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Projected multicluster model with Jastrow and linear state dependent correlations
for 12<A=<16 nuclei
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Variational wave functions based on a Margenau-Brink cluster model with short-range and state-dependent
correlations and angular momentum projection are obtained for some nuclei witA$216. The calculations
have been carried out starting from the nucleon-nucleon interaction by using the variational Monte Carlo
method. The configuration used consists of three alpha clusters located at the apexes of an equilateral triangle
and an additional cluster, not necessarily of alpha type, forming a tetrahedron. This cluster is located at the top
of its height. Short-range and state dependent correlations are included by means of a central Jastrow factor and
a linear operatorial correlation factor, respectively. Angular momentum projection is performed by using the
Peierls-Yoccoz operators. Optimal structures are obtained for all the nuclei studied. Some aspects of our
methodology have been tested by comparing with previous calculations carried out without short-range corre-
lations. The binding energy, the root mean square radius, and the one- and two-body densities are reported. The
effects of correlations on both the energy and nucleon distributions are analyzed systematically.
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[. INTRODUCTION Alpha cluster models—or cluster models in general—

The joint use of short-range dynamic correlations with@ve been widely applied in microscopic descriptions of
model wave functions including relevant aspects of nucleaPoUnd and scattering states of nuclear systgis-19.
structure constitutes the most commonly used scheme to d¥ariational wave functions built within this frameworlk con-
scribe nuclear bound states with realistic or semirealistic inStitute an appropriate scheme for nuclei sucfizesand*“C,
teractions. Short-range correlations are essential elements {¥hich present a clear cluster structure. The use of wave func-
the wave function because, as is well known, any of theions including the possibility of the formation of alpha clus-
so-called realistic or semirealistic parametrizations of thder structures or any other kind of grouping of nucleons im-
nuclear potential present a strong short-range repulsive corproves the description of these nuclei and their neighbors
On the other hand, the formation of different kinds of clus-with respect to simple mean field approximatiqas].
ters in the nuclei can be understood as a collective movement Multicluster models have been used in microscopic
of nucleons governed by the medium- and long-range partsalculations—i.e.,  without  effective  cluster-cluster
of the nuclear potential. Therefore, for an accurate descripinteractions—based on the generator coordinate method for
tion of the nuclear states, it is convenient to consider botlsome nuclei betwee=12 and A=16 [17,1§. In these
aspects in any variational approach to the nuclear boundiorks a Volkov nucleon-nucleon potential was ugéd.
states using this type of interactions. In principle, short-rang®ther results of microscopic multicluster calculations based
correlations are mainly governed by the nucleon-nucleon inen the stochastic variational method have been reported
teraction while medium- and long-range effects depend 01f20,21 for some nuclei using the Minnesota potential. Nei-
the particular nuclear state. However—and in a more carefuher of these potentials presents a strongly repulsive short-
approach—the final form of the short-range correlations willrange part and, therefore, short-range correlations do not play
depend on the model wave function giving rise to a non-a significant role. On the other hand, previous studies of
negligible dependence of the correlations on the nucleus. alpha clustering based on nuclear potentials with a strongly

A direct way to include both short-range and medium-repulsive core have been mainly restricted to spin-isospin-
and long-range correlations is by using Jastrow-type correlasaturated nuclei—i.e., states @=4n, Z=N—nuclei in
tion factors, but the calculation of the expectation valueswvhich each spatial orbital is occupied by two protons and
becomes very cumbersome, especially when state dependéwd neutrong22,23.
correlations are included. There exist several methods to The aim of this work is to study the ground state of some
evaluate these expectation values such as those based shell nuclei,A+ 4n, including clustering effects and short-
cluster expansions[1-3], the Fermi-HiperNetted-Chain range and state dependent correlations, starting frptype
method[4,5], or statistical methods such as the variationalnucleon-nucleon interactions. Here we extend previous
Monte Carlo method6,7]. The coupled cluster method al- works done forA=4n nuclei. The ground state energy and
lows one to incorporate both types of correlatig8s1(0. In  the root mean square radius along with the parameters of the
this way it is possible to understand how the different corre-optimal structures have been obtained for several nuclei us-
lation mechanisms are incorporatgd,12. ing two different interactions and several models for the trial
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wave function. Local properties such as the one- and two- A
body spatial densities are reported. The effects of the differ- FAL ... A= 11 f(ry)). (2
ent correlation mechanisms on these quantities and on the i<

different channels of the interacting potential have been anary 4 |inear factor is defined as

lyzed. In this work we present the extension of the method-

ology in order to consideA+# 4n nuclei with angular mo- A

mentum projection and state dependent correlations within Fe(l,... A =2 (i), 3
the variational Monte Carlo scheme. <)

The nucl'eon clustering is describeq in terms of mOd_elvvhere the functiory(i,j) depends on the radial and intrinsic
wave functions based on a generalized Margenau-Brinegrees of freedom of particless,j. This is the only part of
model as in[17]. Short-range correlations are included by the trial wave function where state dependent correlations are
means of a Jastrow factor and the dependence on the spiiesent explicitly. Here we employ the same parametrization
and isospin exchange channels is included by using a linegpy the correlation functiong(i,j) andf(r), used in previous

state dependent correlation factor. Angular momentum proggrks (2224, which has shown to provide good results:
jection is carried out in order to obtain variational wave

functions that are eigenfunctions of the total angular momen- o o
tum operator. The calculations are performed by means of 9(i,j) = 2 g®(r) PYGL ), (4)
the variational Monte Carlo method. k=1

In generalizing to thé\ # 4n case, the angular momentum where
projection involves a spin mixing not present in spin- and Wi
isospin-saturated nuclei. In this paper we present an analyti- PYG,)) =1,
cal reduction of the different expectation values for these
nuclei, obtaining expressions suitable for the variational
Monte Carlo method. By using this scheme, the computing
time is hardly increased with respect to the spin-isospin-
saturated case. We apply the method to the ground state of 1
3¢, ¥c, N, and™*N. The results obtained are also valid for PG, =Z(1+7-7),
the mirror nuclei®®N, 0, and*®0 because the electrostatic 2
energy has been not considered in the minimization process. @ o — b@ D@
A systematic analysis of the effects of the different correla- PG, 1) = PG, )P ). (5)
tions mechanisms included in the wave functions on the total  Thjs dependence on operators of the correlation factor is
energy and on the contribution of the different channels ishe same as that of the nucleon-nucleon interactions consid-
carried out. One- and two-body densities are reported and thgeq in this work. The functiong®(r), k=1, ..., 4, andi(r)

effect of the correlations are discussed. are parametrized as a linear combination of Gaussians:
The scheme of this work is as follows. In Sec. Il the

variational wave function and the analytical reduction of the ® M 0, b2 N dr?
expectation values leading to a form appropriate for the g¥(n =2 ape™, f(N=1+>ce™. (6
variational Monte Carlo method are detailed. In Sec. Ill we m=0 n=t
report and discuss the main results here obtained. The con- The parameteraﬂ?, b, c,, andd, are taken as variational
clusions of the present work can be found in Sec. IV. parameters in such a way that they are fixed by minimizing
the expectation value of the ground state energy. The opti-
mum values forafT'? have been obtained by solving a gener-
Il. WAVE FUNCTION alized eigenvalue problem, with matrix elements calculated
by using Monte Carlo quadrature. The other parameters have
been obtained by using standard techniques of many dimen-
sional nonlinear optimization. This step is, in general, time
Yiw(1,2, ... A= FAL ... AF.(L,... A consuming. We have verified that the use of the simplifica-
tion b,,=d, conveys to accurate results ff=N=2 and it
has been used throughout this work.
DL, . A (1) 'The new aspects of treatinfy# 4n .nl_JcIei with respect to
spin- and isospin-saturated ones originate in the angular mo-
This structure has been used in previous studies of spirmentum projection. Therefore we shall focus here on the
and isospin-saturated nuclg3,24. It consists of a central model part of the wave function and on the angular momen-
Jastrow correlation factdf ; a linear correlation factoF,  tum projection. The correlation factors are treated as in the
that can include state dependent correlations, and a modspin- and isospin-saturated cases.
wave functiondy,,, that is antisymmetric and has the proper  The model wave function used here is based on a gener-

4

o1 - -
PO,j) =51 +6- )

The variational trial wave function used in this work is

values of the total angular momentum and parity. alization of the Margenau-Brink model. Instead of using only
The Jastrow factor depends only on the distance betweesipha-particle-like nucleon clusters, more general groupings
a pair of nucleons: are allowed, giving rise to a multicluster descriptidr7,2Q.
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With these choices for the cluster wave functions, the model
wave function of theA nucleons is a Slater determinant. In
general this function is not eigenfunction of parity or total
angular momentum operators.

The linear combinations

D (1,2,... A=Ded1.2, ... At D 1,2, ... A
(10

have definite parity. Model wave functions with the total
angular momentum of the state under study can be obtained
from Eq. (10) by using the Peierls-Yoccoz projection opera-

tors[25]
2+1 " +
3, ... A= o dODy(OR(O)DL (1, ... A),
FIG. 1. Cluster description of the nuclei in terms of three alpha (11)
particles and a generalincomplete cluster with one, two, or three
nucleons. whereR(0) is the rotation operatoﬂ?ﬂ,’f,((@) is the rotation

matrix, and ® represents the Euler angles. The quantum

Within the molecular viewpoint of the Margenau-Brink NumberJ gives the total angular momentui,is its projec-
scheme, the model wave function is obtained starting fronfion along the nucleaz axis, andM is the projection along

the functions th'e'Z axjs of the Ia}boratqry fixed frame. .The prqjegtiqn
within this scheme is carried out by rotating the intrinsic
Dc(1,2, ... A= A{Dy(Xy, o X)) PR 41, -+ X)) state and integrating over all angles weighted by the rotation
@) matrix.

The function®¢ &1, ... ,A) in Eq. (8) is the generator
Whereéz{ék}ﬂzl is a set of parameters that represent thefunction of the model wave functions. Note that we have
centers of the clusters and is the corresponding antisym- removed the parametric dependence of the model wave func-
metrizer. In this work the arrangement of the nucleonstion on the position of the center§, in order to simplify the

shown in Fig. 1, consists of three clusters and a fourth notation. The distances between the clustBgsand Ry, are
incomplete cluster that can be made of one, two, or thregletermined variationally.

nucleons depending on the nucleus under study. The action of the rotation operator on the generator func-
For this configuration, the general form of the function tion is now described in detail. As we have mentioned be-

given in Eq.(7) reduces to fore, this is the source of the new methodological aspects
Ded1,2, ... A originated by the fact that the nuclear states are not spin and

isospin saturated. We do not need to consider here the corre-

3 lation factors because they are rotationally invariant. The

=Ay | 11 D, (Xam-3, -+ Xam) [Pas(Xaz - Xa) [ generator function is a Slater determinant. The action of the

m=1 rotation operator on it leads to a linear combination of Slater

(8)  determinants. If the Slater determinant is spin and isospin

) . _saturated, this linear combination contains only one Slater

where®,, stands for the wave function of an alpha particle yeterminant that also is spin and isospin saturated, containing
centered aty, @ represents the incomplete cluster wavethe same single-particle orbitals. The only difference is that,
function centered ads, and the labeb indicates the depen- after rotation, these orbitals depend on the rotated coordi-

dence on the spin of the incomplete cluster. nates. This was exploited previously to stul¢4n nuclei

In this work the®, functions are taken to be Slater de- [24,26. When the nuclei are not spin or isospin saturated the
terminants built from harmonic oscillator single-particle or- rotation gives rise to a mixing of spin states.

bitals centered af;: When the incomplete shell consists of one nucleon—as,
2\ L, for example, in the ground state 6iC—the action of the
Ppeh) = (—) g A r-012, (90  rotation operator can be written as follows:
r
- _ 1/2 T -
The oscillator paramete® is the same for all of the alpha R(G))q’cﬁsﬂtﬁ‘ > Dsﬁ,g(e))q’cﬁﬁtg* (12)

. . i =+1/2
clusters. For the incomplete cluster wave function another S

Slater determinant centered@tis employed also built from where 8 stands for the spatial quantum numbers of the or-
s-wave harmonic-oscillator single-particle orbitals. The os-bital of the incomplete cluster, ang andt, are the third
cillator parameter in this case is, in general, different to thatomponents of spin and isospin, respectively. The overbar
for the « cluster wave function. The importance of using aindicates that the Slater determinant must be evaluated on the
different harmonic oscillator parameter will be discussedrotated coordinates. Therefore—and concerning the spin de-
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pendence of the state—the effect of the rotation is to mix theemaining on its original configuration. This is important be-
two possible spin projections of the orbital in the incompletecause it determines the configurations that give nonzero con-
cluster. The weight of each component is given by the matrixributions to the integral when projected onto the bra. The

element of the rotation matrix. action of the rotation operator is to produce a linear combi-

When there are two extra nucleons the result of the rotanation of configurations containing the original one. One

tion can be written as follows: needs to analyze all of them to determine if, after the action
_ of the spin-isospin operators &f, and the Hamiltonian, the

R(@)d)éﬂsﬂtﬁﬁsyty: > Dé;(@)Difsj(®)<I>éyﬁsitﬁﬂsjty original configuration is obtained. As a result, only the origi-

Si§j=£1/2 nal configuration appearing after rotation contributes with

11 both central and state dependent correlation factors, except
=2 X EESBSV|S’SB+SV for incomplete clusters made of one proton and one neutron

§:5=¢1/25=0.1 with S=0, which we have not studied here, for which two of
11 S the configurations appearing after the rotation give a nonzero

X EESSHS,S +5; Dsﬁ+sy,si+sj(®) contribution. Note that the weight factor must be included
N when doing the integral in all cases. The treatment of state
X@éﬁgtﬁﬂ%, (13)  dependent correlations in terms of the intermediate states is

not modified with respect to the case of spin- and isospin-

where(Bsgtg) and(Bs,t,) stand for the quantum numbers of saturated nucl€i28,29.
the orbitals of the incomplete shell. Note that we have con-
sidered the same spatial dependence for both single-particle
orbitals. Therefore, if one is dealing with two extra protons
(*%0) or two extra neutron§'“C) with the two possible spin First we will test the new methodological aspects imple-
orientations, the terr$=1 vanishes. Only in the case of one mented in this work by comparing with the results of Dufour
proton and one neutron outside a closed stté&) will both and Descouvemoritl7] obtained by using a different com-
total spin components contribute. putational scheme. We will employ for the test both the same

Finally, the case of three nucleons outside a closed shefiucleon-nucleon interactiotthe Volkov V7 potentigl and
(**N and *®0 is a conjugate configuration to that of one the same wave function as [47]. It is worth pointing out
nucleon outside a closed shell and it is handled in the samidat the correlation factor is not needed because the interac-
way. tion does not present a strongly repulsive core. In order to

The values allowed fod andK are governed by the sym- correct for the effects of the center of mass motion, we have
metry group of the system—i.e., by the spatial positions oworked with an intrinsic Hamiltonian built as the total
the centers of the clusters. For the nuclei here considered th#amiltonian minus the kinetic energy of the center of mass.
group isCs,. The spin of the extra cluster must be also con-When we use one only parameter for describing all the clus-
sidered in determining the possible valueofif Mgis the  ters in the MB wave function this method corrects exactly
total spin third component, the allowédvalues are given by the spurious effect of the center of mass motion. This is
the selection rulék —Md =3n, with n a positive integefl7]  because in that case the center of mass dependence in the
and, for anyK, J=K, and the parity isT=(-1)"*S. The en- total wave function can be exactly factored. If one uses two
ergy grows withK, providing different rotational bands. In different parameters to describe the clusters, the wave func-
this work we are concerned only with the ground state; theretion cannot be factored. In this case the method here used
fore, we shall restrict ourselves k=1 for N andK=0 for  introduces spurious effects associated with the center of mass
all the rest. For one and three extra nucledhs=1/2 and and intrinsic wave function coupling. However, the results
the ground state i§1/2)*, and for two extra nucleons there obtained are still of variational character and the figures are
are two possibilities: (i) both nucleons are protons or neu- better than those obtained with only one parameter.

Ill. RESULTS

trons, Mg=0, and the state is*0and (ii) one nucleon is a In Table | we show for the ground state and some excited
proton and the other a neutrolls=0, 1 and the 1ground  States of the nuclei studied in this work the binding energy
state must be constructed wils=1 andK=1. and the root mean square radigg)*/2. As can be seen from

In order to compute the expectation value of the Hamil-the table, both sets of results are in very good agreement.
tonian in the projected wave function it is convenient to useThe spin-orbit interaction is not included in our work and
the expressioii24,27 therefore one cannot compare directly the results for nuclei
with an odd number of nucleons. For these nuclei we have
compared with the average value of the states hftl 3/2
of [17]. This average gives a value that it is very close to the
. N Monte Carlo result of this work, especially f&iC where the
(P JFFHFFRO) DL . spin-orbit splitting is smaller than i°N. From this test it

(14) can be concluded that, fok+ 4n, the angular momentum
projection scheme of this work provide reliable results.

Let us focus on the spin-isospin configuration of the The ground state of these nuclei has been studied in this
nuclear state. Note that, because of the rotational invarianogork by using a semirealistic potential. We have used the
property of the Hamiltonian, only the ket is rotated, the bramodified Afnan-Tang nuclear potential M$30,3]. This is

+ + 2J+1 .
(WiemlH [P = W d@DJKK(®)
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TABLE I. Binding energy and root mean square radit®? for different nuclear states calculated in this weénkc) as compared with
the results of Dufour and Descouvemadtl) [17]. Both calculations have been performed by using the Volkov V7 interagtighand the
same variational wave function without correlations. The inverse of the oscillator paragiéteand the distances between the clustBgs,
andRy, are also included. The energies are in MeV a2, 571, andR; andRy in fm. The statistical error in the Monte Carlo calculation
is indicated in parentheses. The Coulomb energy has been included in the total energy.

AX(K,37) Bt Re, Ry Eme = (e (A5
2c(0,0M 1.38 2.65 86.4@1) 86.7 2.317) 231
12¢(3,3) 1.38 3.14 76.404) 76.5 2.499) 2.49
%c(3,1) 1.39 2.29,2.114 88.99) 89.6 2.2%9) 2.25
Yc(0,0M 1.39 2.26,2.057 102.26) 102.5 2.267) 2.26
™N(,3) 1.35 1.84,1.887 119.87) 121.9 2.1511) 2.15
1%0(0,0%) 1.34 1.49,2.409 147.83) 148.0 2.183) 2.18
%0(3,3) 1.37 2.24,1.958 129.480) 129.8 2.2710) 2.26

a v-type interaction with a strongly repulsive core. It gives notation is as follows: MB stands for a noncorrelated trial
meaningless results when used with noncorrelated trial waverave function of Margenau-Brink type, JL is a correlated
functions. Thus, in order to analyze the effects of nucleawave function including both a central Jastrow factor and a
correlations with respect to the noncorrelated case, it is morknear state independent correlation facfgt(r)=0 for k
convenient to use an interaction with a less repulsive short=2, 3 4 in Eq.(4)], and JLO is a correlated wave function
range part such as the Brink-Boeker BB1 fof&@]. with both a central Jastrow factor and a linear correlation
The ground state energy and the root mean square radidisctor that is state dependent—i.e., depends explicitly on the
(r?)Y2 for different nuclei calculated from a number of trial spin and isospin exchange operatfg®)(r) #0 for k=1, 2,
wave functions by using the BB1 and the MS3 interactions3, 4 in Eq.(4)]. Both types of correlated trial wave functions,
are reported in Tables Il and lll, respectively. The optimalJL and JLO, are built from a Margenau-Brink model wave
parameters of the trial wave functions are also shown. Théunction. In the JLO approach we have used the same non-

TABLE II. Ground state energies calculated by using different trial wave functions without correl@lit)s with state independent
correlationgJL), and with linear state dependent correlati¢#isO) for the BB1 Brink-Boeker potential. Energies are in Mék2)2 in fm,
B, B, in fm™, andR;, Ry in fm. The statistical error is shown in parentheses. The Coulomb energy is not included in the total energy.

AX(K,Jm) WF B, B2 Res Ry E E (r3)t2
MB 0.70 3.4 -80.004) 7.1971) 2.634)

12¢(0,0% JL 0.72 35 -112.3@) 7.4171) 2.537)
JLO 0.72 35 -117.681) 7.3971) 2.537)

MB 0.68, 0.59 3.5,3.0 ~78.26) 7.0571) 2.719)

c(2,1) JL 0.72, 0.54 3.4,3.0 -112.69 7.5581) 2.538)
JLO 0.72, 0.54 3.4,3.0 -1198 7.6132) 2.5215)

MB 0.69, 0.56 32,25 -86.36) 7.3631) 2.646)

4c(0,0 JL 0.74, 0.58 31,28 -122.68 7.83G1) 2.475)
JLO 0.74, 0.58 3.1,2.8 -131.78) 7.8541) 2.468)

MB 0.68, 0.57 32,28 -85.06) 9.8491) 2.658)

N1, 19 JL 0.71, 0.57 3.0,25 -121.68 10.4381) 2.477)
JLO 0.71, 0.57 3.0, 25 -1313 10.3812) 2.4810)

MB 0.66, 0.56 3.0,25 -97.690) 9.9481) 2.659)

N3 JL 0.74, 0.63 27,24 -139.60) 10.8211) 2.399)
JLO 0.74, 0.63 27,24 -1524) 10.8375) 2.3918)

MB 0.66 2.9 24 -118.76) 13.47Q1) 2.603)

%0(0,0"¢,, JL 0.76 28,24 -166.98) 14.5161) 2.363)
JLO 0.76 28,24 -179.460) 14.5152) 2.355)

MB 0.67 2.8 -118.5(5) 13.4561) 2.603)

1%0(0, 0%), JL 0.74 2.6 -166.66) 14.4462) 2.374)
JLO 0.74 2.6 -180.68) 14.5522) 2.355)
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TABLE lll. Ground state energies calculated by using different trial wave functions, with state independent corrélajioaisd with
linear state dependent correlatiqds O) for the modified Afnan-Tang MS3 potential. Energies are in Me¥Y/2in fm, B, 8, in fm™2, and
R., Ry in fm. The statistical error is shown in parentheses. The Coulomb energy is not included in the total energy.

AX(K,I7) WF B1. B Re.Ry E E (r3)12
2c(0,0M JL 0.70 35 ~74.5(6) 7.5741) 2.494)
JLO 0.70 35 -87.@) 7.44Q2) 2.4915)
%c(3,1) JL 0.70, 0.46 3.3,3.1 ~73.810) 7.8331) 2.478)
JLO 0.70, 0.46 3.3,3.1 -846) 7.8641) 2.4413)
Yc(0,0h JL 0.69, 0.48 3.4, 3.0 -77.62) 7.84Q1) 2.505)
JLO 0.69, 0.48 3.4, 3.0 -94®) 7.84Q1) 2.4410)
NG, 1 JL 0.69, 0.54 3.2,28 -81.99) 10.6991) 2.427)
JLO 0.69, 0.54 3.3,38 -994) 10.86%3) 2.3710)
N(3,30) JL 0.67, 0.54 3.2,2.8 -91.712) 10.7011) 2.459)
JLO 0.67, 0.54 32,28 -1126 10.8783) 2.3915)
%0(0,0% JL 0.71 2.7 -114.4@) 14.8271) 2.323)
JLO 0.71 2.7 -135@) 15.0362) 2.277)

linear parameters as in JL; i.e., the variational freedom isThis is the case for all of the interactions and wave functions
restricted only to the linear parameters of the different operaanalyzed in this work. It is remarkable that the ground state
torial channels. This scheme has shown to work properly foenergy of'°0 obtained with theC;, symmetry is practically
spin- and isospin-saturated nuc]2B,24 in such a way that the same as the one obtained with a tetrahedral symrgtry
the loss of energy due to this partial optimization was very In general, the effect of the correlations is to reduce the
small. This is convenient because when state dependent caverage size of the nucleus. Therefore, the optimum values
relations are included, two things happen: first the calculain the model wave function will depend on the presence, or
tion becomes slower, and second, the statistical error inAot, of the correlation factor. The modification with respect
creases. Therefore it is very convenient, from ato the noncorrelated wave function is roughly proportional in
computational point of view, that the nonlinear parametersll of the parameters in such a way that nucleon correlations
can be well determined by means of a state independent ogive rise to an isotropic contraction of the nucleus.
timization. Note that the linear parameters are computed by It is interesting to point out the importance of correlations
solving a generalized eigenvalue problem and then only & the binding energy of’C and“C as compared with°C
long run is required to fix them. The expectation value of theand N, respectively. With both interactiond?C is more
Coulomb energy,, not included in the total binding energy, bound thart>C with central correlations, but state dependent
is reported separately. For the results shown in this work weorrelations reverse this situation, obtaining a difference of 1
have used 2x< 10° (2°x 10°) moves per nucleon with state and 2 MeV with the MS3 and BB1 interactions, respectively.
independentstate dependentorrelated wave functions. The behavior of the nuclear binding energy*€ and*N is

The wave functions used in this work include two differ- different with both potentials. With the BB1 interaction and
ent oscillator parameters: one for the complete clusters angithout correlations“C is slightly more bounded thafiN.
another for the incomplete one. This gives rise to an im-The difference in their binding energy decreases with the use
provement in the energy of about 3 or 4 MeV when theof central correlations and is zero with state dependent cor-
incomplete cluster is made of one or two nucleons. The im+elations. However, with the MS3 potentiafN is 4.5 MeV
provement is noticeably reduced if the incomplete clustemore bounded thatfC with central and state dependent cor-
contains three nucleons. The smaller value for the oscillatorelations. The reason for this different behavior lies in the
parameter of the incomplete cluster is due to the fact that theontribution of the Bartlett and Heisenberg channels of the
nucleons are more localized in the alpha particle cluster thaMS3 interaction, which are null in the BB1 potential. Finally
in the incomplete cluster. In general we have obtained oscilit is also worth mentioning here that we have obtained a
lator parameters that vary between thosé2af and*°0. negligible effect of the state dependent correlations on the

With respect to the optimum parameters of the interclusteCoulomb energy, which depends basically on the parameters
distances, we have obtained that the distance between tloé the model wave function.
centers of the complete clusters is bigger than the distance The correlations increase the binding energy by a quantity
between the incomplete cluster and an alpha particle clustewhich grows with the number of nucleons, In order to get
The total energy is not very sensitive to variations of thea deeper insight into the coupling between correlations and
intercluster distances in the neighborhood of the equilibriunthe particular nucleus we report in Table 1V the increment in
values. We have indicated such a situation by giving thesenergy per number of pairs of nucleons. For example the
distances with only one decimal digit. Finally—and as couldincrease in the binding energy per nucleon pair when state
be expected—when moving froA=12 toA=15 the optimal independent correlations are included with respect to the un-
values of the variational parameters tend to thosé®0f  correlated model is given by
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TABLE IV. Increase in the binding energy per number of berg channels make the nuclei more bound. The contribution
nucleon pairs due to the inclusion of different correlation factors forof these two channels is very close and is nearly independent
the nuclei studied in this work. FGPO the symmetry group i€3,.  of the nucleus considered.

In parentheses is indicated the nuclear interaction. The incrementis The one- and two-body densities give the spatial distribu-
in MeV per number of nucleon pairs. The error is in the last figure tjon of the nucleons in the nuclei. The one-body density is
A the probability density distributions for finding a nucleon
XK, Ajms (BB Ago.g(BBL) Ay (MS3) around the center of mass of the system and the two-body the
probability density distribution for finding a nucleon around

2c(0,0% -0.49 -0.08 -0.19 / . .
156(1 1-) _0.44 —0.09 ~0.19 another given nucleon. In particular, the spherically averaged
22 ’ ' ' one- and two-body densities, normalized to unity, are defined
C(0,0% -0.40 -0.10 -0.19 as[33,34
¥N(, 1 -0.40 -0.11 -0.19 N
NG, 50) -0.40 -0.12 -0.19 1ol I
i A o o 0= [ arvoP) 23 Saw-F-R) 19
A
2 — 2 2 1 > _ 2
- < _ ry)=| dn¥ ——2, 50— |Gi—Ti)(,
Ajme= AA- 1)(EJL Evg), p2(r12) f TI (T)| AA- l)z f%z (12 | i J|)

(16)

whereE; (Eyg) is the energy in the JKMB) model. The ) ) .
quantity Aoy is defined in a similar way. As can be seen, wherer stands for all of the partlcles’ spatial coordinates and
the increment per number of pairs is roughly constant for alintrinsic degrees of freedom arf@=(1/A)S2 f;. Here we
of the nuclei considered, especially, 5.3, which accounts have calculated these densities to analyze the effect of the
for the effect of state dependent correlations. The incremerdifferent correlation mechanisms introduced in the varia-
due to state dependent correlations in the MS3 potential ifonal wave functions. In Fig. 3 we show the one-body
practically twice the increment in the BB1 case. nuclear density calculated with the JL wave function for all

A more detailed analysis of the effect of the state depenef the nuclei here studied and the two interactions consid-
dent correlations on the energy can be done by looking at thered. As can be seen, the qualitative behavior is similar for
contribution of the kinetic energy and of the different chan-both potentials, with a higher value of the maximum as the
nels of the potential energy. In Fig. 2 we plot the differencesnumber of nucleons increases. It is also worth pointing out
between these quantities calculated with the JL and JLGhat asA increases, the density tends to that®. It is for
wave functions for both the BB1 and MS3 interactions. Boththese nuclei and the MS3 interaction where this density is
the kinetic energy and energy of the Wigner channel risanore separated from the others.
with state dependent correlations for both potentials. This The effect of the state-dependent correlations on the one-
increase is more important for the kinetic energy with thebody density for these nuclei is studied in Fig. 4, where we
MS3 potential than with the BB1 one, whereas the oppositlot the difference between the single-particle density ob-
holds for the energy of the Wigner energy. For the BB1 po-tained with the JL and JLO wave functions. The first notice-
tential, the Majorana channel is the responsible for the deable fact is that the general behavior is different for the two
crease in the ground state energy when state dependent carteractions used here. Thus at short distances state depen-
relations are considered. For the MS3 interaction, the effeaient correlations tend to increase the density with the BB1
on the Majorana channel is practically canceled with that orinteraction and the opposite happens with the MS3 potential,
the kinetic and Wigner energies, and the Bartlett and Heiserexcept for*?C, for which a negative region at short distances

% ' ' B ' TOTAL + % ' ' g ' TOTAL +
BB1 KINETIC M3 KINETIC
ok WIGNER & ok A
g MAJORANA  + g .
20 20 - é) 2 o
" e
8 0 8 0
T T
d -20 |- - g -20 |- -
< <
-40 |- - 10 -
60 1 1 1 1 1 60 1 1 1 1 1
12 13 14 15 16 12 13 14 15 18
A A

FIG. 2. Increase in the total energy, the expectation values of the kinetic energy, and the different channels of the interacting potential
when state-dependent correlations are included with respect to the JL approximation. In the left hand side panel we plot the results for the
BB1 potential and in the right hand side panel for the MS3 potential. The lines are for guiding the eyes.
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FIG. 3. One-body density for all the nuclei studied in this work ~ FIG. 4. Effect of the state dependent correlations on the one-
calculated with the JL wave function. In the upper panel we plot thebody density for the different nuclei considered in this work. In the
results for the BB1 potential and in the lower one for the MS3upper panel we plot the results for the BB1 potential and in the
potential. lower one for the MS3 potential.

appears. In addition, for the BB1 potential, the effect of the

operatorial correlations is_ roughly independent of th_e nucleug,iues as the number of nucleons increases fgnto 0.
Y"h'le for the MS3 potential effects of the operatorial corre-rpis - he ynderstood as a progressive filling of the incom-
ations show a more accused dependence on the nucleus. lete cluster that ai e 10 al ber of il
The effects of correlations are more important on the qwd ete cluster that gives rise to a larger number of particies at
body density than in the one-body density. In Fig. 5 we plot.N€S€ intermediate distances.
the two-body density obtained from the state independent Finally, the effect of including state dependent correla-
correlated wave function JL for all of the nuclei studied andtions on this density is studied in Fig. 6 where we plot the
the two interactions considered in this work. The behavior ofifference between the two-body density calculated from the
this density is very similar for both potentials, although theJL and JLO wave functions. As was the case for the one-
effect of the nuclear core is much more important in the MS3body density, the effect of state dependent correlations is
potential. The main difference is that with the MS3 interac-roughly independent of the nucleus when the BB1 potential
tion shorter distances are favored with respect to the BB1s used and a more accused dependence is observed for the
potential. At distances between 2 and 3.5 fm the differenced1S3 interaction. For both potentials, state dependent corre-
among the nuclei considered are more important, with biggelations bring together nucleons with respect to the JL case.
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FIG. 5. Two-body density for all the the nuclei studied in this ~ FIG. 6. Effect of the state-dependent correlations on the two-
work calculated with the JL wave function. In the upper panel webody density for the different nuclei considered in this work. In the
plot the results for the BB1 potential and in the lower one for theupper panel we plot the results for the BB1 potential and in the
MS3 potential. lower one for the MS3 potential.

The present scheme has shown to be appropriate for de-
scribing two important and complementary aspects of the

Variational Monte Carlo calculations fg-shell, A#4n,  nuclear dynamics as the short-range correlations and the for-
nuclei starting from the nucleon-nucleon interaction havemation of nucleon clusters. The former is induced by the
been presented. The ground state energy and the one- askort-range repulsive part of the nuclear potential while the
two-body densities have been calculated. The variationdhter is a collective effect due to the medium- and long-range
wave function consists of three factors: a central Jastrowpart of the interaction.
term, a spin-isospin dependent linear term, and a model wave In this work, an analytical reduction of the expectation
function. The model wave function is based on a clustevalues forA# 4n nuclei is presented. The use of the Peierls-
model allowing for the formation of different kinds of Yoccoz projection operators introduces new features when
nucleon clusters with centers at fixed positions. The Peierlsthe nuclei are not spin and isospin saturated. Here we obtain
Yoccoz projection operators have been used in order to oka final form of the expectation values which is specially
tain trial wave functions with the proper values of the angu-suited for the variational Monte Carlo calculation. This is
lar momentum. This work extend previous ones carried outlone for both state-independent and state dependent correla-
for spin- and isospin-saturated nuclei. tion factors. As a result the different expectation values can

IV. CONCLUSIONS
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be computed with no significant extra computational cosferent oscillator parameters for the different kind of nucleon

with respect to the case of spin- and isospin-saturated nucleglusters is shown. The effect of the correlations on the dif-
The scheme is applied to several nuclei with<I®<16.  ferent interaction channels is analyzed in terms of the num-

The methodology has been first tested against previouser of nucleons. Finally one- and two-body densities ob-

works using a completely different scheme of calculationtained for the nuclei here studied with several

Then results obtained by using two different nucleon-approximations of the wave functions are reported and dis-

nucleon potentials including a repulsive core at short disyssed.

tances and state-dependent interaction channels have been

reported. The binding energies and the root mean square ra-

dius along with the optimal parameters of the wave functions ACKNOWLEDGMENTS

are shown for the different nuclei and states considered here.

The effect of the different correlation mechanisms included This work has been partially supported by the Ministerio
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