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Skyrme energy functional and low lying 2" states in Sn, Cd, and Te isotopes
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We study the predictive power of Skyrme forces with respect to low lying quadrupole spectra along the
chains of Sn, Cd, and Te isotopes. Excitation energiesB{&@) values for the lowest quadrupole states are
computed from a collective Schrddinger equation which is deduced through a collective path generated by
constraint Skyrme-Hartree-Fo¢SHP plus self-consistent cranking for the dynamical response. We compare
the results from four different Skyrme forces, all treated with two different pairing fofealsime versus
density-dependent pairingThe region around the neutron shell clostire82 is very sensitive to changes in
the Skyrme while the midshell isotopes in the reghbrt 82 depend mainly on the adjustment of pairing. The
neutron rich isotopes are most sensitive and depend on both aspects.
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[. INTRODUCTION level and compute low-energy spectra directly from the co-
. . ) herent superposition of the collective path; these sophisti-
A key fe'ature of puclear excitations is the low-lying 2 cated calculations imply exact projection for the conserved
states. Their properties delivered crucial input for deveIOp'n%uamities as particle number, angular momentum, and cen-
an understanding of nuclear structJfg2]. At first glance, (ﬁr of ma,ss; there are many’published results ar’o(lwmi

they suggest the collective picture of the nucleus as a liqui ention herg14,15 as two recent examplgsOn the other

drqp which can undergo_ globallquadrupole oscillations anﬁhand, one finds several approximations to the microscopic
which freeze under certain conditions to a stable rotator. Th'%omputation of the Bohr-Hamiltonian; most applications
view has been formulated in terms of the BOhr'Ham'lton'an’hitherto employ a phenomenological shell model to describe

Whl'cz estabhsr}efs adcolleche dynarmics in ;hﬁ f've”qu".idruihe deformed mean field, see, e[d.6]. There are also sev-
pole degrees of freedof8]. The parameters of the collective g5 seif consistent calculations along that line; for an early

Hamiltonian hav_e to_be adjusted phenomenologically, Seeexample, seq17] and for more recent achievements see
e.g., the applications if]. The collective approach has been [18,19
freVIv(;ad V_\(’j'th the |3terac|t_|ng_boson dmoctd!BM), which hbas An alternative direction of development remains at the
oun IWI e?plr_ea app 'Cat'?” aln was proven éo € Xmicroscopic mean-field description and makes it manageable
tremely useful in sorting nuclear low-energy SpedBh . by restricting considerations to small-amplitude motion. This
The qollgctlve picture is seemingly in contrast to the mi-yields the much celebrated random-phase approximation
croscopic view, which sees the nucleus as consisting of shel PA), which has its stronghold in the description of giant
qf single nucleon§ arranging them;elves in-a common Meafygonances, see, e.[20]. The appropriate extension to non-
field [6,7). The views can be unified by the concept of a\oseq shells with pairing is the quasiparticle REPRPA),
deformed mean field, which establishes a relation between Rhich has only recently been developed up to a rigorously
single-partigle shell. structure and global deformgtimg]. self-consistent level21]. The QRPA describes formally the
The .colle?tlxe motlorf1. IISd th.enl underr;stogd asOV|brath(m_n whole excitation spectrum, including the low lying &tates,
rotation of the mean field simiar tqt € Born-Lppenneimer 5, q jt optimizes all states automatically. It assumes, however,
method for describing molecular vibrations. The connectiory, ., amplitudes, i.e., harmonic motion. This is perhaps le-
IS esdt_abllshed ﬁn ééol\;lmailg foun(:]_lehvzl by _Lhe geﬂeratobitimate close to magic nuclei but somewhat dubious else-
qoordmate met od h ) [10,11, w Ic efscrl €S COlleC- \yhere. The above mentioned theories for large-amplitude
tive dynamics as coherent superposition of & continuous Seby)active motion concentrate on the lowest state only but try
of deformed mean-field states, called the collective path. The, i\ o into account all effects of anharmonicity due to soft
GCM within the G_aussnan overlap apprOX|ma_1t|¢§B\OA) _aI- potential energy landscapes and shape isomerism. The fully
lows us to establish contact between the microscopic founﬂedged adiabatic time-dependent Hartree-Fock methde
dation and a collect_lve Bohr—HgmH_toma[riZ,l:«]. Starting DHF) provides an unambiguous optimization scheme for the
from the GCM, the lines of applications spread enormOUSIVIarge-amplitude collective pati2,22. However, that rather
) ; . O . 10"3nvolved scheme has not yet been used for heavy nuclei, as
which skip the collective Hamiltonian as an intermediate,, oo going to study here. We use presently ATDHF only to
compute the self-consistent collective mass and employ the
more intuitive constraint Hartree-Fock method to generate
*Electronic address: reinhard@theorie2.physik.uni-erlangen.de the path.
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The connection from a microscopic Hamiltonian to col-  TABLE I. Pairing strengths for the two pairing recipes and for
lective spectra via a large-amplitude collective path is wellthe Skyrme forces used in this paper. The strengths are given in
established by virtue of the GCM. An open problem is theunits of fmi™.
microscopic input. Self-consistent nuclear mean-field models

employ effective energy functionals such as, e.g., the VE,D') Vﬁ,D') \/pDDD') V;DDD')
Skyrme-Hartree-Fock method, the Gogny force, or relativis-_ -

tic mean field; for a recent review, s¢23]. These are em- SkM 279.1 259.0 990.0 802.0
pirically adjusted to nuclear ground-state properties of stabl&-Y6 298.8 288.5 1053.1 864.2
nuclei. There exists a large number of equivalent parametriSki3 335.4 3316 1233.0 996.0
zations which provide comparable ground-state propertieSkO 253.0 269.0 1007.4 893.7

but can differ substantially in predictions to exotic nuclei or
resonance excitationi23,24. It is by no means guaranteed ) ) )
that all mean-field parametrizations produce at once the cof-d-, isovector forces or surface properties. We are going to
rect collective low-energy vibrations. The contrary is to be@pPply here the Skyrme functionals to a regime far from what
expected, name|y a broad span of predictions among Wh|chad been considered in the fits. It is thus important to eXplore
only a few parametrizations deliver a satisfying spectrum. T minimal variation of parametrizations within the Skyrme
phrase that positively, low-energy vibrations provide usefuffamework. We will consider here SkM* as a widely used
information for a better selection of mean-field parametrizalraditional standard25], Sly6 as a recent fit which includes
tions. We aim here at a first exploration of the connectioninformation on isotopic trends and neutron maf8], Ski3
between mean-field parametrizations and emerging lowas a fit which maps the relativistic isovector structure of the
energy spectra. We do that for the Skyrme-Hartree-Fock apsPin-orbit force and takes care of the surface thickn2k
proximation by comparing the results of several differentand SkO[29] as a recent fit relying on the same fit data as
Skyrme forces and pairing recipes. SkI3 but with additional constraint on the two-nucleon sepa-
It is obvious that such systematic studies need to confingation energies arourfd®b and with a better adjusted asym-
the subject and the method in order to keep things managénetry energy. That selection contains a large span of effec-
able. As test cases, we consider the lowe'sstte in the tive masses: Ski8:m*/m=0.6, SLy6-m*/m=0.7,
chain of Sn isotopes and its even neighbors Cd and Te. Thes&kM* <> m*/m=0.8, and Sk@>m*/m=0.9. The effective
share basically one type of collective motion being predomimass has an influence on the level density near the Fermi
nantly soft vibrators. For the practical technique, we employsurface, which, in turn, may have an effect on the low-energy
GCM-GOA through a microscopically computed Bohr- collective states. There is also a difference in the isovector
Hamiltonian. For reasons of simplicity, the microscopic in-and spin-orbit properties. Besides the effective mass and
formation is computed along axially symmetric shapes and@symmetry, the bulk parametetgquilibrium energy and
interpolated into the full space of quadrupole degrees of freedensity, as well as incompressibilitare comparable.
dom. This approximation allows large-scale scans and it is The second key ingredient is pairing. A present-day stan-

acceptable for soft vibrators as they are studied here. dard is to use a zero range pairing force often called volume
pairing. We will use the notio-interaction(Dl) pairing. A

widely used variant for the pairing force is a density-

Il. FORMAL FRAMEWORK . . .
dependent interaction(DDDI) [30]. Both recipes are sum-

A. Underlying microscopic model: Input parameters marized as
As a starting point, we take a microscopic mean-field (o) VO 51y —r,)
- - - ypain =4 ¥ 1
theory at the level of the Skyrme-Hartree-Fock model aug V(VDDD')5(F1— 0 = p(T) o). (1)

mented by pairing in the BCS approximation plus the
Lipkin-Nogami correction for approximate particle number The pairing strengths oV(VDDD') are adjusted to odd-even
projection. This is a standard approach in nuclear structurétaggering of binding energies in a few representative
physics. We refer the reader B3] for a detailed description semimagic nucle{Sn and Pb isotope®=82 isotones The
of the energy functional and subsequent mean-field equadjustment is done for each force separately because the
tions. We recapitulate here only briefly the spectrum of vari-much different effective masses call for different pairing
ants of that model, which will play a major role in the fol- strengths. The actual values used here are given in Table I.
lowing discussions. The pairing recipe is to be augmented by a cutoff in
The mean-field part is determined by the Skyrme energgingle-particle space. We use a smooth cutoff with a Woods-
functional Eg\(p,, 7., J,,],,0,) Which depends on the local Saxon profile in the single-particle energies. The switching
density p,, kinetic-energy density,, spin-orbit density7,,  energy is chosen such that the pairing space coveié’?.6
currentj,, and spin-densityr,, and whereq means protons particles above the Fermi energy; for details, $8&. In
or neutrons. The functional form has been basically settle@rder to explore the influence of the pairing recipe, we will
for two decadeg25] with minor extensions in later stages also discuss deliberate rescaling of the pairing strengths.
(e.g.,[26,27). However, there exists a great variety of actual
parametrizations for the Skyrme energy functional. Most of B. Deduced collective dynamics
them provide a high-quality description of nuclear bulk prop-  The mapping from the microscopic to a collective de-
erties as binding energies and radii. They differ in details asscription is performed with the generator-coordinate method
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(GCM). This is a much celebrated method in nuclear struc- 070 P
ture physics; for a review see, e.ff12] and for a brief sum- -1075 I, ZPE corrected ]
mary sedq23]. We outline here the basic steps and provide a -1080 N
more detailed compact account in Appendix I. 1085 F

The stationary mean-field equations as such provide only < 1090 T
a few well isolated states, preferably the ground state and 2 :?gg
perhaps some isomers. Each state is characterized by one w :1105 I
BCS wave functiond) which is composed of a set of single- 110
nucleon wave functions together with their occupation am- 1115 | 1
plitudes. In order to describe motion, one needs to consider a 1120 } 1925 (SKig) |
time-dependent mean-field theory, in the nuclear community 1125 . . . . .
often called time-dependent Hartree-Fo@DHF). Large- 0.4 02 0 02 0.4
amplitude collective motion is related to low-energy excita- @20

tions, thus slow motion. This justifies the adiabatic limit
E?;‘%n V\?f?erpéTDs?ai dlst f)(glrecl:%sntiert;{u:)hues ggges ot;c:j"eefgtr“r:qeatpath V including the zero-point energy correctio@6), both drawn as
a’ds = q . 1ONS: £ nction of the intrinsic axial quadrupole momentagy,. Test case
_predommantly of quadrupole type because nuclel_are softe_gst 13251 computed with DI pairing and Ski3. The position of ttje 0
in that degree of freedom. The dynamical aspect is added iground state and the first 2tate are indicated by horizontal bars.

first order of collective velocity, i.e., in terms of linear re- The difference between the minimum Wfand the ¢ energy is the
sponse to a collective displacement. It is a widely used apcorrelation energy\E,

proximation to determine the collective path from quadru-
pole constrained Hartree-Fock-BGSHF).
A systematic theory for an optimized collective path is

FIG. 1. The raw collective potential and the effective potential

corr

a numerical robust computation of potentials and masses in
. _ X the intrinsic frame(defined by a diagonal inertia tengor
pro"'d‘?d by ad|gbat|c TDHEATDHF). [3.2_34‘ _The_qver- [36,37. This provides an interpolation scheme to connect
whelmmg_ majority O.f pracchI applications simplifies th? safely the near-spherical shapes with larger deformations.
E'onftrucltzlonk F[)y us?g athS|mpIgrhquadtrrl11pole con?trsmt After all, we restrict the microscopic calculations to axial

i T}r r;e- ock 1o prob uce IEDQ>' hi ?1 E’ﬁ ’ (I)Incﬁ esta t-' symmetry. The fully five-dimensional quadrupole dynamics
IShed, Serves as a basis along which the collective MOLoRL \ocqyered by interpolation of the collective potential and
expands_. The correqundmg microscopic state Is desc_nbed fifasses between prolate and oblate shapes into the triaxial
a collective superpositiohl’) = dq|qu>f(q). The state) is plane. This approximation saves two orders of magnitude

Optimized. by a variational prinpiple. Th_is is the fully fledg_ed computation time and thus allows the large-scale systematics
GCM, which can be attacked in a strwghtfomarg numericalys \ye intend it here. On the other hand, it is well justified at
manner, see, e.g{14,15,33. However, that is still a very 54 i the vicinity of the spherical shape. The test cases for
demanding task and not so well suited for broad surveys ag,q present study are Sn isotopes and its even-even neighbors
we intend it here. As a simple, efficient, and reliable shortcut~y 5nq Te, which are predominantly soft vibrators around

we use here the Gaussian overlap approximat®®A),  gpherical mean. Moreover, we confine the study to the first

which parametr_izes the norm and Hamiltonian overlap ingyiteq 7 state (and occasionally to the*Oground state
terms of Gaussians, e.g., for the norm overlagdg @)

n i ) / which both are not very sensitive to details in the triaxial
=ex-N(q-q')*/4]. It provides an acceptable approxima- pjane. All that considered, the triaxial interpolation is a use-

tion, particularly for medium and heavy nucldi2,3§. The  fy| and legitimate approximation for the intended systematic
GCM-GOA vyields at the end a fairly simple collective expjorations.

Hamiltonian where the collective potentials and masses are
unambiguously computed from the microscopic energy func-
tional and the collective path. Quadrupole motion has five
degrees of freedoni3-5. The emerging collective Hamil- In order to exemplify details of the calculations, Fig. 1
tonian thus has the form of a generalized Bohr-Hamiltoniarshows for the case of’Sn the collective potential before
while its potentials and masses are computed from microand after zero-point energy correctiGhPE) (A6). The ZPE
scopic input[16,18,19. induce obviously a strong global down-shift in energy be-
The practice of GCM-GOA is a bit involved; see the Ap- cause the spurious energy content from collective fluctua-
pendix for a few more details. We summarize here the stepgions in the|<I>q> is subtracted. Moreover, they may change
The energy expectation value along the path yields a rawhe shape of the potential. The corrected potential has its
collective potential(q). The collective mass and moments minimum at a slightly deformed position, although the dou-
of inertia are obtained by dynamical linear response about kly magic 13231 is a perfectly spherical nucleus in a pure
given point at the path often called self-consistémt AT-  mean-field descriptioisee the well defined spherical mini-
DHF) cranking[33]; as an approximation, Inglis cranking is mum in V). This is the same effect as happens in variation
used whenever justified. Zero-point energy corrections to thafter rotational projectioifor a model discussion, s¢86]):
potential are computed from these masses and the collectisowing that the projection restores spherical shape anyway,
fluctuations(quadrupole, angular momentyrof the states the system takes advantage of a small deformation to acquire
|d>q>. In fact, a topologically corrected GOA is used to allow correlation energy. It is comforting that we see the same

C. An example for potentials and masses
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TABLE IIl. Comparison of theE(2*) energies in**2Sn for the
various Skyrme forces with the spectral gapstifsn and the ef-
fective masan*/ m associated with the forces.

=

(]

2 Force Ski3 SLy6 SkM*  SkO

b

(3

o E(2*) (MeV) 4.36 3.76 3.94 2.41
spectral gap protondvieV) 6.6 6.2 6.4 6.0
spectral gap neutron®ieV) 6.6 6.0 54 4.0
m*/ m 0.6 0.7 0.8 0.9

gaps and these lowest one-particle—one-hdlgh) transi-
tions take the lead in the composition of the loweStstate.
Correspondingly, both quantities share the same trends. The
. . . : . . . spectral gap, in turn, is related to the effective nagg m of
66 70 74 78 82 86 90 the forces. We see that also in Table Il where low/m
Neutrons correlate to large gaps and vice versa. But the step down to
the rather low spectral gap for SkO is much larger than the

FIG. 2. EnergiesE(2") and B(E2)| values (=[(0*|Qzw|2)[°)  step up in effective mass. Here we see also an interference
along the chain of Sn isotopes calculated using the four differenfrom the very strong isovector spin-orbit force of SkO, an-
Skyrme interactions as indicated. The experimental results are takesther important contributor to shell effects. Table Il further-
from [38]. more, demonstrates the effect of the residual interaction in

that theE(2*) are generally 1.5 MeV below the lowespi
effect here because our treatment of quantum correctiosnergy. This allows us to postulate a simple criterion for the
should include a good approximation to rotational projectionselection of forces: the lowest spectral gap*#Sn (and

Figure 1 also indicates the position of the@round state  other doubly magic nuclgishould stay safely above the ex-
and the first excited 2state. The Plies above the bottom of perimentalE(2*), which is 4.04 MeV for*?Sn. The force
the intrinsic potentiaV as it should be, to account for the SkO clearly fails in that respect. The reason is that SkO was
correct physical zero-point energies, but it stays below thditted to match the two-nucleon shell gaps at doubly magic
minimum of the raw potential? because the larger spurious 2%pp already at the level of pure mean-field calculations
zero-point energy had been subtracted before adding th@9]. Meanwhile, it has been shown that collective correla-
physical one. The net effect is a correlation enefdy.,, tions reduce the two-nucleon shell gaps by 1-2 M&9].
which expresses that the collectively correlated ground statghe fitting strategy of SkO thus squeezes the spectral gap too
is better bound than the mean-field ground state. Tret@te  much with the obvious consequence that the collective spec-
lies, of course, above the)Gtate. The quantity of interest tra are spoiled throughout. This mismatch is thus a strong
here is the excitation enerdy(2"), which is computed as the hint on the inner coherence of Skyrme forces connecting the
difference between the total 2nergy and the Denergy. various observables.

Far away from the magidN=82, one expects that the
pairing gap dominates thE(2*) energy. The pairing force
was tuned in the same way to the odd-even staggering in Sn
A. Results for the chain of Sn isotopes isotopes andN=82 isotones. Thus the pairing gap is about
the same for all four Skyrme forces in the well pairing region
(N<80). We see indeed comparable energies for the three

Figure 2 shows the "2excitation energies and transition forces, SkM*, SLy6, and SkI3, which also hit very nicely the
strengths along the chain of Sn isotopes for the four chosesxperimental values. The force SkO, however, produces sys-
SHF parametrizations and in comparison to experimentalematically larger energies out there. This shows that shell
data. At first glance, we see that all calculations hit the righteffects (here probably from the spin-orbit forcéave also
order of magnitude. They also reproduce the increase of theome influence. Different relations are seen in the other pair-
E,+ at the shell closur&l=82. At closer inspection, however, ing regime for the neutron rich, exotic nuclei aboMe 82
we see interesting differences and mismatches in detail. where SkM* shows always the largest energies. This is at the

Let us first concentrate on the doubly magic caseNof same time a region of weak binding. This causes a strong
=82. Shell effects directly related to the SHF forces shouldnterplay of shell effects and pairing which are not easily
dominate here. And indeed, we see thatH(2") are closely  disentangled.
related to spectral properties. Table Il shows Hi2*) ener- Large differences are seen in the immediate vicinity of
gies in comparison to the spectral gaps of protons and nelN=82. All forces, expect SkO, reproduce nicely the sudden
trons in 1¥%Sn. The spectral gaps are the energy differencstep down fromN=82 and the asymmetry arourd=82,
between the highest occupied single-particle orbital and theamely the fact thaN=84 has lowelE(2*) thanN=80. But
lowest unoccupied orbitgknown as HOMO-LUMO gap in the results differ in the trends fdd=78. The case SkI3 fol-
molecular physics The neutrons show always the smaller lows nicely the smooth experimental trend while SkM* and

Ill. RESULTS

1. Variation of forces
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SLy6 show a spike. That is compensatedlat70 where now
SkI3 has a spike. In all these cases, we found that a larger
E(2") is related to a somewhat lower neutron level density at
the Fermi surface.

A much more critical test than excitation energies are the
associated transition probabilities, tB€E2) values. One is
usually happy to describe them within a factor of 2 or so, and
often the concept of effective charges is introduced to
achieve a fine-tunin@40]. The lower panel of Fig. 2 shows 0
the B(E2)7 values for the transitions. FoM<82, they are

6
)
51 ) -
SKI3 (DI*1.25) —8-—
4t Ski3 (DDDI)
3
2

E(2*) (MeV)

similar for all four forces in spite of the sometimes very o 08

different energies. But they all differ from the experimental e 067

data by about a factor of 2. The positive aspect is that the < _

theoretical results come so close at all in view of the fact that W 04T

the transition strengths are always much more demanding. D oot

The remaining mismatch can have various origifiy: We

use simply a quadrupole constraint to generate the collective _ 0

path instead of the variationally optimized ATDHF prescrip- é 20t

tion [32-34. (2) We use the raw quadrupole expectation = 15t

value rather than the fully mapped collective imagee Ap- g

pendix A6. (3) The effective energy functional is not fully s ror

suited to compute transition moments and effective charges 3 05}

had to be added for a correct descriptjdd]. Which one of © 0 : : . : . .
these approximations is most responsible has yet to be ex- 66 70 74 78 82 86 90
plored. Anyway, the results are not untypically bad because Neutrons

almost all microscopic approaches have a hard time with an

exact reproduction of transition moments. FIG. 3. EnergiesE(2"), B(E2)] values(=[(0*|Qzu[2)[?), and

The B(E2)1 in the region around the doubly magdit’sn ~ average neutron-pairing gaps at spherical shape along the chain of
surprisingly shows basically no differences between theSn isotopes calculated with SkI3 and three different pairing recipes:
forces, just in a region where the energies differ most. A very?iandard Di(circles, DDDI (boxes, and DI with 25% enhanced
interesting point is the magit’’Sn. Naive models predict a strength. The experimental results are taken f{].
dramatic drop in thé&(E2) at the magic point. A model study . .
taking care of the residual interaction and cross-talk betweeR2ifing and rhombus versus circle for reduced pajrinave
the neutron and proton quadrupole vibrations predicts the®n obvious effect. The pairing gap is increased or reduced
the B(E2) should, quite oppositely, have a peak¥sn[41].  and, subsequently, thE(2") energies change in the same
Our calculations confirm these estimates at a qualitativélirection. The effect is most pronounced in the regions suf-
level, namely to the extent that we also do not find any deeficiently far off N=82, where we expect a dominance of
dip in the B(E2). In our cases, the residual interaction wasParing in the collective spectra. The relative changes in ex-
obviously not large enough to turn that into a peak. But thes&!tation energies and pairing gaps are much larger than the
are quantitative details of the employed forces. change in pairing strength. Moreover, the excitation energies

The largest differences between forces for@E2)| val- ~ Pehave generally similar to the pairing gaps. This demon-
ues are seen in the deep exotic regifte 132. We are sure strates that the low-energy spectra in soft vibrators provide

that information abouB(E2) in that region would be valu- valuable information about the pairing strengths. One is
able. But before one can exploit that, one has to understa tempted to use that for an immediate tuning of the strengths.

. : . ;
(and possibly removyethe systematic overestimation still e run, however, mtg some conflict, becali@”) energies
seen on the lowA side. andB(E2)7 do not coincide at the same strength. Moreover,

one has to keep in mind that the information from lying
states is still mixed with effects of the mean field. This is a
general feature of nuclear structure, even for the odd-even
Figure 3 shows the collective spectra along the Sn chaigtaggering, which is usually taken as a benchmark for pairing
for SkI3 computed with different pairing prescriptions. We properties[42]. The interference of shell effects can be seen
have added in the lowest panel some information about thRere particularly well from some irregularity &t=68. The
internal pairing structure, namely the average neutronreduced pairing produces fdi=68 a strongly deformed
pairing gaps A=3 U0 A /2 U0, Which are deduced ground state which results in a sudden drop of H{g")
from spectral properties of the given nucleus at the sphericatnergy accompanied by a strong pealBiiE2)1. The aver-
shape(usually the minimum in the PBSand which, none- age gap shows no dramatic reaction because it remains re-
theless, provide a simple measure for the pairing gap ddated to the now irrelevant spherical shape. The DDDI pair-
duced from odd-even staggerinil]. The deliberately ing stays in most cases more or less close to the results of DI
changed pairing strengtliboxes versus circles for enhanced pairing, which is somewhat expected because it is tuned to

2. Variation of pairing recipes
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6 6 SKI3 (PNC) &
5t 5 Skl3 (no PNC) —&—
g Y g Y
= 37 = 3}
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3V al
g 2 \LI:J/ 2}
1} Tf
0 0
(\IA 08 B
e
e 06}
T 04l
w
o 0.2}
0 L r L A L L A O L L L L L L L
66 70 74 78 82 86 90 66 70 74 78 82 86 90
Neutrons Neutrons
FIG. 4. As Fig. 2, but now with DDDI pairing. FIG. 5. EnergiesE(2*) and B(E2)] values (=[{0*|Quu|2H?)

along the chain of Sn isotopes computed with SkI3 and DI pairing,

once with(solid line, full circleg and once withou{dashed line,
the same average pairing gap. However, DDDI pairing reactgpen circlg particle number restoration as outlined in Appendix
differently to shell effects, as can be seen in the vicinity of(A4). The experimental resultslotted lines, full squargsare taken
the shell closurél=82 and for the weak shell closure which oM [38]-
SkI3 produces aN=72. The DI pairing seems to comply
better with data. But that holds in connection with the par-
ticular shell structure of Ski3. Much more systematic inves-
tigations with varied forces and in other region of the nuclear
chart are necessary before drawing any conclusion like thawhere (:--) means the average in collective spacé,tioe
The B(E2)] values shown in the lower panel of Fig. 3 show ground state, 2the spectrum of 2states, and 2the lowest
generally smooth trends, except fdf=86, where an in- 2* state. We have c_hecked that and found that there is gen-
creasing trend sets on which is related to the increasing sofrally good exhaustion of the variance by the lowestThe

ness of these neutron-rich isotopes. The sensitivity to varyin§°!l€ctivé potential(ay,) of all these isotopes excludes ro-
pairing recipes is similar to what we have seen when varyin ors, so that we can conclude that they are good vibrators.

the forces: They vary little foN=<82 and more significant _ _
differences appear in the far exotic regimNe> 82. 3. Effect of particle-number correction

For completeness, it is worthwhile to look at the perfor-  The collective Schrédinger equation contains the particle-
mance of DDDI pairing also for the other Skyrme forces in,,mper correction wittN.y as discussed in Appendix Ad. It
the survey. That is shown in Fig. 4. It has to be compareds jnteresting to check the impact on collective properties.
with Fig. 2. Similarities and differences are about the same  Thjs js done in Fig. 5. There is minimal difference for the
for all shown forces. The average excitations in the We”B(EZ)T values. The main effect is seen for energies in the
pairing regime are comparable. The small fluctuations aboyegion of weak pairing, i.e., at and around shell closure. In
the average trends appear for DDDI at different places thagact, the particle-number corrected treatment seems to be a
for DI pairing. The most pronounced difference to DI is seenbjt more sensitive to shell structure, as can be seen from the
for the E(2) energy next to the magic neutron number, i.e..fact that calculations without the correction show generally
for N=80 and 84. DI pairing reproduces the steep experismoother trends. But this statement should be taken with a
mental drop while the DDDI results make a somewhat lesgrain of salt. The differences are anyway not very dramatic
dramatic step. Th&(E2)7 values shown in the lower panel in view of the effects we see when comparing forces and
are very similar to those from DI pairing. They seem here topairing recipes.
be the more robust signal. We conclude from these results
that theB(E2)1 are insensitive to pairing while they are the
much more sensitive observable in other respects, e.g., in its
dependence on the force. The Sn isotopes have a magic proton numbeb0. It is

A final comment on theéB(E2)T values: Good vibrators interesting to have a look at its even neighbors, Cd ith
and well-developed rotators are distinguished by the fact that48 and Te withZ=52. As a first impression, we show in
the lowest 2 state exhausts the quadrupole sum rule in colFig. 6 a direct comparison for a few selected isotones. The
lective space. The test for this feature is the comparison oéffect is obvious. The step from the magic proton number to
the variancg = quadrupole sum rujewith the B(E2) value,  the nonmagic ones reduces once moreEt&) energies by

(071Q%0% = 3 (2| Qud0"P=1(2}1Qul0B2.  (2)

B. Results for the isotopes of Cd and Te
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FIG. 6. Systematics of the energies of the first excitédtates
calculated with the microscopic Bohr-Hamiltoni&A9) using the 0
interaction SkI3 for the nearest even-even neighbors'%n. The
experimental results are taken frg@8].

62 66 70 74 78 82
Neutrons

a substantial factor, fully in agreement with the experimental 55| Slys —g— DI pairing

findings. The quadrupole mode in Cd and Te is much softer
than in Sn where the magic proton number enhances the
rigidity of the whole mode due to a strong residual proton-
neutron forcg43].

A summary of results for the Cd and Te isotopes using the

E(2*) (MeV)
&

four different Skyrme interactions SkiI3, SLy6, SkM*, and 05T
SkO is displayed in Fig. 7. For Te, th&2") from different 0
forces are very close to each other and to the experimental ~ —~ g
data up toN=76 and show again larger differences near the &
shell closureN=82. The case for Cd is similar, showing, 2 06
however, an earlier onset of differences. It is noteworthy that E\ 0.4
the results for SkO reside well among the other forces, al- = 02

though it behaved dramatically different for the Sn isotopes.

This is related to the fact that shell effects are somewhat 0
suppressed in Cd and Te because these have a nonmagic

proton number. Figure 7 shows also as complementing infor-

mation theB(E2) values for the Cd and Te isotopes. The  FIG. 7. EnergiesE(2*) and B(E2)] values (=|(0*|Qu|2)[?)
differences between the theoretical and the experimental valdong the chain of Cd isotope@ipper panelsand Te isotopes
ues are for Cd in the same order of magnitude as in the cag®wer panels calculated with different Skyrme forces as indicated.
for the Sn chain. They tend to be much less for the Te isoThe experimental results are taken fr¢&@|.

topes forN=78 where deviations stay below 20%. This

looks like a remarkable agreement. But both agreement fqhg away from a magic number is softer for DDDI than for
Te and disagreement for Cd and Sn have yet to be undep) This produces somewhat too hig{2*) for N=80 and
stood in detail. , 84 in Fig. 3 and here foz=48 and 52 in Fig. 7 versus Fig.
We have seen in the Sn chain that the step from DI G5 \e just mention this observation. It is too early to draw
DDDI pairing makes the most differences next to the neutronar_reaching conclusions on the validity of DI versus DDDI.
shell closure. One has to suspect that a similar feature ape difference is seen in the worst case, namely a nucleus in
pears next to the proton shell closure. The Sn chain resides gfe weak pairing regime where we are not yet sure that the

N=50, which is a closed proton shell. Thus the neighbor,esent pairing treatmeCS plus Lipkin-Nogamyiis fully
chains for Cd and Te are in the most sensitive regime and W&ppropriate.

expect visible differences. The results on the low-lying 2

states along Cd and Te are shown in Fig. 8. We see indeed

that the E(2%) energies are larger with DDDI, particularly C. The isotope shifts for the Sn isotopes

near the neutron shell closure [d&82. The differences be-

come again negligible far out in the well pairing regime. The ground-state solution of the collective Schroédinger

And, as for Sn, thé3(E2) values are totally insensitive. It is equation provides the collective ground-state correlations.
also clear that the DI results, here and in the Sn chain, ar®ne can compute the correlation effect on any one-body ob-
closer to the data. The same effect was already seen for tigervable with the help of the collective map as outlined in

neutron channel in Fig. 3. The step of tB&*) when mov-  Appendix A 6.

62 66 70 74 78 82
Neutrons
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SkM* - I FIG. 9. Isotope shifts of the charge r.m.s radiit,9%®", rela-

tive to 1®Sn. Upper panel: comparison of results from the four
forces SkI3, SLy6, SkM*, and SkO including collective ground-
state correlations. The expectation va{u® is calculated here ac-

cording to AppendiXA6). Lower panel: Comparison of pure mean

E(2*) (MeV)
&

0.5 field result with those including correlations for the force Ski3. The

0 experimental data are taken fraad].
oG 08 visible again at the upper edge of the chain where the general
‘@ 0.6 softness of the deeply exotic nuclei also allows for larger
S 04 shape fluctuations.
L
@ 0.2

0 IV. CONCLUSION

62 66 70 74 78 82
Neutrons

We have investigated the predictive power of nuclear ef-
fective forces for describing low-lying collective states con-
FIG. 8. As Fig. 7, but now for DDDI pairing. sidering as test cases the chain of Sn isotopes as well as its
even neighbors Cd and Te. As a particular example of such
Figure 9 shows results for the systematics of charge rman effective force, we used the Skyrme-Hartree-Fock scheme
radii drawn in terms of isotope shifts relative ¥sn. The augmented by a short-range pairing force. To that end, we
rms radii shown in the upper panel here are taken from theised a representative sample of different Skyrme forces as
correlated ground state, which includes the collective shapwell as two different pairing model@olume pairing versus
fluctuations. At first glance, all forces reproduce the experi-density-dependent pairingl he spectra of collective quadru-
mental trend very well where data are available. There repole vibrations were computed in a two-step procedure:
main small but significant differences between the fourFirst, mean-field calculations with quadrupole constraint and
forces in that range among which Ski3 comes generally closself-consistent cranking were performed which provide the
est to the data. The similarity of the trends persists to isomicroscopic input for a collective Hamiltonian in terms of
topes with larger neutron numbers. Substantial differencepotentials, masses, and moments of inertia. Second, the col-
develop at the upper end for the shown chain, i.e.Nor86.  lective Schrédinger equation thus obtained is solved in the
Not surprisingly, this is the regime of exotic nuclei becausespace of the five quadrupole coordinates. Care has been
the generally soft binding amplifies small differences in shelltaken to subtract correctly the zero-point energies from spu-
structure. It is surprising, however, that these differences deious collective fluctuations in the mean-field states and to
velop so late. The regime of similarity reaches well beyondrespect the topology of the quadrupole space. As a simplifi-
the N=82 shell closure. This is due to the smoothing featuresation, we use axially symmetric mean-field calculations and
of the shape fluctuations. The lower panel demonstrates thaterpolate triaxial properties between prolate and oblate
effect of ground-state correlations for that observable. Thershapes. This is an acceptable approximation for the nearly
are practically no visible effects as compared to pure mearspherical soft vibrators considered in the present survey.
field calculations, as one could have expected for such Rairing is treated at the level of BCS with particle number
chain of semimagic nuclgi26]. Correlation effects become correction in terms of the Lipkin-Nogami approximation. A
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final fine-tuning of the average particle number is performed A = 2

also for the co?lective states(.:J P P Q20= I*Yaofeudl1), (ALb)
We find three regimes: collective properties are dominated (D, |2V | D

by the pairing gap foN<76, they are dominated by the o :AiT a0 2m “20>

spectral gap of the neutron level for ZN=<82, and a sud- mT g Ar? '

den transition to prolate ground-state deformations emerges .

for N>82. In the pairing dominated regime, the results for Theh is a two-quasiparticle operator which itself depends on

the 2° excitation energies depend mostly on the pairingthe state on which it acts. The actual form is obtaineg by a

strength and only weakly on the Skyrme foraggth the  functional derivative of the given energy functional. TKg

exception of the force SkO, which behaves a bit strange asia the operator of proton or neutron number. The Fermi en-

consequence of the constraint on the two-nucleon shell gas gy e, is chosen to tune the correct particle number in the

the fit). As all pairing models used here were fitted to theaverage, i.e.,

odd-even staggering in the Sn region, we find generally nice -

agreement with experimental data in that midshell region. In €, = (PN,|®) =N, (Ald)

the s_he!l-gap-domlnated regime, on the other hand, a strong,, simplicity, we write in the following one particle-number
sensitivity to the Skyrme force develops due to a strong re- ~

: 2
lation to the spectral gap which, in turn, depends sensitiveljJ€'™M s representative of both. The terV, accounts for
on the effective mass. These features persist into the reginf8€ @PProximate particle-number projection and its parameter
aboveN=82. The result for the transition probabilitighe €2 IS given according to the LN recipe, taking properly into
B(E2) valueg shows larger deviations from the date to a account the feedback from the mean field to the variances
factor of 2. This is not surprising becau®E?2) values are [45]. The LN scheme performs also an approximate variation

generally more demanding to any model after projection. This yields a finite pairing gap under any

To summarize, we have shown that Skyrme forces h(,jweconditions, even at shell closures. And this is the feature we

in principle, the capability to describe low-lying collective need to have a smooth evolution of the gap along the collec-

spectra. In practice, the success depends on the actual para%e deformation path. Pure BCS can lead to discontinuities,

etrization used. Turning the argument around, we find that w ich lead to discontinuities in the collective Hamiltonian.
systematic investigation of collective spectra delivers ex- Thde staltlon?ry mel"l"'f"f';els deqtuetmontsh without dc?ntstramtd
tremely useful information for the selection of parametriza—provI € only a few well isolated states, the ground state, an

tions and the development of improved effective forces. Th@erhaps some isomers. In order to descnpe motion, one
calls for more systematic investigations. needs to consider a time-dependent mean-field theory, such

as, e.g., time-dependent Hartree-Fo¢€kKDHF). Large-
amplitude collective motion is related to low-energy excita-
tions, thus slow motion. This justifies the adiabatic limit
ACKNOWLEDGMENTS known as adiabatic TDHFATDHF) [32,33. It yields at the

We thank M. Bender, T. Burvenich, and T. Cornelius for end an optimized constrai@ and subsequent collective path
many clarifying and inspiring discussions. This work was{|<1>q>}, whereq stands for a continuous series of deforma-
supported in part by the Bundesministerium fir Bildung undtions. The fully self-consistent optimization of the path is
ForschungBMBF), Project Nos. 06 ER 808 and 06 ER 124. very cumbersome. It is a widely used approximation to use a

simple quadrupole constraint as in E41b). The anomalies
at large distance are avoided by a cutoff functigy for
APPENDIX A: MICROSCOPIC COMPUTATION OF which we use a Woods-Saxon shaps]. The states are
COLLECTIVE OPERATORS labeled with the dimensionless quadrupole momgkitc),
which is rescaled with the total particle numb&rand the
rms radiusr. The indexm can run over -2, -1, 0, 1, and 2.

The microscopic basis is a self-consistent mean-field acthe path will be computed only along axially symmetric
cording to SHF with DI or DDDI pairing(for details, see shapes corresponding m0=0.

[23]). The SHF-BCS equations describe the nuclear state in The numerical solution is done by standard methods.
terms of a set of single-particle stateg with associated Wave functions and fields are represented on an axially sym-
BCS occupation amplitudes,. These together compose the metric grid in coordinate space. An accelerated gradient
BCS statd®)=11,,(u,+v,a,a",)|vac Whereun:\s’l—vﬁ. Asa method is used to iterate the single-particle statggnto
synonym for its content, we denote it W>E{(}Dn,vn}_ In their stable solutiorj47] while the BCS+LN equations for
practice, we go somewhat beyond the BCS scheme by usiri¢y are solved in each iteration step. An extra iterative loop is
the Lipkin-Nogami(LN) approximation for particle number included to maintain a wanted value @, [48].

projection[45]. The mean-field equations can be summarized Knowing the path yields immediately the raw collective
as potential as

(Alc)

1. The deformed mean field

Wazg) = Esnil| P o), (A2)

whereEg,ris the total SHF+BCS+LN energy for the given
(Ala) mean-field stat¢<Da20) including a c.m. correction as appro-

(ﬁ - E (EF,VNV_ EZ,VNIZ/) - )\620>|(Da2() = g|q)uz20>!
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priate for the given forcg23]. The actual computations ex- [50] does not contribute due to the topological switching
ploit explicit expressions in terms of the single-particle stategA7).

¢, and their occupation amplitudes. For the full five-dimensional quantum correctiaisee the
next subsection subsection A, 3ve also need to compute the
inverse collective masB, and width\ , for vibrations in the

v direction. We do that for the vicinity of axial shapes by
The collective path allows us to define a collective mo-means of linear response. And we employ here the Inglis

mentum operator as the generator of deformaﬂqhbazo) approximation using only the mean-field Hamiltonirin

=ig |q>a20>_ At the same timeP,, can also be interpreted as the response equations. All together, we have then the nec-

(1/20 ¢ X X i . . . . .
the momentum operator associated with collective dynamic£SSary ingredients concerning masses: the inverse msses

The collective patt|®,, )} is complemented by the dynami- B, (=B), and the momentum of inerti@( o).

cal response of the system by adding a dynamical constraint

—,uﬁa to the mean-field equations, yielding eventually a dy- 3. Quantum corrections

namical collective path. The adiabatic approximation allows The GcM ansatz for the collectively correlated state is

us to handle the dynamical part in the linear regime, i.e., \yritten as a coherent superposition over the path. However,
_ - A (dyn) the states of the path correspond to wave packets in quadru-
|(Dazopa> (1+ipQq )|Cbazo> ' (A3) pole space rather than to eigenstatea-gf(and similarly for
The solution of the linear-response equation thus obtainel!® dynamical extensions ), andwang- Thus they contain
spurious contributions from collective motion which contrib-
. ute to any expectation value. The strongest effects are found
In the energy expectation values which constitute the raw

I??,scjgeqrhsee:];\?gpssés;[;%?ltéct(i)\;ep\;gg:%ofraS:(ljr:g' Oslger;]oeti'gr']’collective potentialA2). These spurious contributions need
[33,49. d P to be subtracted. That is what one calls the quantum correc-

is then obtained in a straightforward manner as tions or zero-point energigZPE) [12].

2. Computation of masses

1 (92ESHF(|¢a20p )) The correction for spurious center-of-mass motion is al-
=— I ready part of the standard SHF scheme. The most important
2 IPa P,=0 for the collective dynamics is the vibrational-rotational cor-

1 R o rection. These need to be considered as one entity because
= §<<I>a20|[Q§?y”),[H,QE?V”)]]|<DQZO). (A4)  vibrations and rotations are closely connected pieces of the

nuclear quadrupole topology. The recipe for purely axial vi-

The second form with the double commutator is not strictlybration and rotation was given ifi2,37. A recent model
applicable in connection with energy functiongighere the ~ calculation has confirmed that ansatz and proven that the

full H is not given. It serves here only as a notational ab- correction provides also a very good approximation to

breviation to establish contact with standard formulas forsvggw:;'tnggrzggétr:t ?L?J?ﬁélwﬁ;gﬂir\]/;i;igee?\gorr]]:flehaHd(ralf
cranking masses. g

The same procedure is applied to the dynamical responé?—:?(l)e edrlynagr:gsr(aslszee (,jA\Fr)gteart]igl:aﬁvsib;rz;i%Sn;\I/(a(:(?rrrZCLtjisggg the
to rotations. The collective momentum is already known herd OPEMY 9

as it is the angular momentum, e.d ., Solving the equations PRV

for the corresg i . N N S e %Y (A6a)
ponding dynamical response yields the momen- quad = 0T

tum of inertia as B B

2 ~
1 — 1 J ESHF(|(I)Q20“’>) 7\,8 = 2<q)a20| Pi|q)a20>1
2XX 2 (9(,()2 w=0
1 . . Pol®,, ) =idg®, ),
= (0, JIQ5"" [H.Q*" Tl by,), (A5 w w
imi Adyn) i zpg _ M ‘fyv A
and similarly fory and z. The operatorQ;”" carries the E =+ = (A6b)

triax '
- . - 4 an, 4
dynamical response in the same manneQ%%”) does that My v My

for the quadrupole motion. In practice, we are considering

only axially symmetric shapes,,. For them, we obtain (thE) - Arot (A6C)
ro 4 !
0,,=0,,=0, 0,,=0.
For the case rotation, we simplify the response problem by Aot = 2D |j)2<y|q) 0> (A6d)
~ @0 @0’

computing the response with the stationary mean fieddly ~
(Inglis cranking. The approximation works very well for the whereJ, , is the angular momentum about tReor y axis.
considered cases. The critical region of small deformationghe widths are the same forandy because we evaluate
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everything at axial symmetry, i.e., at the point0. The total  sic frame wherea,.,=0 anday,,=a,_,. This defines three

ZPE is decomposed as Euler anglesy as rotational coordinates. The remaining two
relevant deformation coordinatag, anda,, are expressed in
EZPB (a0 = [ < )] (ZPB) | 5 ( rot>E(ZPE) terms of total deformationg and triaxiality y as ay
ot 20 0 Bauad * 20 ot =B cogy) and ay=8sin(y)/\V2 [20,57. Each triaxiality y
A which is an integer multiple of 60° corresponds to an axially
+2 ( mt)E{rZIaPXE), (A7a)  symmetric shape. The cases0°, 120°, and 240° corre-

spond to prolate axial deformations whije=60°, 180°, and
300° are oblate. Relevant information is contained in one 60°

ldxa(xz— 1)ea<x2‘1) sector of the plane, e.g., in the segment [0° ,.60°]. The
0 other segments can be reconstructed by axis exchange of
g(a) = I (A7b)  principal axes. This symmetry under axis transformation has
f dxg0?-D important consequences for the representation of wave func-
0 tions and potentials in the collective Schrodinger equation:

Th [ tion f ticl bet One has to obey mirror symmetry undgs -7y and axis-
: etre t|s asgha cor:ec |(<]|)nt rli)m si)unous p?r icle number o vion symmetry undey— y+120°. The five-dimensional
uctuations. This is already taken into account in an appromxoIume element d°a reads in the -y frame dPa

mate manner by the Lipkin-Nogami scheme added on top o L 3%|sin(3)|dBdyd3, where thed are the three Euler angles

the BCS pairing. for the transformation from the laboratory frame into the

All together, the quantum-corrected collective pOtentIaI|ntr|nS|c frame. In the following, we will use the notation
reads d®a as shorthand for the lengthy right-hand side.

V(azo):V(azo)—EgtPE)(azo)- (A8) The collective Hamiltonian has the form of a Bohr-

Hamiltonian [1,3] generalized topB-y-dependent masses
This is the quantity entering the collective Hamiltonian. The(A9a) [16,18,19,

masses are associated with the collective kinetic energies
which are already of second order in the collective momenta.
The quantum corrections on masses would correspond tOH(con)_

1 1 :
terms of fourth order and are neglected. - EaﬁB('B’ VB9~ B sin 37(?787(’3’ y)sin 3yd,

3 rr2
4. Retuning the particle number +> _ L +V(8,7), (A9a)
All states along the collective path are tuned to have the 1 20u(8,7)

same average proton and neutron number. The energies are
corrected by approximate particle-number projection at the
level of the LN scheme. But the BCS states from which the X(B.) = X(B+X=P)  XPB) = X=H)
collective path is composed still carry these particle-number Y 2 2
fluctuations. As a consequence, the coherent superposition of
the states along the path may change the average particle X e {B\V}, (A9b)
number again. One needs to readjust the correct average at
the level of the collective dynamid$1]. To that end, one
builds the collective picture of the particle number operator 1 3 {1< 1 1 ) ( 1

= +
N-N in precisely the same manner as was done for the®y(5,7) 4sir?<y 2\0(B) 6(=p) 0(p)

cog3y),

21
Hamiltonian. One obtains a particle-number potential, _?k
particle-number masses for quadrupole as well as triaxial

motion, and particle-number contribu}ions to the irlertia. The _ 1 >C05<7_ Z—Wkﬂ ke{l,2,3 (A90)
expressions are the same as above Witleplaced byN. The 0(-p)

collective image oN is added as a constraint in the collec-
tive Schrédinger equation.

(QILM) = WM(B, 5,9, = X b (BXSV (7, 9), »=0,1, ...,

5. The collective Schrédinger equation

. . . Al
Axially symmetric quadrupole deformations are labeled (A103)

by a,, The full space of quadrupole deformations is ex-

plored when considering al,,, with me {-2,-1,0,1,2. 0 ©

This is convenient for spherical vibrator nuclei as it implies {x, (79),v=0,1, .. } = O{cod3vy)Dyo}
automatically the correct number of vibrational degrees of { 2, }
freedom. It is, however, not well suited for deformed nuclei =V = P Jcog3y)]
because rotations look rather involved in that frame. It is 327’2

customary to transform by appropriate rotation into an intrin- (A10b)
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My, 9),v=0,1, ..} 60°, as discussed in Appendix A 5. In order to meet the in-
D@_,+D?2, herent symmetry conditiond], .the wave fungtions of a0
:O{COS()\'y)D(Z) (= 1)\%3sin(\ )M 2+ } and a 2 state are expanded in a symmetrized bgs0)
2 where the base mode=0 determines the overa depen-

(A100) dence and the higher shape the profile in the direction.

The Hamiltonian is very soft iny such that fewr terms

suffice for convergenc@wo or three, never more than five

\ = 3[2} +1%2+1, Th(_a I_D&?K(ﬂ) are _the weII_known WigneD fgnctions de-
2 scribing the rotation matrices for a state with angular mo-

where® means orthonormalization of the sgt;] the inte- mentumL [53]. It is noteworthy that the structure of the

ger part of a fraction, and%b the modulo ofa with respect ~ rotational energy is that for the most general case where the
considered nuclei have no special symmetry. For that reason

<, )
to b. The operatoLy denotes the angular momentum in thethe 2 state must be a sum over all possiblprojections of

intrinsic frame. The deforr_ned SHF calculatlons provide iNthe angular momentum which ak=0, 2 in the intrinsic
put along axially symmetric deformatiorss,=0. The col- frame.

lective dynamics needs to be performed properly in all five The remaining collective equation for the components

quadrupole degrees of freedom. No strong peaks or wells u&L(ﬁ) is solved numerically with standard methods. The

the y direction are to be expected for the nearly spherical or
weakly deformed soft vibrator nuclei which we will consider wave functions and fields are represented on an equidistant
id in B. Gradient iteration is used to find the few lowest

here. It is thus an acceptable approach to interpolate the axidl"
microscopic results into the fufB-y plane. While potential, eigenvalues and states.
inverse masses, and particle-number masses could be inter-
polated in a straightforward manner by Eé&9b), the mo-

ment of inertia has three components. Respecting the collec- The solution of the collective Schrédinger equation, as
tive symmetries, we reconstruct them from the axialoutlined in the previous section, provides the energies di-
information as Eq(A9c). The deduction from axial informa- rectly. Expegtation values and transition moments of other
tion implies that we neglect thg-y coupling in the kinetic  observable<O need yet to be computed. The steps are, in
energy, i.e.Bg,=0. The collective particle-number operator prlnC|pIe the same as done before for the enggpquamn-

H(co js composed in the same form with the correspondingonian H, respectively and for the particle numbeX. One
particle-number masses, potentials, and moments of inertigas first to determine the collective image of the given ob-

inserted. , L , servableO— O, and computes then the expectation value

The collective Schrodinger equations read now of that image with the collective wave functiofs?]. Actu-
ally, we do that for the computation of the transition prob-
abilities 0"—2*, the protonB(E2) values. The observable
where the correction of the Fermi energ "is to be ad-  here iS()EéZO,prot In the case of the isotope shifts, the ob-
justed such thafd®a¥ NN p =N, servable is the collective mapping of the radius. At present,

The dynamics is formulated in the whagey plane but all  we approximate the collective image by the raw expectation
necessary information is contained already in a segment ofalue only and neglect the kinetic corrections.

6. Computation of observables

(|:|(co||> _ eﬁo"N(Co"))‘P = EV, (A11)

[1] J. Eisenberg and W. Greindduclear ModelsNorth-Holland [10
Publishing Company, Amsterdam, 197%0l. 1. [11

[2] A. Bohr and B. R. MottelsonNuclear Structure. Nuclear De- [12
formations(W. A. Benjamin Inc., London, 1935\Vol. 2. [13

D. L. Hill and J. A. Wheeler, Phys. Re\89, 1102(1953.

J. J. Griffin and J. A. Wheeler, Phys. Rel08 311 (1957).

P.-G. Reinhard and K. Goeke, Rep. Prog. PHy@.1 (1987).

P. Bonche, J. Dobaczewski, H. Flocard, P. H. Heenen, and J.

QLN B QO

[3] A. Bohr, Mat. Fys. Medd. K. Dan. Vidensk. Selsk6, No. 14 Meyer, Nucl. Phys.A510, 466 (1990.
(1952. [14] A. Valor, P.-H. Heenen, and P. Bonche, Nucl. Phgé.71, 145

[4] G. Gneuss and W. Greiner, Nucl. Phys171, 449(1971). (2000.

[5] F. lachello and A. ArimaThe Interacting Boson ModéCam- [15] R. Rodriguez-Guzman, J. L. Egido, and L. M. Robledo, Phys.
bridge University Press, Cambridge, England, 1987 Rev. C 65, 024304(2002.

[6] M. Goeppert-Mayer, Phys. Rev4, 235(1948. [16] L. Prochniak, K. Zaj, K. Pomorski, S. G. Rohagki, and J.

[7] O. Haxel, J. Jensen, and H. Suess, Naturwissenscha®en Srebrny, Nucl. PhysA648, 181(1999.
155(1949. [17] M. Girod and P.-G. Reinhard, Nucl. PhyA384, 179 (1982.

[8] G. E. Brown,Unified Theory of Nuclear Models and For¢es [18] J. Libert, M. Girod, and J.-P. Delaroche, Phys. Rev.6G,
3rd ed.(North-Holland, Amsterdam, 1971 054301(1999.

[9] D. J. Rowe,Nuclear Collective Motion(Methuen, London, [19] L. Prochniak, P. Quentin, D. Samsoen, and J. Libert, Nucl.
1970. Phys. A730, 59 (2004).

054321-12



SKYRME ENERGY FUNCTIONAL AND LOW LYING 2*... PHYSICAL REVIEW C 70, 054321(2004)

[20] P. Ring and P. SchuckThe Nuclear Many-Body Problem [37] P.-G. Reinhard, Z. Phys. 285 93 (1978.

(Springer-Verlag, New York, 1980 [38] http://lwww.nndc.bnl.gov/nndc/nudat/levform.html, Accessed:
[21] J. Terasaki, J. Engel, M. Bender, J. Dobaczewski, W. Nazare-  May 2003.

wicz, and M. Stoitsov, nucl-th/0407111. [39] P. Fleischer, P. Klupfel, T. Cornelius, T. Birvenich, S.
[22] K. Goeke and P.-G. Reinhard, Ann. Phybl.Y.) 124 249

Schramm, J. Maruhn, and P.-G. Reinhardpublisheg
(1980. _ [40] 1. Hamamoto and H. Sagawa, Phys. Rev5& 2369 (1996).
[23] l\7/I.SBle2n1d(e;r6(I)3:.,:H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys[41] J. Terasaki, J. Engel, W. Nazarewicz, and M. Stoitsov, Phys.
[24] PG Reinhar;j M. Bender, and J. A. Maruhn, Comments Rev. C 66, 054313(2002.
R ' T ' [42] J. Dobaczewski, P. Magierski, W. Nazarewicz, W. Satula, and

Mod. Phys. A2, 177(2002. ki Ph 5 5
[25] J. Bartel, P. Quentin, M. Brack, C. Guet, and H.-B. Hakansson Z. Szymanski, Phys. Rev. 63, 024308(2000.

Nucl. Phys.A386, 79 (1982. [43] J. L. Wood, K. Heyde, W. Nazarewicz, M. Huyse, and P. van
[26] P.-G. Reinhard and H. Flocard, Nucl. Phys584, 467 (1995. Duppen, Phys. Rep215 101(1992.
[27] E. Chabanat, Ph.D. thesis, Université Claude Bernard Lyon-1441 J. Eberz, U. Dinger, G. Huber, H. Lochmann, R. Menges, G.

(1995 Ulm, R. Kirchner, O. Klepper, T. U. Kihl, and D. Marx, Z.
[28] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaef- Phys. A 326 121(1987).

fer, Nucl. Phys.A627, 710(1997). [45] P.-G. Reinhard, W. Nazarewicz, M. Bender, and J. A. Maruhn,

[29] P.-G. Reinhard, D. J. Dean, W. Nazarewicz, J. Dobaczewski, J. ~ Phys. Rev. C53, 2776(1996.
A. Maruhn, and M. R. Strayer, Phys. Rev. 60, 014316 [46] K. Rutz, J. A. Maruhn, P.-G. Reinhard, and W. Greiner, Nucl.

(1999. Phys. A590, 680(1995.
[30] J. Terasaki, P.-H. Heenen, P. Bonche, J. Dobaczewski, and H47] P.-G. Reinhard and R. Y. Cusson, Nucl. Phys378, 418
Flocard, Nucl. PhysA593, 1 (1995. (1982.
[31] M. Bender, K. Rutz, P.-G. Reinhard, and J. A. Maruhn, Eur.[48] R. Y. Cusson, P.-G. Reinhard, M. R. Strayer, J. A. Maruhn, and
Phys. J. A8, 59 (2000. W. Greiner, Z. Phys. A320, 475(1985.
[32] M. Baranger and M. Vénéroni, Ann. Phy&\.Y.) 114 123 [49] J. Dobaczewski and J. Skalski, Nucl. Phys369, 123(1981).
(1978. [50] P.-G. Reinhard, F. Griimmer, and K. Goeke, Z. Phys3%,
[33] K. Goeke and P.-G. Reinhard, Ann. Physl.Y.) 112 328 339(1984).
(1978. [51] A. Valor, J. L. Egido, and L. M. Robledo, Nucl. PhyA671,
[34] A. Klein, N. R. Walet, and G. DoDang, Ann. Phy#l.Y.) 208 189 (2000.
90 (1990. [52] W. Greiner and J. A. MaruhrKernmodelle Vol. 11 of Theo-
[35] P. Bonche, J. Dobaczewski, H. Flocard, and P.-H. Heenen, retische Physik(Verl. Harri Deutsch, Thun, Frankfurt am
Nucl. Phys. A530, 149(1991). Main, 1995.
[36] K. Hagino, P.-G. Reinhard, and G. F. Bertsch, Phys. Rev. 53] A. R. Edmonds,Angular Momentum in Quantum Mechanics
65, 064320(2002. (Princeton University Press, Princeton, NJ, 1964

054321-13



