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We present our results on properties of ground states for nucleonic systems in the presence of random
two-body interactions. In particular, we calculate probability distributions for parity, seniority, spectroscopic
(i.e., in the laboratory frame) quadrupole moments, and discussa clustering in the ground states. We find that
the probability distribution for the parity of the ground states obtained by a two-body random ensemble
simulates that of realistic nuclei withAù70: positive parity is dominant in the ground states of even-even
nuclei, while for odd-odd nuclei and odd-mass nuclei we obtain with almost equal probability ground states
with positive and negative parity. In addition, assuming pure random interactions, we find that, for the ground
states, low seniority is not favored, no dominance of positive values of spectroscopic quadrupole deformation
is observed, and there is no sign ofa-clustering correlation, all in sharp contrast to realistic nuclei. Considering
a mixture of a random and a realistic interaction, we observe a second-order phase transition for the
a-clustering correlation probability.
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I. INTRODUCTION

It was discovered in Ref.[1] that the dominance of spin-
zero ground statess0 g.s.d can be obtained by diagonalizing
a scalar two-body Hamiltonian with random valued matrix
elements, a so-called two-body random ensemble(TBRE)
Hamiltonian. The 0 g.s. dominance was soon confirmed in
Ref. [2] for sd-boson systems. This feature was found to be
robust and insensitive to the detailed statistical properties of
the random Hamiltonian, suggesting that the 0 g.s. domi-
nance holds for a very large ensemble of two-body interac-
tions other than a simple monopole paring interaction. An
understanding of this discovery is very important, because
this observation seems to be contrary to what is traditionally
assumed in nuclear physics, where the 0 g.s. dominance in
even-even nuclei is usually explained as a reflection of at-
tractive pairing interaction between like nucleons.

There have been many efforts to understand this observa-
tion, but a fundamental understanding is still out of reach[3].
There are also many works[4] studying other robust phe-
nomena of many-body systems in the presence of the TBRE,
for example the studies of odd-even staggering of binding
energies, generic collectivity, the behavior of energy cen-
troids of fixed spin states, correlations, etc.

The purpose of the present paper is to focus our attention
on some physical quantities in the ground states which have
not been studied yet, specifically parity, seniority, spectro-
scopic quadrupole moments(i.e., measured in the laboratory
frame), and a-clustering probability. For realistic nuclei,
these quantities show a very regular pattern. In this paper, we
shall discuss whether these regular patterns are robust in the
presence of random interactions.

As is well known, all even-even nuclei have positive-
parity ground states(i.e., 100%), whereas the ground states
of nuclei with odd mass numbers have only a slightly higher
probability for positive parity than for negative parity. Odd-
odd nuclei have almost equal probabilities for positive- and
negative-parity ground statess,50%d. The statistics for the
ground-state parity of nuclei with mass numberAù70 are
summarized in Table I. As the first subject, we will study the
ground-state parity distribution using random interactions.
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TABLE I. The positive parity distribution of the ground states of
atomic nuclei. We included all ground-state parities of nuclei with
mass numberAù70. The data are taken from Ref.[5]. We have not
taken into account those nuclei for which the ground-state parity
was not measured.

Counts Even-even Odd-A Odd-odd

verified s+d 487 281 118

verified s−d 0 215 104

tentatives+d 0 159 70

tentatives−d 0 126 60
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The next subject that we shall discuss in this paper is the
distribution of seniority in the ground states. Seniority[6]
has been proven to be a very relevant concept in nuclear
physics, in particular for spherical or transitional nuclei. Se-
niority svd is uniquely defined for a single-j shell; it was
generalized to the case of many-j shells by Talmi in Ref.[7].
In Refs. [1,8] it was reported that the pairing phenomenon
seems to be favored simply as a consequence of the two-
body nature of the interaction. The “pairing” of Refs.[1,8]
was characterized by a large matrix element of theS pair
annihilation operator between the ground states of ann fer-
mion system and ann−2, n−4, . . . system, where theS pair
structure is determined by using the procedure of Talmi’s
generalized seniority scheme. This indicated that theS-pair
correlation is dominant for the spin-0 g.s. of these systems.
However, an examination of this “pairing” correlation of fer-
mions in a single-j shell in Ref.[9] showed that an enhanced
probability for low seniority in the spin-0 g.s. is not observed
in most of the calculations using a TBRE Hamiltonian. For
many-j shells, there have been only a few discussions to
clarify this point so far.

Another subject that we shall discuss is thea-clustering
correlation in the presence of random interactions. The im-
portance of thea-clustering correlation in light and medium
nuclei has been emphasized by many authors[10]. The
a-clustering correlation also plays an important role in astro-
physical processes, such as the Salpeter process in the for-
mation of 12C. Many calculations of low-lying states, using
the antisymmetrized molecular-dynamics model, have been
done in recent years[11] to study thea-clustering and other
clustering correlations for both stable and unstable light nu-
clei. a-cluster condensation was suggested by Horiuchi,
Schuck, and collaborators in Ref.[12]. As a function of the
admixture of a realistic to the TBRE interaction, a phase
transition is observed for thea-clustering probability in the
ground state.

In this paper, we also discuss the spectroscopic quadru-
pole moments(i.e., measured in the laboratory frame) of the
ground states. A positive value of spectroscopic quadrupole
deformation is dominant in the low-lying states of atomic
nuclei. Recently, it has been argued in Ref.[13] that this is
due to the interference of spin-orbit andl2 terms of the Nils-
son potential.

Our calculations are based on the use of TBRE interac-
tions. The single-particle energies are set to be zero. The
Hamiltonian that we use conserves the total angular momen-
tum and isospin,

H = o
j1j2j3j4

JT

Î2J + 1Î2T + 1Gj1j2j3j4
JT 1

Î1 + d j1j2
Î1 + d j3j4

3 fsaj1t
† 3 aj2t

† dsJTd 3 sãj3t 3 ãj4tdsJTdgs00d, s1d

where theGj1j2j3j4
JT are defined ask j1j2JTuVu j3j4JTl and fol-

low the following distribution:

rsGj1j2j3j4
JT d =

1
Î2px

expS−
sGj1j2j3j4

JT d2

2x
D s2d

with

x = 51 if us j1j2dJTl = us j3j4dJTl
1

2
otherwise.

s3d

The Hamiltonian so defined is called a TBRE Hamiltonian.
Here j1, j2, j3, and j4 denote the respective single-particle
orbits, andJsTd denotes the total angular momentum(iso-
spin) of two nucleons. For each system, 1000 runs of calcu-
lations are performed in order to accumulate stable statistics.

This paper is organized as follows. In Sec. II, we present
our results for parity distributions for a variety of systems. In
Sec. III, we discuss the distribution of seniority in the ground
states using random interactions. In Sec. IV, we show our
results for spectroscopic quadrupole moments of the ground
states which suggest prolate or oblate shapes. In Sec. V, we
discuss thea-clustering correlation in the ground states. A
summary will be given in Sec. VI.

II. PARITY

We select four model spaces for studying the parity dis-
tribution in the ground states obtained by random interac-
tions.

(A) Both protons and neutrons are in thef5/2p1/2g9/2 shell,
which corresponds to nuclei with both proton number Z and
neutron numberN,40.

(B) Protons in thef5/2p1/2g9/2 shell and neutrons in the
g7/2d5/2 shell, which corresponds to nuclei withZ,40 and
N,50.

(C) Both protons and neutrons are in theh11/2s1/2d3/2 shell,
which corresponds to nuclei withZ andN,82.

(D) Protons in theg7/2d5/2 shell and neutrons in the
h11/2s1/2d3/2 shell, which corresponds to nuclei withZ,50
andN,82.

These four model spaces do not correspond to a complete
major shell but have been truncated in order to make the
calculations feasible. These truncations are based on the sub-
shell structures of the involved single-particle levels. We
study the dependence on valence-proton numberNp and
valence-neutron numberNn in these four model spaces. It is
noted that the numbers of states[denoted asDsId] for posi-
tive and negative parity are very close to each other for all
these examples. TheDsId’s for a few examples are shown in
Fig. 1. One thus expects that the probability of the ground
states with positive parity is around 50%, if one assumes that
each state of the full shell model space is equally probable in
the ground state.

The calculated statistics for the parity of the ground states,
using a TBRE Hamiltonian, is given in Table II. This clearly
shows that positive parity is favored, and dominant for most
examples, for the ground states of even-even nuclei in the
presence of random interactions.

The statistics for nuclei with odd mass numbers and nu-
clei with odd values of bothNp andNn (the number of pro-
tons and the number of neutrons, respectively) is also given
in Table II. These statistics show that the probabilities to
have positive or negative parity in the ground states are al-
most equal to each other with some exceptions. In general,
there is no favoring for either positive parity or negative
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parity in the ground states of odd mass nuclei and doubly
odd nuclei in the presence of random interactions. It is noted
that these calculations are done for the beginning of the shell.
For the end of the shell, the results show a similar trend.

We also find that the above regularities for parity distri-
butions also hold for very simple cases, namely single-closed
two-j shells with one positive and one negative parity. We
have checked this explicitly in the casess2j1,2j2d=s9,7d,
s11,9d, s13,9d, s11,3d, s13,5d, s19,15d, s7,5d, and s15,1d.
The statistics is very similar to the above results: The prob-
ability of ground states with positive parity is about 85% for
an even number of nucleons, and about 50% for an odd
number of nucleons.

It is interesting to note that for all even-even nuclei, the
Ps0+d is usually two orders of magnitude larger thanPs0−d. It
would be very interesting to investigate the origin of this
large difference, i.e., why the 0− is not favored in the ground
states. As is the case for an odd number of bosons with spin
l [14], spin I =0 is not a sufficient condition to be favored in
the ground states of a many-body system in the presence of
the random interactions. It should be noted that for a realistic
g.s., not only isI =0 required but also positive parity.

One simple and schematic system to study the parity dis-
tribution of the ground states in the presence of random in-
teractions is thesp-boson system. First, we note that an
sp-boson system with an odd number of particles(denoted as
n) has the same number of states with positive and negative
parity, and for an even value ofn there areslightly more
states with positive parity(the difference is onlyn+1). The
calculated results of Ref.[15] showed that when the number
n of spbosons is even, the dominantI of the ground states is
0 or n (about 99%), with positive-parity dominance[the par-
ity for spbosons is given bys−dI]. Whenn is odd, only about
50% of the ground states in the ensemble have spin 0, and
about 50% haveI =1 or I =n. This leads to about equal per-
centages for positive- and negative-parity ground states. This
pattern is very similar to that observed for fermion systems.

III. SENIORITY

In this section, we discuss the distribution of the seniority,
the number of particles not pairwise coupled to angular mo-
mentum 0, of the ground states of nuclei in thesdshell in the
presence of random interactions. Because seniority is used in
classifying the states in our basis, we define the expectation
value for seniority in the ground states as follows[16]:

kvl = o
i

f i
2vi , s4d

wheref i is the amplitude of theith component in the ground-
state wave function, andvi is the seniority number of the
corresponding component.

For even-even nuclei, we consider the spin-0 g.s. because
previous discussions[8,9] were focused on spin-0 ground
states. For odd-mass nuclei, we consider theI = 1

2, 3
2, and 5

2
ground states, because these spinI ’s are equal to the angular
momenta of the single-particle levels in thesd shell and are
favored as the ground states in the presence of random inter-
actions. For odd-odd nuclei in this section we consider the
ground states withI =1 (most favored) and I =0 states. The
examples that we have calculated includesNp,Nnd=s0,4d,
s0,6d, s2,2d, s2,4d, s2,6d, s4,6d, s0,5d, s2,3d, s2,5d, s4,3d,
s4,5d, s3,3d, s1,5d, ands3,5d.

FIG. 1. Number of states with total angular momentumI [de-
noted asDsId] vs I. One sees that theDsId of positive parity levels
and that of negative parity levels are very close to each other.(a)
Two protons in the 1g9/22p1/21f5/2 shell and four neutrons in the
2d5/21g7/2 shell; (b) two protons and two neutrons in the
1g9/22p1/21f5/2 shell; (c) two protons and three neutrons in the
1g9/22p1/21f5/2 shell; (d) three protons in the 1h11/23s1/22d5/2 shell
and three neutrons in the 2d5/21g7/2 shell.

TABLE II. The positive parity probability for the ground states
(in %). Numbers of neutrons and protonssNp,Nnd are given in
parentheses for each configuration.

Basis A

s0,4d s0,6d s2,2d s2,4d s2,6d
86.8% 86.2% 93.1% 81.8% 88.8%

s2,3d s1,4d s1,3d s0,5d s1,5d s6,1d s2,1d
42.8% 38.6% 77.1% 45.0% 69.8% 38.4% 31.2%

Basis B

s2,2d s2,4d s4,2d
72.7% 80.5% 81.0%

s3,4d s3,3d s2,3d s5,1d s3,2d s4,1d s1,4d s5,0d
42.5% 74.9% 72.4% 42.9% 39.1% 75.1% 26.4% 44.1%

Basis C

s2,2d s2,4d s4,0d s6,0d
92.2% 81.1% 80.9% 82.4%

s1,3d s1,5d s2,3d s5,0d s4,1d
73.0% 64.4% 52.0% 42.6% 56.5%

Basis D

s2,2d s4,2d s2,4d s0,6d
67.2% 76.1% 74.6% 83.0%

s3,3d s3,2d s2,3d s0,5d
54.5% 54.2% 54.0% 45.9%
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Typical examples of the distribution of average seniority
skvld in the ground states are shown in Fig. 2 in arbitrary
units (i.e., relative probability). The figure shows that for
none of the cases is a small value forkvl preferred. These
distributions of seniority in the ground states show that the
large matrix elements of theS-pair operator between the
spin-0 g.s. of an n-nucleon system and that of an
sn+2d-nucleon system, as observed in Ref.[8], should not be
understood as an indication of a largeS pair condensate in
the spin-0 g.s. of TBRE Hamiltonians. Further studies are
necessary to understand the implications of Ref.[8].

IV. SPECTROSCOPIC QUADRUPOLE MOMENT

In this section, we study the quadrupole moments of the
ground or low-lying states. If the ground-state spinI is
smaller than 1(i.e., 0 or 1

2), the spectroscopic quadrupole
moment necessarily vanishes(even though there could be a
finite intrinsic moment) because the triangle relationship of
angular momentum coupling cannot be obeyed by the twoI ’s
sI ø

1
2

d and the angular momentum for the quadrupole opera-
tor s=2d. For these cases, one can use an alternative, namely
the quadrupole moment of the next lowest state withI .

1
2.

For all cases that we have checked, it is found that the es-
sential statistics for positive and negative quadrupole mo-
ments obtained by this alternative is very close to that ob-
tained by neglecting cases with ground stateI ,

1
2. In this

paper, we show the statistics which does not include the runs
of spin-0 and spin-12 ground states. The total number of cal-
culated spectroscopic quadrupole moments is thus much less
than 1000. We note that a negative spectroscopic quadrupole
moment implies a positive quadrupole moment in the intrin-
sic frame and thereby a prolate deformation.

The spectroscopic quadrupole moment is defined by

Q = kbI ur2Y2MubIl s5d

for both proton and neutron degrees of freedom. In Eq.(5),
ubIl is the wave function of the ground state. In this paper,Q

will be used to refer to the spectroscopic quadrupole moment
following from Eq. (5).

We have calculatedQ for a number of cases in thesd
shell and for several fillings of the four single-particle bases
mentioned in Sec. II. The results are given in Table III. One
sees that negative values forQ (corresponding to prolate
deformations) are dominant with two exceptions,sNp,Nnd
=s4,3d ,s6,5d in the sd shell. In general we observe that for
thesdshell, the statistics for positive and negative values for
Q is comparable ifNp and/orNn are close to their midshell
values.

From Table III, we conclude that at the beginning of the
shell, negative values forQ are dominant, while at the end of
the shell, positive value dominate. This is similar to the result
for a harmonic-oscillator potential, for which prolate defor-
mation occurs at the beginning and oblate deformation at the
end of the shell[17].

V. a CLUSTERING

It was shown in Ref.[18] that the essential parts of the
I =0,T=0 ground state for20Ne with two protons and two
neutrons in thesd shell are dominated by components with
the highest orbital symmetry[4]; 91.8% of the ground state
is given by components with orbital symmetry[4] which
corresponds to a purea-clustering configuration. One may
use the expectation value of the Majorana interaction,PM, as
the fingerprint for thea-cluster wave function. Another simi-
lar example is theI =0,T=0 ground state for8Be with two
protons and two neutrons in thep shell. If one uses the
Cohen-Kurath interaction, one sees that the expectation
value ofPM is −5.76, close to −6, which is the eigenvalue of
Majorana force. The overlap between the g.s. wave function
obtained by diagonalizing the Cohen-Kurath interaction for
8Be and that for exact SUs4d symmetry(namely, full sym-
metry [4] for the ground state) is 0.97.1 This dominance of
the full symmetry[4] with respect to the permutation of or-
bital degrees of freedom in theI =0 andT=0 ground states of
these nuclei is an indication ofa-clustering correlation from
the perspective of the shell model. In this paper, we concen-
trate on these two examples using random interactions.

To set the scale, we can calculate the matrix element of
PM in the I =T=0 (spin-isospin singlet) ground state by as-
suming that all the possibleI =T=0 states with different sym-
metries with respect to the exchange of the orbital degrees of
freedom appear at an equal probability. We call thePM so
obtained the geometricPM. To do so, one needs the number
of (I =0,T=0) states for each orbital symmetry.

The procedure to construct the states with particular spin-
isospin symmetry is given in Ref.[19], while that for con-
structing wave functions with certain orbital symmetry is
given in Ref.[20] for the Elliott model[21], with tables for
the sd, pf, andsdgshells. Finally, the spin-isospin functions
should be coupled to the orbital functions with their conju-

1In this paper we set the single particle energies to zero. If we take
the single particle energies of Cohen-Kurath interaction, this over-
lap becomes 0.99.

FIG. 2. Distribution of seniority in the ground states with spin
zero for even-even nuclei[refer to panels(a), (b), and (c)], spin I
= j1, j2, j3 for the odd-A case[refer to panel(d)], or spinI =1,0 for
odd-odd nuclei[refer to panels(e) and(f)]. The error bar is defined
by the square root of the count(statistics) for each seniority bin
(step width is 1). The dominance of seniority zero components of
ground states is not observed.

ZHAO et al. PHYSICAL REVIEW C 70, 054322(2004)

054322-4



gate symmetry to obtain the fully antisymmetric wave func-
tions with respect to an exchange of two particles. The an-
gular momentum for each state is given by couplingSandL.

Table IV presents the number ofI =0 states for two pro-
tons and two neutrons in thep shell and thesd shell with all
possible orbital symmetries. From Table II, one obtains the
geometricPM for the I =T=0 states:PM is −6

5 for the p shell
and −22

21 for the sd shell.
Using a TBRE Hamiltonian, we obtain the following

probabilities for spin-I ground states: For 1000 runs, one
obtains 485 and 365 runs withsI ,Td=s0,0d ground states for
8Be and20Ne, respectively. This is consistent with the result
[1,8] of the I =T=0 g.s. dominance in the presence of ran-
dom interactions. The average value ofPM for the sI ,Td
=s0,0d g.s. that we obtain is −1.26(the geometric value is
−6

5 =−1.20) and −1.66(the geometric value is −22
21=−1.05)

for the p shell and thesd shell, respectively. The average
value ofPM for a TBRE Hamiltonian and the corresponding
geometric value are very close to each other for thep shell,
indicating thata-clustering correlation is not favored by ran-
dom interactions. For the case of thesd shell, the average

value of PM for a TBRE Hamiltonian deviates sizably from
its geometric value.

To check whether this deviation becomes larger for larger
shells, we calculate the case of two protons and two neutrons
in the sdg shell, for which we obtained 385 cases with
sI ,Td=s0,0d ground states among 1000 sets of TBRE Hamil-
tonians. The averagePM value for these states is −0.629,
while that obtained by assuming a random orbital symmetry
is −2

5, which is close to the above value.
It is also interesting to study the distribution of overlaps

between theI =T=0 ground state obtained from the realistic
interactions and those obtained by pure random interactions
or by a combination of realistic and random interactions. As
an example, we discuss here the case of two protons and two
neutrons in thep shell where the realistic interaction is cho-
sen as the Cohen-Kurath interaction. We thus define a Hamil-
tonian

H = s1 − ldHTBRE + lHreal. s6d

Here l=0 corresponds to the pure TBRE Hamiltonian and
l=1 corresponds to the realistic Cohen-Kurath interaction.

TABLE III. The number of cases with positive(negative) spectroscopic quadrupole moments are given in
bold (italic) font, respectively. We omitted the cases for which the spin of the ground state is less than 1; see
the text for further details.

Both protons and neutrons in thesd shell

sNp,Nnd (2, 1) (2, 3) (2, 5)

280 418 338 430 306 402

sNp,Nnd (2, 1) (4, 3) (4, 5)

287 425 434 374 320 370

sNp,Nnd (6, 1) (6, 3) (6, 5)

201 530 400 444 420 348

Basis(A): protons and neutrons inf5/2p1/2g9/2

sNp,Nnd (1, 2) (1, 3) (1, 4)

267 469 283 481 246 535

sNp,Nnd (1, 6) (2, 3) (0, 5)

207 566 284 564 447 459

Basis(B): protonssf5/2p1/2g9/2d, neutronssg7/2d5/2d

sNp,Nnd (1, 4) (4, 1) (2, 4)

374 507 278 632 253 428

sNp,Nnd (3, 4) (4, 3) (6, 1)

278 620 330 560 233 660

Basis(C): protons and neutrons ins1/2d3/2h11/2

sNp,Nnd (2, 3) (2, 5) (4, 3)

231 657 238 472 392 498

sNp,Nnd (5, 1) (5, 0) (3, 3)

213 628 212 659 349 449

Basis(D): protonsg7/2d5/2, neutronss1/2d3/2h11/2

sNp,Nnd (14, 13) (15, 12)

781 183 610 333
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We will vary l in the range from 0 to 1, corresponding to the
situation of nuclear forces with different mixtures of random
noise.

The results forl=0, 0.3, 0.5, 0.7, and 0.9 are shown in
Figs. 3(a)–3(e). The error bars indicate the statistical errors
in determining the numbers, defined by the square root of the
number of counts for each bin. For case(a) with l=0 one

sees that the overlaps distribute “randomly” from 0 to 1. This
suggests that pure random interactions produce “random”
overlaps of theI =T=0 ground states with the realistic
ground state. However, forl.0.5, theI =T=0 ground states
are close to that of the realistic interactions for most of the
cases. This is especially clear from Fig. 4, where the overlap,
averaged over the different Hamiltonians in the ensemble Eq.
(6), is plotted versusl. The statistical inaccuracies are indi-
cated by the error bars in this figure. For values ofl exceed-
ing 0.6, the overlap is very close to unity, while for larger
admixtures of the random component in the interaction, the
overlap decreases approximately linearly withl. This trend
has all the signatures of a second-order phase transition.
Only for limited magnitude of the random interaction does
the g.s. have a realistic structure, which breaks down when a
critical value is exceeded.

VI. DISCUSSION AND SUMMARY

The present paper was stimulated by the discovery of the
spin-zero ground-state dominances0 g.s.d of even fermion
systems[1] and boson systems[2] in the presence of the
random two-body ensemble(TBRE). This discovery sparked
off a sudden interest in many-body systems under the TBRE.
It also led to extensive studies of other physical quantities
[4], such as energy centroid of fixed spin states, collectivity,
etc. The purpose of this paper was to study the robustness of
some features which are well known in nuclear physics but
have not been studied under the TBRE.

First, we calculated in Sec. II the parity distribution of the
g.s. for a TBRE Hamiltonian. It was found that positive par-
ity is dominant for the g.s. of systems with even numbers of
valence protons and neutrons. For odd-A and doubly odd
systems, the TBRE Hamiltonian leads to ground states with
comparable probability for both positive and negative parity.
This is similar to the global statistics for realistic nuclei with
Aù70 (refer to Table I). Unlike the spin-0 g.s. dominance in
the presence of random interactions, the dominance of posi-
tive parity in the ground states of even-even nuclei has not
been pointed out explicitly so far. Since parity is a much
simpler quantity than angular momentum, an understanding
of the parity dominance of even-even systems may be help-
ful in understanding the spin-0 g.s. dominance of even-even
nuclei in the presence of random interactions.

TABLE IV. The number ofI =0 states for two valence protons
and two valence neutrons in thep shell and thesd shell with defi-
nite symmetry with respect to exchange orbital degree of freedom
of two particles and the corresponding conjugate symmetry with
respect to exchange spin-isospinsS−Td degrees of freedom.L is the
total orbital angular momentum andS is the total spin. The last
column gives number of theI =0 states withT=0.

L S I=0 I =T=0

The p shell

f4g 0,2,4 0 0 0

f31g 1,2,3 0,12 02 0

f22g 0,2 02,1,2 03 02

f211g 1 0,13,2 03 0

The sd shell

f4g 04,25,3,44,5,62,8 0 04 04

f31g 02,14,27,36,45,53,62,7 0,12 010 04

f22g 03,1,25,32,43,5,6 02,1,2 012 08

f211g 15,23,35,42,52 0,13,2 018 05

f1111g 1,2,3 0,1,2 02

FIG. 3. The overlaps between theI =T=0 ground states for two
protons and two neutrons in thep shell obtained by Cohen-Kurath
interactions and those obtained by the Hamiltonian Eq.(6). (a)–(e)
correspond tol=0, 0.3, 0.5, 0.7, and 0.9, respectively.

FIG. 4. Average overlap of the g.s. of the Hamiltonian of Eq.(6)
with that of the realistic Hamiltonian as a function of the mixing
parameterl. The line is plotted to guide the eyes.

ZHAO et al. PHYSICAL REVIEW C 70, 054322(2004)

054322-6



Second, our investigation showed that the seniority distri-
bution for the g.s. ofsd-shell nuclei is not dominated by low
seniority components, contrary to the situation for realistic
nuclei. Our investigation also suggests that the correlation
between the wave function of the spin-0 g.s. forA nucleons
and that forA+2 nucleons discussed in Ref.[8] should not
be understood as an indication of the dominance of the se-
niority zero component.

Third, the dominance of negative spectroscopic quadru-
pole moments at the beginning of the shell and positive
quadrupole moments at the end of the shell is also observed
in the g.s. obtained by using the TBRE interactions. This
situation is similar to the prediction obtained from a simple
harmonic-oscillator potential. This means that the TBRE
Hamiltonians do not lead to an overall dominance of the
prolate deformation. However, also in realistic nuclei a
dominance of prolate deformation is observed when both
valence protons and neutrons are in the first half of a major
shell.

Last, we studied thea-clustering correlation by calculat-
ing the expectation value of the Majorana operator in theI
=0, T=0 g.s. of TBRE interactions. We also calculated the
overlaps between theI =0, T=0 ground states of the TBRE
Hamiltonian and the ground state obtained from realistic in-
teractions. Our calculations on8Be and20Ne showed that the
a-clustering structure is not favored by a pure TBRE Hamil-
tonian. It is interesting to note that, as a function of the
admixture of a realistic Hamiltonian to a TBRE Hamiltonian,

a second-order phase transition is observed. For Hamilto-
nians that contain less than,0.4 admixture of random inter-
actions, the structure of the g.s. is close to the realistic case,
but for higher admixtures the overlap with a realistic wave
function becomes progressively worse.

In conclusion, we have observed in this paper the domi-
nance of positive parity in the ground states of even-even
nuclei in the presence of pure random two-body interactions.
Because parity is intrinsically a simpler quantum number
than angular momentum, it will be interesting to understand
the mechanism for this. In addition, it has been shown that,
even though the quantum numbers for the g.s. are realistic,
the dynamical properties of the ground states under the
TBRE Hamiltonian, such as seniority, which is a signature of
pairing correlation, thea-clustering probabilities, and the
sign of quadrupole moments, are in sharp disagreement with
those of realistic nuclei.
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