differential cross section and all spin observables.
Calculations of the on-shellT-matrix require an off-shell op-
tical potential, hence the two extra terms(h̃ andl) must be
added to completely define the optical potential structure.
The experiments[13] show the large differences in proton
and target-related asymmetries which is unambiguous evi-
dence of a largek amplitude in thep-3He T-matrix even
though this amplitude practically vanishes in nucleon-
nucleon scattering. This experimentally observed significant
mixing of the spin-singlet and spin-triplet states suggests that
the off-shelll-term in the optical potential may also be im-
portant for theoretical descriptions of elastic proton scatter-
ing. The microscopical optical potential, where the full struc-
ture is present, can be calculated within a full-folding
approach[14]. This model is especially interesting for the
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3He nucleus since nuclear structure uncertainties are mini-
mized and reliable Faddeev wave functions are available.
Still the full-folding model for scattering of two spin-1

2 par-
ticles is not developed up to now and the approach shown
here can be useful for a development of such models.

F. Angular momentum decomposition for spin-dependent
potentials

Above, the general decomposition of the two-body opera-
tor U for particles with spins=1/2 hasbeen derived. The
inverse problem often presents interest in practical applica-
tions when, for example, the right-hand side of Eq.(16) is

known and the partial wave elementsUL8L
J,S8S must be con-

structed. The calculation of elastic scattering of protons from
3He with the microscopic, momentum space optical potential
U is a typical example[7,16]. An ordinary procedure for

obtaining theUL8L
J,S8S matrix elements reduces to a numerical

matrix inversion[7]. Below we construct analytical expres-

sions forUL8L
J,S8S. We assume that the potentialU has the form

of Eq. (16) and the functionsa , b, etc., have been derived
within some nuclear models and can be calculated. Since
these scalar functions depend only onk, k8 andm, they have
the following partial wave decomposition:

ask8,k,md = o
l, m

Ylmsk̂8dalsk8,kdYlm
* sk̂d

=
1

4p
o

l

s2l + 1dalsk8,kdPlsmd. s37d

The partial wave elementsalsk8 ,kd for any values ofsk8 ,kd
can be calculated by the one-dimensional integration overm.
The other functions,b, etc., have analogous decompositions.

Our aim is to find the expression forUL8L
J,S8S in terms of partial

wave elementsal , bl, etc. With the help of the orthonormal-

ity condition for tensor spherical harmonicsFLS
JMsk̂d [8] this

expression can be directly obtained from Eq.(1) by the four-

dimensional integration over thesk̂8 , k̂d directions

ıL−L8UL8L
J,S8Ssk8,kd =

1

Ĵ2
o
M

kFL8S8
JM sk̂8duUsk8,kduFLS

JMsk̂dl.

s38d

By substituting the terms ofU with the explicit spin depen-
dence from the right-hand side of Eq.(16) into Eq. (38), the
contributions from different parts can be calculated. As an
example we calculate the contribution from the spin-orbit
potential

fıL−L8UL8L
J,S8Sgg =

1

Ĵ2
o
M

kFL8S8
JM sk̂8duigsss1 + s2d ·nduFLS

JMsk̂dl.

The spin and space matrix elements can be easily calculated

kS8MS8uss1 + s2d−nuSMSl = dS,S8dS,12Î2s1MS1 − nu1MS8d

kYL8ML8
sk̂8dugnnuYLML

sk̂dl = − iÎ6L̂s1nLMLuL8ML8d

3 o
l

glsL80 10ul0dsL0 10ul0d

3H 1 1 1

L8 L l
J .

Combining together these results we get

fıL−L8UL8L
J,S8Sgg = dS,S8dS,112L̂L̂8s− 1dJ−L8H 1 1 1

L8 L J
J

3 o
l

glsL80 10ul0dsL0 10ul0dH 1 1 1

L8 L l
J .

For any combination of quantum numbers it is straightfor-
ward to calculate this relation since the analytical expres-
sions of Clebsch-Gordon coefficients and 6j-symbols are
known [8]. Similarly, the contributions from other terms in
Eq. (16) can be obtained. Finally, we have

UJJ
J,0 = aJ s39d

UJJ
J,1 = bJ +

2

Ĵ2
sgJ+1 − gJ−1d +

2

3
sdJ + «Jd +

1

3
S2J − 1

2J + 1
hJ+1

+
2J + 3

2J + 1
hJ−1D s40d

UJ−1 J−1
J,1 = bJ−1 − 2

J − 1

2J − 1
sgJ − gJ−2d −

2

3

J − 1

2J + 1
sdJ−1 + «J−1d

−
1

3

J − 1

2J − 1
ShJ−2 +

2J − 3

2J + 1
hJD s41d

UJ+1 J+1
J,1 = bJ+1 + 2

J + 2

2J + 3
sgJ+2 − gJd −

2

3

J + 2

2J + 1
sdJ+1 + «J+1d

−
1

3

J + 2

2J + 3
ShJ+2 +

2J + 5

2J + 1
hJD s42d

UJ−1 J+1
J,1 = − 2

ÎJsJ + 1d
2J + 1

sdJ−1 + «J+1 + hJd s43d

UJ+1 J−1
J,1 = − 2

ÎJsJ + 1d
2J + 1

sdJ+1 + «J−1 + hJd s44d

UJJ
J,10= −

Î2JsJ + 1d
2J + 1

sÎ2skJ+1 − kJ−1d + slJ+1 − lJ−1dd

s45d

UJJ
J,01= −

Î2JsJ + 1d
2J + 1

sÎ2skJ+1 − kJ−1d − slJ+1 − lJ−1dd.

s46d

As follows from these equations, even for very complicated
and nonanalytic potentialsUsk8 ,kd the calculations of partial
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wave elementsUL8L
J,S8S practically reduce to one-dimensional

integrations for evaluation of partial elementsal , bl, etc. It is
straightforward to check the consistency of representations

of the UL8L
J,S8S elements given above and partial wave decom-

positions of scalar functionssa .b ,g ,…d employing the
same elements. Substitution of expressions(39)–(46) into
(11), (12), and (17)–(22) restores the original partial wave
decompositions[as in (37)] of the functionsa , b , g, etc.

III. SUMMARY

The structure of the physically relevant operators must be
compatible with general symmetry principles and frame
transformations. Their application reduces the number of in-
dependent variables in an operator and restricts the allowed
forms. In particular, the rotation invariance demands that an
operator must be a scalar. Then the partial-wave decomposi-
tion of the operator can be reduced to the form where the
angular dependence, combined into bipolar harmonics, inter-
twines in a complex way with the spin operators. The reduc-
tion formulas(13) of bipolar harmonics allows one to disen-
tangle the spin and space degrees of freedom and splits the
operator into parts where the spin tensors are multiplied by
scalar functions with the known structure.

This method is applied to a direct derivation of the struc-
ture of the two-body operator for spin-1

2 particles within the
framework of nonrelativistic dynamics. The two-body opera-
tor, compatible with invariance under translations, rotations
and Galilean frame transformations, splits into two parts that
are even and odd with respect to the space reflection. The
time reversal(reciprocity) invariance constrains additionally
the operator partial wave elements. At off-shell momenta the
even part has eight terms with a different spin-tensor struc-
ture. At on-shell there are only six terms that reduce to five
for identical particles. The momentum transfer representation
was obtained and angular momentum decomposition for gen-
eral spin-dependent potentials was developed in the analyti-
cal form.

The method used to construct a general structure of the
two-body operator for spin-1

2 particles is straightforward and
not confined to the cases considered above. It can also be
implemented for particles with different spins.

APPENDIX

Assuming the translation, rotation, and Galilei invariance
the general partial wave decomposition of the two-body op-

eratorUsk8 ,kd for particles with spin 0 and12 can be written
as

Usk8,kd = o
LL8JM

ıL−L8VL8
JMsk̂8dUL8L

J sk8,kdVL
JMsk̂d+, sA1d

whereJ= uL± 1
2u is the total angular momentum. The spinor

spherical harmonicsVL
JMsk̂d are defined as tensor spherical

harmonics for spinS= 1
2

VL
JMsk̂d = o

ML, ms

SLML
1

2
msuJMDYLML

sk̂dU1

2
msL .

By using expansion(6) for the product of spin functions the
two-body operatorUsk8 ,kd can be expressed in the form

Usk8,kd =
1

8p
o
J,L

Ĵ2ULL
J PLsmd −

1
Î2

o
J,L,L8

ıL−L8s− 1dJ+L+L8+1/2Ĵ2

3HL 1
2 J

1
2 L8 1

JUL8L
J ss · Y1

L,L8sk̂,k̂8dd.

Substituting the bipolar harmonic reduction formulas(13)
after some algebra we find the general decomposition of the
two-body operator for particles with spin 0 and1

2

Usk8,kd = f + igss ·nd + ikss · k̂d + ilss · k̂8d sA2d

where the coefficientsf , g, etc., are functions of the scalars
k, k8 , m. These coefficients have the explicit representation

f =
1

4p
o
L

hsLUL L
L−1/2 + sL + 1dUL L

L+1/2djPLsmd sA3d

g =
1

4p
o
L

hUL L
L−1/2 − UL L

L+1/2jPL
1smd sA4d

k = −
1

4p
o
L

hUL−1 L
L−1/2 + UL+1 L

L+1/2jPL8smd sA5d

l =
1

4p
o
L

hUL L−1
L−1/2 + UL L+1

L+1/2jPL8smd sA6d

where PL
1smd=−Î1−u2 PL8smd is the associated Legendre

function. The termsf and g (k and l) conserve(violate)
parity. At on-shell momentak=k8 these expressions coincide
with the well-known decomposition of scattering amplitudes
for particles with spin 0 and 1/2[2].
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