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Variational wave functions based on a Margenau-Brink cluster model with short-range and state-dependent
correlations and angular momentum projection are obtained for some nuclei with 12øAø16. The calculations
have been carried out starting from the nucleon-nucleon interaction by using the variational Monte Carlo
method. The configuration used consists of three alpha clusters located at the apexes of an equilateral triangle
and an additional cluster, not necessarily of alpha type, forming a tetrahedron. This cluster is located at the top
of its height. Short-range and state dependent correlations are included by means of a central Jastrow factor and
a linear operatorial correlation factor, respectively. Angular momentum projection is performed by using the
Peierls-Yoccoz operators. Optimal structures are obtained for all the nuclei studied. Some aspects of our
methodology have been tested by comparing with previous calculations carried out without short-range corre-
lations. The binding energy, the root mean square radius, and the one- and two-body densities are reported. The
effects of correlations on both the energy and nucleon distributions are analyzed systematically.
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I. INTRODUCTION

The joint use of short-range dynamic correlations with
model wave functions including relevant aspects of nuclear
structure constitutes the most commonly used scheme to de-
scribe nuclear bound states with realistic or semirealistic in-
teractions. Short-range correlations are essential elements in
the wave function because, as is well known, any of the
so-called realistic or semirealistic parametrizations of the
nuclear potential present a strong short-range repulsive core.
On the other hand, the formation of different kinds of clus-
ters in the nuclei can be understood as a collective movement
of nucleons governed by the medium- and long-range parts
of the nuclear potential. Therefore, for an accurate descrip-
tion of the nuclear states, it is convenient to consider both
aspects in any variational approach to the nuclear bound
states using this type of interactions. In principle, short-range
correlations are mainly governed by the nucleon-nucleon in-
teraction while medium- and long-range effects depend on
the particular nuclear state. However—and in a more careful
approach—the final form of the short-range correlations will
depend on the model wave function giving rise to a non-
negligible dependence of the correlations on the nucleus.

A direct way to include both short-range and medium-
and long-range correlations is by using Jastrow-type correla-
tion factors, but the calculation of the expectation values
becomes very cumbersome, especially when state dependent
correlations are included. There exist several methods to
evaluate these expectation values such as those based on
cluster expansions[1–3], the Fermi-HiperNetted-Chain
method[4,5], or statistical methods such as the variational
Monte Carlo method[6,7]. The coupled cluster method al-
lows one to incorporate both types of correlations[8–10]. In
this way it is possible to understand how the different corre-
lation mechanisms are incorporated[11,12].

Alpha cluster models—or cluster models in general—
have been widely applied in microscopic descriptions of
bound and scattering states of nuclear systems[13–15].
Variational wave functions built within this framework con-
stitute an appropriate scheme for nuclei such as8Be and12C,
which present a clear cluster structure. The use of wave func-
tions including the possibility of the formation of alpha clus-
ter structures or any other kind of grouping of nucleons im-
proves the description of these nuclei and their neighbors
with respect to simple mean field approximations[16].

Multicluster models have been used in microscopic
calculations—i.e., without effective cluster-cluster
interactions—based on the generator coordinate method for
some nuclei betweenA=12 and A=16 [17,18]. In these
works a Volkov nucleon-nucleon potential was used[19].
Other results of microscopic multicluster calculations based
on the stochastic variational method have been reported
[20,21] for some nuclei using the Minnesota potential. Nei-
ther of these potentials presents a strongly repulsive short-
range part and, therefore, short-range correlations do not play
a significant role. On the other hand, previous studies of
alpha clustering based on nuclear potentials with a strongly
repulsive core have been mainly restricted to spin-isospin-
saturated nuclei—i.e., states ofA=4n, Z=N—nuclei in
which each spatial orbital is occupied by two protons and
two neutrons[22,23].

The aim of this work is to study the ground state of some
p-shell nuclei,AÞ4n, including clustering effects and short-
range and state dependent correlations, starting fromv4-type
nucleon-nucleon interactions. Here we extend previous
works done forA=4n nuclei. The ground state energy and
the root mean square radius along with the parameters of the
optimal structures have been obtained for several nuclei us-
ing two different interactions and several models for the trial
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wave function. Local properties such as the one- and two-
body spatial densities are reported. The effects of the differ-
ent correlation mechanisms on these quantities and on the
different channels of the interacting potential have been ana-
lyzed. In this work we present the extension of the method-
ology in order to considerAÞ4n nuclei with angular mo-
mentum projection and state dependent correlations within
the variational Monte Carlo scheme.

The nucleon clustering is described in terms of model
wave functions based on a generalized Margenau-Brink
model as in[17]. Short-range correlations are included by
means of a Jastrow factor and the dependence on the spin
and isospin exchange channels is included by using a linear
state dependent correlation factor. Angular momentum pro-
jection is carried out in order to obtain variational wave
functions that are eigenfunctions of the total angular momen-
tum operator. The calculations are performed by means of
the variational Monte Carlo method.

In generalizing to theAÞ4n case, the angular momentum
projection involves a spin mixing not present in spin- and
isospin-saturated nuclei. In this paper we present an analyti-
cal reduction of the different expectation values for these
nuclei, obtaining expressions suitable for the variational
Monte Carlo method. By using this scheme, the computing
time is hardly increased with respect to the spin-isospin-
saturated case. We apply the method to the ground state of
13C, 14C, 14N, and15N. The results obtained are also valid for
the mirror nuclei13N, 14O, and15O because the electrostatic
energy has been not considered in the minimization process.
A systematic analysis of the effects of the different correla-
tions mechanisms included in the wave functions on the total
energy and on the contribution of the different channels is
carried out. One- and two-body densities are reported and the
effect of the correlations are discussed.

The scheme of this work is as follows. In Sec. II the
variational wave function and the analytical reduction of the
expectation values leading to a form appropriate for the
variational Monte Carlo method are detailed. In Sec. III we
report and discuss the main results here obtained. The con-
clusions of the present work can be found in Sec. IV.

II. WAVE FUNCTION

The variational trial wave function used in this work is

CJKM
± s1,2, . . . ,Ad = FJs1, . . . ,AdFLs1, . . . ,Ad

FJKM
± s1, . . . ,Ad. s1d

This structure has been used in previous studies of spin-
and isospin-saturated nuclei[23,24]. It consists of a central
Jastrow correlation factorFJ, a linear correlation factorFL
that can include state dependent correlations, and a model
wave functionFJKM

± that is antisymmetric and has the proper
values of the total angular momentum and parity.

The Jastrow factor depends only on the distance between
a pair of nucleons:

FJs1, . . . ,Ad = p
i, j

A

fsr ijd. s2d

The linear factor is defined as

FLs1, . . . ,Ad = o
i, j

A

gsi, jd, s3d

where the functiongsi , jd depends on the radial and intrinsic
degrees of freedom of particles,i, j . This is the only part of
the trial wave function where state dependent correlations are
present explicitly. Here we employ the same parametrization
for the correlation functionsgsi , jd and fsrd, used in previous
works [22–24], which has shown to provide good results:

gsi, jd = o
k=1

4

gskdsr ijdPskdsi, jd, s4d

where

Ps1dsi, jd = 1,

Ps2dsi, jd =
1

2
s1 + sW i · sW jd

Ps3dsi, jd =
1

2
s1 + tW i · tW jd,

Ps4dsi, jd = Ps2dsi, jdPs3dsi, jd. s5d

This dependence on operators of the correlation factor is
the same as that of the nucleon-nucleon interactions consid-
ered in this work. The functionsgskdsrd, k=1, . . . ,4, andfsrd
are parametrized as a linear combination of Gaussians:

gskdsrd = o
m=0

M

am
skde−bmr2

, fsrd = 1 + o
n=1

N

cne
−dnr2

. s6d

The parametersam
skd, bm, cn, anddn are taken as variational

parameters in such a way that they are fixed by minimizing
the expectation value of the ground state energy. The opti-
mum values foram

skd have been obtained by solving a gener-
alized eigenvalue problem, with matrix elements calculated
by using Monte Carlo quadrature. The other parameters have
been obtained by using standard techniques of many dimen-
sional nonlinear optimization. This step is, in general, time
consuming. We have verified that the use of the simplifica-
tion bm=dn conveys to accurate results forM =N=2 and it
has been used throughout this work.

The new aspects of treatingAÞ4n nuclei with respect to
spin- and isospin-saturated ones originate in the angular mo-
mentum projection. Therefore we shall focus here on the
model part of the wave function and on the angular momen-
tum projection. The correlation factors are treated as in the
spin- and isospin-saturated cases.

The model wave function used here is based on a gener-
alization of the Margenau-Brink model. Instead of using only
alpha-particle-like nucleon clusters, more general groupings
are allowed, giving rise to a multicluster description[17,20].
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Within the molecular viewpoint of the Margenau-Brink
scheme, the model wave function is obtained starting from
the functions

FCW s1,2, . . . ,Ad = AhF1sx1, . . . ,xk1
d ¯ Fnsxkn−1+1, . . . ,xAdj,

s7d

where CW ;hcWkjk=1
n is a set of parameters that represent the

centers of the clusters andA is the corresponding antisym-
metrizer. In this work the arrangement of the nucleons,
shown in Fig. 1, consists of threea clusters and a fourth
incomplete cluster that can be made of one, two, or three
nucleons depending on the nucleus under study.

For this configuration, the general form of the function
given in Eq.(7) reduces to

FCW ,Ss1,2, . . . ,Ad

= AHFp
m=1

3

Fam
sx4m−3, . . . ,x4mdGFas,S

sx13, . . . ,xAdJ ,

s8d

whereFam
stands for the wave function of an alpha particle

centered atcWm, Fs represents the incomplete cluster wave
function centered atcWs, and the labelS indicates the depen-
dence on the spin of the incomplete cluster.

In this work theFam
functions are taken to be Slater de-

terminants built from harmonic oscillator single-particle or-
bitals centered atcWm:

fb,cWsrWd = Sb2

p
D3/4

e−b2srW − cWd2/2. s9d

The oscillator parameterb is the same for all of the alpha
clusters. For the incomplete cluster wave function another
Slater determinant centered atcWs is employed also built from
s-wave harmonic-oscillator single-particle orbitals. The os-
cillator parameter in this case is, in general, different to that
for the a cluster wave function. The importance of using a
different harmonic oscillator parameter will be discussed.

With these choices for the cluster wave functions, the model
wave function of theA nucleons is a Slater determinant. In
general this function is not eigenfunction of parity or total
angular momentum operators.

The linear combinations

F
CW ,S

± s1,2, . . . ,Ad = FCW ,Ss1,2, . . . ,Ad ± F−CW ,Ss1,2, . . . ,Ad

s10d

have definite parity. Model wave functions with the total
angular momentum of the state under study can be obtained
from Eq. (10) by using the Peierls-Yoccoz projection opera-
tors [25]

FJKM
± s1, . . . ,Ad =

2J + 1

8p2 E dQDMK
Jp sQdRsQdF

CW ,S

± s1, . . . ,Ad,

s11d

whereRsQd is the rotation operator,DMK
Jp sQd is the rotation

matrix, and Q represents the Euler angles. The quantum
numberJ gives the total angular momentum,K is its projec-
tion along the nuclearz axis, andM is the projection along
the Z axis of the laboratory fixed frame. The projection
within this scheme is carried out by rotating the intrinsic
state and integrating over all angles weighted by the rotation
matrix.

The functionFCW ,Ss1, . . . ,Ad in Eq. (8) is the generator
function of the model wave functions. Note that we have
removed the parametric dependence of the model wave func-

tion on the position of the centers,CW , in order to simplify the
notation. The distances between the clusters,Rc andRd, are
determined variationally.

The action of the rotation operator on the generator func-
tion is now described in detail. As we have mentioned be-
fore, this is the source of the new methodological aspects
originated by the fact that the nuclear states are not spin and
isospin saturated. We do not need to consider here the corre-
lation factors because they are rotationally invariant. The
generator function is a Slater determinant. The action of the
rotation operator on it leads to a linear combination of Slater
determinants. If the Slater determinant is spin and isospin
saturated, this linear combination contains only one Slater
determinant that also is spin and isospin saturated, containing
the same single-particle orbitals. The only difference is that,
after rotation, these orbitals depend on the rotated coordi-
nates. This was exploited previously to studyA=4n nuclei
[24,26]. When the nuclei are not spin or isospin saturated the
rotation gives rise to a mixing of spin states.

When the incomplete shell consists of one nucleon—as,
for example, in the ground state of13C—the action of the
rotation operator can be written as follows:

RsQdFCW ,bsbtb
= o

si=±1/2
Dsb,si

1/2 sQdF̄CW ,bsitb
, s12d

whereb stands for the spatial quantum numbers of the or-
bital of the incomplete cluster, andsb and tb are the third
components of spin and isospin, respectively. The overbar
indicates that the Slater determinant must be evaluated on the
rotated coordinates. Therefore—and concerning the spin de-

FIG. 1. Cluster description of the nuclei in terms of three alpha
particles and a generals incomplete cluster with one, two, or three
nucleons.
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pendence of the state—the effect of the rotation is to mix the
two possible spin projections of the orbital in the incomplete
cluster. The weight of each component is given by the matrix
element of the rotation matrix.

When there are two extra nucleons the result of the rota-
tion can be written as follows:

RsQdFCW ,bsbtb,bsgtg
= o

si,sj=±1/2
Dsb,si

1/2 sQdDsg,sj

1/2 sQdF̄CW ,bsitb,bsjtg

= o
si,sj=±1/2

o
S=0,1

K1

2

1

2
sbsguS,sb + sgL

3K1

2

1

2
sisjuS,si + sjLDsb+sg,si+sj

S sQd

3F̄CW ,bsitb,bsjtg
, s13d

wheresbsbtbd andsbsgtgd stand for the quantum numbers of
the orbitals of the incomplete shell. Note that we have con-
sidered the same spatial dependence for both single-particle
orbitals. Therefore, if one is dealing with two extra protons
s14Od or two extra neutronss14Cd with the two possible spin
orientations, the termS=1 vanishes. Only in the case of one
proton and one neutron outside a closed shells14Nd will both
total spin components contribute.

Finally, the case of three nucleons outside a closed shell
(15N and 15O is a conjugate configuration to that of one
nucleon outside a closed shell and it is handled in the same
way.

The values allowed forJ andK are governed by the sym-
metry group of the system—i.e., by the spatial positions of
the centers of the clusters. For the nuclei here considered the
group isC3v. The spin of the extra cluster must be also con-
sidered in determining the possible values ofK. If MS is the
total spin third component, the allowedK values are given by
the selection ruleuK−MSu=3n, with n a positive integer[17]
and, for anyK, JùK, and the parity isp=s−1dJ±S. The en-
ergy grows withK, providing different rotational bands. In
this work we are concerned only with the ground state; there-
fore, we shall restrict ourselves toK=1 for 14N andK=0 for
all the rest. For one and three extra nucleonsMS=1/2 and
the ground state iss1/2d+, and for two extra nucleons there
are two possibilities: (i) both nucleons are protons or neu-
trons, MS=0, and the state is 0+ and (ii ) one nucleon is a
proton and the other a neutron,MS=0, 1 and the 1+ ground
state must be constructed withMS=1 andK=1.

In order to compute the expectation value of the Hamil-
tonian in the projected wave function it is convenient to use
the expression[24,27]

kCJKM
± uH uCJKM

± l =
2J + 1

8p2 E dQDKK
Jp sQd

3kF
CW ,S

± uFLFJHFJFLRsQduF
CW ,S

± l.

s14d

Let us focus on the spin-isospin configuration of the
nuclear state. Note that, because of the rotational invariance
property of the Hamiltonian, only the ket is rotated, the bra

remaining on its original configuration. This is important be-
cause it determines the configurations that give nonzero con-
tributions to the integral when projected onto the bra. The
action of the rotation operator is to produce a linear combi-
nation of configurations containing the original one. One
needs to analyze all of them to determine if, after the action
of the spin-isospin operators ofFL and the Hamiltonian, the
original configuration is obtained. As a result, only the origi-
nal configuration appearing after rotation contributes with
both central and state dependent correlation factors, except
for incomplete clusters made of one proton and one neutron
with S=0, which we have not studied here, for which two of
the configurations appearing after the rotation give a nonzero
contribution. Note that the weight factor must be included
when doing the integral in all cases. The treatment of state
dependent correlations in terms of the intermediate states is
not modified with respect to the case of spin- and isospin-
saturated nuclei[28,29].

III. RESULTS

First we will test the new methodological aspects imple-
mented in this work by comparing with the results of Dufour
and Descouvemont[17] obtained by using a different com-
putational scheme. We will employ for the test both the same
nucleon-nucleon interaction(the Volkov V7 potential) and
the same wave function as in[17]. It is worth pointing out
that the correlation factor is not needed because the interac-
tion does not present a strongly repulsive core. In order to
correct for the effects of the center of mass motion, we have
worked with an intrinsic Hamiltonian built as the total
Hamiltonian minus the kinetic energy of the center of mass.
When we use one only parameter for describing all the clus-
ters in the MB wave function this method corrects exactly
the spurious effect of the center of mass motion. This is
because in that case the center of mass dependence in the
total wave function can be exactly factored. If one uses two
different parameters to describe the clusters, the wave func-
tion cannot be factored. In this case the method here used
introduces spurious effects associated with the center of mass
and intrinsic wave function coupling. However, the results
obtained are still of variational character and the figures are
better than those obtained with only one parameter.

In Table I we show for the ground state and some excited
states of the nuclei studied in this work the binding energy
and the root mean square radius,kr2l1/2. As can be seen from
the table, both sets of results are in very good agreement.
The spin-orbit interaction is not included in our work and
therefore one cannot compare directly the results for nuclei
with an odd number of nucleons. For these nuclei we have
compared with the average value of the states 1/2− and 3/2−

of [17]. This average gives a value that it is very close to the
Monte Carlo result of this work, especially for13C where the
spin-orbit splitting is smaller than in15N. From this test it
can be concluded that, forAÞ4n, the angular momentum
projection scheme of this work provide reliable results.

The ground state of these nuclei has been studied in this
work by using a semirealistic potential. We have used the
modified Afnan-Tang nuclear potential MS3[30,31]. This is
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a v4-type interaction with a strongly repulsive core. It gives
meaningless results when used with noncorrelated trial wave
functions. Thus, in order to analyze the effects of nuclear
correlations with respect to the noncorrelated case, it is more
convenient to use an interaction with a less repulsive short-
range part such as the Brink-Boeker BB1 force[32].

The ground state energy and the root mean square radius
kr2l1/2 for different nuclei calculated from a number of trial
wave functions by using the BB1 and the MS3 interactions
are reported in Tables II and III, respectively. The optimal
parameters of the trial wave functions are also shown. The

notation is as follows: MB stands for a noncorrelated trial
wave function of Margenau-Brink type, JL is a correlated
wave function including both a central Jastrow factor and a
linear state independent correlation factor[gskdsrd=0 for k
=2, 3 4 in Eq.(4)], and JLO is a correlated wave function
with both a central Jastrow factor and a linear correlation
factor that is state dependent—i.e., depends explicitly on the
spin and isospin exchange operators[gskdsrdÞ0 for k=1, 2,
3, 4 in Eq.(4)]. Both types of correlated trial wave functions,
JL and JLO, are built from a Margenau-Brink model wave
function. In the JLO approach we have used the same non-

TABLE I. Binding energy and root mean square radiuskr2l1/2 for different nuclear states calculated in this work(mc) as compared with
the results of Dufour and Descouvemont(dd) [17]. Both calculations have been performed by using the Volkov V7 interaction[19] and the
same variational wave function without correlations. The inverse of the oscillator parameter,b−1, and the distances between the clusters,Rc

andRd, are also included. The energies are in MeV andkr2l1/2, b−1, andRc andRd in fm. The statistical error in the Monte Carlo calculation
is indicated in parentheses. The Coulomb energy has been included in the total energy.

AXsK ,Jpd b−1 Rc,Rd Emc Edd kr2lmc
1/2 kr2ldd

1/2

12Cs0,0+d 1.38 2.65 86.49(4) 86.7 2.31(7) 2.31
12Cs3,3−d 1.38 3.14 76.41(4) 76.5 2.49(9) 2.49
13Cs 1

2 , 1
2

−d 1.39 2.29,2.114 88.99(7) 89.6 2.25(9) 2.25
14Cs0,0+d 1.39 2.26,2.057 102.26(6) 102.5 2.26(7) 2.26
15Ns 1

2 , 1
2

−d 1.35 1.84,1.887 119.37(7) 121.9 2.15(11) 2.15
16Os0,0+d 1.34 1.49,2.409 147.83(5) 148.0 2.18(3) 2.18
16Os3,3−d 1.37 2.24,1.958 129.46(10) 129.8 2.27(10) 2.26

TABLE II. Ground state energies calculated by using different trial wave functions without correlations(MB), with state independent
correlations(JL), and with linear state dependent correlations(JLO) for the BB1 Brink-Boeker potential. Energies are in MeV,kr2l1/2 in fm,
b1, b2 in fm−1, andRc, Rd in fm. The statistical error is shown in parentheses. The Coulomb energy is not included in the total energy.

AXsK ,Jpd WF b1, b2 Rc, Rd E Ec kr2l1/2

MB 0.70 3.4 −80.01s4d 7.197(1) 2.63(4)
12Cs0,0+d JL 0.72 3.5 −112.36s4d 7.417(1) 2.53(7)

JLO 0.72 3.5 −117.68s11d 7.397(1) 2.53(7)

MB 0.68, 0.59 3.5, 3.0 −78.29s6d 7.057(1) 2.71(9)
13Cs 1

2 , 1
2

−d JL 0.72, 0.54 3.4, 3.0 −112.65s7d 7.558(1) 2.53(8)

JLO 0.72, 0.54 3.4, 3.0 −119.8s2d 7.613(2) 2.52(15)

MB 0.69, 0.56 3.2, 2.5 −86.36s5d 7.363(1) 2.64(6)
14Cs0,0+d JL 0.74, 0.58 3.1, 2.8 −122.93s8d 7.836(1) 2.47(5)

JLO 0.74, 0.58 3.1, 2.8 −131.75s13d 7.854(1) 2.46(8)

MB 0.68, 0.57 3.2, 2.8 −85.09s6d 9.849(1) 2.65(8)
14Ns1,1+d JL 0.71, 0.57 3.0, 2.5 −121.68s7d 10.438(1) 2.47(7)

JLO 0.71, 0.57 3.0, 2.5 −131.8s2d 10.381(2) 2.48(10)

MB 0.66, 0.56 3.0, 2.5 −97.69s10d 9.948(1) 2.65(9)
15Ns 1

2 , 1
2

−d JL 0.74, 0.63 2.7, 2.4 −139.55s10d 10.821(1) 2.39(9)

JLO 0.74, 0.63 2.7, 2.4 −152.0s4d 10.837(5) 2.38(18)

MB 0.66 2.9, 2.4 −118.70s5d 13.470(1) 2.60(3)
16Os0,0+dC3v

JL 0.76 2.8, 2.4 −166.92s6d 14.516(1) 2.36(3)

JLO 0.76 2.8, 2.4 −179.46s10d 14.515(2) 2.35(5)

MB 0.67 2.8 −118.52s5d 13.456(1) 2.60(3)
16Os0,0+dt JL 0.74 2.6 −166.66s6d 14.446(2) 2.37(4)

JLO 0.74 2.6 −180.61s8d 14.552(2) 2.35(5)
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linear parameters as in JL; i.e., the variational freedom is
restricted only to the linear parameters of the different opera-
torial channels. This scheme has shown to work properly for
spin- and isospin-saturated nuclei[23,24] in such a way that
the loss of energy due to this partial optimization was very
small. This is convenient because when state dependent cor-
relations are included, two things happen: first the calcula-
tion becomes slower, and second, the statistical error in-
creases. Therefore it is very convenient, from a
computational point of view, that the nonlinear parameters
can be well determined by means of a state independent op-
timization. Note that the linear parameters are computed by
solving a generalized eigenvalue problem and then only a
long run is required to fix them. The expectation value of the
Coulomb energyEc, not included in the total binding energy,
is reported separately. For the results shown in this work we
have used 283105 s263105d moves per nucleon with state
independent(state dependent) correlated wave functions.

The wave functions used in this work include two differ-
ent oscillator parameters: one for the complete clusters and
another for the incomplete one. This gives rise to an im-
provement in the energy of about 3 or 4 MeV when the
incomplete cluster is made of one or two nucleons. The im-
provement is noticeably reduced if the incomplete cluster
contains three nucleons. The smaller value for the oscillator
parameter of the incomplete cluster is due to the fact that the
nucleons are more localized in the alpha particle cluster than
in the incomplete cluster. In general we have obtained oscil-
lator parameters that vary between those of12C and16O.

With respect to the optimum parameters of the intercluster
distances, we have obtained that the distance between the
centers of the complete clusters is bigger than the distance
between the incomplete cluster and an alpha particle cluster.
The total energy is not very sensitive to variations of the
intercluster distances in the neighborhood of the equilibrium
values. We have indicated such a situation by giving these
distances with only one decimal digit. Finally—and as could
be expected—when moving fromA=12 toA=15 the optimal
values of the variational parameters tend to those of16O.

This is the case for all of the interactions and wave functions
analyzed in this work. It is remarkable that the ground state
energy of16O obtained with theC3v symmetry is practically
the same as the one obtained with a tetrahedral symmetryTd.

In general, the effect of the correlations is to reduce the
average size of the nucleus. Therefore, the optimum values
in the model wave function will depend on the presence, or
not, of the correlation factor. The modification with respect
to the noncorrelated wave function is roughly proportional in
all of the parameters in such a way that nucleon correlations
give rise to an isotropic contraction of the nucleus.

It is interesting to point out the importance of correlations
in the binding energy of12C and14C as compared with13C
and 14N, respectively. With both interactions,12C is more
bound than13C with central correlations, but state dependent
correlations reverse this situation, obtaining a difference of 1
and 2 MeV with the MS3 and BB1 interactions, respectively.
The behavior of the nuclear binding energy of14C and14N is
different with both potentials. With the BB1 interaction and
without correlations,14C is slightly more bounded than14N.
The difference in their binding energy decreases with the use
of central correlations and is zero with state dependent cor-
relations. However, with the MS3 potential,14N is 4.5 MeV
more bounded than14C with central and state dependent cor-
relations. The reason for this different behavior lies in the
contribution of the Bartlett and Heisenberg channels of the
MS3 interaction, which are null in the BB1 potential. Finally
it is also worth mentioning here that we have obtained a
negligible effect of the state dependent correlations on the
Coulomb energy, which depends basically on the parameters
of the model wave function.

The correlations increase the binding energy by a quantity
which grows with the number of nucleons,A. In order to get
a deeper insight into the coupling between correlations and
the particular nucleus we report in Table IV the increment in
energy per number of pairs of nucleons. For example the
increase in the binding energy per nucleon pair when state
independent correlations are included with respect to the un-
correlated model is given by

TABLE III. Ground state energies calculated by using different trial wave functions, with state independent correlations(JL), and with
linear state dependent correlations(JLO) for the modified Afnan-Tang MS3 potential. Energies are in MeV,kr2l1/2 in fm, b1, b2 in fm−1, and
Rc, Rd in fm. The statistical error is shown in parentheses. The Coulomb energy is not included in the total energy.

AXsK ,Jpd WF b1,b2 Rc,Rd E Ec kr2l1/2

12Cs0,0+d JL 0.70 3.5 −74.54s5d 7.571(1) 2.48(4)

JLO 0.70 3.5 −87.2s4d 7.440(2) 2.49(15)
13Cs 1

2 , 1
2

−d JL 0.70, 0.46 3.3, 3.1 −73.37s10d 7.833(1) 2.47(8)

JLO 0.70, 0.46 3.3, 3.1 −88.6s6d 7.864(1) 2.44(13)
14Cs0,0+d JL 0.69, 0.48 3.4, 3.0 −77.52s7d 7.840(1) 2.50(5)

JLO 0.69, 0.48 3.4, 3.0 −94.6s3d 7.840(1) 2.44(10)
14Ns1,1+d JL 0.69, 0.54 3.2, 2.8 −81.95s9d 10.699(1) 2.42(7)

JLO 0.69, 0.54 3.3, 3.8 −99.3s4d 10.865(3) 2.37(10)
15Ns 1

2 , 1
2

−d JL 0.67, 0.54 3.2,2.8 −91.77s12d 10.701(1) 2.45(9)

JLO 0.67, 0.54 3.2, 2.8 −112.6s6d 10.878(3) 2.39(15)
16Os0,0+d JL 0.71 2.7 −114.46s7d 14.827(1) 2.32(3)

JLO 0.71 2.7 −135.6s3d 15.036(2) 2.27(7)
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DJL-MB =
2

AsA − 1d
sEJL − EMBd,

whereEJL sEMBd is the energy in the JL(MB) model. The
quantityDJLO-JL is defined in a similar way. As can be seen,
the increment per number of pairs is roughly constant for all
of the nuclei considered, especiallyDJLO-JL, which accounts
for the effect of state dependent correlations. The increment
due to state dependent correlations in the MS3 potential is
practically twice the increment in the BB1 case.

A more detailed analysis of the effect of the state depen-
dent correlations on the energy can be done by looking at the
contribution of the kinetic energy and of the different chan-
nels of the potential energy. In Fig. 2 we plot the differences
between these quantities calculated with the JL and JLO
wave functions for both the BB1 and MS3 interactions. Both
the kinetic energy and energy of the Wigner channel rise
with state dependent correlations for both potentials. This
increase is more important for the kinetic energy with the
MS3 potential than with the BB1 one, whereas the opposite
holds for the energy of the Wigner energy. For the BB1 po-
tential, the Majorana channel is the responsible for the de-
crease in the ground state energy when state dependent cor-
relations are considered. For the MS3 interaction, the effect
on the Majorana channel is practically canceled with that on
the kinetic and Wigner energies, and the Bartlett and Heisen-

berg channels make the nuclei more bound. The contribution
of these two channels is very close and is nearly independent
of the nucleus considered.

The one- and two-body densities give the spatial distribu-
tion of the nucleons in the nuclei. The one-body density is
the probability density distributions for finding a nucleon
around the center of mass of the system and the two-body the
probability density distribution for finding a nucleon around
another given nucleon. In particular, the spherically averaged
one- and two-body densities, normalized to unity, are defined
as [33,34]

rsrd =E dtuCstdu2H 1

A
o
i=1

A
1

r2dsr − urWi − RW udJ , s15d

r2sr12d =E dtuCstdu2H 2

AsA − 1doi, j

A
1

r12
2 dsr12 − urWi − rW judJ ,

s16d

wheret stands for all of the particles’ spatial coordinates and

intrinsic degrees of freedom andRW =s1/Adoi=1
A rWi. Here we

have calculated these densities to analyze the effect of the
different correlation mechanisms introduced in the varia-
tional wave functions. In Fig. 3 we show the one-body
nuclear density calculated with the JL wave function for all
of the nuclei here studied and the two interactions consid-
ered. As can be seen, the qualitative behavior is similar for
both potentials, with a higher value of the maximum as the
number of nucleons increases. It is also worth pointing out
that asA increases, the density tends to that of16O. It is for
these nuclei and the MS3 interaction where this density is
more separated from the others.

The effect of the state-dependent correlations on the one-
body density for these nuclei is studied in Fig. 4, where we
plot the difference between the single-particle density ob-
tained with the JL and JLO wave functions. The first notice-
able fact is that the general behavior is different for the two
interactions used here. Thus at short distances state depen-
dent correlations tend to increase the density with the BB1
interaction and the opposite happens with the MS3 potential,
except for12C, for which a negative region at short distances

TABLE IV. Increase in the binding energy per number of
nucleon pairs due to the inclusion of different correlation factors for
the nuclei studied in this work. For16O the symmetry group isC3v.
In parentheses is indicated the nuclear interaction. The increment is
in MeV per number of nucleon pairs. The error is in the last figure.

AXsK ,Jpd DJL-MB (BB1) DJLO-JL (BB1) DJLO-JL (MS3)

12Cs0,0+d −0.49 −0.08 −0.19
13Cs 1

2 , 1
2

−d −0.44 −0.09 −0.19
14Cs0,0+d −0.40 −0.10 −0.19
14Ns1,1+d −0.40 −0.11 −0.19
15Ns 1

2 , 1
2

−d −0.40 −0.12 −0.19
16Os0,0+d −0.40 −0.12 −0.18

FIG. 2. Increase in the total energy, the expectation values of the kinetic energy, and the different channels of the interacting potential
when state-dependent correlations are included with respect to the JL approximation. In the left hand side panel we plot the results for the
BB1 potential and in the right hand side panel for the MS3 potential. The lines are for guiding the eyes.
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appears. In addition, for the BB1 potential, the effect of the
operatorial correlations is roughly independent of the nucleus
while for the MS3 potential effects of the operatorial corre-
lations show a more accused dependence on the nucleus.

The effects of correlations are more important on the two
body density than in the one-body density. In Fig. 5 we plot
the two-body density obtained from the state independent
correlated wave function JL for all of the nuclei studied and
the two interactions considered in this work. The behavior of
this density is very similar for both potentials, although the
effect of the nuclear core is much more important in the MS3
potential. The main difference is that with the MS3 interac-
tion shorter distances are favored with respect to the BB1
potential. At distances between 2 and 3.5 fm the differences
among the nuclei considered are more important, with bigger

values as the number of nucleons increases from12C to 16O.
This can be understood as a progressive filling of the incom-
plete cluster that gives rise to a larger number of particles at
these intermediate distances.

Finally, the effect of including state dependent correla-
tions on this density is studied in Fig. 6 where we plot the
difference between the two-body density calculated from the
JL and JLO wave functions. As was the case for the one-
body density, the effect of state dependent correlations is
roughly independent of the nucleus when the BB1 potential
is used and a more accused dependence is observed for the
MS3 interaction. For both potentials, state dependent corre-
lations bring together nucleons with respect to the JL case.

FIG. 3. One-body density for all the nuclei studied in this work
calculated with the JL wave function. In the upper panel we plot the
results for the BB1 potential and in the lower one for the MS3
potential.

FIG. 4. Effect of the state dependent correlations on the one-
body density for the different nuclei considered in this work. In the
upper panel we plot the results for the BB1 potential and in the
lower one for the MS3 potential.
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IV. CONCLUSIONS

Variational Monte Carlo calculations forp-shell, AÞ4n,
nuclei starting from the nucleon-nucleon interaction have
been presented. The ground state energy and the one- and
two-body densities have been calculated. The variational
wave function consists of three factors: a central Jastrow
term, a spin-isospin dependent linear term, and a model wave
function. The model wave function is based on a cluster
model allowing for the formation of different kinds of
nucleon clusters with centers at fixed positions. The Peierls-
Yoccoz projection operators have been used in order to ob-
tain trial wave functions with the proper values of the angu-
lar momentum. This work extend previous ones carried out
for spin- and isospin-saturated nuclei.

The present scheme has shown to be appropriate for de-
scribing two important and complementary aspects of the
nuclear dynamics as the short-range correlations and the for-
mation of nucleon clusters. The former is induced by the
short-range repulsive part of the nuclear potential while the
later is a collective effect due to the medium- and long-range
part of the interaction.

In this work, an analytical reduction of the expectation
values forAÞ4n nuclei is presented. The use of the Peierls-
Yoccoz projection operators introduces new features when
the nuclei are not spin and isospin saturated. Here we obtain
a final form of the expectation values which is specially
suited for the variational Monte Carlo calculation. This is
done for both state-independent and state dependent correla-
tion factors. As a result the different expectation values can

FIG. 5. Two-body density for all the the nuclei studied in this
work calculated with the JL wave function. In the upper panel we
plot the results for the BB1 potential and in the lower one for the
MS3 potential.

FIG. 6. Effect of the state-dependent correlations on the two-
body density for the different nuclei considered in this work. In the
upper panel we plot the results for the BB1 potential and in the
lower one for the MS3 potential.
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be computed with no significant extra computational cost
with respect to the case of spin- and isospin-saturated nuclei.

The scheme is applied to several nuclei with 12øAø16.
The methodology has been first tested against previous
works using a completely different scheme of calculation.
Then results obtained by using two different nucleon-
nucleon potentials including a repulsive core at short dis-
tances and state-dependent interaction channels have been
reported. The binding energies and the root mean square ra-
dius along with the optimal parameters of the wave functions
are shown for the different nuclei and states considered here.
The effect of the different correlation mechanisms included
in the trial wave function on the energy and on the equilib-
rium geometries is discussed. The importance of using dif-

ferent oscillator parameters for the different kind of nucleon
clusters is shown. The effect of the correlations on the dif-
ferent interaction channels is analyzed in terms of the num-
ber of nucleons. Finally one- and two-body densities ob-
tained for the nuclei here studied with several
approximations of the wave functions are reported and dis-
cussed.
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