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A direct derivation of the operator structure for two séim)articles is presented subject to invariance under
basic symmetries and Galilean frame transformation. The partial wave decomposition for coefficient functions,
valid on- and off-shell, is explicitly deduced. The momentum transfer representation and angular momentum
decomposition for general spin-dependent potentials are obtained.
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I INTRODUCTION 1, (o1 02), (01 + 02),(01 = 07),[ 01 X 03]im [ 01 X 0]

Two-_body operators are the basic elements defining thg . e (01-05) and [ayX o],
properties of interacting systems. The on- and off-shell sca
tering operatorgS,-T matrice$, the two-body interaction,
the optical potential between patrticles, etc., supply examples ) — _ 1\
of such operators. Figure 1 shows a schematic representation (01-02) = Ey = Do) (o2)-,
of a two-body operatod (k;,k3; Ky, ky) in momentum space.

The initial and final momentéspin projectiony of particlei

are denoted by; (v;) andk/ (1), respectively. The operator (01X 03l = 2 (Ly11vg[IM)(00),,(07),,-
dependence on any parametgos example, energi) is not 2

shown explicitly. The particle momenta or their combina-Qverall scalars can be formed by contraction of the spin
tions are the operator arguments and the operatojectors with appropriate momentum vectors and also by con-
U(ki,k3; K1, k) is @ matrix in the spin space of particles. Itis traction of the spin tensors with second-rank tensors con-
convenient to choose relative and total momenta of two parstructed from the available momentum vectors. Any of these
ticles in the initial(k,P) and final(k’,P’) states as indepen- terms may be multiplied by arbitrary scalar functions that

denote scalar and direct
tf)roducts of theo-operators

dent operator variables depend on scalars formed from momenta. Additional restric-
m ke Kk tions on the operator structure follow from the implications
k = 1_m2<_1 - —2> P=Kk;+ky of symmetries like the translational, parity, and reciprocity
m+mp\m My (time reversal invariance, and the Pauli principle. The op-
erator structure compatible with general symmetries was de-
K = mym, (k_i_k_é> P =K +K. duced|[1,2] for on-shell operators and a broad variety of
m+m\m m/’ 1" applications in nuclear physics was found. The generaliza-

_ tion to the case of relativistic scattering operators for Dirac
Whelre m are the particle masses. Thus, the operatoparticles can be found in Ref3]. So five (six) terms are
Uk, ka; ke, k) =U(P",k";P,k) must be constructed from necessary to define the on-shell operator completely if par-
its arguments and a complete set of spin matrices. In order igcles are identicalnot identica). The number of indepen-
be physically relevant, the operator structure must be comgent terms is increased off shell to six and eight for identical
patible with the restrictions imposed upon it by general symynq nonidentical particles, respective,5]. Nevertheless,
metry principles and frame transformations. Implementationthe two drawbacks are present at approach like this. One is
of symmetries reduces a number of independent argumeniat the structure of arbitrary functions remains undefined.

and constrains the allowed operator forms. _ Taking the traces over the Pauli spin matriaes and o
The general structure of a two-body operator in a nonrel-

ativistic case is usually constructed in the following way
[1,2]. The condition of invariance under rotations requires
that the operatod should be a scalar. For spinparticles,U

is a matrix in the four-dimensional spin space. This matrix
can be represented by a combination of any sixteen linearly
independent matrices. A convenient set of such matrices can
be formed from the unit and Pauli spin matriagsarranged

into scalars, axial vectors, and symmetric tensors of the sec-
ond rank

|k1', V1'> Ik1,V1 >

|k2', V2' > |k2, V2 >
*Electronic address: ershov@thsunl.jinr.ru FIG. 1. Diagrammatic representation of a two-body operator.

0556-2813/2004/18)/0546049)/$22.50 70 054604-1 ©2004 The American Physical Society



S. N. ERSHOV PHYSICAL REVIEW C 70, 054604(2004)

from products of theU-operator with spin tensors, these wave decomposition of a two-body operatdtk’,k) can be
functions can be expressed for the-shellcase by different written as
combinations of the operator matrix elements with the

known partial wave decomposition. Thus, arbitrary functions ~ U(k',k)= > 1= &ML (k) US Sk kD)
can be related with the partial wave structure of the operator LSL'S'IM
U. The NN on-shell amplitude is the well-known example (1)

[6]. For off-shell momenta the set of unit momentum vectors
usually used in spin-tensors becomes nonorthogonal. Alseherek=|k| is the absolute value of the momentum vector,
the time reversal invariance gives only some relations bek=k/k denotes the unit vector. The quantum numhkasnd
tween the amplitudes, but it does not restrict the number oM are the total angular momentum and its projection on the
amplitudes as for instance takes place on the energy sheljuantization axiz, L(L’) and S(S') are the orbital angular
Thus the off-shell relations become rather complicated angnomentum of relative motion and the total spin of two par-
thde numerical rr;nat][ix inf\f/efﬁifl’ln is US‘Ea]-hThebseCOSd dis- ticles before (aften interaction, respectively. The tensor
advantage is that for off-shell situation the above derivatio ; L HIMD ;
does not exclude appearance of arbitrary scalar functions br‘gp herical harmonicis(k) are given as
coming zero at on-shell momenta. IM () = I

Below the general structure of the two-body operator Pish) MLZMS(LMLSMSIJM)YLML(k)|SMS> @
valid for the on- and off-shell momenta, is directly derived

from the operator partial-wave decomposition within the 1 1 1
framework of nonrelativistic dynamics. This derivation is |ISMg) = > <§m1§m2|SMS) Eml Emz , (3
rather transparent, follows straightforwardly from algebraic my, My 1 2

manipulations_and gives a complgte structure. The methoghere the wave functiofSMg) describes the spin state of
does not require the special selection of a coordinate systegy,q particles with the total spinS and its projection

and is equally applicable to on- and off-shell situations. ASMS:|%mi>i is the spin state of particle The spherical har-

result, the operator splits into two parts, one conserves parit ; ~
and the other does not. The scalar functions of the operatdf°"'cs Yim, (K), the Clebsch-Gordon and all other recou-
structure are explicitly defined by the partial wave compo-Pling coefficients below are defined according to Réj.
nents of thel operator. The momentum transfer representan‘,SLS(k’,k) depends only on the absolute values of relative
tion of the operator structure is also given and the angulamomentalk| and |k’|. Below we will suppress this depen-
momentum decomposition for spin-dependent potentials igence and fo' =S will show only one indexui;SLSE UiSL
developed in the analytical form. In the Appendix, the por any value of the total momentuththere are sixteen
method is applied to derive the operator structure in the casgifferent combinations of allowed values of quantum num-
of particles with spin-0 and spi§- bersL,L’,SandS’: one withS=S'=0, nine withS=S'=1,
and six withS# S'. Since the parity of each term is equal to

Il. GENERAL STRUCTURE OF A TWO-BODY OPERATOR (_l)L+L,, there are elght terms that are even under the pal’lty
transformation and eight that are odd. The spherical harmon-

ics Y (k) can be coupled in the bipolar harmonics

The tran;lanon invariance implies that a coordln_at(_a spaceme’(l"('i”(,)_ Thus, the decompositiofl) takes the form

representation of a two-body operatdfry,rj;rq,r,) is in- !

dependent of a shift of all space coordinates on an arbitrary a32lL s 3

vectora U(k',k) = > U= i
LSU'S JImMMg S L" |

A. Translation and Galilean invariance

U(ry,ra;rro) =U(rp+ary+ary+ar, +a).

IS'S\LL 0 [ _ \JHL+L'+"
In momentum space this relation dictates conservation of the ><UL'LSYIrm (kK)o (= 7=
total momentum of two particle®’=P. Therefore, only < (IMS Me|SMIIS M Y SM 4
three momenta of the four are independent in the two-body (Im, sISMs) s SMd “@
operatorU(P’ ,k";P,k)—U(P;k’,k). The operator depen- e . R
dence on total momenturR is excluded by the invariance  Yiny (kk)= X (LML'My/|Im)Yyy (Yo, (K'),

with respect to Galilean frame transformatioid8. Hence, MM/

the relative momenta of two particles in the initkahnd final (5)
k’ states are the independent operator variablé3; k', k) .

—U(k’,k). where the caret over a quantum numbes a standard ab-

breviationJ=12J+1. The product operat¢8 Mg ){(SMd is a

matrix in the two-body spin space. It is convenient to express

this matrix as a combination of the Pauli spin matriegs
The condition of invariance under rotations requires thatwhich act on the spin coordinate of partidleln the one-

an operatotJ(k’,k) should be a scalar. Assuming the trans-body spin space the expansion of the product operator in

lation, rotation, and Galilean invariance the general partiaterms of spin matrices is well know[ig]

B. Rotation invariance
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1V 1 gL =" 95005 1
’ EV ><EV = 5{5,,1,,/ - \r3(lv - V§V|EV )(O')Vr_,,}. + dle{((rl— 0'2)—m< 05105 0~ T
6
© 2oy X ]yl Bs10y o+ 509 7)
Using this relation, after some straightforward algebra one Vel 2]1-m| 9515’0 V3 '
finds
where Psq and Pg; are the spin singlet and triplet projec-
E (lmSMS/|SMS)|S,MSr><SMS| tion operators
MMg Peo= %(l -0y 0y) (8)
= 05,5 6,0(Ps=0* Ps=1) + 655 531(_ Sl 1
Ps1=38+01-0y). 9
1 Introducing the notatiom:(IA(-IA(’) and substituting Eq.
{ 9 1\#(0'1*' O)-m+ [[01 X o35 m} (7) into Eq. (4) gives

~. L 1 J LA A
UK’ k) = a(k,K', w)Pscg+ B K, u)Psy + —= E b (- 1)t g2 (U (o + o) - Y (k,K))
2\23“, 1L 1

1 1! + + [ L 1 J
-5 2 D LJZ{l L 2} Ul lon X aalo- Y5+ (k) = E P (- DU (o - o

JLL VoL
P 1 ) . - .
+\2loy X ol - Y (kK')) - 4—52 (= 1)UL (01 - 05— V2 0 X 05]1) - YO (K,K)) (10
VoL
[
wherea and 8 are scalar functions pressed in terms of a basis set of bipolar harmonics with a
1 minimal angular index, times the derivatives of the Legendre
a(k,k’,,u,):4—2 PUIP(w) (11)  polynomials of argumeng [9,10. Using the relationk,,
au J r

=\4m/3Y;,(k) and defining the vectar by the vector prod-
uct of k and k’ (n=[kXk'], (n-n)=1-u?), the reduction

Py = formulas of Ref[9] for the total orbital momenturhequal to
Al ) = 4 % 3 U (k) (12 1 and 2 can be rewritten as

that are invariant under rotations, aRd(x) is the Legendre YL (k) = o ,( D [6(2L +1) P (kX K]
polynomials. In the last four lines of E¢L0), in contrast to LY an L(L+1) * H tm
the first one, the spin and angular degrees of freedom are i1

intertwined in a complex way. We will simplify these struc- + 8 L/(_l_ \/g(f(lmpﬁ(ﬂ)

tures and single out the spin dependence in the form of dif-
ferent tensor operators multiplied by scalar functions. To

achieve this goal, the bipolar harmonik (k,k’) are ex- -k; mPL (1)) (13

Y5 (k, k) = 6,

_ L
( 1)\/ ) (Pl [k X K+ [k X KT = (24P (1) + Pk X KL

47 N L(L+1)(2L-1)(2L+3)
-t 10 S "
+ |5L11,L’(4 ) \/~ = ———([k X nJomP{ () = [K" X n]omP/ /(1))
™ MM =1)(M + 1)

(_ 1)L 5 1" o ) " r O
t Oiaa L ar VLL+D2L+1) # (PL (K X Ko+ PL ()[K" X k' Jom = 2P (w)[K XK' Jom), (14)
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where M=maxL,L'}, L=3(L+L"), P{(1)=(d/dw)P (), _ 2 2041 e song -
etc. It is useful to define the tensor operafa,b) by the A= 1675 I3+ 1){ 5 = UriPym), (22)
relation
whereD? andS’ denote the next combinations of the matrix
1 elements
Sa,b) = ([oy X 0], -[aX b]y) = E((U'l -a)(o,-b)
) D’ = 1‘UJ—1,1_ 2J+1 5, 1 Uil
+ (0o -b)(0,-a)) - 5(a-b)(o - 0y) J7 0+ 7Y g+
that for identical unit vectors reduces to the usual tensor 1 ” »
operatorS(a = ——=(Uy;; 34+ U3" )
p ) \"J(J+1)( J+1 J-1 J-1 J+1
AN oA Ay A A 1
S@) =943 = (o1 -8)(02-3) —3(07- 7). Correspondingly, the odd pald, 44 of the two-body operator

- . . has the following structure:
Substituting the reduction formulas into §3.0), after some

algebra we find the general decomposition of the tWO'bOdyuodd(k’,k) Zi((oy+ o) -(le<+ 5&,)) +i((oy - o) ,(Qk
operatorU. For convenience, we present this decomposition R T R
as a sum of two parts which are evdp,,0r oddU,qq under + k")) +i([oy X 05]1 - (ek + xk)) + yS(k,n)
the parity transformation

+wS(k',n) (23)
UCk”,k) = Uevedk’,k) + Uoad k", k). (15 where for the scalar functions, &, etc., we find
The even parlq.{k’,k) has eight terms 1 NS " NG "
: Y Ters |\ Ut Ui
UevedK',K) = aPgq + BPs-1 +iy((0y + 07) - n) + 6S(k) J—
. Ca (23+3)3+2) .,
+ eS(K) + 7SI + il = o) ) Tt
+iN[oy X 2]1-n) (16) ————
" \’(2\] B 1)(~] B 1) UJ_l'l P,( )
where the coefficienta, 3, v, etc., are functions of the sca- J LIk

larsk, k’, u (mention of this dependence will be often omit-
ted). The coefficients have the explicit representation Iy I
_ 1 (WL s W0
. 5_167723" J 3 UJJ—1+J+1UJJ+1
7= 1o D7+ 205 - U s P (D)
J

oo o YRV I
V(2J+3)(J+2) V(2J-1D)J-1) 5
DB gy MBI i
1 1
8= 21D’ ——=UJ}}
8w§{ (a-13 7% _iz 3( ﬂ’_lfJ_Uﬂ;lfJ)Jr /2J+3UJ+1VOl
1 211 7™ 16n J I I+ J+1 I
- ——=U35; (Pi(w) (18)
VI+1)(J+2) B Z‘J_lUJ—l,Ol}P/( )
J J-11 Ju
1 1
e= =S iDLy
87 { @a-pa P 3( i U_j'%il) e
1 J+1,1 /" 1677 J \‘J’J \"\] + 1 J + 1 I
- "—(J +1)J+2) 3 12 (P(w) (19
v _ /2‘3 - 1UJ—1,10} P ()
J J 1 M
1
- _ J " _ Jp/
n= 8772 {Z(SJ uD*)P5(p) =D PJ(M)} (20) [ J,10 g0
J N2 A< Frig Vi [2]+ 3UJ+1,01
=" ey J+1J
1677, VJ VJ+1 J+1
1 2J+1
k= — > ————{U30+ U P! (1) 21 2J-1
1677% I+ 1){ U@ +\ 5 Ui s (P
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_ 2y 3( =y Uﬂ'%il) N RN a(k k', )= alk K p). ..
X 1674 Vioo\a+1 J+1
MK K ) == MK Kk, ) (26)

2J-1 J-1,10% o/
1\ TUJ ¥1 (Py(w) Sk K, ) = ek’ K, ).

From expressiongll), (12), and(17)—«22) of these functions
there follows that relation&26) are satisfied if the eve(L’

1 J T 0 (e R =L,L+2) partial wave components have the following sym-
v= 877% { JJ+1) (W +1U553 5= U5 metry:

] / 1y — ] g !
L1 [2343 5, 1 [2-1 1}P”( : UPe Sk k) = USS (k7 K). (27)
#1373 >13[Falm
J+1VJ+2 JVJ-1 The scalar functions of the odd operat@3) have the fol-
lowing constraints under the reciprocity invariance

v(k,K', u) = €K' K, u)

- 1 j [ . A M~
o2 | - G

8m JJ+1) / /
’ p(kK ) = p(K' K 0)
1 2J+3 501 1 (23-1 5,90,
TSR TR AU L ok K a) == x(K .2 (29

(24)
Notice that the operatof[oyX o];-n) in Eq. (16)

kK, ) = o(K' K ).

To comply with these relations, the odd’'=L+1) partial

Eas ka dllif,e r_ent krfapresintatlls)r? (_'32)([Uéx ?'2]1“') wave components, as follows from decompositiq2g),
=(o1-K) (oK) = (0 -k")(0K). € derved 10rmulas ., st transform in the following way

present the general structure of a two-body operator as a sum

of products of simple spin operators and scalar functions U>S Sk k') == U SS (k' k). (29)
with the known structure. In the case of nuclear forces, terms L LLe

with the spin singlePs-, and spin tripletPs; projectors in  The difference in sign for the eve27) and odd(29) com-

the even part of the operat(k6) correspond to central forces ponents with respect to the reciprocity invariance is due to
acting between the two-particle singlet and triplet states, rege factori®" in our definition of the operator partial wave
spAectiveAIy. The(qlfaz) -n term is the spin-orbital part; gdecomposition(1).
Sk), Sk') andSk,k’) are tensor forces, while the last two

terms (o,— o) -n and ([0 X 0,];-n) mix the two-particle

singlet and triplet states. In the odd part of oper&®&® four _ _ _ _ o
terms ((oy+0y) '|”()’((0_1+02) ,f(,), S(Iz,n), and S(IA<’ n) For two identical particles an operator is symmetric with

have nonzero matrix elements only between the triplet statg§Spect to the particle exchange
while the others mix the states with different total spins. U(oy, 0.k, k") =U(0p,01,— k,—K'). (30)
The direct method used above for derivation of the opera- ] )
tor structure for spirg particles can be useful in many other This symmetry constrains the even and odd operators in a
cases. In the Appendix, for example, it is employed to get th&lifferent way. In the even partl6), two structures((o;

operator structure for particles with spin-0 and spin- —07)-n) and ([e1X 0>];-n) change sign under this opera-
tion. Therefore, the functiong and A must be identically

zero. From the partial wave decompositiq@$) and(22) of

C. Reciprocity invariance these functions we get that’S °=0 for S#S. Hence, the
The reciprocity (for non-Hermitian operatoysor time-  total spin S is conserved by the even operator. For the

reversal (for Hermitian operatops invariance suggests odd operator (23) four structures ((oq+0v)-k),((oy
[11,12 that an operator should satisfy the following relation: +0,) _|2!)7s(|2,n), and S(IQ’ ,n) change sign, and the func-
tions v, &, ¢, and o must be zero, respectively. It follows
U(oy, 05,k K") =U(= 0,— 05, - k', - k), (25 from Eq.(24) that the odd componentsi',S'LS=0 for S=S'.
Hence, only transitions between states with different spins
where operator dependence on patrticle spins is shown expliare allowed in odd operators between identical particles.
itly. This relation gives the constraints on scalar functions. In total, if a two-body operator is Galilean, translation,
The functionsa, B, vy, 7, and k of the even operatof16) parity, and reciprocitytime reversglinvariant, then the op-
are symmetric with respect to exchangekandk’; N must  erator has eight independent terifi6) for off-shell mo-
change the sign, whilé is equal toe menta. For the on-shell case the functipnis identically

D. Identical particles
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zero, and two termgé and €) are equal. So only six terms ~ _ qP - 1
remain to be independent for on-shell momenta. If particles 7= —3277(kk’)22 (q-P)(S™t+ 5" -2D%) + E(qz +P?)
are identical, then the and\ coefficients are zer@otal spin J

Sis conservegland six terms are independent for off-shell 1 agen Lo
momenta. This number reduces to five for the on-shell case X(AT2= AT (P (36)
(6=¢).
The coefficientd’ denotes the following combination of par-
_ tial wave elements);";
E. Momentum transfer representation
i i icati 1 J1 J1
Another set of momenta is often used in applications A (U3 . -U3h ).

I3+ 1)

If we assume the reciprocitifime reversglinvariance, then

. .__the coefficientsS’ and A’ are symmetric and antisymmetric
whereq is the momentum transfer. For on-shell scattering nqer an interchange of momenkaand k', respectively.

(k=k’) the vectorsy andP are orthogonal(q-P)=0. Below Hence, on-shell thgy and\ terms are identically equal zero.

we restrict our discussion to operators invariant under spacg s aiso interesting to examine in detail the mechanism how
inversion. Extension to the odd parity operators is straighty,o function? becomes zero at on-shell momenta. We see

forward. Under the tran_sformation of momenta the scalar§rom Eq.(36) that7 has two parts that are proportional to the
k, k', andu are the functions of the scalar variabtgsP and (q-P) and (q2+P?) coefficients, respectively. Whek=k’

(9-P). Hence, only the structure of the tensor parts are modithe first part is equal to zero due to the coefficiégtP)
fied. In the new coordinates the tensor operators take th@hile the second is zero since tié(k,k)=0 by construc-

q=k-k, P=k+k’, n=[k x k']=3[qX P], (31)

following form:
0 1 oo 2 a P
Sk) =7 2(PS(P) +q°S(0) + 2qPS4,P))
N 1 - R A
k') =7 (PSP + o’S(@) - 29PSG,P)  (32)
Skk) = - (PPSP) - ¢?S@)
' 4Kk '
Using these relations E@16) can be rewritten as

Ueverd@P) = aPag+ BPsy +i (07, + 0,) - ) + 53(9)

+ES(P) +7S(@,P) +ix((o,— &) - 1)
+iN([oy X 0]y - n), (33

where the new coefficients, & and7 are given by

5= L) 215 {opten + ke ))—F(qﬁp%
kk' ) 3275 I T 4

X (St + 9 + %(q P)ATI- AT+ 2kk'sl} pg(ﬂ)}

(34)

2=( 2 ) oS | Dy + Py ))—F(q%PZ)
kk' ) 3275 I S

X(S71+ 5 + %(q -P) (ATt - AT - 2kk’S]] P’J’(;L)}

(39)

tion. Sometimes only the tensor part with tfee P) coeffi-
cient is introduced15] as off-shell extension of a two-body
interaction and the off-shell behavior similar to one in the
second part of E((36) is not taken into account.

Equation(33) with eight terms describes a general struc-
ture of the operator for two spié—particles. In applications,
the most frequent case is the nucleon-nucleon scattering. For
identical nucleongnn or pp), six terms in the first line of Eq.
(33) (or a set of equivalent operatgrsharacterize com-
pletely the off-shell scatterinfg#]. Two terms,((o,— o) -n)
and ([, X 0,];-n) that mix the spin-singlet and spin-triplet
states, must be added for the neutron-proton interaction.
These small terms are usually neglected in practice due to the
additional assumption related to the isotopic invariance of
nuclear forces. Only if a high accuracy is required and a
breaking of the charge independence or charge symmetry
becomes important then the spin mixing terms are included.
An example, where the full structure of E¢83) must be
considered and plays an important role, is an elastic scatter-
ing of polarized proton from a polariz€iHe at intermediate
energies. The on-shak*He T-matrix depends on six ampli-

tudes (a, B, vy, 8,¢, and k) and their knowledge defines
elastic differential cross section and all spin observables.
Calculations of the on-shell-matrix require an off-shell op-
tical potential, hence the two extra terrf¥ and \) must be
added to completely define the optical potential structure.
The experiment$13] show the large differences in proton
and target-related asymmetries which is unambiguous evi-
dence of a largec amplitude in thep-*He T-matrix even
though this amplitude practically vanishes in nucleon-
nucleon scattering. This experimentally observed significant
mixing of the spin-singlet and spin-triplet states suggests that
the off-shellx-term in the optical potential may also be im-
portant for theoretical descriptions of elastic proton scatter-
ing. The microscopical optical potential, where the full struc-
ture is present, can be calculated within a full-folding
approach[14]. This model is especially interesting for the
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3 - . . . . .
He nucleus since nuclear structure uncertainties are mini- , = -
| . : . Yo (K)|yn, )Y (K)) = = iVBL(LLM, |L'M
mized and reliable Faddeev wave functions are available. umg (KD, Y, (K9) = = INEL(ALM[L'MY)

Still the full-folding model for scattering of two spif-par- X > (L0 1010)(LO 1010)
ticles is not developed up to now and the approach shown |
here can be useful for a development of such models. { 11 1}
X
F. Angular momentum decomposition for spin-dependent L L
potentials Combining together these results we get

Above, the general decomposition of the two-body opera- 3y ~n 1 11
tor U for particles with spins=1/2 hasbeen derived. The  [I"" U 7], = dsg85112LL" (- )7 L' L 3
inverse problem often presents interest in practical applica-
tions when, for example, the right-hand side of Et6) is

/
known and the partial wave eIemerLthﬂ',SLS must be con-

structed. The calculation of elastic scattering of protons from L _ .

3He with the microscopic, momentum space optical potentiaI:or any combmauon of quantum numbers it |s_stra|ghtfor—

U is a typical examplg7,16. An ordinary procedure for vx{ard to calculate this relation since the :_;malytlcal expres-
. is's : _sions of Clebsch-Gordon coefficients ang-symbols are

obtaining theUF, ~ matrix elements reduces to a numerical ynown [8]. Similarly, the contributions from other terms in

matrix inver§ion[7]. Below we construct analytical expres- gq. (16) can be obtained. Finally, we have

sions forU}"; > We assume that the potentlalhas the form U0 = (39

of Eq. (16) and the functionsy, 3, etc., have been derived W=

within some nuclear models and can be calculated. Since

x%}anlmmanlmm{i E ﬁ}

these scalar functions depend onlylark’ and «, they have Uls=pBy+ AE(YM_ Y1) + g(gJ +e)+ 1(&7’“1
the following partial wave decomposition: 2 3 3\2)+1
~ S 2J+3
a(k',k, /.L) = E Y|m(k’)a/|(k’,k)Y|m(k) + 2‘]—+177J—1> (40)
I, m
1
== 2+ ek, KP(w). 7 J-1 2J-1
4772( (kIR () 37 U3 J—1:BJ—1_22J_1(7J_7J—2)_§2J+1(5J—1+8J—1)
The partial wave elementg(k’,k) for any values ofk’,k) 1J-1 < . 2J-3 ) (41)
can be calculated by the one-dimensional integration gver 32)-1 -2 2+ 177J
The other functionsp, etc., have analogous decompositions.
Our aim is to find the expression fbl’ﬂ’,sL/S in terms of partial 11 J+2 2J+2
! =By1t+2 +2 . 031+ &3¢
wave elementsy, B, etc. With the help of the orthonormal- —7*1 7*1 Poni 2]+ 3(7’J 2= 7) 32]+ 1( 541 % E301)
ity condition for tensor spherical harmonidg¥(k) [8] this 13+2 ( 2]+5 )

. : . ) S 42
e.xpressllon cfem be dl'rectly obtalpeq frqm Et) by the four 327+3 N34+2 o1+ 177J (42
dimensional integration over tH&’ k) directions

33 +1)
o 1 R , . Udl =T ket 43
U = 2 S @l U ool P Ty Gateatm) 49

(38) VI3 +1)

Uﬂ'+113—1:_2 27+ 1

(O31te31+ M) (44)
By substituting the terms df with the explicit spin depen-

dence from the right-hand side of Ed.6) into Eq.(38), the rrra
contributions from different parts can be calculated. As an  j3.10_ _ M(@(K —k31) *+ N1 = Nyr))
. . . . JJ V J+1 J-1 J+1 J-1
example we calculate the contribution from the spin-orbit 2+1
potential (45)
rog 1 ~ N [y~

U B = = 2@ (k) + ) - n)|DPY(K)). V203+D) o

[ LL Jdy 32%< L s( )| Y(o+ o)) )| LS( ) Uj,JOlz _ 7+ 1 (V2(k 301 = K31) = (\geg = Nya).
The spin and space matrix elements can be easily calculated (46)

, - , As follows from these equations, even for very complicated
(SMy(o1+ 05)-,|SMg) = 855 8512V2(IMsL - 1| IMg) and nonanalytic potentiald(k’, k) the calculations of partial
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wave element&)”S S practically reduce to one-dimensional eratorU(k’ ) for particles with spin 0 and can be written

integrations for evaluation of partial elemeants 3, etc. Itis @S

stralghthoSr,v;/ard to chec.k the consistency o'f representations Uk’ K= S IL'L'Qi')"(IA(’)Uﬂ,L(k’,k)QﬂM(Iz)", (AL)

of the U}’ ~ elements given above and partial wave decom- LL'IM

positions of scalar functionga.g,v,...) employing the 1. )
TR ; i whereJ=|L+5]| is the total angular momentum. The spinor

same elements. Substitution of expressi@g89)—(46) into 2 g P

(11), (12), and (17)~«22) restores the original partial wave Spherical harmonic€™(k) are defined as tensor spherical

decompositiongas in(37)] of the functionsa, B, v, etc. harmonics for spir8=%
- 1 ~ 11
lll. SUMMARY oMk = > (LML_ms|‘]M)YLML(k)‘_mS>'
ML, m 2 2

The structure of the physically relevant operators must be , ) ) .
compatible with general symmetry principles and frameBY Using expansioi6) for the product of spin functions the

transformations. Their application reduces the number of infWo-body operatotJ(k’,k) can be expressed in the form
dependent variables in an operator and restricts the allowed 1~ 1 ) S
forms. In particular, the rotation invariance demands that atJ(k’,k) = —— >, J2U}, P (u) — = X 1FH (- 1Tt +12y2
operator must be a scalar. Then the partial-wave decomposi- TaL Vel

tion of the operator can be reduced to the form where the L1

. ; . NS 3 ; LLnn
angular dependence, combined into bipolar harmonics, inter X7 , U, (- YI" (kK)).
twines in a complex way with the spin operators. The reduc- > L1

tion formulas(13) of bipolar harmonics allows one to disen- Substituting the bipolar harmonic reduction formulds)

tangle the spin and space degrees of freedom and splits th , o
operator into parts where the spin tensors are multiplied ba‘?ter some algebra we find the general decomposition of the

scalar functions with the known structure. two-body operator for particles with spin 0 and

This method is applied to a direct. derivgtion of the struc- U(K',k) = f+ig(o-n) +ik(o - K +iNo-K)  (A2)
ture of the two-body operator for spé’vpamcles within the
framework of nonrelativistic dynamics. The two-body opera-wWhere the coefficient$, g, etc., are functions of the scalars
tor, compatible with invariance under translations, rotations, k', u. These coefficients have the explicit representation
and Galilean frame transformations, splits into two parts that

. . 1
are even and odd with respect to the space reflection. The f= —2{ LUE Y2+ (L + 1)UII:+L1/2)}PL(M) (A3)
time reversalreciprocity) invariance constrains additionally 4my
the operator partial wave elements. At off-shell momenta the
even part has eight terms with a different spin-tensor struc- _1 L=1/2 1 (L+1/2) 1
ture. At on-shell there are only six terms that reduce to five 9= 47.,% {UL Com Ut }PL('“) (Ad)

for identical particles. The momentum transfer representation
was obtained and angular momentum decomposition for gen- 1
eral spin-dependent potentials was developed in the analyti- K=-— 4_2 {Utiilf + Um/f}Pﬁ(M) (A5)
cal form. T L
The method used to construct a general structure of the
two-body operator for spié-particles is straightforward and _1 Le1/2 | 1+ L+1/2) o
not confined to the cases considered above. It can also be A= 477% {UL Lt UL L+1}PL(M) (AB)
implemented for particles with different spins.
where Pl(u)=-V1-u? P/(u) is the associated Legendre
APPENDIX funption. The termsf and g (« and \) conser_ve(violgte)_
parity. At on-shell momentk=k’ these expressions coincide
Assuming the translation, rotation, and Galilei invariancewith the well-known decomposition of scattering amplitudes
the general partial wave decomposition of the two-body opfor particles with spin 0 and 1/22].
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