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Calculations based on the sudden approximation have been performed to describe high-energy single-
nucleon removal reactions. Within this approach, which takes as its starting point the formalism developed to
describe the breakup of well-developed single-neutron halo systems, the nucleon-removal cross section and the
full three-dimensional momentum distributions of the core fragments, including absorption, diffraction, Cou-
lomb, and nuclear-Coulomb interference amplitudes, have been computed. The Coulomb, breakup has been
treated to all orders for the dipole interaction. The results are compared here to experimental data for a range
of light, neutron-richpsd-shell nuclei taken at beam energies of 43–68 MeV/nucleon. Good agreement is
found for the inclusive cross sections and both the longitudinal and transverse momentum distributions. In the
case of17C, comparison is also made with the results of calculations using the transfer-to-the-continuum
model. The three-dimensional momentum distributions computed within the sudden approximation model
exhibit longitudinal and transverse momentum components that are strongly coupled by the reaction fors-wave
states, while no such effect is apparent ford waves. Incomplete detection of transverse momenta arising from
limited experimental acceptances thus leads to a narrowing of the longitudinal distributions for nuclei with
significants-wave valence neutron configurations, as confirmed by the data. Asymmetries in the longitudinal
momentum distributions attributed to diffractive dissociation are also explored.
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I. INTRODUCTION

The breakup of light exotic nuclei has proven over the last
decade to be a particularly useful tool to study the structure
of nuclei far from stability(see, for example,[1,2]). In the
specific case of well-developed single-nucleon halo nuclei,
such as11Be, much insight has been gained into the reaction
process. Early work by Serber[3], Glauber[4], and Dancoff
[5] (later refined by Faldt[6]), investigating high-energy
deuteron breakup, demonstrated that the relevant mecha-
nisms governing the reaction are stripping, diffraction and
Coulomb dissociation. More recently these concepts have
been adapted to describe quantitatively the breakup of the
one-neutron halo nucleus11Be [7,8].

The basic premise of the model—referred to here as the
“sudden approximation”—is that the reaction proceeds by
the instantaneous removal of a nucleon from the projectile
without disturbing the remaining nucleons. This approxima-
tion is justified for reaction times much shorter than the char-
acteristic time for the motion of the nucleons within the pro-
jectile. A number of assumptions make the calculations
particularly simple while retaining the essential physical con-
cepts:(i) the incident energy is high enough so that the in-
trinsic velocity of the valence nucleon is much smaller than
the projectile velocity;(ii ) the projectile and the fragment
follow straight-line trajectories;(iii ) final-state interactions
are neglected;(iv) the tail of the valence nucleon wave func-
tion is well developed, so reactions involving the valence

particle are essentially surface peaked;(v) the target nucleus
can be described by a “black disk,” so that the nucleon scat-
tered or absorbed by the target is not observed;(vi) there is
only one bound state of the system, the ground state(the
completeness of the wave functions thus allows the transition
probabilities to the continuum to be calculated via sum
rules); and(vii ) only the dominant part(the transverse com-
ponent) of the momentum transfer generated by the Coulomb
field of the target is considered.

These asumptions are in general well satisfied in the case
of reactions involving a well-developed one-neutron halo
nucleus. In such cases, where the rms radius of the halo is
some 2–3 times larger than that of the core, only the
asymptotic part of the valence nucleon wave function is re-
quired [see(iv)] [7,9]. This leads to analytical formulas for
the transition probabilities in impact parameter space and
longitudinal momentum distributions. In particular, in evalu-
ating the longitudinal momentum distributions, it has been
proposed that to a good approximation the wave function of
the valence nucleon could be evaluated at the center of the
target[9]. This approximation leads to the interesting result
that in the limit of very small binding energies the breakup
cross section factorizes into the free neutron-target cross sec-
tion and the probability that the neutron is at the center of the
target with a longitudinal momentum close to the incident
momentum per nucleon. Thus, the model is intimately re-
lated to the spectator model of Hussein and McVoy[10].
While this approximation is well suited for the evaluation of
longitudinal momentum distributions, it leads to a strong cut-
off in the perpendicular momenta and is, therefore, less ap-
propriate for the evaluation of the momentum distributions in
a plane perpendicular to the beam direction.
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In a recent report, Barranco and Vigezzi[11] have em-
ployed a similar approximation and obtained the result that
the width of the perpendicular momentum distribution essen-
tially reflects the target size and is more or less independent
of the structure of the projectile ground-state wave function.
This conclusion does not agree with recent work we have
undertaken within the framework of extended Glauber-type
calculations whereby the transverse momentum distributions
were demonstrated to be sensitive to the structure of the pro-
jectile [12,13]. The sudden approximation model requires a
proper normalization of the various transition probabilities
and therefore cannot be extended easily to cases where the
ground state is dominated byp or d waves. In such cases, for
neutrons the asymptotic part of the radial wave function is
given by Haenkel functions[hl

+siard, wherel is the angular
momentum anda is the decay constant], which exhibit a
strong singularity at the origin and the corresponding
breakup probabilities cannot be defined properly. Clearly, in
such a case, the transition probabilities should be defined in
terms of realistic wave functions.

As discussed in our earlier papers[12,13] and examined
in detail elsewhere[1,14] intermediate-energy single-nucleon
removal reactions—often referred to as heavy-ion “knock-
out” [1,14]—appear to be a powerful tool to probe structure
far from stability.1 It is therefore highly desirable to test and
compare various models of the reaction process in order that
spectroscopic information may be extracted with confidence.
In this spirit we have extended the sudden approximation
model to deal with single-nucleon removal reactions where
the ground state has an arbitrary structure for which the
single-particle degrees of freedom can be disentangled. The
model is conceptually simple and almost all observables may
be calculated with a reasonable numerical effort even when
realistic wave functions are used.

The paper is organized as follows. Sections II–V are de-
voted to the basic formalisms and development of the model.
A comparison of the model calculations and experimental
data for single-neutron removal is described in Sec. VI. For
comparison the predictions of the transfer-to-the-continuum
model [17,18] for 17C are also given. The effects of finite
detection acceptances are explored in Sec. VII in the light of
calculations and through comparison with data. Conclusions
are drawn and summarized in Sec. VIII.

II. BASIC FORMALISM

We assume that the ground state of the projectilesJpd can
be approximated by a superposition of configurations of the
form fIc

p
^ nljgJp

, whereIc
p denotes the core states andnlj are

the quantum numbers specifying the single-particle wave
function of the valence nucleon. This is evaluated in a

Woods-Saxon potential using the effective separation energy
Sn

ef f=Sn+Ex (Ex being the excitation energy of the core state).
Couplings of core states to the final state and dynamical
excitation of core states in the reaction are neglected. In this
approximation the reaction can populate a given core state
only to the extent that there is a nonzero spectroscopic factor
C2SsIc

p ,nljd in the projectile ground state. When more than
one configuration contributes to a given core state, the total
cross section for single-nucleon removal is written, follow-
ing Refs.[19,20], as an incoherent superposition of single-
particle cross sections:

s−lnsIc
pd = o

nlj

C2SsIc
p,nljdsspsnlj ,Sn

ef fd. s1d

The total inclusive single-nucleon removal cross section
ss−1n

suddd is then the sum over the cross sections to all core
states. A similar relation holds for the momentum distribu-
tions. The termssp is the cross section for the removal of a
nucleon from a single-particle state with total angular mo-
mentumj ,

c jm = Rjlsrd o
ml,ms

Cmlmsm
l 1/2 jYlml

sr̂dxms/2
ssd, s2d

evaluated with the effective nucleon separation energySef f
defined above. We consider only spin-independent transition
operators and therefore all formulas are much simpler with
the wave function

c0srWd = RlsrdYlmsr̂d s3d

and the normalization

E drWuc0srWdu2 = 1. s4d

Certain cross sections may be expressed in a simpler form
in a coordinate system traveling with the beam. The impact
parameter with components in the direction connecting the

center of the core with that of the target is denoted bybW.
Recoil effects are of the orderOs1/Apd, where Ap is the
projectile mass number and are neglected here. The situation
is illustrated in Fig. 1. After the interaction with the target a
part of the wave function is removed. At this stage the spe-
cific form of the woundfswdg is not important. The removed
part of the wave function is, then,

dcsrWd = Hc0sx,y,zd if sx,y,zd P swd,

0 otherwise.
J

The complementsc̄d is defined by the following orthogo-
nal decomposition of the wave function:

c0 = c̄ + dc, s5d

E drWc̄ * dc =E drWc̄dc * = 0. s6d

If the nucleon is absorbed, the wave function of the system is
localized todc at the instant of collision and this is then the
state of the remaining core fragment. Consequently, the mo-

1The genesis for this may be found in the work of Hüfner and
Nemes[15]—which included, among other features, analysis of the
momentum distributions in terms of shell-model wave functions—
and more explicitly in terms of nuclei far from stability, in the
analysis of single-neutron removal from11Be by Sagawa and
Yazaki [16].
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mentum distribution is given by the square of the Fourier
transform of dc. The stripping(absorption) probability is
given by the volume integral of the wound:

Pasbd =E drWudcu2. s7d

As mentioned in Ref.[7], “absorption” is defined here in the
context of the black disk model. The wound complement is
normalized as

E drWuc̄u2 = 1 − Pa. s8d

The wave function after collision with the target is approxi-
mated by

csrWd = eiqWrWsc0 − dcd = eiqWrWc̄, s9d

where qW is the momentum transfer to the valence nucleon
arising from the interaction of the projectile with the Cou-
lomb field of the target[Eq. (A4) of the Appendix]. The
sudden transfer of a momentumqW attaches a phaseeiqWrW to the
wave function. The physical meaning of the phase is clarified
in Sec. V. This wave function has the normalization

E drWc * srWdcsrWd =E drWc̄ * srWdc̄srWd = 1 − Pa. s10d

Note thatc contains elastic as well as inelastic(breakup)
states. The elastic content is given by the overlap with the
ground state:

gel =E drWcc0
*srWd. s11d

The wave function orthogonal to the ground state is

c1srWd = csrWd − gelc0srWd. s12d

Now we are ready to construct the wave function for the
decaying statefcdsrWdg,

cdsrWd = c0srWd − dcsrWd − gele
−iqW·rWc0srWd ; c̄ − gele

−iqW·rWc0

; e−iqW·rWc1srWd, s13d

which depends explicitly on the impact paremetersbWd. As the
state which is decaying contains only square integrable func-
tions it is legitimate to speak about the norm of this wave
function:

E drWucdsrWdu2 =E drWuc1srWdu2 = 1 − Pa − ugelu2. s14d

Clearly, all information concerning the absorption of the va-
lence nucleon is contained in the wave function of the wound
sdcd, while cd will furnish information on the elastic
breakup. Let us calculate the Fourier transform of the decay-
ing state:

cd̃skWd =
1

s2pd3/2E drWe−ikWrWcdsrWd. s15d

The differential cross section in momentum space is given by

ds

dkW
=E 2pbdbucd̃skWdu2 s16d

and the total cross section by

s =E 2pbdbE dkWucd̃skWdu2 =E 2pbdbf1 − Pasbd − ugelsbdu2g.

s17d

Now it is clear that the quantity

Pelsbd = 1 − Pasbd − ugelsbdu2 s18d

should be interpreted as the probability in the impact param-
eter representation of the elastic breakup process. Relation
(18) shows that the sudden approximation model accounts
for stripping sPad, elastic breakup or dissociationsPeld, and
nuclear and Coulomb elastic scatteringsgeld. Other inelastic
processes such as core absorption, simultaneous absorption
of the valence neutron and the core[21], or “damped
breakup”[22] are not included in this model. We also note
that the closure relation(18) illustrates the need to use real-
istic wave functions in order to obtain properly normalized
breakup probabilities.

III. BREAKUP PROBABILITIES

In this section we present in detail the calculation of the
breakup probabilities. In particular, following Ref.[9] two

FIG. 1. Schematic view of the “wound” induced by the
projectile-target interaction for(a) a planar cutoff and(b) a cylin-
drical wound.
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specific forms for the woundswd are considered—namely, a
planar cutoff[Fig. 1(a)], corresponding to a target of infinite
size, and a cylindrical wound[Fig. 1(b)]. A priori the latter
would appear to be the most physically appropriate. How-
ever, as will be seen(Sec. VI), the planar cutoff provides the
best agreement with the measured cross sections.

Using the same notations as in Ref.[7] the planar cutoff is
defined as

swd:sx,y,zd P R3, x ù b1 = b − Rt.

The second, the so-called cylindrical wound is defined for
arbitraryz as

swd:sx,y,zd P R3, sx − bd2 + y2 ø Rt,

whereRt denotes the target radius. For clarity it is useful to
define the(normalized) valence density by averaging over
projections of the angular momentumm:

rvalsrd =
1

s2l + 1dom uc0u2 =
1

4p
Rl

2srd. s19d

Writing rW;sx,y,zd;ssW ,zd, we define also one- and two-
dimensional projections of this density as

r̃sxd =E dydzrval = 2pE
x

`

rdrrvalsrd, s20d

r̂ssd =E dzrvalsrd = 2E
s

` rdr
Îr2 − s2

rvalsrd. s21d

The singularity in Eq.(21) is weak and can be integrated by
parts. Without loss of generality one can assume reflection
symmetryrvals−rd=rvalsrd; then, the mappingx→ r̃sxd is a
reflection symmetric homomorphism,r̃s−xd= r̃sxd and
2e0

`dxr̃sxd=1. Since the valence densityrval is normalized to
1, the densityr̂ also satisfies the closure relationedsWr̂ssd
=1.

A. Elastic probability

According to Eq.(11) the elastic probability defined by

gel =E drWc0
*srWdeiqWrWsc0 − dcd ; gC − gC+N s22d

decomposes into a Coulomb and a nuclear+Coulomb ampli-
tude. It is easy to show that

gC = 2E
0

`

dxcossqxdr̃sxd, s23d

gC+N = 2pE
b1

`

dxeiqxr̃sxd. s24d

For a cylindrical wound the Coulomb and nuclear amplitude
is somewhat more complicated:

gC+N =E
0

Rt

sdsE
0

2p

dfeiqsb+s cosfdr̂sÎb2 + s2 + 2bscosfd.

s25d

Note thatgC+N is a complex function and depends on the
specific form of the wound, while the Coulomb amplitude is
real and wound independent. Moreover, limq→0gC=1, which
shows that in the absence of a Coulomb field or at very large
impact parameters the Coulomb amplitude is unity. However,
the long-range Coulomb interaction makes this convergence
very slow. In the case of a well-developed neutron halo, the
wave function varies little over the wound region and one
can replace in Eq.(25) r̂ by some average valuer̂0 which
leads to

ugC+Nu2 = r̂0
24p2Rt

2

q2 J1
2sqRtd s26d

in analogy with the Fraunhofer diffraction pattern produced
by an absorbing disk. This approximation illustrates the dif-
fraction content ofg [11]. In practice this amplitude is evalu-
ated using the exact equations(24) and (25).

B. Absorption and stripping probability

The stripping probability is evaluated using Eq.(7),

Pasbd =E
swd

dxdydzrvalsrd, s27d

which leads after some simple manipulations to

Pasbd =E
b1

`

dxr̃sxd s28d

in the case of a planar cutoff and

Pasbd =E
0

Rt

sdsE
0

2p

dfr̂sÎb2 + s2 + 2bscosfd s29d

for a cylindrical wound. Independent of the form of the
wound we have Pas0d=1/2 and, in the limit q→0,
gC+Nsbd=Pasbd and Pelsbd=Pasbd−Pa

2sbd. The total cross
sections for stripping and diffraction are obtained by integra-
tion of the above probabilities over the impact parameter
with the volume element 2pbdb. The above relations imply
that for a light target, where the Coulomb component is neg-
ligibly small, sstr<sdif f. In general, however,sstr.sdif f, in
agreement with the original formulation of Glauber[4].

IV. MOMENTUM DISTRIBUTIONS

As final-state interactions are neglected, the momentum
distributions in the coordinate system traveling with the
beam are given by the square of the Fourier transform[Eq.
(15)] of the wave function, Eq.(13). The three components
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in Eq. (13) lead to an amplitude of the formAlmskWd=A0

+Ad+AC+N, where A0 is the unperturbed(intrinsic) ampli-
tude. Using the same notations as in Ref.[7] one has, for the
angular momentumslmd,

A0,lmskWd =
4p

s2pd3/2i lYlmsk̂dE
0

`

r2drj lskrdRlsrd s30d

and

AC+N,lmskWd = − gelsbd
4p

s2pd3/2i lYlmsk̂qdE
0

`

r2drj lskqrdRlsrd,

s31d

wherekWq=skx+q,ky,kzd. The calculation of the amplitudeAd

is more involved. The difficulty arises from the angular part
of the wave function. The simplest way to proceed is to
express the spherical harmonics in Cartesian coordinates
(see, for example, Ref.[24]). For the planar cutoff case we
need to evaluate integrals of the form

IpstskWd =E
b1

`

dxxpe−ikxxE
−`

`

dyyse−ikyyE
−`

`

dzzte−ikzzRlsrd/r l ,

s32d

wherep, s, t are positive integers. In the simplest casep=s
= t=0, we have

I000skWd = 2pE
b1

`

dxe−ikxxE
0

`

uduJ0sk'udRlsÎx2 + u2/r ld,

s33d

whereJ0 is the cylindrical Bessel function andk'=Îky
2+kz

2.
For any other combination ofp, s, t, the corresponding inte-
gral is obtained by the appropriate parametric differentiation
with respect tokx, ky, kz. For anl =0 wave function the result
is

RAdskWd = −
1

Î2s2pd2E
b1

`

dxcoskxxE
0

`

uduJ0sk'udR0srd,

s34d

JAdskWd =
1

Î2s2pd2E
b1

`

dxsinkxxE
0

`

uduJ0sk'udR0srd,

s35d

with r =Îu2+x2. The corresponding expressions forp sl =1d
andd sl =2d states are more involved and are detailed in Ref.
[23].

Once the amplitudes have been computed, the differential
cross section is obtained by averaging over the magnetic pro-
jections and the impact parameter

ds

dkW
=

1

s2l + 1dom E dbW uAlmskx,ky,kzdu2. s36d

It can be seen that the reaction mechanism modifies substan-
tially the momentum content selected by the reaction. For
example, for l =0 the unperturbed amplitude, Eq.(30), is
spherical and real and the amplitude selected by stripping is
asymmetric and complex. These effects will be discussed in
detail in the next section. It should be noted that all ampli-
tudes tend to zero forb→` as is evident from Eqs.(34) and
(35). Furthermore, the amplitudes(30) and (31) become

identical for largeb as in the limitb→`, gel=1, andkWq=kW

and the two amplitudes essentially cancel each other. Asymp-
totically, the amplitude for diffraction is, therefore, essen-
tially the Fourier transform of the wound. Both stripping and
diffraction amplitudes behave for largekx as 1/kx. The rea-
son for this is of course that the leading term of the Fourier
transform of the step function(characteristic of the black
disk approximation for theS matrix) behaves like 1/kx. This
property is independent of the asymptotic behavior of the
wave function and merely characterizes the sharp edge of the
target.

In more realistic reaction models, such as the Glauber
model with theS matrix generated by an optical potential
[12,13,22], the absorption evolves smoothly from 0 to 1 and
the amplitudes fall off faster. One may also note that the
differential cross section(36) is calculated in the intrinsic
reference system for a particular position of the target. In this
system the diffraction amplitude is not symmetric with re-
spect tokx since the Coulomb field pushes the core in one
direction. The amplitudes, however, are symmetric to rota-
tions in thesx,yd plane. This is obviously not an observable
symmetry. In order to obtain observablespi ,p'd distributions
one should average over all directions in thesx,yd plane as
illustrated in Fig. 2. In practical terms, the physical momen-
tum distributions are obtained from

FIG. 2. Schematic representation of the unitary transformation

of Eq. (37) of the momentum vectorkW in the rest frame to the
laboratory momentumspWd by rotation through an angleb.
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ds

dpW
=

1

2p
E db

ds

dkW
spx cosb − py sinb,px sinb

+ py cosb,pzd, s37d

where the angleb is defined in Fig. 2. Equation(37) gives
the three-dimensional momentum distribution in the labora-
tory system. It contains all the physics of the process and
together with Eq.(36) provides a means to study the effects
of finite detection acceptances and other experimental effects
on the momentum distributions. Unfortunately the corre-
sponding calculations are very time consuming. In practice
we have combined competitive Gauss-Legendre numerical
integration(up to order 98 in the approximating polynomial)
with Monte Carlo simulations in the last step[Eq. (37)]
which take into account all experimental broadening effects:
angular dispersion in the secondary beam, angular and en-
ergy straggling in the target, and detector resolution[13].
The broadening of the longitudinal momentum distributions
arising from the transformation to the laboratory frame is
also included:

EB = gsEA − bW · pWAd, s38d

pWB = pWA + gbWSgbW · pWA

g + 1
− EAD , s39d

where the reference systemA is traveling with the beam

velocity bW andB is the laboratory system.
If the acceptance in the plane perpendicular to the beam

direction is infinite, then it is possible to obtain much simpler
formulas for the longitudinal momentum distributions. These
are detailed in Ref.[23].

V. COULOMB DISSOCIATION IN THE SUDDEN
APPROXIMATION

As already remarked in Ref.[7], the Coulomb excitation
calculation based on the(nonperturbative) sudden approxi-
mation is consistent with perturbation theory[25] in the
sense that it contains its leading term as a limit valid for low
ZcZt (core and target charge) and high velocities. This ap-
proximation is no longer valid for largeZcZt and is thus
limited to low-Z targets. Moreover, in this model the depen-
dence on the projectile energy is given by the Coulomb con-
tribution alone via the momentum transferqW. In more sophis-
ticated models of the Glauber type(see, for example,[13]
and references therein), there is an additional energy depen-
dence through theS-matrix elements of the nucleon-target
and core-target interactions. This dependence, however, is
expected to be weak in a high-energy regime.

In this section we wish to clarify the Coulomb dissocia-
tion effects present in the model. In this respect we make
contact with the more elaborate calculations of Ref.[26].
This model solves the time-dependent three-body problem
assuming that the core moves along a classical(straight line)
trajectoryRW std=bW +vtẑ, while the valence nucleon is subject
to the interaction

V2srW,td = Vnt„rW + RW std… + VdipsrW,td, s40d

where the first term is the neutron-target interaction and the
second is a dipole approximation for the “shake-off interac-
tion.” If only the Coulomb shake-off is taken into account,
then, for a valence neutron,

VdipsrW,td =
ZcZte

2

Ap

rW ·RW std
R3std

. s41d

In the general case one uses the effective dipole charge de-
fined in the Appendix. Note that Eq.(41) embodies a pure
recoil effects,1/Apd which retains both the transverse and
longitudinal momentum transfers to the neutron arising from
the projectile-target Coulomb interaction.

The transfer-to-the-continuum(TC) model breakup ampli-
tude takes the form[17]

glmskW,bWd =
1

i"
E

−`

`

dtkf fuV2srW,tduflm
i l, s42d

wherefisfd are initial- (final-) state wave functions andlm
are, as before, single-particle quantum numbers carried by
the ground state. In the eikonal approximation, we have

glmskW,bWd =
1

i"
E drWE dt exps− ikW · rW + ivtd

3expS 1

i"
·E

t

`

dt8V2srW,t8dDV2srW,tdflmsrWd

; kkWuIsvdulml, s43d

whereIsvd is the time integral and"v=ek−e0 is the excita-
tion energy. Pure Coulomb effects in the dipole approxima-
tion are obtained by swiching off the neutron-target nuclear
interactionVnt:

ICsvd =
1

i"
E

−`

`

dt expsivtdexpS 1

i"
E

t

`

dt8Vdipst8dDVdipstd.

s44d

In the sudden approximation(sa) the excitation energy is
negligibly smallsv<0d. The time integration is thus trivial
and we find

IC
sa= e−ixC − 1, s45d

with

xC =
1

"
E

−`

`

dtVdipstd =
1

"
E

−`

`

dt
ZcZte

2

Ap

sW ·bW + zvt

sb2 + v2t2d3/2

=
2ZcZte

2

Ap

sW ·bW

"vb2 , s46d

where the neutron position vector relative to the core has
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been decomposed into transverse and longitudinal compo-
nents ssW ,zd. Comparison with Eq.(A4) in the Appendix
shows that

eixc ; eiqW·rW s47d

and the complete equivalence of our amplitudeAC+N [Eq.
(31)] with the corresponding sudden approximation ampli-
tude in the eikonal TC model. Therefore, the amplitudeAC+N
contains breakup to all orders in the dipole shake-off Cou-
lomb interaction at zero excitation energy. It is appropriate
for evaluation of Coulomb effects for light targets. For heavy
targets, the radial integral in Eq.(31) is difficult to evaluate
numerically. We further stress that the third term in the wave
function [Eq. (13)], gele

iqWrWc0, is nothing other than the high-
energy eikonal approximation to the scattering wave function
where in this particular case the eikonal phase due to the
dipole (shake-off) Coulomb interaction is calculated along
the unperturbed(straight line) classical trajectory.

VI. DISCUSSION

As detailed in Refs.[12,13] we have previously under-
taken an experimental study of high-energy
s43–68 MeV/nucleon2) single-neutron removal reactions on
a range ofpsd-shell nuclei. In the present section the inclu-
sive cross sections and longitudinal and transverse momen-
tum distributions obtained for reactions on a carbon target
are compared to the results of calculations using the model
developed in the preceding sections.

As in our earlier work [12,13], the spectroscopic
amplitudes3 entering in Eq.(1) have been calculated with the
aid of the shell-model codeOXBASH [28]. Where known, the
experimentally established spin-paritysJpd assignments and
core excitation energies have been used. In all other cases
shell-model predictions were employed. The carbon target
radius was fixed toRt=1.15s12d1/3. The core radii have been
evaluated with a liquid drop formula[29]

Rc = x1Ac
1/3s1 + x2Ac

−2/3 + x3Ac
−4/3d,

with x1=1.17,x2=1.225, andx3=−0.115. The single-particle
wave functions were obtained by solving the Schrödinger
equation for a Woods-Saxon(WS) potential including central
and spin-orbit terms. The depth of the central potential was
adjusted to reproduce the known effective neutron binding
energysSn

ef f=Sn+Exd. The potential radius was taken to be
equal to the core radius and the diffusivity was fixed to
aWS=0.6 fm. The minimum impact parameter was defined by
bmin=Rc+Rt and the maximum impact parameter was fixed
to bebmax=50 fm which ensured that there were no spurious

effects from the cancellation of the amplitudes of Eqs.(30)
and (31). Using the upper adiabatic limit suggested in Ref.
[7] produced only minor changes in the cross sections. We
further assumed that the core ground and excited states have
the same density distributions and, as such, the same Woods-
Saxon geometry was employed for all core states of the pro-
jectile.

The cross sections calculated within the planar cutoff ap-
proximation are displayed in Fig. 3. The stripping and dif-
fraction (including Coulomb breakup) components are also
presented. A good overall agreement with the experimental
cross sections is observed. Keeping all the parameters fixed
as defined above, the results obtained with a cylindrical
wound are shown in Fig. 4. This calculation systematically
underestimates the experimental value by a factor of 2. This
is a pure geometrical effect resulting essentially from the fact
that the cylindrical wound underestimates the real extension
of the interaction region. As such a diffuse edge cylindrical
wound would probably be more appropriate.

2The individual beam energies and a summary of the experimental
results are detailed in Table II of Ref.[13].

3As in Refs [12,13] the center-of-mass correction[27] has not
been included. While this correction is in principle important if very
precise comparisons with measurements are to be made[14], the
theoretical and experimental uncertaintiess,10%d, together with
the inclusive nature of the data presented here, are an appreciably
larger effect.

FIG. 3. Single-neutron removal cross sections calculated in the
planar cutoff approximation(open circles, dashed line) compared to
the experimental values[12,13] (solid circles, solid line) for reac-
tions on a carbon target. The contributions arising from stripping
(open triangles, dashed-dotted line) and diffraction plus Coulomb
dissociation(open diamonds, dotted line) are also detailed.

FIG. 4. The same as in Fig. 3 but for a cylindrical wound.
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As observed by Hansen[9], the particular form of the
wound, however, has essentially no influence on the shape of
momentum distributions. Calculations in the planar cutoff
approximation are displayed in Fig. 5. Monte Carlo filtering
of the calculated distributions including the broadening aris-
ing from the transformation to the laboratory frame, energy
straggling in the target, the emittance of the beam, and de-
tector resolutions has been performed and the resulting dis-
tributions, normalized to the peaks of distributions, are dis-
played by the solid lines in Fig. 5. In addition to the excellent
overall agreement, we note that the distributions are in gen-
eral somewhat better reproduced by the sudden approxima-
tion model as compared to the Glauber-type calculations em-
ployed in our earlier work[12,13].

More specifically, as illustrated in Fig. 6 by the results
obtained for17C and19N, the longitudinal momentum distri-
butions calculated within the sudden approximation are
somewhat narrower than those derived from the Glauber cal-
culations [12,13]. Moreover, the high-momentum compo-
nents of the sudden approximation distributions are less pro-
nounced, a feature which can be attributed to the damping of
these components of the valence neutron wave function by
the sharp cutoff introduced by the “black disk” target. As
discussed in Sec. VII, the asymmetries present in the mea-
sured longitudinal momentum distributions cannot be repro-
duced within the framework of the present or Glauber-type
calculations.

In the case of the transverse momentum distributions(Fig.
7), the results obtained using the sudden approximation are
somewhat broader than the Glauber-type calculations. In
simple terms the sharp cutoff character of the target enhances
diffractive effects as compared to those induced by the more
realistic target profile employed in the Glauber modeling.

As mentioned earlier, the momentum distributions are first
calculated in the projectile rest frame which is determined by
a particular relative core-target configuration. The observable
momentum distributions are then obtained from Eq.(37).
The effect of this averaging is displayed in Fig. 8 for the
s-wave valence neutron in the ground state of15C sSn

=1.2 MeVd. In the rest frame, thekx and ky distributions
have markedly different shapes as the Coulomb shake-off
imparts momentum in only one directionsxd. After averaging
over all directions[Eq. (37)] the px and py distributions be-
come identical in agreement with what is observed experi-
mentally. The asymmetry induced by the Coulomb interac-
tion in the rest frame, translates into a small broadening
effect in the laboratory frame.

Further insight into the role played by the reaction mecha-
nism on the momentum distribution is explored in Fig. 9.
Here momentum distributions in the transparent limit of the
Serber model[4] are compared with the planar cutoff calcu-
lations in the rest frame fors- andd-wave valence neutrons.
As already noted by Hansen[9], the longitudinal components
skzd become narrower, irrespective of the angular momentum
carried by the wave function. For the transverse component
skxd, the effect is more complex. A broadening effect is ob-
served for thes state, while the shape of the distribution is
completely changed for ad state. The overall effect after
averaging[Eq. (37)] is a broadening of the transverse distri-

butions and a narrowing of the longitudinal one. These con-
clusions are consistent with the measurements of Ref.[13]
whereby the transverse distributions were found to be sys-
tematically broader than the longitudinal ones. We note that
this is in contradiction to the analysis of Sagawa and Taki-
gawa, whereby(for s-wave states) the transverse distribution
is narrowed by the absorptive cutoff induced by the reaction
process[30]. The calculated transverse momentum distribu-
tions, after inclusion of the experimental effects, are com-
pared to the data for selected nuclei in Fig. 10.4 The finite
angular acceptances of the spectrometer and detector resolu-
tion introduce a smooth cutoff in the high-momentum tails of
the distributions. As in the case of the longitudinal momen-
tum distributions, the shape and width of transverse distribu-
tions show a direct dependence on the projectile structure
and are not simply a reflection of the target size as suggested
by Barranco and Vigezzi[11].

As a further example we display in Fig. 11 the results of
calculations for17C for the three possible ground-state spin-
parity assignments. The results are very similar to those ob-
tained in our earlier work using an extended Glauber-type
model (Fig. 19 of Ref.[13]), which suggested a spin-parity
assignment of 3/2+ arising from a dominantly16Cs21

+

^ nd5/2d configuration. As noted in Refs.[12,13], this is in
line with the direct observations of coincident 1.76-MeVg
rays by Maddalenaet al. [31] and more recently by Datta
Pramaniket al. [32].

For completeness, the perpendicular momentum distribu-
tions sp'=Îpx

2+py
2d have also been reconstructed[36] from

the data of Refs.[12,13]. The calculations for selected nuclei
are compared after Monte Carlo filtering of the experimental
effects to the data in Fig. 12 where very good agreement is
again found.

As intimated earlier, one of the goals of the present work
was to explore a reaction model other than the Glauber-type
approach which has been the principal means to utilizing
high-energy nucleon removal as a spectroscopic tool. In this
spirit we have also performed calculations for the reaction of
17C on a carbon target using the transfer-to-the-continuum
model (TCM) developed by Bonaccorso and Brink
[17,18,33], which has been employed to describe with some
success single-neutron removal from beams of34,35Si and37S
[34]. As described in Ref.[33], the TCM formalism includes
a more complete dynamical treatment of the motion of the
removed nucleon than Glauber and eikonal models. In par-
ticular, spin coupling between the initial and final states may
be included and can result in asymmetric momentum distri-
butions.

The TCM calculations presented here(Fig. 13) were per-
formed as outlined in Ref.[33] [Eqs. (2.1)–(2.4)]. The
neutron-target optical potential was taken from Ref.[35] and
the strong absorption radius, used in the parametrization of
the core survival probability, was fixed to be 6.8 fm. As may
be seen in Fig. 13, the results assuming the17C ground-state
structure outlined abovesJgs

p =3/2+d are in excellent agree-

4Owing to the very time consuming nature of these calculations,
only px distributions for four nuclei with ground-state structures
representative of those measured in Ref.[13] have been computed.
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FIG. 5. Core-fragment longitudinal momentum distributions for single-neutron-removal reactions on a carbon target at beam energies of
43–68 MeV/nucleon. The data are taken from Refs.[12,13]. The solid lines correspond to the results of calculations using the sudden
approximation model with a planar cutoff and have been normalized to the peaks of the measured distributions after taking into account the
various experimental effects(see text).
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ment with both the data and the calculations using the sud-
den approximation. We note that in the TCM the core-
fragment momentum distributions are obtained by energy
and momentum conservation from the calculated neutron
distributions. As such there is a threshold(maximum) value
for the core longitudinal momentum, corresponding to the
neutron energy threshold for emission in the continuum. It is
this feature which results in the cutoff at 4780 MeV/c in the
present calculations.

Finally, we note that the line shape calculated using the
TCM begins to increase just below the high-momentum cut-
off. This structure reflects the presence of a boundd5/2 state
close to threshold in the neutron-target potential constructed
in Ref. [31] and as such has no connection with the projectile
structure.

VII. ACCEPTANCE EFFECTS

Following the first measurements of core-fragment
longitudinal-momentum distributions[37], the influence on

the observed line shapes of limited angular or transverse mo-
mentum acceptances has been discussed[38–42]. These dis-
cussions have, however, been generally based on the as-
sumption first introduced by Riisager of a three-dimensional
Lorenzian momentum distribution[38]. More recently it has
been conjectured that the reaction mechanism causes the
core-fragment momentum components to decouple[9]. As
such, incomplete detection in the planesx,yd perpendicular
to the beam direction would have no influence on the mea-
sured longitudinal momentum distribution.

The data set presented in Refs.[12,13] provides a good
opportunity to investigate such an effect at a quantitative
level, as the full three-dimensional momentum distribution
of the core fragment has been acquired. In the off-line analy-
sis, the angular acceptance of the spectrometer was reduced
from the full acceptance of ±2° to ±1.5°, 1°, 0.5°, 0.25°.
These limits correspond to transverse momentapx andpy of

FIG. 6. Comparison with data[12,13] of the core-fragment lon-
gitudinal momentum distributions for17C s49 MeV/nucleond and
19N s53 MeV/nucleond calculated using the sudden model approxi-
mation with a planar cutoff(solid line) and the Glauber model[13]
(dashed-dotted line). The calculated distributions have been normal-
ized to the peaks of the measured distributions and account has
been taken of the experimental effects. The stripping and diffraction
plus Coulomb components(thin solid and dashed lines, respec-
tively) in the sudden approximation are also shown.

FIG. 7. Comparison with data[13] of the core-fragment trans-
versespxd momentum distributions for14B s50 MeV/nucleond, 15C
s62 MeV/nucleond, 16C s55 MeV/nucleond, and 19N
s53 MeV/nucleond calculated within the sudden approximation
(solid line) and the Glauber model[13] (dashed line). The calcu-
lated distributions have been convoluted with the experimental ef-
fects and normalized to the peaks of the measured distributions.

FIG. 8. Momentum distribution in the projectile rest frame[pan-
els (a) and(c)] and in the laboratory frame[panels(b) and(d)] for
thes-wave ground state in15C sSn=1.2 MeVd. Top panels: momen-
tum distributions in the transversex direction. Bottom panels: mo-
mentum distributions in they direction. Calculations including
Coulomb dissociation are shown by the solid lines. Results without
Coulomb interaction are represented by dashed lines.

FIG. 9. Intrinsic momentum distributions(dashed lines) com-
pared with the distributions from the reaction calculation for an
s-wave valence neutron in15C (top panels) and ad-wave valence
neutron in19N (bottom panels). Projections in the transversex di-
rection are shown in panels(a) and(c), while those in longitudinal
direction szd are shown in(b) and (d).
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around ±200, 150, 100, 50 and 25 MeV/c. Of the 23 nuclei
studied in Refs.[12,13] the restricted acceptances lead to a
narrowing of the longitudinal momentum distributions in five
cases:14B, 1516C, and24,25F. In the case of16C the narrowing
reaches some 25% for the most limited acceptance(Figs. 14
and 15). Interestingly these nuclei have in common a large
s-wave component in the ground-state wave function. For
other nuclei, with ground states dominated byd-wave va-
lence neutron configurations, no significant reduction in the
widths of the longitudinal momentum distribution was ob-
served.

In the sudden approximation model the full three-
dimensional core-fragment momentum distribution can be

evaluated and projected onto the desired direction after inte-
grating over the corresponding acceptances. For the four nu-
clei selected earlier as examples, the acceptances applied to
the data have also been applied to the calculated distribu-
tions. The narrowing with the reduced transverse acceptances
of the longitudinal momentum distributions is well repro-
duced for14B and15,16C (Fig. 14). In the case of19N, experi-
mentally the width diminishes by only some 5% as the ac-
ceptances are reduced. This trend is well reproduced by the
calculated distributions.5 We note that, as intimated above,
the 19N ground state is dominated by ad-wave valence neu-
tron configuration.

5Note that the axis displaying the full width at half maximum
(FWHM) in Fig. 14 has been expanded and the widths are in fact
reproduced to within 5% or better.

FIG. 10. Comparison of the core-fragment transversespxd mo-
mentum distributions calculated within the sudden approximation
with the data of Ref.[13] for 14B, 15,16C, and19N. The decomposi-
tion of the total distribution(dashed-line) into the stripping(dashed-
dotted line) and diffraction plus Coulomb(dotted line) components
is shown. The calculated total distributions, after Monte Carlo fil-
tering to account for the experimental effects, are also displayed
(solid line) and have been normalized to the peaks of the measured
distributions.

FIG. 11. The16C core-fragment transverse momentum distribu-
tion from the reaction of17C s49 MeV/nucleond on a carbon target
(data from Ref.[13]) calculated in the sudden approximation for
three spin-parity assignmentssJpd for the ground state of17C. The
calculated distributions have been convoluted with the experimental
effects.

FIG. 12. The same as in Fig. 10 but for the perpendicularsp'd
momentum distributions calculated within the sudden
approximation.

FIG. 13. Comparison of the measured[12,13] and predicted
longitudinal momentum distributions for single-neutron removal
from 17C sJgs

p =3/2+d on a carbon target. The results obtained using
the sudden approximation model are shown by the solid line, while
those derived using the TCM are displayed by the dashed line. In
the case of the distribution derived from the TCM, the cutoff at
4780 MeV/c arises from momentum conservation(see text). The
calculated distributions have been convoluted with the experimental
effects.
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These calculations indicate that the momentum compo-
nents are, contrary to the suggestion of Hansen[9], strongly
correlated and reduced acceptances in, for example, the
transverse direction will affect the longitudinal momentum
distribution. This effect is most evident fors-wave valence
neutron configurations(e.g., 14B and 15,16C). The longitudi-
nal momentum distributions for each acceptance are com-
pared in Fig. 15 for the case of16C with the calculated dis-
tributions and very good agreement is found.

For the distributions derived using the full acceptances of
the spectrometer, the experimental distributions are some-
what asymmetric and exhibit low-momentum tails. This ef-
fect is not reproduced by the present model and, as noted in
our earlier paper[13], almost certainly arises in the case of
weakly bound systems as a result of a strong coupling to
continuum in diffractive dissociation. Such a process has
been successfully modeled by Tostevinet al. [43] within the
coupled discretized continuum chanels(CCDC) formalism,
where the redistribution of relative energy to the internal
excitation of the projectile is treated exactly. As is evident
from Fig. 15, as the angular acceptances are progressively
reduced the asymmetry becomes less pronounced as the con-
tribution from diffraction decreases, an effect also observed
by Tostevinet al. [43].

Finally, the case of19N is displayed in Fig. 16. As noted
above, within the statistical precision of the present measure-
ments the width of the longitudinal momentum distribution
remains unchanged with decreasing acceptances. This sup-
ports the model prediction that ford states the different mo-
mentum components are effectively decoupled. Interestingly
the asymmetry in the momentum distribution appears to per-
sist even for very limited transverse acceptances a feature
which cannot be easily explained by diffractive processes. In
this context we note that tailing towards low momenta is a
well-known feature in the fragmentation of stable beams(in-
cluding single-nucleon removal[44]) and has been attributed
to dissipative mechanisms including transfer[45].

VIII. CONCLUSIONS

The sudden approximation approach for the description of
high-energy breakup of single-neutron halo nuclei[7] has
been extended to include realistic wave functions and to in-
corporate shell-model spectroscopic amplitudes. The theory
is based on the strong absorption description of the core-
target and neutron-target interactions. Applied to single-
neutron removal reactions, the model allows for the calcula-
tion of the full three-dimensional momentum distribution of

FIG. 14. Evolution of the widths(FWHM) of the longitudinal
momentum distributions with the spectrometer angular acceptance.
The experimentally observed trend(solid circles, solid line) is com-
pared to the calculations in the sudden approximation model(open
circles, dashed lines). Note that the scale for the widths has been
expanded.

FIG. 15. Evolution of the core-fragment longitudinal momen-
tum distribution for reactions of16C on carbon as a function of
angular acceptances of the spectrometer. The model calculations
(solid lines) have been normalized to the maximum number of
counts and include, in addition to the finite acceptances, all experi-
mental broadening effects.

FIG. 16. The same as in Fig. 15 but for19N.
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the core fragment including stripping, diffraction, and Cou-
lomb dissociation mechanisms. The Coulomb and nuclear
interference is also taken into account. As in the case of our
Glauber-type calculations employing realistic target profile
functions[12,13] the observation that the transverse momen-
tum distributions are systematically broader than the longi-
tudinal distributions is reproduced by the present calcula-
tions.

Calculations were performed for comparison with mea-
surements of inclusive cross sections and longitudinal and
transverse momentum distributions for a series of some 23
neutron-richp-sd-shell nuclei[12,13]. Suprisingly, for such a
relatively simple model, very good agreement with the mea-
sured cross sections and momentum distributions was found.
Indeed, the momentum distributions were somewhat better
reproduced by the present model than the more sophisticated
Glauber-type calculations[12,13].

Importantly, the effect of limited detection angular accep-
tances on the longitudinal momentum distributions could be
investigated. A significant reduction of the widths was ob-
served experimentally for nuclei with ground states domi-
nated bys-wave valence neutron configurations. Little or no
reduction was observed, however, for nuclei with dominant
d-wave valence neutron components. This effect was well
reproduced by the present model calculations and is believed
to arise as a consequence of the correlations between the
momentum components in the three-dimensional momentum
distribution of the core fragment following the reaction.

Note added in proof:In a very recent paper[47], Bertu-
lani and Hansen have also modeled, using an approach very
similar to that employed in our earlier work[12,13,36], lon-
gitudinal land transverse momentum distributions from
single-nucleon removal.
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APPENDIX

In this Appendix we derive a convenient expression for
the classical momentum transfer using straight-line trajecto-
ries and retaining only the dipole component of the Coulomb
field. The projectile consists of coresmc,Zcd and a cluster
smx,Zxd moving in thez direction with velocityv. The im-
pact parameterb with respect to the target is measured in the
x direction. The dipole effective charge is defined in Ref.
[46] as

Zef f
s1d =

Zcmx − Zxmc

mc + mx
. sA1d

The time-dependent electric field due to the target charge
Zt is given by

EW std =
gZte

sb2 + g2v2t2d3/21 b

0

vt
2;

here,g is the Lorentz contraction factor. The classical mo-
mentum transfer is, then,

DpW =E
−`

`

dteZef f
s1dEW std. sA2d

One sees immediately thatEy=0⇒Dpy=0 andDpz=0 from
parity consideration. It follows that the momentum transfer
has only one component in thex direction given by

Dpx = gZtZef f
s1de2bE

−`

` dt

sb2 + g2v2t2d3/2 =
2ZtZef f

s1de2

bv
.

sA3d

The momentum transfer imparted by the cluster is

qW =
2ZtZef f

s1de2

"cb

bW

b2 . sA4d

Momentum conservation gives then the core momentum.
When the cluster is a neutron Eq.(A4) is identical to Eq.
(10) of Ref. [7].
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