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We study the predictive power of Skyrme forces with respect to low lying quadrupole spectra along the
chains of Sn, Cd, and Te isotopes. Excitation energies andBsE2d values for the lowest quadrupole states are
computed from a collective Schrödinger equation which is deduced through a collective path generated by
constraint Skyrme-Hartree-Fock(SHF) plus self-consistent cranking for the dynamical response. We compare
the results from four different Skyrme forces, all treated with two different pairing forces(volume versus
density-dependent pairing). The region around the neutron shell closureN=82 is very sensitive to changes in
the Skyrme while the midshell isotopes in the regionN,82 depend mainly on the adjustment of pairing. The
neutron rich isotopes are most sensitive and depend on both aspects.
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I. INTRODUCTION

A key feature of nuclear excitations is the low-lying 2+

states. Their properties delivered crucial input for developing
an understanding of nuclear structure[1,2]. At first glance,
they suggest the collective picture of the nucleus as a liquid
drop which can undergo global quadrupole oscillations and
which freeze under certain conditions to a stable rotator. This
view has been formulated in terms of the Bohr-Hamiltonian,
which establishes a collective dynamics in the five quadru-
pole degrees of freedom[3]. The parameters of the collective
Hamiltonian have to be adjusted phenomenologically, see,
e.g., the applications in[4]. The collective approach has been
revived with the interacting boson model(IBM ), which has
found widespread application and was proven to be ex-
tremely useful in sorting nuclear low-energy spectra[5].

The collective picture is seemingly in contrast to the mi-
croscopic view, which sees the nucleus as consisting of shells
of single nucleons arranging themselves in a common mean
field [6,7]. The views can be unified by the concept of a
deformed mean field, which establishes a relation between a
single-particle shell structure and global deformations[8,9].
The collective motion is then understood as vibration(or
rotation) of the mean field similar to the Born-Oppenheimer
method for describing molecular vibrations. The connection
is established on a formally sound level by the generator
coordinate method(GCM) [10,11], which describes collec-
tive dynamics as coherent superposition of a continuous set
of deformed mean-field states, called the collective path. The
GCM within the Gaussian overlap approximation(GOA) al-
lows us to establish contact between the microscopic foun-
dation and a collective Bohr-Hamiltonian[12,13]. Starting
from the GCM, the lines of applications spread enormously.
There are, on the one hand, fully fledged GCM calculations
which skip the collective Hamiltonian as an intermediate

level and compute low-energy spectra directly from the co-
herent superposition of the collective path; these sophisti-
cated calculations imply exact projection for the conserved
quantities, as particle number, angular momentum, and cen-
ter of mass; there are many published results around(we
mention here[14,15] as two recent examples). On the other
hand, one finds several approximations to the microscopic
computation of the Bohr-Hamiltonian; most applications
hitherto employ a phenomenological shell model to describe
the deformed mean field, see, e.g.,[16]. There are also sev-
eral self-consistent calculations along that line; for an early
example, see[17] and for more recent achievements see
[18,19].

An alternative direction of development remains at the
microscopic mean-field description and makes it manageable
by restricting considerations to small-amplitude motion. This
yields the much celebrated random-phase approximation
(RPA), which has its stronghold in the description of giant
resonances, see, e.g.,[20]. The appropriate extension to non-
closed shells with pairing is the quasiparticle RPA(QRPA),
which has only recently been developed up to a rigorously
self-consistent level[21]. The QRPA describes formally the
whole excitation spectrum, including the low lying 2+ states,
and it optimizes all states automatically. It assumes, however,
small amplitudes, i.e., harmonic motion. This is perhaps le-
gitimate close to magic nuclei but somewhat dubious else-
where. The above mentioned theories for large-amplitude
collective motion concentrate on the lowest state only but try
to take into account all effects of anharmonicity due to soft
potential energy landscapes and shape isomerism. The fully
fledged adiabatic time-dependent Hartree-Fock method(AT-
DHF) provides an unambiguous optimization scheme for the
large-amplitude collective path[12,22]. However, that rather
involved scheme has not yet been used for heavy nuclei, as
we are going to study here. We use presently ATDHF only to
compute the self-consistent collective mass and employ the
more intuitive constraint Hartree-Fock method to generate
the path.*Electronic address: reinhard@theorie2.physik.uni-erlangen.de

PHYSICAL REVIEW C 70, 054321(2004)

0556-2813/2004/70(5)/054321(13)/$22.50 ©2004 The American Physical Society70 054321-1



The connection from a microscopic Hamiltonian to col-
lective spectra via a large-amplitude collective path is well
established by virtue of the GCM. An open problem is the
microscopic input. Self-consistent nuclear mean-field models
employ effective energy functionals such as, e.g., the
Skyrme-Hartree-Fock method, the Gogny force, or relativis-
tic mean field; for a recent review, see[23]. These are em-
pirically adjusted to nuclear ground-state properties of stable
nuclei. There exists a large number of equivalent parametri-
zations which provide comparable ground-state properties
but can differ substantially in predictions to exotic nuclei or
resonance excitations[23,24]. It is by no means guaranteed
that all mean-field parametrizations produce at once the cor-
rect collective low-energy vibrations. The contrary is to be
expected, namely a broad span of predictions among which
only a few parametrizations deliver a satisfying spectrum. To
phrase that positively, low-energy vibrations provide useful
information for a better selection of mean-field parametriza-
tions. We aim here at a first exploration of the connection
between mean-field parametrizations and emerging low-
energy spectra. We do that for the Skyrme-Hartree-Fock ap-
proximation by comparing the results of several different
Skyrme forces and pairing recipes.

It is obvious that such systematic studies need to confine
the subject and the method in order to keep things manage-
able. As test cases, we consider the lowest 2+ state in the
chain of Sn isotopes and its even neighbors Cd and Te. These
share basically one type of collective motion being predomi-
nantly soft vibrators. For the practical technique, we employ
GCM-GOA through a microscopically computed Bohr-
Hamiltonian. For reasons of simplicity, the microscopic in-
formation is computed along axially symmetric shapes and
interpolated into the full space of quadrupole degrees of free-
dom. This approximation allows large-scale scans and it is
acceptable for soft vibrators as they are studied here.

II. FORMAL FRAMEWORK

A. Underlying microscopic model: Input parameters

As a starting point, we take a microscopic mean-field
theory at the level of the Skyrme-Hartree-Fock model aug-
mented by pairing in the BCS approximation plus the
Lipkin-Nogami correction for approximate particle number
projection. This is a standard approach in nuclear structure
physics. We refer the reader to[23] for a detailed description
of the energy functional and subsequent mean-field equa-
tions. We recapitulate here only briefly the spectrum of vari-
ants of that model, which will play a major role in the fol-
lowing discussions.

The mean-field part is determined by the Skyrme energy
functional ESksrn ,tn ,Jn , jn ,snd which depends on the local
densityrn, kinetic-energy densitytn, spin-orbit densityJn,
current jn, and spin-densitysn, and whereq means protons
or neutrons. The functional form has been basically settled
for two decades[25] with minor extensions in later stages
(e.g.,[26,27]). However, there exists a great variety of actual
parametrizations for the Skyrme energy functional. Most of
them provide a high-quality description of nuclear bulk prop-
erties as binding energies and radii. They differ in details as,

e.g., isovector forces or surface properties. We are going to
apply here the Skyrme functionals to a regime far from what
had been considered in the fits. It is thus important to explore
a minimal variation of parametrizations within the Skyrme
framework. We will consider here SkM* as a widely used
traditional standard[25], Sly6 as a recent fit which includes
information on isotopic trends and neutron matter[28], SkI3
as a fit which maps the relativistic isovector structure of the
spin-orbit force and takes care of the surface thickness[26],
and SkO[29] as a recent fit relying on the same fit data as
SkI3 but with additional constraint on the two-nucleon sepa-
ration energies around208Pb and with a better adjusted asym-
metry energy. That selection contains a large span of effec-
tive masses: SkI3↔m* / m=0.6, SLy6↔m* / m=0.7,
SkM* ↔m* / m=0.8, and SkO↔m* / m=0.9. The effective
mass has an influence on the level density near the Fermi
surface, which, in turn, may have an effect on the low-energy
collective states. There is also a difference in the isovector
and spin-orbit properties. Besides the effective mass and
asymmetry, the bulk parameters(equilibrium energy and
density, as well as incompressibility) are comparable.

The second key ingredient is pairing. A present-day stan-
dard is to use a zero range pairing force often called volume
pairing. We will use the notiond-interaction(DI) pairing. A
widely used variant for the pairing force is a density-
dependentd interaction(DDDI) [30]. Both recipes are sum-
marized as

Vspaird = HVn
sDIddsr1 − r2d

Vn
sDDDIddsr1 − r2df1 − rsr̄d/r0g.

J s1d

The pairing strengths orVn
sDDDId are adjusted to odd-even

staggering of binding energies in a few representative
semimagic nuclei(Sn and Pb isotopes,N=82 isotones). The
adjustment is done for each force separately because the
much different effective masses call for different pairing
strengths. The actual values used here are given in Table I.

The pairing recipe is to be augmented by a cutoff in
single-particle space. We use a smooth cutoff with a Woods-
Saxon profile in the single-particle energies. The switching
energy is chosen such that the pairing space covers 1.6N2/3

particles above the Fermi energy; for details, see[31]. In
order to explore the influence of the pairing recipe, we will
also discuss deliberate rescaling of the pairing strengths.

B. Deduced collective dynamics

The mapping from the microscopic to a collective de-
scription is performed with the generator-coordinate method

TABLE I. Pairing strengths for the two pairing recipes and for
the Skyrme forces used in this paper. The strengths are given in
units of fm−3.

Vp
sDId Vn

sDId Vp
sDDDId Vn

sDDDId

SkM* 279.1 259.0 990.0 802.0

SLy6 298.8 288.5 1053.1 864.2

SkI3 335.4 331.6 1233.0 996.0

SkO 253.0 269.0 1007.4 893.7
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(GCM). This is a much celebrated method in nuclear struc-
ture physics; for a review see, e.g.,[12] and for a brief sum-
mary see[23]. We outline here the basic steps and provide a
more detailed compact account in Appendix I.

The stationary mean-field equations as such provide only
a few well isolated states, preferably the ground state and
perhaps some isomers. Each state is characterized by one
BCS wave functionuFl which is composed of a set of single-
nucleon wave functions together with their occupation am-
plitudes. In order to describe motion, one needs to consider a
time-dependent mean-field theory, in the nuclear community
often called time-dependent Hartree-Fock(TDHF). Large-
amplitude collective motion is related to low-energy excita-
tions, thus slow motion. This justifies the adiabatic limit
known as ATDHF. It yields at the end a collective path
huFqlj, whereq stands for continuous series of deformations,
predominantly of quadrupole type because nuclei are softest
in that degree of freedom. The dynamical aspect is added in
first order of collective velocity, i.e., in terms of linear re-
sponse to a collective displacement. It is a widely used ap-
proximation to determine the collective path from quadru-
pole constrained Hartree-Fock-BCS(CHF).

A systematic theory for an optimized collective path is
provided by adiabatic TDHF(ATDHF) [32–34]. The over-
whelming majority of practical applications simplifies the
construction by using a simple quadrupole constraint
Hartree-Fock to produce theuFql. The path, once estab-
lished, serves as a basis along which the collective motion
expands. The corresponding microscopic state is described as
a collective superpositionuCl=edquFqlfsqd. The stateuCl is
optimized by a variational principle. This is the fully fledged
GCM, which can be attacked in a straightforward numerical
manner, see, e.g.,[14,15,35]. However, that is still a very
demanding task and not so well suited for broad surveys as
we intend it here. As a simple, efficient, and reliable shortcut,
we use here the Gaussian overlap approximation(GOA),
which parametrizes the norm and Hamiltonian overlap in
terms of Gaussians, e.g., for the norm overlap askFquFq8l
=expf−lsq−q8d2/4g. It provides an acceptable approxima-
tion, particularly for medium and heavy nuclei[12,36]. The
GCM-GOA yields at the end a fairly simple collective
Hamiltonian where the collective potentials and masses are
unambiguously computed from the microscopic energy func-
tional and the collective path. Quadrupole motion has five
degrees of freedom[3–5]. The emerging collective Hamil-
tonian thus has the form of a generalized Bohr-Hamiltonian
while its potentials and masses are computed from micro-
scopic input[16,18,19].

The practice of GCM-GOA is a bit involved; see the Ap-
pendix for a few more details. We summarize here the steps.
The energy expectation value along the path yields a raw
collective potentialVsqd. The collective mass and moments
of inertia are obtained by dynamical linear response about a
given point at the path often called self-consistent(or AT-
DHF) cranking[33]; as an approximation, Inglis cranking is
used whenever justified. Zero-point energy corrections to the
potential are computed from these masses and the collective
fluctuations(quadrupole, angular momentum) of the states
uFql. In fact, a topologically corrected GOA is used to allow

a numerical robust computation of potentials and masses in
the intrinsic frame(defined by a diagonal inertia tensor)
[36,37]. This provides an interpolation scheme to connect
safely the near-spherical shapes with larger deformations.

After all, we restrict the microscopic calculations to axial
symmetry. The fully five-dimensional quadrupole dynamics
is recovered by interpolation of the collective potential and
masses between prolate and oblate shapes into the triaxial
plane. This approximation saves two orders of magnitude
computation time and thus allows the large-scale systematics
as we intend it here. On the other hand, it is well justified at
and in the vicinity of the spherical shape. The test cases for
the present study are Sn isotopes and its even-even neighbors
Cd and Te, which are predominantly soft vibrators around
spherical mean. Moreover, we confine the study to the first
excited 2+ state (and occasionally to the 0+ ground state)
which both are not very sensitive to details in the triaxial
plane. All that considered, the triaxial interpolation is a use-
ful and legitimate approximation for the intended systematic
explorations.

C. An example for potentials and masses

In order to exemplify details of the calculations, Fig. 1
shows for the case of132Sn the collective potential before
and after zero-point energy correction(ZPE) (A6). The ZPE
induce obviously a strong global down-shift in energy be-
cause the spurious energy content from collective fluctua-
tions in theuFql is subtracted. Moreover, they may change
the shape of the potential. The corrected potential has its
minimum at a slightly deformed position, although the dou-
bly magic 132Sn is a perfectly spherical nucleus in a pure
mean-field description(see the well defined spherical mini-
mum in V). This is the same effect as happens in variation
after rotational projection(for a model discussion, see[36]):
knowing that the projection restores spherical shape anyway,
the system takes advantage of a small deformation to acquire
correlation energy. It is comforting that we see the same

FIG. 1. The raw collective potentialV and the effective potential
V including the zero-point energy corrections(A6), both drawn as
function of the intrinsic axial quadrupole momentuma20. Test case
is 132Sn computed with DI pairing and SkI3. The position of the 00

+

ground state and the first 2+ state are indicated by horizontal bars.
The difference between the minimum ofV and the 00

+ energy is the
correlation energyDEcorr.
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effect here because our treatment of quantum correction
should include a good approximation to rotational projection.

Figure 1 also indicates the position of the 00
+ ground state

and the first excited 2+ state. The 00
+ lies above the bottom of

the intrinsic potentialV as it should be, to account for the
correct physical zero-point energies, but it stays below the
minimum of the raw potentialV because the larger spurious
zero-point energy had been subtracted before adding the
physical one. The net effect is a correlation energyDEcorr
which expresses that the collectively correlated ground state
is better bound than the mean-field ground state. The 2+ state
lies, of course, above the 00

+ state. The quantity of interest
here is the excitation energyEs2+d, which is computed as the
difference between the total 2+ energy and the 00

+ energy.

III. RESULTS

A. Results for the chain of Sn isotopes

1. Variation of forces

Figure 2 shows the 2+ excitation energies and transition
strengths along the chain of Sn isotopes for the four chosen
SHF parametrizations and in comparison to experimental
data. At first glance, we see that all calculations hit the right
order of magnitude. They also reproduce the increase of the
E2+ at the shell closureN=82. At closer inspection, however,
we see interesting differences and mismatches in detail.

Let us first concentrate on the doubly magic case ofN
=82. Shell effects directly related to the SHF forces should
dominate here. And indeed, we see that theEs2+d are closely
related to spectral properties. Table II shows theEs2+d ener-
gies in comparison to the spectral gaps of protons and neu-
trons in 132Sn. The spectral gaps are the energy difference
between the highest occupied single-particle orbital and the
lowest unoccupied orbital(known as HOMO-LUMO gap in
molecular physics). The neutrons show always the smaller

gaps and these lowest one-particle–one-holes1phd transi-
tions take the lead in the composition of the lowest 2+ state.
Correspondingly, both quantities share the same trends. The
spectral gap, in turn, is related to the effective massm* / m of
the forces. We see that also in Table II where lowm* / m
correlate to large gaps and vice versa. But the step down to
the rather low spectral gap for SkO is much larger than the
step up in effective mass. Here we see also an interference
from the very strong isovector spin-orbit force of SkO, an-
other important contributor to shell effects. Table II further-
more, demonstrates the effect of the residual interaction in
that theEs2+d are generally 1.5 MeV below the lowest 1ph
energy. This allows us to postulate a simple criterion for the
selection of forces: the lowest spectral gap in132Sn (and
other doubly magic nuclei) should stay safely above the ex-
perimentalEs2+d, which is 4.04 MeV for132Sn. The force
SkO clearly fails in that respect. The reason is that SkO was
fitted to match the two-nucleon shell gaps at doubly magic
208Pb already at the level of pure mean-field calculations
[29]. Meanwhile, it has been shown that collective correla-
tions reduce the two-nucleon shell gaps by 1–2 MeV[39].
The fitting strategy of SkO thus squeezes the spectral gap too
much with the obvious consequence that the collective spec-
tra are spoiled throughout. This mismatch is thus a strong
hint on the inner coherence of Skyrme forces connecting the
various observables.

Far away from the magicN=82, one expects that the
pairing gap dominates theEs2+d energy. The pairing force
was tuned in the same way to the odd-even staggering in Sn
isotopes andN=82 isotones. Thus the pairing gap is about
the same for all four Skyrme forces in the well pairing region
sN,80d. We see indeed comparable energies for the three
forces, SkM*, SLy6, and SkI3, which also hit very nicely the
experimental values. The force SkO, however, produces sys-
tematically larger energies out there. This shows that shell
effects (here probably from the spin-orbit force) have also
some influence. Different relations are seen in the other pair-
ing regime for the neutron rich, exotic nuclei aboveN=82
where SkM* shows always the largest energies. This is at the
same time a region of weak binding. This causes a strong
interplay of shell effects and pairing which are not easily
disentangled.

Large differences are seen in the immediate vicinity of
N=82. All forces, expect SkO, reproduce nicely the sudden
step down fromN=82 and the asymmetry aroundN=82,
namely the fact thatN=84 has lowerEs2+d thanN=80. But
the results differ in the trends forN=78. The case SkI3 fol-
lows nicely the smooth experimental trend while SkM* and

FIG. 2. EnergiesEs2+d and BsE2d↑ values s=zk0+uQ2Mu2+lz2d
along the chain of Sn isotopes calculated using the four different
Skyrme interactions as indicated. The experimental results are taken
from [38].

TABLE II. Comparison of theEs2+d energies in132Sn for the
various Skyrme forces with the spectral gaps in132Sn and the ef-
fective massm* / m associated with the forces.

Force SkI3 SLy6 SkM* SkO

Es2+d (MeV) 4.36 3.76 3.94 2.41

spectral gap protons(MeV) 6.6 6.2 6.4 6.0

spectral gap neutrons(MeV) 6.6 6.0 5.4 4.0

m* / m 0.6 0.7 0.8 0.9
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SLy6 show a spike. That is compensated atN=70 where now
SkI3 has a spike. In all these cases, we found that a larger
Es2+d is related to a somewhat lower neutron level density at
the Fermi surface.

A much more critical test than excitation energies are the
associated transition probabilities, theBsE2d values. One is
usually happy to describe them within a factor of 2 or so, and
often the concept of effective charges is introduced to
achieve a fine-tuning[40]. The lower panel of Fig. 2 shows
the BsE2d↑ values for the transitions. ForNø82, they are
similar for all four forces in spite of the sometimes very
different energies. But they all differ from the experimental
data by about a factor of 2. The positive aspect is that the
theoretical results come so close at all in view of the fact that
the transition strengths are always much more demanding.
The remaining mismatch can have various origins:(1) We
use simply a quadrupole constraint to generate the collective
path instead of the variationally optimized ATDHF prescrip-
tion [32–34]. (2) We use the raw quadrupole expectation
value rather than the fully mapped collective image(see Ap-
pendix A6). (3) The effective energy functional is not fully
suited to compute transition moments and effective charges
had to be added for a correct description[40]. Which one of
these approximations is most responsible has yet to be ex-
plored. Anyway, the results are not untypically bad because
almost all microscopic approaches have a hard time with an
exact reproduction of transition moments.

The BsE2d↑ in the region around the doubly magic132Sn
surprisingly shows basically no differences between the
forces, just in a region where the energies differ most. A very
interesting point is the magic132Sn. Naive models predict a
dramatic drop in theBsE2d at the magic point. A model study
taking care of the residual interaction and cross-talk between
the neutron and proton quadrupole vibrations predicts that
theBsE2d should, quite oppositely, have a peak at132Sn[41].
Our calculations confirm these estimates at a qualitative
level, namely to the extent that we also do not find any deep
dip in the BsE2d. In our cases, the residual interaction was
obviously not large enough to turn that into a peak. But these
are quantitative details of the employed forces.

The largest differences between forces for theBsE2d↑ val-
ues are seen in the deep exotic regimeA.132. We are sure
that information aboutBsE2d in that region would be valu-
able. But before one can exploit that, one has to understand
(and possibly remove) the systematic overestimation still
seen on the low-A side.

2. Variation of pairing recipes

Figure 3 shows the collective spectra along the Sn chain
for SkI3 computed with different pairing prescriptions. We
have added in the lowest panel some information about the
internal pairing structure, namely the average neutron-

pairing gaps D̄=oauavaDaa /oauava which are deduced
from spectral properties of the given nucleus at the spherical
shape(usually the minimum in the PES) and which, none-
theless, provide a simple measure for the pairing gap de-
duced from odd-even staggering[31]. The deliberately
changed pairing strengths(boxes versus circles for enhanced

pairing and rhombus versus circle for reduced pairing) have
an obvious effect. The pairing gap is increased or reduced
and, subsequently, theEs2+d energies change in the same
direction. The effect is most pronounced in the regions suf-
ficiently far off N=82, where we expect a dominance of
pairing in the collective spectra. The relative changes in ex-
citation energies and pairing gaps are much larger than the
change in pairing strength. Moreover, the excitation energies
behave generally similar to the pairing gaps. This demon-
strates that the low-energy spectra in soft vibrators provide
valuable information about the pairing strengths. One is
tempted to use that for an immediate tuning of the strengths.
We run, however, into some conflict, becauseEs2+d energies
andBsE2d↑ do not coincide at the same strength. Moreover,
one has to keep in mind that the information from lying
states is still mixed with effects of the mean field. This is a
general feature of nuclear structure, even for the odd-even
staggering, which is usually taken as a benchmark for pairing
properties[42]. The interference of shell effects can be seen
here particularly well from some irregularity atN=68. The
reduced pairing produces forN=68 a strongly deformed
ground state which results in a sudden drop of theEs2+d
energy accompanied by a strong peak inBsE2d↑. The aver-
age gap shows no dramatic reaction because it remains re-
lated to the now irrelevant spherical shape. The DDDI pair-
ing stays in most cases more or less close to the results of DI
pairing, which is somewhat expected because it is tuned to

FIG. 3. EnergiesEs2+d, BsE2d↑ valuess=zk0+uQ2Mu2+lz2d, and
average neutron-pairing gaps at spherical shape along the chain of
Sn isotopes calculated with SkI3 and three different pairing recipes:
standard DI(circles), DDDI (boxes), and DI with 25% enhanced
strength. The experimental results are taken from[38].
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the same average pairing gap. However, DDDI pairing reacts
differently to shell effects, as can be seen in the vicinity of
the shell closureN=82 and for the weak shell closure which
SkI3 produces atN=72. The DI pairing seems to comply
better with data. But that holds in connection with the par-
ticular shell structure of SkI3. Much more systematic inves-
tigations with varied forces and in other region of the nuclear
chart are necessary before drawing any conclusion like that.
The BsE2d↑ values shown in the lower panel of Fig. 3 show
generally smooth trends, except forNù86, where an in-
creasing trend sets on which is related to the increasing soft-
ness of these neutron-rich isotopes. The sensitivity to varying
pairing recipes is similar to what we have seen when varying
the forces: They vary little forNø82 and more significant
differences appear in the far exotic regimeN.82.

For completeness, it is worthwhile to look at the perfor-
mance of DDDI pairing also for the other Skyrme forces in
the survey. That is shown in Fig. 4. It has to be compared
with Fig. 2. Similarities and differences are about the same
for all shown forces. The average excitations in the well
pairing regime are comparable. The small fluctuations about
the average trends appear for DDDI at different places than
for DI pairing. The most pronounced difference to DI is seen
for the Es2+d energy next to the magic neutron number, i.e.,
for N=80 and 84. DI pairing reproduces the steep experi-
mental drop while the DDDI results make a somewhat less
dramatic step. TheBsE2d↑ values shown in the lower panel
are very similar to those from DI pairing. They seem here to
be the more robust signal. We conclude from these results
that theBsE2d↑ are insensitive to pairing while they are the
much more sensitive observable in other respects, e.g., in its
dependence on the force.

A final comment on theBsE2d↑ values: Good vibrators
and well-developed rotators are distinguished by the fact that
the lowest 2+ state exhausts the quadrupole sum rule in col-
lective space. The test for this feature is the comparison of
the variance(5 quadrupole sum rule) with the BsE2d value,

k0+uQ20
2 u0+l = o

n

zk2n
+uQ20u0+lz2=

?

zk21
+uQ20u0+lz2, s2d

where k¯l means the average in collective space, 0+ the
ground state, 2n

+ the spectrum of 2+ states, and 21
+ the lowest

2+ state. We have checked that and found that there is gen-
erally good exhaustion of the variance by the lowest 2+. The
collective potentialVsa20d of all these isotopes excludes ro-
tors, so that we can conclude that they are good vibrators.

3. Effect of particle-number correction

The collective Schrödinger equation contains the particle-

number correction withN̂coll as discussed in Appendix A4. It
is interesting to check the impact on collective properties.

This is done in Fig. 5. There is minimal difference for the
BsE2d↑ values. The main effect is seen for energies in the
region of weak pairing, i.e., at and around shell closure. In
fact, the particle-number corrected treatment seems to be a
bit more sensitive to shell structure, as can be seen from the
fact that calculations without the correction show generally
smoother trends. But this statement should be taken with a
grain of salt. The differences are anyway not very dramatic
in view of the effects we see when comparing forces and
pairing recipes.

B. Results for the isotopes of Cd and Te

The Sn isotopes have a magic proton numberZ=50. It is
interesting to have a look at its even neighbors, Cd withZ
=48 and Te withZ=52. As a first impression, we show in
Fig. 6 a direct comparison for a few selected isotones. The
effect is obvious. The step from the magic proton number to
the nonmagic ones reduces once more theEs2+d energies by

FIG. 4. As Fig. 2, but now with DDDI pairing. FIG. 5. EnergiesEs2+d and BsE2d↑ values s=zk0+uQ2Mu2+lz2d
along the chain of Sn isotopes computed with SkI3 and DI pairing,
once with (solid line, full circles) and once without(dashed line,
open circle) particle number restoration as outlined in Appendix
(A4). The experimental results(dotted lines, full squares) are taken
from [38].
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a substantial factor, fully in agreement with the experimental
findings. The quadrupole mode in Cd and Te is much softer
than in Sn where the magic proton number enhances the
rigidity of the whole mode due to a strong residual proton-
neutron force[43].

A summary of results for the Cd and Te isotopes using the
four different Skyrme interactions SkI3, SLy6, SkM*, and
SkO is displayed in Fig. 7. For Te, theEs2+d from different
forces are very close to each other and to the experimental
data up toN=76 and show again larger differences near the
shell closureN=82. The case for Cd is similar, showing,
however, an earlier onset of differences. It is noteworthy that
the results for SkO reside well among the other forces, al-
though it behaved dramatically different for the Sn isotopes.
This is related to the fact that shell effects are somewhat
suppressed in Cd and Te because these have a nonmagic
proton number. Figure 7 shows also as complementing infor-
mation theBsE2d values for the Cd and Te isotopes. The
differences between the theoretical and the experimental val-
ues are for Cd in the same order of magnitude as in the case
for the Sn chain. They tend to be much less for the Te iso-
topes for Nø78 where deviations stay below 20%. This
looks like a remarkable agreement. But both agreement for
Te and disagreement for Cd and Sn have yet to be under-
stood in detail.

We have seen in the Sn chain that the step from DI to
DDDI pairing makes the most differences next to the neutron
shell closure. One has to suspect that a similar feature ap-
pears next to the proton shell closure. The Sn chain resides at
N=50, which is a closed proton shell. Thus the neighbor
chains for Cd and Te are in the most sensitive regime and we
expect visible differences. The results on the low-lying 2+

states along Cd and Te are shown in Fig. 8. We see indeed
that theEs2+d energies are larger with DDDI, particularly
near the neutron shell closure atN=82. The differences be-
come again negligible far out in the well pairing regime.
And, as for Sn, theBsE2d values are totally insensitive. It is
also clear that the DI results, here and in the Sn chain, are
closer to the data. The same effect was already seen for the
neutron channel in Fig. 3. The step of theEs2+d when mov-

ing away from a magic number is softer for DDDI than for
DI. This produces somewhat too highEs2+d for N=80 and
84 in Fig. 3 and here forZ=48 and 52 in Fig. 7 versus Fig.
8. We just mention this observation. It is too early to draw
far-reaching conclusions on the validity of DI versus DDDI.
The difference is seen in the worst case, namely a nucleus in
the weak pairing regime where we are not yet sure that the
present pairing treatment(BCS plus Lipkin-Nogami) is fully
appropriate.

C. The isotope shifts for the Sn isotopes

The ground-state solution of the collective Schrödinger
equation provides the collective ground-state correlations.
One can compute the correlation effect on any one-body ob-
servable with the help of the collective map as outlined in
Appendix A 6.

FIG. 6. Systematics of the energies of the first excited 2+ states
calculated with the microscopic Bohr-Hamiltonian(A9) using the
interaction SkI3 for the nearest even-even neighbors of116Sn. The
experimental results are taken from[38].

FIG. 7. EnergiesEs2+d and BsE2d↑ values s=zk0+uQ2Mu2+lz2d
along the chain of Cd isotopes(upper panels) and Te isotopes
(lower panels) calculated with different Skyrme forces as indicated.
The experimental results are taken from[38].
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Figure 9 shows results for the systematics of charge rms
radii drawn in terms of isotope shifts relative to116Sn. The
rms radii shown in the upper panel here are taken from the
correlated ground state, which includes the collective shape
fluctuations. At first glance, all forces reproduce the experi-
mental trend very well where data are available. There re-
main small but significant differences between the four
forces in that range among which SkI3 comes generally clos-
est to the data. The similarity of the trends persists to iso-
topes with larger neutron numbers. Substantial differences
develop at the upper end for the shown chain, i.e., forN.86.
Not surprisingly, this is the regime of exotic nuclei because
the generally soft binding amplifies small differences in shell
structure. It is surprising, however, that these differences de-
velop so late. The regime of similarity reaches well beyond
theN=82 shell closure. This is due to the smoothing features
of the shape fluctuations. The lower panel demonstrates the
effect of ground-state correlations for that observable. There
are practically no visible effects as compared to pure mean-
field calculations, as one could have expected for such a
chain of semimagic nuclei[26]. Correlation effects become

visible again at the upper edge of the chain where the general
softness of the deeply exotic nuclei also allows for larger
shape fluctuations.

IV. CONCLUSION

We have investigated the predictive power of nuclear ef-
fective forces for describing low-lying collective states con-
sidering as test cases the chain of Sn isotopes as well as its
even neighbors Cd and Te. As a particular example of such
an effective force, we used the Skyrme-Hartree-Fock scheme
augmented by a short-range pairing force. To that end, we
used a representative sample of different Skyrme forces as
well as two different pairing models(volume pairing versus
density-dependent pairing). The spectra of collective quadru-
pole vibrations were computed in a two-step procedure:
First, mean-field calculations with quadrupole constraint and
self-consistent cranking were performed which provide the
microscopic input for a collective Hamiltonian in terms of
potentials, masses, and moments of inertia. Second, the col-
lective Schrödinger equation thus obtained is solved in the
space of the five quadrupole coordinates. Care has been
taken to subtract correctly the zero-point energies from spu-
rious collective fluctuations in the mean-field states and to
respect the topology of the quadrupole space. As a simplifi-
cation, we use axially symmetric mean-field calculations and
interpolate triaxial properties between prolate and oblate
shapes. This is an acceptable approximation for the nearly
spherical soft vibrators considered in the present survey.
Pairing is treated at the level of BCS with particle number
correction in terms of the Lipkin-Nogami approximation. A

FIG. 8. As Fig. 7, but now for DDDI pairing.

FIG. 9. Isotope shifts of the charge r.m.s radii,dkr rms
2 l66,N, rela-

tive to 116Sn. Upper panel: comparison of results from the four
forces SkI3, SLy6, SkM*, and SkO including collective ground-
state correlations. The expectation valuekr2l is calculated here ac-
cording to Appendix(A6). Lower panel: Comparison of pure mean
field result with those including correlations for the force SkI3. The
experimental data are taken from[44].
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final fine-tuning of the average particle number is performed
also for the collective states.

We find three regimes: collective properties are dominated
by the pairing gap forNø76, they are dominated by the
spectral gap of the neutron level for 76øNø82, and a sud-
den transition to prolate ground-state deformations emerges
for N.82. In the pairing dominated regime, the results for
the 2+ excitation energies depend mostly on the pairing
strength and only weakly on the Skyrme forces(with the
exception of the force SkO, which behaves a bit strange as a
consequence of the constraint on the two-nucleon shell gas in
the fit). As all pairing models used here were fitted to the
odd-even staggering in the Sn region, we find generally nice
agreement with experimental data in that midshell region. In
the shell-gap-dominated regime, on the other hand, a strong
sensitivity to the Skyrme force develops due to a strong re-
lation to the spectral gap which, in turn, depends sensitively
on the effective mass. These features persist into the regime
aboveN=82. The result for the transition probabilities[the
BsE2d values] shows larger deviations from the data(up to a
factor of 2). This is not surprising becauseBsE2d values are
generally more demanding to any model.

To summarize, we have shown that Skyrme forces have,
in principle, the capability to describe low-lying collective
spectra. In practice, the success depends on the actual param-
etrization used. Turning the argument around, we find that a
systematic investigation of collective spectra delivers ex-
tremely useful information for the selection of parametriza-
tions and the development of improved effective forces. This
calls for more systematic investigations.
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APPENDIX A: MICROSCOPIC COMPUTATION OF
COLLECTIVE OPERATORS

1. The deformed mean field

The microscopic basis is a self-consistent mean-field ac-
cording to SHF with DI or DDDI pairing(for details, see
[23]). The SHF-BCS equations describe the nuclear state in
terms of a set of single-particle stateswn with associated
BCS occupation amplitudesvn. These together compose the
BCS stateuFl=Pnsun+vnân

+â−n
+ duvacl whereun=Î1−vn

2. As a
synonym for its content, we denote it byuFl;hwn,vnj. In
practice, we go somewhat beyond the BCS scheme by using
the Lipkin-Nogami(LN) approximation for particle number
projection[45]. The mean-field equations can be summarized
as

Sĥ − o
n

seF,nN̂n − e2,nN̂n
2d − lQ̂20DuFa20

l = EuFa20
l,

sA1ad

Q̂20 = r2Y20fcutsr d, sA1bd

a2m =
4p

5

kFa20
ur2Y2muFa20

l

Ar2 . sA1cd

The ĥ is a two-quasiparticle operator which itself depends on
the state on which it acts. The actual form is obtained by a

functional derivative of the given energy functional. TheN̂n

is the operator of proton or neutron number. The Fermi en-
ergy eF,n is chosen to tune the correct particle number in the
average, i.e.,

eF,n ↔ kFuN̂nuFl = Nn. sA1dd

For simplicity, we write in the following one particle-number

term as representative of both. The term~N̂n
2 accounts for

the approximate particle-number projection and its parameter
e2,n is given according to the LN recipe, taking properly into
account the feedback from the mean field to the variances
[45]. The LN scheme performs also an approximate variation
after projection. This yields a finite pairing gap under any
conditions, even at shell closures. And this is the feature we
need to have a smooth evolution of the gap along the collec-
tive deformation path. Pure BCS can lead to discontinuities,
which lead to discontinuities in the collective Hamiltonian.

The stationary mean-field equations without constraint
provide only a few well isolated states, the ground state, and
perhaps some isomers. In order to describe motion, one
needs to consider a time-dependent mean-field theory, such
as, e.g., time-dependent Hartree-Fock(TDHF). Large-
amplitude collective motion is related to low-energy excita-
tions, thus slow motion. This justifies the adiabatic limit
known as adiabatic TDHF(ATDHF) [32,33]. It yields at the

end an optimized constraintQ̂ and subsequent collective path
huFqlj, whereq stands for a continuous series of deforma-
tions. The fully self-consistent optimization of the path is
very cumbersome. It is a widely used approximation to use a
simple quadrupole constraint as in Eq.(A1b). The anomalies
at large distance are avoided by a cutoff functionfcut for
which we use a Woods-Saxon shape[46]. The states are
labeled with the dimensionless quadrupole moment(A1c),
which is rescaled with the total particle numberA and the
rms radiusr. The indexm can run over −2, −1, 0, 1, and 2.
The path will be computed only along axially symmetric
shapes corresponding tom=0.

The numerical solution is done by standard methods.
Wave functions and fields are represented on an axially sym-
metric grid in coordinate space. An accelerated gradient
method is used to iterate the single-particle stateswn into
their stable solution[47] while the BCS+LN equations for
vn are solved in each iteration step. An extra iterative loop is
included to maintain a wanted value ofa20 [48].

Knowing the path yields immediately the raw collective
potential as

Vsa20d = ESHFsuFa20
ld, sA2d

whereESHF is the total SHF+BCS+LN energy for the given
mean-field stateuFa20

l including a c.m. correction as appro-
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priate for the given force[23]. The actual computations ex-
ploit explicit expressions in terms of the single-particle states
wn and their occupation amplitudesvn.

2. Computation of masses

The collective path allows us to define a collective mo-

mentum operator as the generator of deformationP̂auFa20
l

=i]a20
uFa20

l. At the same time,P̂a can also be interpreted as
the momentum operator associated with collective dynamics.
The collective pathhuFa20

lj is complemented by the dynami-
cal response of the system by adding a dynamical constraint

−mP̂a to the mean-field equations, yielding eventually a dy-
namical collective path. The adiabatic approximation allows
us to handle the dynamical part in the linear regime, i.e.,

uFa20pa
l < s1 + ipaQ̂a

sdyndduFa20
l. sA3d

The solution of the linear-response equation thus obtained

provides the dynamical response generatorQ̂a
sdynd. Note that

the whole energy functional is involved in the response. This
is called self-consistent, or ATDHF, cranking, see, e.g.,
[33,49]. The inverse collective mass for quadrupole motion
is then obtained in a straightforward manner as

B =
1

2
U ]2ESHFsuFa20pa

ld

]pa
2 U

pa=0

;
1

2
kFa20

ufQ̂a
sdynd,fĤ,Q̂a

sdyndgguFa20
l. sA4d

The second form with the double commutator is not strictly
applicable in connection with energy functionals(where the

full Ĥ is not given). It serves here only as a notational ab-
breviation to establish contact with standard formulas for
cranking masses.

The same procedure is applied to the dynamical response
to rotations. The collective momentum is already known here

as it is the angular momentum, e.g.,Ĵx. Solving the equations
for the corresponding dynamical response yields the momen-
tum of inertia as

1

2Qxx
=

1

2
U ]2ESHFsuFa20vld

]v2 U
v=0

;
1

2
kFa20

ufQ̂J
sdynd,fĤ,Q̂J

sdyndgguFa20
l, sA5d

and similarly for y and z. The operatorQ̂J
sdynd carries the

dynamical response in the same manner asQ̂a
sdynd does that

for the quadrupole motion. In practice, we are considering
only axially symmetric shapesa20. For them, we obtain

Qxx = Qyy = Q, Qzz= 0.

For the case rotation, we simplify the response problem by

computing the response with the stationary mean fieldĥ only
(Inglis cranking). The approximation works very well for the
considered cases. The critical region of small deformations

[50] does not contribute due to the topological switching
(A7).

For the full five-dimensional quantum corrections(see the
next subsection subsection A 3), we also need to compute the
inverse collective massBg and widthlg for vibrations in the
g direction. We do that for the vicinity of axial shapes by
means of linear response. And we employ here the Inglis

approximation using only the mean-field Hamiltonianĥ in
the response equations. All together, we have then the nec-
essary ingredients concerning masses: the inverse massesB,
Bg s=Bd, and the momentum of inertiaQsa20d.

3. Quantum corrections

The GCM ansatz for the collectively correlated state is
written as a coherent superposition over the path. However,
the states of the path correspond to wave packets in quadru-
pole space rather than to eigenstates ofa20 (and similarly for
the dynamical extensions inpa andvcrank). Thus they contain
spurious contributions from collective motion which contrib-
ute to any expectation value. The strongest effects are found
in the energy expectation values which constitute the raw
collective potential(A2). These spurious contributions need
to be subtracted. That is what one calls the quantum correc-
tions or zero-point energies(ZPE) [12].

The correction for spurious center-of-mass motion is al-
ready part of the standard SHF scheme. The most important
for the collective dynamics is the vibrational-rotational cor-
rection. These need to be considered as one entity because
vibrations and rotations are closely connected pieces of the
nuclear quadrupole topology. The recipe for purely axial vi-
bration and rotation was given in[12,37]. A recent model
calculation has confirmed that ansatz and proven that the
correction provides also a very good approximation to
angular-momentum projection, again for heavy nuclei. Here
we want to account for the whole five-dimensional quadru-
pole dynamics(see Appendix A 5). Thus we are using the
properly generalized rotational-vibrational correction

Equad
sZPEd =

lb

4Mb

+
]b

2V
4lb

, sA6ad

lb = 2kFa20
uP̂a

2uFa20
l,

P̂buFa20
l = i]buFa20

l,

Etriax
sZPEd =

lg

4Mg

+
]g

2V
4lg

<
lg

4Mg

, sA6bd

Erot
sZPEd =

lrot

4Q
, sA6cd

lrot = 2kFa20
uĴx,y

2 uFa20
l, sA6dd

where Ĵx,y is the angular momentum about thex or y axis.
The widths are the same forx and y because we evaluate
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everything at axial symmetry, i.e., at the pointg=0. The total
ZPE is decomposed as

Etot
sZPEdsa20d = F5 − 4gSlrot

4
DGEquad

sZPEd + 2gSlrot

4
DErot

sZPEd

+ 2gSlrot

4
DEtriax

sZPEd, sA7ad

gsad =

E
0

1

dxasx2 − 1deasx2−1d

E
0

1

dxeasx2−1d

. sA7bd

There is also a correction from spurious particle number
fluctuations. This is already taken into account in an approxi-
mate manner by the Lipkin-Nogami scheme added on top of
the BCS pairing.

All together, the quantum-corrected collective potential
reads

Vsa20d = Vsa20d − Etot
sZPEdsa20d. sA8d

This is the quantity entering the collective Hamiltonian. The
masses are associated with the collective kinetic energies
which are already of second order in the collective momenta.
The quantum corrections on masses would correspond to
terms of fourth order and are neglected.

4. Retuning the particle number

All states along the collective path are tuned to have the
same average proton and neutron number. The energies are
corrected by approximate particle-number projection at the
level of the LN scheme. But the BCS states from which the
collective path is composed still carry these particle-number
fluctuations. As a consequence, the coherent superposition of
the states along the path may change the average particle
number again. One needs to readjust the correct average at
the level of the collective dynamics[51]. To that end, one
builds the collective picture of the particle number operator

N̂−N in precisely the same manner as was done for the
Hamiltonian. One obtains a particle-number potential,
particle-number masses for quadrupole as well as triaxial
motion, and particle-number contributions to the inertia. The

expressions are the same as above withĤ replaced byN̂. The

collective image ofN̂ is added as a constraint in the collec-
tive Schrödinger equation.

5. The collective Schrödinger equation

Axially symmetric quadrupole deformations are labeled
by a20. The full space of quadrupole deformations is ex-
plored when considering alla2m with mP h−2,−1,0,1,2j.
This is convenient for spherical vibrator nuclei as it implies
automatically the correct number of vibrational degrees of
freedom. It is, however, not well suited for deformed nuclei
because rotations look rather involved in that frame. It is
customary to transform by appropriate rotation into an intrin-

sic frame wherea2±1=0 and a22=a2−2. This defines three
Euler anglesq as rotational coordinates. The remaining two
relevant deformation coordinatesa20 anda22 are expressed in
terms of total deformationb and triaxiality g as a20
=b cossgd and a22=b sinsgd /Î2 [20,52]. Each triaxialityg
which is an integer multiple of 60° corresponds to an axially
symmetric shape. The casesg=0°, 120°, and 240° corre-
spond to prolate axial deformations whileg=60°, 180°, and
300° are oblate. Relevant information is contained in one 60°
sector of the plane, e.g., in the segmentgP f0° ,60°g. The
other segments can be reconstructed by axis exchange of
principal axes. This symmetry under axis transformation has
important consequences for the representation of wave func-
tions and potentials in the collective Schrödinger equation:
One has to obey mirror symmetry underg→−g and axis-
rotation symmetry underg→g+120°. The five-dimensional
volume element d5a reads in the b-g frame d5a
=b4usins3gdudbdgd3u, where theu are the three Euler angles
for the transformation from the laboratory frame into the
intrinsic frame. In the following, we will use the notation
d5a as shorthand for the lengthy right-hand side.

The collective Hamiltonian has the form of a Bohr-
Hamiltonian [1,3] generalized tob-g-dependent masses
(A9a) [16,18,19],

Ĥscolld = −
1

b4]bBsb,gdb4]b −
1

b2 sin 3g
]gBgsb,gdsin 3g]g

+ o
k=1

3
L̂k8

2

2Qksb,gd
+ Vsb,gd, sA9ad

Xsb,gd =
Xsbd + Xs− bd

2
+

Xsbd − Xs− bd
2

coss3gd,

X P hB,Vj, sA9bd

1

Qksb,gd
=

3

4 sin2Sg −
2p

3
kDF

1

2
S 1

Qsbd
+

1

Qs− bdD + S 1

Qsbd

−
1

Qs− bdDcosSg −
2p

3
kDG, k P h1,2,3j sA9cd

kquLMl = CLMsb,g,qid = o
n

cn
Lsbdxn

LMsg,qid, n = 0,1, . . . ,

sA10ad

hxn
00sg,qid,n = 0,1, . . .j = Ohcoss3ngdD00

s0dj

= HÎ2n + 1

32p2 Pnfcoss3gdgJ ,

sA10bd
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hxn
2Msg,qid,n = 0,1, . . .j

= OHcosslgdDM0
s2d − s− 1dl%3sinslgd

DM,−2
s2d + DM,2

s2d

Î2
J ,

sA10cd

l = 3Fn

2
G + n % 2 + 1,

whereO means orthonormalization of the set,[¯] the inte-
ger part of a fraction, anda%b the modulo ofa with respect

to b. The operatorL̂k8 denotes the angular momentum in the
intrinsic frame. The deformed SHF calculations provide in-
put along axially symmetric deformationsa20_0. The col-
lective dynamics needs to be performed properly in all five
quadrupole degrees of freedom. No strong peaks or wells in
the g direction are to be expected for the nearly spherical or
weakly deformed soft vibrator nuclei which we will consider
here. It is thus an acceptable approach to interpolate the axial
microscopic results into the fullb-g plane. While potential,
inverse masses, and particle-number masses could be inter-
polated in a straightforward manner by Eq.(A9b), the mo-
ment of inertia has three components. Respecting the collec-
tive symmetries, we reconstruct them from the axial
information as Eq.(A9c). The deduction from axial informa-
tion implies that we neglect theb-g coupling in the kinetic
energy, i.e.,Bbg=0. The collective particle-number operator

Ĥscolld is composed in the same form with the corresponding
particle-number masses, potentials, and moments of inertia
inserted.

The collective Schrödinger equations read now

sĤscolld − eF
collN̂scollddC = EC, sA11d

where the correction of the Fermi energyeF
coll is to be ad-

justed such thated5aC+N̂scolldC=N.
The dynamics is formulated in the wholeb-g plane but all

necessary information is contained already in a segment of

60°, as discussed in Appendix A 5. In order to meet the in-
herent symmetry conditions[1], the wave functions of a 0+

and a 2+ state are expanded in a symmetrized base(A10)
where the base moden=0 determines the overallb depen-
dence and the highern shape the profile in theg direction.
The Hamiltonian is very soft ing such that fewn terms
suffice for convergence(two or three, never more than five).
The DM,K

sLd sqd are the well known WignerD functions de-
scribing the rotation matrices for a state with angular mo-
mentumL [53]. It is noteworthy that the structure of the
rotational energy is that for the most general case where the
considered nuclei have no special symmetry. For that reason
the 2+ state must be a sum over all possiblez projections of
the angular momentum which areK=0, ±2 in the intrinsic
frame.

The remaining collective equation for the components
cn

Lsbd is solved numerically with standard methods. The
wave functions and fields are represented on an equidistant
grid in b. Gradient iteration is used to find the few lowest
eigenvalues and states.

6. Computation of observables

The solution of the collective Schrödinger equation, as
outlined in the previous section, provides the energies di-
rectly. Expectation values and transition moments of other

observablesÔ need yet to be computed. The steps are, in
principle, the same as done before for the energy(5 Hamil-

tonian Ĥ, respectively) and for the particle numberN̂. One
has first to determine the collective image of the given ob-

servableÔ→Ocoll and computes then the expectation value
of that image with the collective wave functions[12]. Actu-
ally, we do that for the computation of the transition prob-
abilities 0+→2+, the protonBsE2d values. The observable

here isÔ;Q̂20,prot. In the case of the isotope shifts, the ob-
servable is the collective mapping of the radius. At present,
we approximate the collective image by the raw expectation
value only and neglect the kinetic corrections.
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