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We derive expressions for cluster overlap integrals or channel cluster form factors forab initio no-core shell
model(NCSM) wave functions. These are used to obtain the spectroscopic factors and can serve as a starting
point for the description of low-energy nuclear reactions. We consider the composite system and the target
nucleus to be described in the Slater determinant(SD) harmonic oscillator(HO) basis while the projectile
eigenstate to be expanded in the Jacobi coordinate HO basis. This is the most practical case. The spurious
center of mass components present in the SD bases are removed exactly. The calculated cluster overlap
integrals are translationally invariant. As an illustration, we present results of cluster form factor calculations
for k5Heu4He+nl, k5Heu3H+dl, k6Li u4He+dl, k6Beu3He+3Hel, k7Li u4He+3Hl, k7Li u6Li+ nl, k8Beu6Li+ dl,
k8Beu7Li+ pl, k9Li u8Li+ nl, and k13Cu12C+nl, with all the nuclei described by multi-"V NCSM wave
functions.
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I. INTRODUCTION

There has been a significant progress in theab initio ap-
proaches to the structure of light nuclei. Starting from the
realistic two- and three-nucleon interactions methods such as
the Green’s function Monte Carlo(GFMC) [1] or the ab
initio no-core shell model(NCSM) [3] can predict the low-
lying levels in p-shell nuclei. It is a challenging task to ex-
tend theab initio methods to describe nuclear reactions. This
is in particular true for low-energy reactions where detailed
knowledge of nuclear structure is important. The first capture
reaction calculations using the GFMC(or rather variational
Monte Carlo) wave functions were performed[2]. Concern-
ing the NCSM, in order to take the first steps in this direction
one needs to understand the cluster structure of the eigen-
states, i.e., to calculate the channel cluster form factors.
Those can then, e.g., be integrated to obtain the spectro-
scopic factors. At the same time, starting from the channel
cluster form factors, one can attempt to set up an approach in
the spirit of the resonating group method(RGM) [4] to cal-
culate radial wave functions describing the relative motion of
the binary clusters and then obtain the cross sections. This
paper addresses the issue of the channel cluster form factor
(or cluster overlap integral or reduced width amplitude for
two-body decay) calculations in the NCSM.

The principal foundation of theab initio NCSM approach
is the use of effective interactions appropriate for the large
but finite basis spaces employed in the calculations. These
effective interactions are derived from the underlying realis-
tic internucleon potentials through a unitary transformation
in a way that guarantees convergence to the exact solution as
the basis size increases. For the basis, one uses antisymme-
trized A-nucleon harmonic-oscillator(HO) states that span
the completeNmax"V space. A disadvantage of the HO basis
is its unphysical asymptotic behavior, a problem that must be
dealt with by using a large basis expansion and/or a renor-
malization. On the other hand, the nuclear system is transla-
tionally invariant and, in particular in the case of light nuclei,
it is important to preserve this symmetry. The HO basis is the
only basis that allows a switch from Jacobi coordinates to
single-particle Cartesian coordinates without violating the

translational invariance. Consequently, one may choose the
coordinates according to whatever is more efficient for the
problem at hand. In practice, it turns out that theA=3 system
is the easiest solved in the Jacobi basis, theA=4 system can
be solved either way with the same efficiency when only
two-body interaction is utilized, but the Jacobi basis is more
efficient when the three-body interaction is included. For
systems withA.4, it is by far more advantageous to use the
Cartesian coordinates and the Slater determinant(SD) basis
and employ the powerful shell model codes likeANTOINE [5]
that rely on the second quantization techniques. While the
NCSM eigenenergies are independent on the choice of coor-
dinates, the eigenfunctions obtained in the Cartesian coordi-
nate SD basis include a 0"V spurious center of mass(c.m.)
component.

Our goal is to calculate the channel cluster form factors
regardless of the choice of coordinates. Obviously, the most
desired case is the one corresponding to the most efficient
choice, i.e., the projectile, that is, the lighter nucleus of the
binary system, consisting ofaø4 nucleons described by a
Jacobi coordinate wave function, while theA-nucleon com-
posite system and thesA−ad-nucleon target, that is, the
heavier nucleus of the binary system, described by wave
functions expanded in the SD basis. To obtain the physical,
translationally invariant cluster form factors we must remove
completely the spurious c.m. components.

The ways how to remove these components and obtain
physical matrix elements of different operators were investi-
gated in the past[6–12]. At the same time, the single-nucleon
as well as cluster overlap integral and/or spectroscopic factor
calculations were investigated in many papers; see, e.g.,
Refs.[13–22]. In many cases, however, the basis space was
limited to a single major HO shell. In the NCSM, the basis
space spans several major shells. In general, it is necessary to
revisit and adapt the techniques of the channel cluster form
factor and spectroscopic factor calculation and the spurious
center-of-mass motion removal to make them applicable for
the NCSM. In an earlier investigation, we addressed the spu-
rious center-of-mass motion problem for the density operator
[23]. In this paper, we focus on the calculation of the channel
cluster form factors.
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In Sec. II, we present the derivation and the algebraic
formulas for calculating the channel cluster form factors
from the NCSM wave functions for projectiles consisting of
up to three nucleons. In Sec. III, applications to several light
nuclei systems are discussed. The conclusions are drawn in
Sec. IV. In the Appendix B, we give the algebraic cluster
form factor expression for the four-nucleon projectile.

II. CLUSTER FORM FACTOR AND SPECTROSCOPIC
FACTOR CALCULATION

In this section we derive expressions for the channel clus-
ter form factors for a composite system ofA nucleons, a
projectile of a nucleons, and a target ofA−a nucleons. All
the nuclei are assumed to be described by eigenstates of the
NCSM effective Hamiltonians expanded in the HO basis
with identical HO frequency and the same definition(for the
eigenstates of the same parity) or differing by one unit of the
HO excitation(for the eigenstates of opposite parity) defini-
tion of the model space. We limit ourselves toaø4 projec-
tiles. In such a case, the projectiles can be efficiently de-
scribed by a Jacobi-coordinate HO wave functions. The
target and the composite system is assumed to be described
by Slater determinant single-particle HO basis wave func-
tions, which is in general more efficient forA.4. In this
section we present results fora=1,2,3. Thecluster overlap
integral for thea=4 projectile is given in Appendix B. The
NCSM effective interaction theory is not repeated in this
paper. It can be found in Ref.[3] for the case of two-nucleon
interactions and in Ref.[24] for the case of two- plus three-
nucleon interactions.

A. Coordinate and HO wave function transformations

We follow the notation of Ref.[25]. We consider nucleons
with the massm neglecting the difference between the proton
and the neutron mass. For the purpose of the present paper
we use the following set of Jacobi coordinates:

jW0 =Î1

A
frW1 + rW2 + ¯ + rWAg, s1ad

jW1 =Î1

2
frW1 − rW2g, s1bd

jW2 =Î2

3
F1

2
srW1 + rW2d − rW3G , s1cd

¯

jWA−a−1 =ÎA − a − 1

A − a

3F 1

A − a − 1
srW1 + rW2 + ¯ + rWA−a−1d − rWA−aG ,

s1dd

hW A−a =ÎsA − ada
A

F 1

A − a
srW1 + rW2 + ¯ + rWA−ad

−
1

a
srWA−a+1 + ¯ + rWAdG , s1ed

¯

qW A−2 =Î2

3
F1

2
srWA−1 + rWAd − rWA−2G , s1fd

qW A−1 =Î1

2
frWA−1 − rWAg. s1gd

Here, jW0 is proportional to the center of mass of the

A-nucleon system:RW =Î1/AjW0. On the other hand,jWr is pro-
portional to the relative position of thesr+1dst nucleon and
the center of mass of ther nucleons. ThehW A−a coordinate is
proportional to the relative position between the center of
masses of the two interacting clusters, i.e., thesA−ad-
nucleon target and thea-nucleon projectile. TheqW coordi-
nates appear only fora.1. Let us rewrite Eqs.(1e) and(1a)
as

hW A−a =Îa

A
RW c.m.

A−a −ÎA − a

A
RW c.m.

a , s2ad

jW0 =ÎA − a

A
RW c.m.

A−a +Îa

A
RW c.m.

a , s2bd

where RW c.m.
A−a=Î1/sA−adfrW1+rW2+¯ +rWA−ag and RW c.m.

a

=Î1/afrWA−a+1+¯ +rWAg. Following, e.g., Ref.[26], the HO
wave functions depending on the coordinates(2) transform
as

o
Mm

sLMlmuQqdwNLMsRW c.m.
A−adwnlmsRW c.m.

a d

= o
n8l8m8N8L8M8

kn8l8N8L8QuNLnlQla/sA−ad

3sl8m8L8M8uQqdwn8l8m8shW A−adwN8L8M8sj
W

0d, s3d

where kn8l8N8L8QuNLnlQla/sA−ad is the general HO bracket
for two particles with mass ratioa/ sA−ad.

B. Composite and asymptotic wave functions and the channel
cluster form factor

We consider theA-nucleon composite state eigenfunction

kjW1 . . . hW A−a . . . qW A−1s1 . . . sAt1 . . . tAuAlJMTMTl s4d

with the s and t the spin and isospin coordinates, respec-
tively. J andT are the total angular momentum and the total
isospin, respectively, andM ,MT their third components.l
stands for the additional quantum numbers needed to char-

acterize the eigenstate. TheqW coordinates appear only for
a.1.
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The projectile-target wave function with the radial wave function describing the relative motion of the two nuclei replaced
by the Diracd function can be written as

kjW1 . . . jWA−a−1hA−a8 ĥA−aqW A−a+1 . . . qW A−1s1 . . . sAt1 . . . tAuFaI1T1,bI2T2;sl
sA−a,adJMTMT;dhA−a

l

= o sI1M1I2M2usmsdssmslmluJMdsT1MT1
T2MT2

uTMTd
dshA−a − hA−a8 d

hA−ahA−a8
Ylml

sĥA−ad

3 kjW1 . . . jWA−a−1s1 . . . sA−at1 . . . tA−auA − aaI1M1T1MT1
l

3kqW A−a+1 . . . qW A−1sA−a+1 . . . sAtA−a+1 . . . tAuabI2M2T2MT2
l, s5d

where kjW1. . .jWA−a−1st uA−aaI1M1T1MT1
l and kqW A−a+1. . .qW A−1st uabI2M2T2MT2

l are the target and the projectile eigenstates,
respectively. Thes is the channel spin and thel is the channel relative orbital angular momentum. For our convenience, we also
define a projectile-target wave function with a HO radial wave function describing the relative motion of the two nuclei, i.e.,

kjW1 . . . jWA−a−1hW A−aqW A−a+1 . . . qW A−1s1 . . . sAt1 . . . tAuFaI1T1,bI2T2;sl
sA−a,adJMTMT;nll

= o sI1M1I2M2usmsdssmslmluJMdsT1MT1
T2MT2

uTMTdRnlshA−adYlml
sĥA−ad

3 kjW1 . . . jWA−a−1s1 . . . sA−at1 . . . tA−auA − aaI1M1T1MT1
lkqW A−a+1 . . . qW A−1sA−a+1 . . . sAtA−a+1 . . . tAuabI2M2T2MT2

l.

s6d

TheRnlsrd in Eq. (6) is the radial HO wave function with the
oscillator length parameterb=b0=Î" /mV, wherem is the
nucleon mass. Due to our use of the coordinate transforma-
tions (1) the oscillator length parameter is the same for all

coordinates, i.e.,b0. In Eqs. (5) and (6), the coordinatesqW

appear only fora.1.
The channel cluster form factor can then be defined as

uA−aaI1T1,abI2T2;sl
AlJT shA−ad

= kAlJTuAFaI1T1,bI2T2;sl
sA−a,adJT ;dhA−a

l

= o
n

RnlshA−adkAlJTuAFaI1T1,bI2T2;sl
sA−a,adJT ;nll

=Î A!

sA − ad ! a!on

RnlshA−adkAlJTuFaI1T1,bI2T2;sl
sA−a,adJT ;nll,

s7d

with A the antisymmetrizer. As stated above, we assume an
identical HO frequency for all eigenstates and identical(or
differing by a single HO excitation in the case of opposite
parity states) definitions of the model space.

The spectroscopic factor is obtained by integrating the
square of the cluster form factor. In particular, we have

SA−aaI1T1,abI2T2;sl
AlJT =E dhA−ahA−a

2 uuA−aaI1T1,abI2T2;sl
AlJT shA−adu2

=
A!

sA − ad ! a!on

ukAlJTuFaI1T1,bI2T2;sl
sA−a,adJT ;nllu2.

s8d

As in this paper all the eigenstates are assumed to be ex-
panded in a large but finite HO basis, we can set the integra-
tion limit to infinity in Eq. (8).

It turns out that obtaining the eigenstates using the Jacobi
coordinates becomes increasingly difficult with the number
of nucleonsA mostly due to the complicated antisymmetri-
zation. As stated in the Introduction, forA.4 it is by far
more efficient to use the SD basis. Consequently, it is desir-
able to express the overlap(7) using the eigenstates obtained
in the SD basis.

The relationship between the Jacobi coordinate and the
SD eigenstates is

krW1 . . . rWAs1 . . . sAt1 . . . tAuAlJMTMTlSD

= kjW1 . . . hW A−a . . . qW A−1s1 . . . sAt1 . . . tAuAlJMTMTlw000sjW0d
s9d

for the composite system and similarly for theA−a nucleon
target. The subscript SD refers to the fact that this state was
obtained in the Slater determinant basis, i.e., by using a shell
model code, and, consequently, contains the spurious c.m.
component.

To arrive at the desired expression, we investigate an
analogous overlap to Eq.(7) using the SD eigenstates. We
consider the corresponding SD eigenstates to Eqs.(4) and
(6), i.e.,

SDkAlJTuAFaI1T1,bI2T2;sl
sA−a,adJT ;nllSD, s10d

where all the composite and the target eigenstate Jacobi co-
ordinates are replaced by the Cartesian coordinates. The pro-
jectile eigenstate is kept unchanged with the Jacobi coordi-

nates. Further, thehW A−a is replaced byRW c.m.
a . Explicitly, we
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have for the SD analog of the state(6)

krW1 . . . rWA−aRW c.m.
a qW A−a+1 . . . qW A−1s1 . . . sAt1 . . . tAuFaI1T1,bI2T2;sl

sA−a,adJMTMT;nllSD

= o sI1M1I2M2usmsdssmslmluJMdsT1MT1
T2MT2

uTMTdRnlsRc.m.
a dYlml

sR̂c.m.
a d

3 krW1 . . . rWA−as1 . . . sA−at1 . . . tA−auA − aaI1M1T1MT1
lSD

3 kqW A−a+1 . . . qW A−1sA−a+1 . . . sAtA−a+1 . . . tAuabI2M2T2MT2
l. s11d

We now proceed in two steps. First, using the relation(9) for
both the composite and the target eigenstate and the transfor-
mation (3), we obtain

SDkAlJTuAFaI1T1,bI2T2;sl
sA−a,adJT ;nllSD

= knl00l u00nllla/sA−adkAlJTuAFaI1T1,bI2T2;sl
sA−a,adJT ;nll,

s12d

with a general HO bracket due to the c.m. motion, the value
of which is simply given by

knl00l u00nllla/sA−ad = s− 1dlSA − a

A
Ds2n+ld/2

. s13d

Relation (12) has been derived in the past, see e.g., Refs.
[13,16,20]. Second, we relate the overlap(10) to a linear
combination of matrix elements ofa creation operators be-
tween the target and the composite eigenstates

SDkAlJTuan1l1j1
†

¯analaja
† uA−aaI1T1lSD. The subscriptsn1l1j1

refer to the single-particle state quantum numbers
n1sl11

2
d j1m1

1
2mt1

, etc. Such matrix elements are easily calcu-
lated by shell model codes. To obtain the channel cluster
form factor we use the second equality in Eq.(7).

C. Single-nucleon projectile

In the case of a single-nucleon projectile, the asymptotic

state(5) simplifies as noqW coordinates are present. The pro-
jectile wave function has just spin and isospin components
with I2= 1

2 and T2= 1
2, respectively. It is straightforward to

calculate the overlap of the states(4) and (5). The result is
given by

kAlJTuAFaI1T1,s1/2ds1/2d;sl
sA−1,1dJT ;dhA−1

l

= ÎAo RnlshA−1dŝĵs− 1dI1+J+jHI1
1
2 s

l J j
J

3kAlJTusNA−1iA−1I1T1;nlj 1
2dJTl

3kNA−1iA−1I1T1uA − 1aI1T1l, s14d

with ŝ=Î2s+1. The composite eigenstate is expanded in a
basis with lower degree of antisymmetry using the coeffi-
cients of fractional parentage[25]

ksNA−1iA−1I1T1;nlj 1
2dJTuAlJTl

= o
Ni

kNA−1iA−1I1T1;nlj uuNiJTlkNiJTuAlJTl, s15d

with N=NA−1+2n+ l the total number of HO excitations for
the A nucleons andi , iA−1 the additional quantum numbers
that characterize theA- andsA−1d-nucleon antisymmetrized
basis states, respectively.

To obtain the overlap integral matrix element starting
from SD composite and target eigenstates, we make use of
Eq. (12) with a=1 and perform the above discussed second
step. That is quite straightforward for thea=1 case and we
easily arrive at the final expression:

kAlJTuAFaI1T1,s1/2ds1/2d;sl
sA−1,1dJT ;dhA−1

l

= o
n

RnlshA−1d
1

knl00l u00nlll1/sA−1d

1

ĴT̂

3o
j

ŝĵs− 1dI1+J+jHI1
1
2 s

l J j
J

3SDkAlJTuianlj
† iuA − 1aI1T1lSD. s16d

Using Eq.(13), we obtain the familiar c.m. correction factor
fA/ sA−1dgs2n+ld/2 [7–13].

D. Two-nucleon projectile

For a.1 projectiles we only present the overlap matrix
elements for the composite and target wave functions ob-
tained in the SD basis. Fora=2, which includes the deuteron
projectile, the derivation is slightly more complicated due to
additional recouplings and explicit presence of thea=2 rela-
tive coordinate wave function expanded in the HO basis. The
final expression reads:
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kAlJTuAFaI1T1,bI2T2;sl
sA−2,2dJT ;dhA−2

l = o
n

RnlshA−2d
1
Î2

1

knl00l u00nlll2/sA−2d

1

ĴT̂

3o kn2l2s2I2T2ua = 2bI2T2lŝŝ2Î2 ĵ aĵ bÎabL̂ab
2 s− 1dI1+J+l+l2+T2HI1 I2 s

l J Iab
JH l Lab l2

s2 I2 Iab
J

35 la lb Lab
1
2

1
2 s2

ja jb Iab
6knalanblbLabunl n2l2Labl1 SDkAlJTuisanalaja

† anblbjb
† dsIabT2diuA − 2aI1T1lSD s17d

with the antisymmetry condition for the two-nucleon chan-
nelss−1dl2+s2+T2=−1. The two-nucleon projectile wave func-
tion kn2l2s2I2T2ua=2bI2T2l is expanded in the HO basis de-

pending onqW A−1. The spin and isospin components of the
wave function depend on the spin and isopin coordinates
sA−1sA, andtA−1,tA, respectively. For the deuteron projectile,
I2=1, T2=0, s2=1, andl2=0 or 2. Here, in addition to the
HO bracket(13) due to the c.m. correction, one more HO
bracket appears that corresponds to particles with mass ratio
1. This is due to the transformation of the HO wave functions

wnlmsRW c.m.
a=2dwn2l2m2

sqW A−1d to the single-particle HO wave func-
tions wnalama

srWAdwnblbmb
srWA−1d.

E. Three-nucleon projectile

For a=3, which includes the triton or3He projectile, the
derivation is still more complicated due to additional recou-
plings and explicit presence of thea=3 relative coordinate
wave function expanded in the HO basis. The final expres-
sion reads

kAlJTuAFaI1T1,bI2T2;sl
sA−3,3dJT ;dhA−3

l = o
n

RnlshA−3d
1
Î6

1

knl00l u00nlll3/sA−3d

1

ĴT̂
o ksn2l2s2j2t2;N2L2J2

1
2dI2T2ua = 3bI2T2l

3 ŝÎ ŝ2 ĵ2Î2Ĵ2 ĵ aĵ bĵ cÎabl̂
2L̂ab

2 s− 1dI1−I+J+lc+l+J2+1/2+l2+t2+IabHI1 I2 s

l J I
JHL2 Lab l2

s2 j2 Iab
J5 la lb Lab

1
2

1
2 s2

ja jb Iab
65 l l L2 j2

L2 lc Iab I2

J2
1
2 jc I

6
3 knalanblbLabuN2L2n2l2Labl1 knclcN2L2lunlN2L2ll1/2 SDkAlJTuissanalaja

† anblbjb
† dsIabt2danclcjc

† dsIT2diuA − 3aI1T1lSD, s18d

The three-nucleon eigenstates are expanded in a basis with
lower degree of antisymmetry using the coefficients of frac-
tional parentage[25]

ksn2l2s2j2t2;N2L2J2
1
2dI2T2ua = 3bI2T2l

= o
Ni

kn2l2s2j2t2;N2L2J2
1
2uuNiI2T2lkNiI2T2ua = u3bI2T2l,

s19d

with N=2N2+L2+2n2+ l2 the total number of HO excita-
tions for the three nucleons andi the additional quantum
number that characterizes the three-nucleon antisymmetrized
basis states. The 12−j symbol of the first kind[27] appearing
in Eq. (18) is defined in Appendix A. For the triton or3He
projectile, I2= 1

2, T2= 1
2, ands−1dl2+L2=1. In Eq. (18), in ad-

dition to the HO bracket(13) due to the c.m. correction, two
general HO brackets appear that correspond to particles
with mass ratios 1 and12. These are due to the sequence

of two transformations of the HO wave functions

wnlmsRW c.m.
a=3dwn2l2m2

sqW A−1dwN2L2M2
sqW A−2d to the single-particle

HO wave functionswnalama
srWAdwnblbmb

srWA−1dwnclcmc
srWA−2d.

III. APPLICATIONS

In this section, we present results of cluster form factor
and/or spectroscopic factor calculations fork5Heu4He+nl,
k5Heu3H+dl, k6Li u4He+dl, k6Beu3He+3Hel, k7Li u4He+3Hl,
k7Li u6Li+ nl, k8Beu6Li+ dl, k8Beu7Li+ pl, k9Li u8Li+ nl, and
k13Cu12C+nl. All calculations are done using the approach
described in Sec. II. The compositeA-nucleon system and
the targetsA−ad-nucleon system are described by the NCSM
wave functions obtained in them-scheme Slater-determinant
basis shell model calculation. In particular, we use the many-
fermion dynamics(MFD) shell model code[28] and a spe-
cialized transition density code that calculates theka†. . .a†l
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matrix elements employing the wave functions obtained by
the MFD (or theANTOINE [5]) code. The projectilea-nucleon
NCSM wave functions fora=3 are obtained in the Jacobi-
coordinate HO basis using the codeMANYEFF [25]. For a
=2, i.e., the deuteron projectile, the relative-coordinate wave
function is obtained using the standard NCSM two-body ef-
fective interaction code(see e.g., Ref.[3]). As a technical
point, we note that in the case ofa=2 there is no c.m. HO
binding potential contrary the usual NCSM two-body effec-
tive interaction calculation. Consequently, the overlap of the
full-spacea=2 wave function with the model spaceP might
not be large. This then could lead to numerical difficulties
when applying the Lee-Suzuki procedure[29,30] to obtain
the model spacea=2 wave functions. To address this issue,
higher precision than the double precision had to be used in
the relevant computer code.

We performed several calculations to test correctness of
the formulas presented in Sec. II as well as their computer
coding. First, we cross checked that Eqs.(14) and (16) give
the same result for thek5Heu4He+nl system. In the former
case, we employed the Jacobi-coordinateMANYEFF code
while in the latter we used the SD basisMFD shell model
code together with the transition density code. Obviously, the
same effective Hamiltonian was used in both calculations. To
test Eqs.(17) and(18) we switched the role of the projectile
and the target. For example, for thek3H ud+nl system, we
can apply Eq.(16) with the deuteron as the target and the
neutron as the projectile or we can apply Eq.(17) with the
neutron as the target and the deuteron as the projectile. In the
latter case, the neutron target state is described as a single
neutron N=0 HO state. Similarly, Eq.(18) can be tested
considering thek4Heu3He+nl system described with the neu-
tron as the projectile in Eq.(16) or 3He as the projectile in
Eq. (18). Finally, we also performed a test for thek5Heu3H
+dl system by switching the target and projectile and using
the Eqs.(17) and (18), respectively. We note that all these
tests are nontrivial as the projectile and the target are de-
scribed using different coordinates and the respective wave
functions are obtained by different computer codes.

In this section, all the calculated channel cluster form
factors are presented as a function of the separationr
between the c.m. of the projectile and the c.m. of the target.
In particular, r =ÎA/ sA−adahA−a with hW A−a defined in Eq.
(1e). Consequently, we have to use the reduced massm
=hfsA−adag /Ajm in the definition of the HO length param-
eter,b=Î" /mV=ÎA/ sA−adab0. The presented channel clus-
ter form factors are then related to those defined in Eq.(7) by

uA−aaI1T1,abI2T2;sl
AlJT srd

= o
n

Rnlsr,bdkAlJTuAFaI1T1,bI2T2;sl
sA−a,adJT ;nll

= o
n

fsA − ada/Ag3/2RnlshA−a,b0d

3kAlJTuAFaI1T1,bI2T2;sl
sA−a,adJT ;nll.

The spectroscopic factor(8) is not affected by the choice
of the coordinate:

SA−aaI1T1,abI2T2;sl
AlJT =E dhA−ahA−a

2 uuA−aaI1T1,abI2T2;sl
AlJT shA−adu2

=E dr r2uuA−aaI1T1,abI2T2;sl
AlJT srdu2

= o
n

ukAlJTuAFaI1T1,bI2T2;sl
sA−a,adJT ;nll2.

The channel cluster form factors presented in this section are
obtained from Eqs.(16)–(18) with the radial HO wave func-
tion RnlshA−a,b0d replaced byRnlsr ,bd.

A. Š5Hez4He+n‹

In Figs. 1 and 2, we present ourk5Heu4He+nl results for

the 5He 3
2

−
ground state resonance. The dependence of the

channel cluster form factor on the basis size of the NCSM
calculation is shown in Fig. 1 for basis sizes fromNmax
=4 s4"Vd to Nmax=12 s12"Vd. Here, Nmax is the maximal
number of the HO excitations above the unperturbed ground
state. The CD-Bonn 2000NN potential [31] and the HO
frequency of"V=16 MeV were used in the calculations.
Clearly, with increasingNmax, the changes between succes-
sive curves become smaller, a sign of convergence.

When calculating overlaps involving4He and ap-shell
nucleus it is not obvious which HO frequency is the optimal
one due to differences in the radii of the participating nuclei.
In general, the HO frequency in the NCSM is typically fixed
so that the binding energy has the least dependence on it.
However, while for4He the fastest NCSM convergence and
the least dependence on the HO frequency is obtained with a
higher HO frequency, e.g.,"V.20 MeV, for thep-shell nu-
clei the optimal frequency lies typically in the range of"V
=10–15 MeV. In Fig. 2, we present the channel cluster form
factor dependence on the HO frequency using a wide range
of frequencies:"V=13–19 MeV. It is satisfying that the

FIG. 1. (Color online) Overlap integral of the5He 3
2

−
ground

state with the4He+n as a function of separation between4He and
the neutron. The dependence on the basis size forNmax=4,6,8,10,12
is presented. The CD-Bonn 2000NN potential and the HO fre-
quency of"V=16 MeV were used.s andl are the channel spin and
the relative angular momentum, respectively.
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sensitivity of the cluster form factor to the choice of the HO
frequency is rather small.

The same as in Figs. 1 and 2 is presented in Figs. 3 and 4
for the excited1

2
− 5He resonance. This resonance is broader

in experiment[32]. Our calculation shows a more extended
overlap integral for the12

−
state compared to the32

−
state. At

the same time, both the basis size and the HO frequency
dependencies are more pronounced. Nevertheless, even for
this broad state the conclusions reached for the3

2
−

state ap-
ply, which is an encouraging result.

It can be seen in both Figs. 1 and 3 how with the increas-
ing Nmax the overlap extends at larger. However, due to the
finiteness of our basis, the overlap integral approaches zero
with increasingr even for states that correspond to physical
resonances.

B. Š5Hez t+d‹

In Fig. 5, we present the NCSM calculated channel cluster
form factors for the k5Heu t+dl Jp= 3

2
+

resonance. The
NCSM calculations were performed using the CD-Bonn
2000NN potential in the 11"V model space for5He. There
are three possible channels corresponding to the combina-
tions of the channel spins= 3

2 and s= 1
2 and the relative or-

bital momental =0 andl =2. Clearly, the overlap integral is
by far the largest for thes-wave channels= 3

2 l =0. The
d-wave channels give small overlap integrals with thes
= 3

2 l =2 channel greater than thes= 1
2 l =2 channel. Results

corresponding to three different HO frequencies are shown in
Fig. 5. Despite the wide range of the HO frequencies,
changes in the resulting overlap integrals are not significant.

FIG. 2. (Color online) Overlap integral of the5He 3
2

−
ground

state with4He+n as a function of separation between4He and the
neutron. The dependence on the HO frequency for"V
=13,16,19 MeV is presented. The CD-Bonn 2000NN potential
and the basis size ofNmax=12 were used.

FIG. 3. (Color online) Overlap integral of the5He 1
2

−
first ex-

cited state with4He+n as a function of separation between4He and
the neutron. The dependence on the basis size forNmax=4,6,8,10,12
is presented. The CD-Bonn 2000NN potential and the HO fre-
quency of"V=16 MeV were used.

FIG. 4. (Color online) Overlap integral of the5He 1
2

−
first ex-

cited state with4He+n as a function of separation between4He and
the neutron. The dependence on the HO frequency for"V
=13,16,19 MeV is presented. The CD-Bonn 2000NN potential
and the basis size ofNmax=12 were used.

FIG. 5. (Color online) Overlap integral of the5He 3
2

+
excited

state with the3H+d as a function of separation between the3H and
the deuteron. The dependence on the HO frequency for"V
=13,16,19 MeV is presented. The CD-Bonn 2000NN potential
and the basis size ofNmax=12 (for 3H and d) and Nmax=11 (for
5He) were used.
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It is interesting to point out that thed+ t 3
2

+
resonance in

5He appears as the second3
2

+
state in the NCSM calculations

reported in this paper as well as in the previously published
5He results[33,34]. The appearance of low-lying positive
parity states in the NCSM calculations of the5He spectrum
was criticized in Ref.[35]. We note that such states were also
observed in phenomenological shell model calculations
[36,37]. At the same time, some evidence for a low-lying1

2
+

state was reported in theR-matrix analysis of Ref.[38]. No
such state was, however, included in the recent evaluation
[32]. The low-lying 3

2
+

state obtained in the present calcula-
tion has basically zero overlap withd+ t. It is quite possible
that it corresponds to a nonresonant continuum state of a free
neutron and the4He that appears as an excited state due to
the finiteness of the basis used in our investigation. Thed
+ t resonant32

+
state is dominated by thes3p2 configuration.

C. Š6Li z4He+d‹

Our k6Li u4He+dl channel cluster form factors for the
6Li Jp=1+, 3+, and 2+ are presented in Figs. 6–8, respec-
tively. The corresponding spectroscopic factors are then sum-
marized in Table I. In the NCSM calculations, we used the
6Li wave functions obtained in Ref.[39] using the CD-Bonn
NN potential[40]. In these three figures, the thick lines cor-
respond to the 10"V results and the thin lines to the 8"V 6Li
results. We can see only small changes in the overlap inte-
grals when the basis size is changed, in particular for the 1+0
ground state and the 3+0 excited state. It is interesting to note
that the ground state is dominated by thes=1, l =0 4He+d
configuration while the excited 3+0, 2+0, and 12

+0 states are
dominated by thes=1, l =2 4He+d configuration. This is in
agreement with the analysis of the4He+d elastic scattering
experimental data[32].

D. Š6Bez3He+3He‹

Just as resonance plays a critical role in the rate of the
d+ t reaction, there is some speculation that the reaction

3Hes3He,2pd4He, which is important to the standard solar
model (SSM), could be affected by a resonance in the com-
posite6Be system[41]. Although recent experiments at the
LUNA underground facility[42] seem not to favor a narrow
resonance, they do not definitively rule out its presence[41].
To investigate a possibility of a resonance in the3He+3He
system, we performed NCSM calculations of the overlap in-
tegrals k6Beu3He+3Hel for the lowest four 0+1 states ob-
tained in the NCSM description of6Be. The calculations
were performed using the CD-Bonn 2000NN potential in the
basis spaces up to 10"V for 6Be. The lowest two 0+1 states
are thep-shell dominated states while the third and the fourth
0+1 state is a one-particle–one-hole and a two-particle–two-
hole dominated state, respectively. In theNmax=10 s10"Vd
basis space and the"V=13 MeV calculation, their excitation
energy is 12.5 MeV and 13.5 MeV, respectively, not far

FIG. 6. (Color online) Overlap integral of the6Li 11
+0 ground

state and the 12
+0 first excited with the4He+d as a function of

separation between the4He and the deuteron. Dependence on the
basis size forNmax=8,10, is presented. The CD-BonnNN potential
and the HO frequency of"V=13 MeV were used.

FIG. 7. (Color online) Overlap integral of the6Li 3+0 first ex-
cited state with the4He+d as a function of separation between the
4He and the deuteron. The dependence on the basis size forNmax

=8,10, is presented. The CD-BonnNN potential and the HO fre-
quency of"V=13 MeV were used.

FIG. 8. (Color online) Overlap integral of the6Li 2+0 excited
state with the4He+d as a function of separation between the4He
and the deuteron. The dependence on the basis size forNmax

=8,10, is presented. The CD-BonnNN potential and the HO fre-
quency of"V=13 MeV were used.
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from the3He+3He threshold. However, the excitation energy
of these states is not yet converged in the present calculation
and it is expected to further decrease with the basis size
enlargement. Our channel cluster form factor results obtained
in the 10"V space are shown in Fig. 9. The dependence on
the HO frequency is presented for all four states. A large
overlap integral is found for the ground state and also for the
one-particle–one-hole dominated 03

+1 state. On the other
hand, the overlap integral for the 02

+1 state is negligible and
the one for the 04

+1 is quite small. It is interesting to note a
stronger HO frequency dependence of the overlap integrals
for the 2"V dominated states compared to thep-shell states.
This is another manifestation of a slower convergence of
these states in the NCSM. The significant overlap integral of
the 03

+1 6Be state suggests that this state might contribute as
a resonance in the3He+3He reaction. However, our predic-
tion of its excitation energy is not certain. Based on our
NCSM results up toNmax=10 we expect this state to con-
verge below the3He+3He threshold of 11.49 MeV.

E. Š7Li z4He+t‹

Our results for thek7Li u4He+tl channel cluster form fac-
tors are shown in Fig. 10, while the corresponding spectro-
scopic factors are summarized in Table II. Apart from the
large overlap integrals and spectroscopic factors for the
bound3

21

−
and 1

21

−
states we find these quantities large also for

the first excited7
21

−
and the first excited521

−
state. Both these

states appear as resonances in the4He+t cross section[32].
The present results can be compared to the three-nucleon
transfer calculations of Ref.[19] obtained using the phenom-
eological Cohen-Kurath interaction[43]. The agreement

TABLE I. Spectroscopic factors for thek6Li u4He+dl corre-
sponding to the6Li ground and excited states and the4He ground
state. The CD-BonnNN potential, the basis size ofNmax=10 for 6Li
and Nmax=12 (for 4He and d) and the HO frequency of"V
=13 MeV were used. Thes and l are the channel spin and the
relative angular momentum, respectively.

JpT ss, ld S ss, ld S

11
+0 s1,0d 0.822 s1,2d 0.006

31
+0 s1,2d 0.890 s1,4d 0.0008

21
+0 s1,2d 0.864

12
+0 s1,0d 0.017 s1,2d 0.811

13
+0 s1,0d 0.031 s1,2d 0.088

FIG. 9. (Color online) Overlap integral of the6Be 0+0 states
with the 3He+3He as a function of separation between the3He
nuclei. Dependence on the HO frequency for"V=13,16 MeV is
presented. The CD-Bonn 2000NN potential and the basis size of
Nmax=10 (for 6Be), Nmax=12 (for 3He) were used. The 01

+1 and 02
+1

are p-shell states. The 03
+1 and 04

+1 are a one-particle–one-hole
dominated and a two-particle–two-hole dominated state,
respectively.

FIG. 10. (Color online) Overlap integral of the7Li low-lying
J= 1

2
−
, 3

2
−
, 5

2
−
, 7

2
−

states with the4He+3H as a function of separa-
tion between the4He and the triton. The CD-Bonn 2000NN poten-
tial, the basis size ofNmax=8 (for 7Li ), Nmax=10 (for 4He and3H),
and the HO frequency of"V=13 MeV were used.

TABLE II. Spectroscopic factors for thek7Li u4He+3Hl corre-
sponding to the7Li ground and excited states and the4He ground
state. The CD-Bonn 2000NN potential, the basis size ofNmax=8
(for 7Li ), Nmax=10 (for 4He and 3H), and the HO frequency of
"V=13 MeV were used. Thes and l are the channel spin and the
relative angular momentum, respectively.

JpT ss, ld S

3
21

− 1
2

s 1
2 ,1d 0.941

1
21

− 1
2

s 1
2 ,1d 0.923

7
21

− 1
2

s 1
2 ,3d 0.906

5
21

− 1
2

s 1
2 ,3d 0.883

5
22

− 1
2

s 1
2 ,3d 0.005

3
22

− 1
2

s 1
2 ,1d 0.020

1
22

− 1
2

s 1
2 ,1d 0.007

7
22

− 1
2

s 1
2 ,3d 0.056

5
23

− 1
2

s 1
2 ,3d 0.013

1
23

− 1
2

s 1
2 ,1d 0.036

5
24

− 1
2

s 1
2 ,3d 0.064
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for the lowest four states is quite good. For the second ex-
cited 5

22

−
state, however, our spectroscopic factor is signifi-

cantly smaller than the one obtained in Ref.[19].

F. Š7Li z6Li+ n‹

The other system involving7Li as the composite nucleus
that we investigated is6Li+ n. Our calculated overlap inte-
grals are summarized in Fig. 11. The corresponding spectro-
scopic factors are given in Table III. As in thek7Li u4He+tl
case, we observe large overlap integrals and spectroscopic
factors for the two bound states321

−
and 1

21

−
. Contrary to the

k7Li u4He+tl case, however, we find a large overlap integral

and the spectroscopic factor for the5
22

−
state. The lowest721

−

and 5
21

−
states have negligible overlap integrals for the6Li

+n system. The large overlap integral and the spectroscopic
factor for the 5

22

−
state is consistent with the observed reso-

nance in the6Li+ n cross section. In addition to the522

−
state,

we also find large overlap integrals for the higher lying3
22

−

and 1
22

−
states. In Fig. 12, we display the basis size depen-

dence of the5
21

−
and the5

22

−
states for theNmax=4, 6, and 8

calculations. The results for the resonant5
22

−
state are fairly

robust. The spectroscopic factor of the5
21

−
state show a stron-

ger basis size dependence. OurNmax=8 spectroscopic factor
for the 5

21

−
state is 0.016 fors= 3

2, l =1 channel, a significantly
smaller value than that obtained using the Cohen-Kurath
0p-shell phenomenological interaction[15]. Our NCSM re-
sult is, however, consistent with the spectroscopic factor ob-
tained using the variational Monte Carlo wave functions
[44].

FIG. 11. (Color online) Overlap integral of the7Li low-lying J
= 1

2
−, 3

2
−, 5

2
−, 7

2
− states with the6Li+ n as a function of separation

betweenthe6Li and the neutron. The CD-Bonn 2000NN potential,
the basis size ofNmax=8 and the HO frequency of"V=13 MeV
were used.

TABLE III. Spectroscopic factors for thek7Li u6Li+ nl corresponding to the7Li ground and excited states
and the6Li ground state. The CD-Bonn 2000NN potential, the basis size ofNmax=8, and the HO frequency
of "V=13 MeV were used. Thes andl are the channel spin and the relative angular momentum, respectively.

JpT ss, ld S ss, ld S ss, ld S

3
21

− 1
2

s 1
2 ,1d 0.806 s 3

2 ,1d 0.015 s 3
2 ,3d 0.002

1
21

− 1
2

s 1
2 ,1d 1.027 s 3

2 ,1d 0.004
7
21

− 1
2

s 1
2 ,3d 0.012 s 3

2 ,3d 0.0001 s 3
2 ,5d 0.0005

5
21

− 1
2

s 3
2 ,1d 0.016 s 1

2 ,3d 0.017 s 3
2 ,3d 0.0003

5
22

− 1
2

s 3
2 ,1d 0.688 s 1

2 ,3d 0.0001 s 3
2 ,3d 0.0003

3
22

− 1
2

s 1
2 ,1d 0.005 s 3

2 ,1d 0.693 s 3
2 ,3d 0.0001

1
22

− 1
2

s 1
2 ,1d 0.186 s 3

2 ,1d 0.414
7
22

− 1
2

s 1
2 ,3d 0.001 s 3

2 ,3d 0.0001 s 3
2 ,5d 0.0000

5
23

− 1
2

s 3
2 ,1d 0.020 s 1

2 ,3d 0.0003 s 3
2 ,3d 0.0007

1
23

− 1
2

s 1
2 ,1d 0.089 s 3

2 ,1d 0.223
5
24

− 1
2

s 3
2 ,1d 0.006 s 1

2 ,3d 0.003 s 3
2 ,3d 0.0009

FIG. 12. (Color online) Overlap integral of the7Li low-lying 5
2

−

states with the6Li+ n as a function of separation between the6Li
and the neutron. Dependence on the basis size forNmax=4,6,8 is
presented. The CD-Bonn 2000NN potential and the HO frequency
of "V=13 MeV were used.
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G. Š8Bez6Li+ d‹

We also investigate systems with8Be as the composite
nucleus. The6Li+ d reactions in particular are of some inter-
est in controlled thermonuclear research and their cross sec-
tions have been measured[45]. At the same time, they are a
part of a reaction network with8Be as the composite nucleus,
which is being analyzed by theR-matrix method[46]. Our
calculated spectroscopic factors for the6Li+ d channels are
presented in Table IV. TheJp=2+ channel cluster form fac-
tors are then shown in Fig. 13. We label theJp 8Be states as
they are obtained in the current 6"V calculation. The de-
scription of the excitation spectra of8Be in the NCSM is
generally very good[47]. In Ref. [47] in addition to the
p-shell states, the slowly converging intruder 0+0, 2+0, and
4+0 states were found. Such states have complicated struc-
ture with wave functions dominated by higher than 0"V
components. The existence of such states is controversial
[48–54]. However, in the latest evaluation[55] a broad in-
truder 2+ state is included at about 9 MeV excitation energy.
Such a state is required by theR-matrix fits of nuclear reac-
tions that involve8Be as the composite system. While in Ref.
[47] the intruder states were investigated in the basis spaces
up to 10"V, in this paper we use the 6"V wave functions to
calculate the channel cluster form factors. In this space the
intruder states appear at a higher excitation energy and their
importance is likely suppressed because of that. In the
present calculations, the 0+0 intruder state is the state 04

+ and
the 2+0 intruder state is the state 28

+. Even in the current 6"V
basis space, these states have significant overlaps with the

6Li+ d system. We note that the6Li+ d has a rather high
threshold of 22.28 MeV. Interestingly, we obtain a dominant
overlap integral in thes=2, l =0 channel for the8Be 2+ ex-
cited state number seven, which is ap-shell 0"V-dominated
state in our calculation with the excitation energy of
22.54 MeV.

We note a technical issue affecting thek8Beu6Li+ dl over-
lap integral calculations using Eq.(17). When anm-scheme

TABLE IV. Spectroscopic factors fork8Beu6Li+ dl corresponding to the8Be ground and excited states and the6Li ground state. The
CD-Bonn 2000NN potential, the basis size ofNmax=6 and the HO frequency of"V=13 MeV were used. Thes and l are the channel spin
and the relative angular momentum, respectively. The 04

+0 and 28
+0 are intruder states. All other arep-shell states.

JpT ss, ld S ss, ld S ss, ld S ss, ld S ss, ld S

01
+0 s0,0d 1.051 s2,2d 0.004

03
+0 s0,0d 0.111 s2,2d 0.024

04
+0 s0,0d 0.194 s2,2d 0.020

05
+0 s0,0d 0.393 s2,2d 0.046

21
+0 s2,0d 0.004 s0,2d 0.741 s1,2d 0.009 s2,2d 0.0005 s2,4d 0.003

23
+0 s2,0d 0.137 s0,2d 0.006 s1,2d 0.010 s2,2d 0.0007 s2,4d 0.0000

24
+0 s2,0d 0.290 s0,2d 0.005 s1,2d 0.471 s2,2d 0.0012 s2,4d 0.0001

27
+0 s2,0d 0.442 s0,2d 0.017 s1,2d 0.136 s2,2d 0.0005 s2,4d 0.0001

28
+0 s2,0d 0.015 s0,2d 0.110 s1,2d 0.002 s2,2d 0.0003 s2,4d 0.001

29
+0 s2,0d 0.0004 s0,2d 0.057 s1,2d 0.021 s2,2d 0.110 s2,4d 0.0003

211
+ 0 s2,0d 0.006 s0,2d 0.035 s1,2d 0.062 s2,2d 0.136 s2,4d 0.0003

41
+0 s2,2d 0.002 s0,4d 0.037 s1,4d 0.0000 s2,4d 0.0002 s2,6d 0.0005

42
+0 s2,2d 0.173 s0,4d 0.001 s1,4d 0.0000 s2,4d 0.0002 s2,6d 0.0000

44
+0 s2,2d 0.057 s0,4d 0.006 s1,4d 0.001 s2,4d 0.0000 s2,6d 0.0000

12
+0 s1,0d 0.002 s1,2d 0.025 s2,2d 0.012

13
+0 s1,0d 0.008 s1,2d 0.737 s2,2d 0.003

17
+0 s1,0d 0.010 s1,2d 0.009 s2,2d 0.209

31
+0 s1,2d 0.563 s2,2d 0.001 s1,4d 0.0007 s2,4d 0.0003

33
+0 s1,2d 0.0001 s2,2d 0.097 s1,4d 0.0003 s2,4d 0.0000

35
+0 s1,2d 0.013 s2,2d 0.185 s1,4d 0.0002 s2,4d 0.0003

FIG. 13. (Color online) Overlap integral of the8Be 2+ states
with the 6Li+ d as a function of separation between the6Li and the
deuteron. The CD-Bonn 2000NN potential, the basis size ofNmax

=6 and the HO frequency of"V=13 MeV were used. The 28
+0 is an

intruder state. All other arep-shell states.
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calculation is performed with a fixedM, it is in general nec-
essary to useM .0 for J.0 channels in order to generate all
needed reduced matrix elements of thea†a† operators.

H. Š8Bez7Li+ p‹

Our spectroscopic factors for thek8Beu7Li+ pl channels
are presented in Table V. The overlap integrals for theJp

=1+ channels are shown in Fig. 14. It should be noted that
the expressions for cluster form factors and spectroscopic
factors presented in Sec. II employ isospin formalism. In
order to distinguish, e.g., a proton or a neutron projectile, Eq.
(16) must be multiplied by the isospin Clebsch-Gordan co-
efficient sT1MT1

1
2MT2

uTMTd with MT2
= + 1

2
s−1

2
d for proton

(neutron) [56]. This coefficient is 1 for all the overlaps stud-
ied in this paper except thek8Beu7Li+ pl overlap for which it
is equal to −1/Î2,1/Î2 for T=0,1 8Be states, respectively.
We find large overlap integrals for the 11

+ and the 12
+ states as

well as large spectroscopic factors for the 31
+ state consistent

with the resonances in the7Li+ p cross section[54,55]. We
also note very large spectroscopic factors and cluster overlap
integrals for the 14

+ state which is the secondT=1 1+ state in
our calculation appearing at the excitation energy of
20.37 MeV. Such a state is not included in the current evalu-
ations[54,55]. It is, however, needed in theR-matrix analy-

sis [46]. Comparing our spectroscopic factors to the Cohen-
Kurath calculations[15], we have reasonable agreement for
the lowest states(after correcting for the above discussed
factor of 2 due to the isospin Clebsch-Gordan coefficient),

TABLE V. Spectroscopic factors for thek8Beu7Li+ pl corresponding to the8Be ground and excited states
and the7Li ground state. The CD-Bonn 2000NN potential, the basis size ofNmax=6, and the HO frequency
of "V=13 MeV were used. Thes andl are the channel spin and the relative angular momentum, respectively.
The 04

+0 and 28
+0 are intruder states. All other arep-shell states.

JpT ss, ld S ss, ld S ss, ld S ss, ld S

01
+0 s1,1d 1.520

02
+1 s1,1d 0.192

03
+0 s1,1d 0.144

04
+0 s1,1d 0.212

05
+0 s1,1d 0.006

21
+0 s1,1d 0.913 s2,1d 0.007 s1,3d 0.018 s2,3d 0.0000

22
+1 s1,1d 0.157 s2,1d 0.629 s1,3d 0.0000 s2,3d 0.001

23
+0 s1,1d 0.018 s2,1d 0.194 s1,3d 0.001 s2,3d 0.0000

24
+0 s1,1d 0.050 s2,1d 0.060 s1,3d 0.0000 s2,3d 0.0005

25
+1 s1,1d 0.059 s2,1d 0.164 s1,3d 0.0001 s2,3d 0.0025

26
+1 s1,1d 0.102 s2,1d 0.015 s1,3d 0.001 s2,3d 0.0005

27
+0 s1,1d 0.004 s2,1d 0.062 s1,3d 0.002 s2,3d 0.002

28
+0 s1,1d 0.049 s2,1d 0.001 s1,3d 0.005 s2,3d 0.0003

41
+0 s1,3d 0.023 s2,3d 0.0000 s1,5d 0.0001 s2,5d 0.0000

11
+1 s1,1d 0.020 s2,1d 0.367 s2,3d 0.0001

12
+0 s1,1d 0.207 s2,1d 0.080 s2,3d 0.002

13
+0 s1,1d 0.005 s2,1d 0.002 s2,3d 0.006

14
+1 s1,1d 0.404 s2,1d 0.145 s2,3d 0.0000

15
+1 s1,1d 0.0005 s2,1d 0.0085 s2,3d 0.0015

31
+0 s2,1d 0.322 s1,3d 0.0015 s2,3d 0.002 s2,5d 0.0001

32
+1 s2,1d 0.090 s1,3d 0.0000 s2,3d 0.001 s2,5d 0.0002

33
+0 s2,1d 0.002 s1,3d 0.0005 s2,3d 0.004 s2,5d 0.0000

34
+1 s2,1d 0.013 s1,3d 0.0000 s2,3d 0.0000 s2,5d 0.0000

FIG. 14. (Color online) Overlap integral of the8Be 1+ states
with the 7Li+ p as a function of separation between the7Li and the
proton. The CD-Bonn 2000NN potential, the basis size ofNmax

=6, and the HO frequency of"V=13 MeV were used.
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with increasing differences for the higher lying states. Our
results are also influenced by the isospin mixing of the 22

+,23
+

and 11
+,12

+ states.

I. Š9Li z8Li+ n‹

The experimental information on9Li is rather limited
[54,57]. New experiments are under way or planned, how-
ever, to explore this nucleus. One of such experiments is the
inverse-kinematicds8Li, pd scattering[58]. It is therefore
useful to perform theoretical calculations of thek9Li u8Li
+nl spectroscopic factors. Our results obtained for both the
negative and the positive parity states of9Li are summarized
in Table VI. In the present calculation we employed the
AV88+TM8s99d two- plus three-nucleon interaction in the
NCSM calculations performed in an approach described in
Ref. [24]. The Tucson-Melbourne(TM) three-nucleon inter-
action was introduced in Ref.[59] with the particular version
we are using, the TM8s99d, described in Ref.[60]. The Ar-
gonne V88 NN potential is a slightly simplified version of the
high-quality AV18 interaction[1]. Our current calculations
are limited to the 4"V and 5"V basis spaces for the negative
and the positive parity states, respectively, due to the com-
plexity of the calculation with a genuine three-nucleon inter-
action. In general, it is accepted that a three-nucleon interac-
tion is needed in addition to the high-qualityNN potentials to
explain the few-nucleon system binding energies and to im-
prove description of some three-nucleon scattering observ-
ables. Recently, it has been shown that the three-nucleon
interaction is also needed for a correct description of low-
lying excitation spectra ofp-shell nuclei[1,24].

In Fig. 15, we show the channel cluster form factor for the
lowest two5

2
−

states. The5
21

−
state with a large spectroscopic

factor is a candidate for the 4.296 MeV9Li state lying just
above the 4.063 MeV8Li+ n threshold.

J. Š13C z12C+n‹

Apart from an increase of the binding energy, the genuine
three-nucleon interaction also causes an increase of the spin-

TABLE VI. Spectroscopic factors for thek9Li u8Li+ nl corresponding to the9Li ground and excited states
and the8Li 2+1 ground state. The AV88+TM8s99d two- plus three-body interaction, the basis size ofNmax

=4,5, and the HOfrequency of"V=14 MeV were used. Thes and l are the channel spin and the relative
angular momentum, respectively. Only channels withSù0.001 are shown.

JpT ss, ld S ss, ld S ss, ld S

3
21

− 3
2

s 3
2 ,1d 0.628 s 5

2 ,1d 0.426
1
21

− 3
2

s 3
2 ,1d 0.519 s 5

2 ,3d 0.005
5
21

− 3
2

s 3
2 ,1d 0.711 s 5

2 ,1d 0.126
3
22

− 3
2

s 3
2 ,1d 0.030 s 5

2 ,1d 0.180
7
21

− 3
2

s 5
2 ,1d 0.0006 s 3

2 ,3d 0.0002 s 5
2 ,3d 0.001

3
23

− 3
2

s 3
2 ,1d 0.048 s 5

2 ,1d 0.703
5
22

− 3
2

s 3
2 ,1d 0.006 s 5

2 ,3d 0.137
1
22

− 3
2

s 3
2 ,1d 0.135

5
21

+ 3
2

s 5
2 ,0d 0.790 s 3

2 ,2d 0.122 s 5
2 ,2d 0.038

3
21

+ 3
2

s 3
2 ,0d 0.686 s 3

2 ,2d 0.008 s 5
2 ,2d 0.017

1
21

+ 3
2

s 3
2 ,2d 0.025 s 5

2 ,2d 0.011
7
21

+ 3
2

s 3
2 ,2d 0.164 s 5

2 ,2d 0.315 s 5
2 ,4d 0.001

3
22

+ 3
2

s 3
2 ,0d 0.127 s 3

2 ,2d 0.183 s 5
2 ,2d 0.005

5
22

+ 3
2

s 5
2 ,0d 0.133 s 3

2 ,2d 0.107 s 5
2 ,2d 0.008

3
23

+ 3
2

s 3
2 ,0d 0.001 s 3

2 ,2d 0.130 s 5
2 ,2d 0.009

9
21

+ 3
2

s 5
2 ,2d 0.713 s 5

2 ,4d 0.002

FIG. 15. (Color online) Overlap integral of the9Li two lowest
5
2

− states with the8Li+ n as a function of separation between the8Li
and the neutron. The AV88+TM8s99d two- plus three-nucleon in-
teraction, the basis size ofNmax=4 and the HO frequency of"V
=14 MeV were used.
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orbit splitting. This is demonstrated not only in different
level spacing and sometimes in a different level ordering in
calculations with the three-nucleon interaction, e.g., in10B,
but also in the spectroscopic factors and the overlap integrals
as we show in this section fork13Cu12C+nl system. Using
the wave functions obtained in Ref.[24], we compare in Fig.
16 and Table VII the1

2
−

and 3
2

−
channel cluster form factors

and the spectroscopic factors, respectively, obtained in cal-
culations with and without the TM8s99d three-nucleon inter-
action. The AV88 NN potential is used for the two-nucleon
interaction. We can see that the1

2
−

channel cluster form fac-
tor and the spectroscopic factor increase when the three-
nucleon interaction is included, while at the same time the3

2
−

factors decrease. This can be understood as an increase of the
spin-orbit splitting of the 0p3/2−0p1/2 levels due to the three-
nucleon interaction which results in a purers0p3/2d8 12C

ground state and a purers0p3/2d8,s0p1/2d
13C ground state.

Comparing to the phenomenological Cohen-Kurath spec-
troscopic factors[15], a better agreement is achieved in the
more realistic calculation with the three-nucleon interaction.

IV. CONCLUSIONS

We derived expressions for calculations of channel cluster
form factors and spectroscopic factors from theab initio no-
core shell model wave functions. We considered the most
practical case, with the composite system and the target
nucleus described in the Slater determinant harmonic oscil-
lator basis while the projectile eigenstate was expanded in
the Jacobi coordinate HO basis. The spurious center of mass
components present in the SD bases were removed exactly.
The calculated cluster form factors are then translationally
invariant. The algebraic expressions for the channel cluster
form factors were derived for up to four-nucleon projectiles.
We numerically tested these expressions for systems consist-
ing of up to a three-nucleon projectile. Several numerical
tests were performed that involved interchanging the role of
the target and the projectile as well as performance of two
independent calculations, one of which employed only the
Jacobi-coordinate wave functions for all nuclei involved
while the other used the SD basis wave functions for the
composite system and the target. Identical results were ob-
tained in both cases.

As examples of application, we presented results for
k5Heu4He+nl, k5Heu3H+dl, k6Li u4He+dl, k6Beu3He+3Hel,
k7Li u4He+3Hl, k7Li u6Li+ nl, k8Beu6Li+ dl, k8Beu7Li+ pl,
k9Li u8Li+ nl and k13Cu12C+nl systems, with all the nuclei
described by multi-"V NCSM wave functions. The calcula-
tions involve no fitting. Apart from the basis size, the only
parameter appearing in the NCSM is the HO frequency,
which is typically fixed so that the binding energy is the least
dependent on the HO frequency. In the current application,
this is hard to achieve in the cases that involve both the 0s-
and the 0p-shell nuclei, as we require the same HO fre-
quency for all nuclei. Therefore, we studied the dependence
on the basis size and on the HO frequency in most investi-
gated cases. It is very encouraging that our results are rather
stable and robust. Additionally, we found a qualitative agree-
ment with experiment for, e.g.,k5Heu4He+nl, k5Heu3H+dl,
k7Li u4He+3Hl, k7Li u6Li+ nl, k8Beu7Li+ pl, in the sense that
large channel cluster form factors correspond to resonances
in cross sections. This confirms that the multi-"V NCSM
wave functions provide a realistic description of light nuclei,
in particular for the low-lyingp-shell states.

As a further development, apart from performing calcula-
tions for systems with a four-nucleon projectile, our goal is
to utilize the channel cluster form factors as a first step to
describe low-energy reactions on light nuclei. The currently
calculated channel cluster form factors were obtained using
model space wave functions. As the next step, we need to
take into account the influence of the complementary space
and calculate effective, or renormalized, channel cluster form
factors. It is expected that this will improve the cluster form
factors at intermediate distances and make them more suit-

FIG. 16. (Color online) Overlap integral of the13C 1
2

− ground
state and the32

− first excited state with the12C+n as a function of
separation between the12C and the neutron. Results obtained using
the AV88 NN potential and the AV88+TM8s99d two-plus three-
nucleon interaction are compared. The basis size ofNmax=4 and the
HO frequency of"V=15 MeV were used.

TABLE VII. Spectroscopic factors for thek13Cu12C+nl corre-
sponding to the13C ground and excited states and the12C ground
state. Results obtained using the AV88+TM8s99d two- plus three-
body interaction and the AV88 NN interaction are compared. The
basis size ofNmax=4 and the HO frequency of"V=15 MeV were
used. Thes and l are the channel spin and the relative angular
momentum, respectively. All the presented13C states arep-shell
states.

AV88+TM8s99d AV88
JpT ss, ld S ss, ld S

1
21

− 1
2

s 1
2 ,1d 0.549 s 1

2 ,1d 0.489
3
21

− 1
2

s 1
2 ,1d 0.206 s 1

2 ,1d 0.258
1
22

− 1
2

s 1
2 ,1d 0.015 s 1

2 ,1d 0.002
3
22

− 1
2

s 1
2 ,1d 0.001 s 1

2 ,1d 0.0005
1
23

− 1
2

s 1
2 ,1d 0.034 s 1

2 ,1d 0.016
3
23

− 1
2

s 1
2 ,1d 0.008 s 1

2 ,1d 0.004
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able for matching to the correct asymptotic cluster wave
functions. Hopefully, it will be possible to develop a micro-
scopic nuclear reaction approach similar to the RGM[4]
starting, however, from realisticab initio wave functions.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S.
Department of Energy by the University of California,
Lawrence Livermore National Laboratory under Contract
No. W-7405-Eng-48. Support from the LDRD Contract No.
04-ERD-058 as well as partial support from the DOE grant
SCW0498 is acknowledged.

APPENDIX A: 12- j SYMBOL DEFINITION

The 12-j symbol of the first kind[27] is defined by

5a d e h

p q r s

b c f g
6 = o

X

s− 1da+b+c+d+e+f+g+h+p+q+r+s−XX̂2

3Ha b X

c d p
JHc d X

e f q
J

3He f X

g h r
JHg h X

b a s
J . sA1d

APPENDIX B: FOUR-NUCLEON PROJECTILE

The channel cluster form factor expression for the case of a four-nucleon projectile is

kAlJTuAFaI1T1,bI2T2;sl
sA−4,4dJT ;dhA−4

l

= o
n

RnlshA−4d
1

Î24

1

knl00l u00nlll4/sA−4d

1

ĴT̂
o khfsn2l2s2j2t2;N2L2J2

1
2dJ3T3gN3L3J3

1
2jI2T2ua = 4bI2T2ul

3sˆ Îŝ2 ĵ2Î2Î3Ĵ2Ĵ3Ĵ3 ĵ aĵ bĵ cĵdÎabl̂
2k̂2L̂ab

2 s− 1dI1+l+J+l2+t2+J2+J3+lc+ld+Iab+I

3HI1 I2 s

l J I
JHL2 Lab l2

s2 j2 Iab
J5 la lb Lab

1
2

1
2 s2

ja jb Iab
65L3 l L2 j2

L2 lc Iab J3

J2
1
2 jc I3

65 l k L3 J3

L3 ld I3 I2

J3
1
2 jd I

6
3 knalanblbLabuN2L2n2l2Labl1knclcN2L2luN3L3N2L2ll1/2kndldN3L3kunlN3L3kl1/3

3SDkAlJTuihfsanalaja
† anblbjb

† dsIabt2danclcjc
† gsI3T3dandldjd

† jsIT2diuA − 4aI1T1lSD. sB1d

Similarly as the three-nucleon eigenstates in Eqs.(18) and (19), the four-nucleon eigenstates are expanded in a basis with
lower degree of antisymmetry using the coefficients of fractional parentage[25]

khfsn2l2s2j2t2;N2L2J2
1
2dJ3T3gN3L3J3

1
2jI2T2ua = 4bI2T2l

= o kn2l2s2j2t2;N2L2J2
1
2uuNxixJ3T3lkNxixJ3T3;N3L3J3

1
2uuNiI2T2lkNiI2T2ua = 4bI2T2l, sB2d

with Nx=2N2+L2+2n2+ l2 andN=Nx+2N3+L3 the total number of HO excitations for the three and four nucleons andix,i the
additional quantum numbers that characterize the three- and four-nucleon antisymmetrized basis states, respectively. In the
case of the4He projectile,I2=T2=0 and s−1dl2+L2+L3=1. In Eq. (B1), in addition to the HO bracket(13) due to the c.m.
correction, three general HO brackets appear that correspond to particles with mass ratios 1,1

2, and 1
3. These are due to the

sequence of three transformations of the HO wave functionswnlmsRW c.m.
a=4dwn2l2m2

sqW A−1dwN2L2M2
sqW A−2dwN3L3M3

sqW A−3d to the
single-particle HO wave functionswnalama

srWAdwnblbmb
srWA−1dwnclcmc

srWA−2dwndldmd
srWA−3d. With the help of Eq.(B1), one can study

thea-cluster structure of thep-shell nuclei states. In the past, this has been typically investigated using the cluster models(see,
e.g., Ref.[22]).
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