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The ground and low-lying states of neutron-rich exotic Te and Sn isotopes are studied in terms of the nuclear
shell model by the same Hamiltonian used for the spherical-deformed shape phase transition of Ba isotopes,
without any adjustment. An anomalously small value is obtained forBsE2;01

+→21
+d in 136Te, consistent with a

recent experiment. The levels of136Te up to yrast 12+ are shown to be in agreement with observed ones. It is
pointed out that136Te can be an exceptionally suitable case for studying mixed-symmetry 1+, 2+, and 3+ states,
and predictions are made for energies andM1 andE2 properties. Systematic trends of structure of heavier and
more exotic Sn and Te isotopes beyond136Te are studied by the Monte Carlo shell model, presenting an
unusual and very slow evolution of collectivity/deformation.

DOI: 10.1103/PhysRevC.70.054313 PACS number(s): 21.10.Ky, 21.10.Re, 21.60.Cs, 27.60.1j

I. INTRODUCTION

The nuclear collective motion is one of the central prob-
lems of nuclear structure physics. In the nuclear shell model,
a medium-heavy nucleus has many valence particles and
these particles move collectively in a large single-particle
space. Because such a collective motion is dominated by
quadrupole correlations, the corresponding states are referred
to as the quadrupole collective states. It is of great interest
how such quadrupole collective states are formed as one sails
to more exotic regimes on the nuclear chart. To explore this,
a plausible approach is to adopt a Hamiltonian confirmed for
its validity in and near stable regimes and apply it to un-
known regimes. As such an attempt, in this paper, we shall
discuss the structure of exotic Te isotopes with the neutron
numbersNd exceeding 82. Because the proton numbersZd is
52 in Te isotopes and there are two valence protons with
respect to theZ=50 closed core, there should be certain
proton-neutron correlations in such Te isotopes. A recent
quantitative assessment of their structure, however, shows
rather peculiar tendencies as will be presented.

This paper is organized as follows. We shall survey ex-
perimental situations and related empirical rules in Sec. II. In
Sec. III, the shell-model Hamiltonian to be used is explained.

In Sec. IV, the calculation methods will be briefly given an
overview. The structure of the exotic nucleus136Te will be
discussed in Sec. V, with more specific discussions on
mixed-symmetry states in Sec. VI and on magnetic and
quadrupole moments in Sec. VII. Predicted systematic trends
will be presented in Sec. VIII. A summary will be given in
Sec. IX.

II. EXPERIMENTAL SITUATION AND EMPIRICAL
RULES OF QUADRUPOLE COLLECTIVE STATES

Certain basic properties of the quadrupole collective
states can be well described empirically by simple phenom-
enological models. For example, the systematic relation be-
tween the excitation energy of the first 2+ state,E2+, and the
E2 transition strength from the ground 0+ state to the first 2+

state, i.e.,BsE2d ↑, has been studied well[1,2]. One of such
useful formulas for this relation is the modified Grodzins rule
[2], which is written as

BsE2;0+ → 2+d = s2.57 ± 0.45dE2+
−1Z2A−2/3, s1d

whereE2+fkeVg, Z, andA denote the excitation energy of 21
+

state, the atomic number, and the mass number, respectively.
It has been confirmed[2] that a family of the Grodzins rule is
extremely successful.

Another approach of the phenomenological relation can
be found in the systematic relation between the aboveBsE2d
value andNpNn, whereNp and Nn denote the numbers of
valence protons and neutrons, respectively[3–5]. Particu-
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larly, it has been stressed in Refs.[4,5] that thisBsE2d value
can be given quite well as a function of the quantityNpNn.
Since thisNpNn rule is quite robust in nuclei on and near the
b-stability line, it is of great interest whether or not this
BsE2d value still follows this rule, also in exotic nuclei far
from theb-stability line.

While such empirical rules are successful to a good ex-
tent, an exception has emerged in an experiment that ex-
tended the experimental feasibility. Namely, the anomalously
small BsE2;01

+→21
+d value of 136Te has been observed re-

cently by Radfordet al. [6]. The BsE2d value provided by
the modified Grodzins rule, Eq.(1), is 0.44(8) e2 b2, which is
far from the experimental value, 0.103(15) e2 b2 [6]. TheE2
transition rate is one of the most direct measures of the quad-
rupole deformation, and the fact that the rate for136Te devi-
ates this much from the empirical rules is a challenge to the
microscopic description of this nucleus.

Figure 1 shows observedBsE2;01
+→21

+d values of Sn, Te,
Xe, Ba, and Ce isotopes. Near the center of Fig. 1(a) where
N=82, the BsE2d values are small, reflecting spherical
ground states. This value grows rapidly as one increases the
number of neutron valence particles or holes. Theoretical
values for Ba isotopes[8] are shown in Fig. 1(b), demon-
strating a rapid increase of theBsE2d value in agreement
with the experimental values. The theoretical values were
obtained by the Monte Carlo shell model(MCSM) with the
pair bases for a standard shell-model Hamiltonian[8]. The
calculatedBsE2d values of Ba isotopes are proportional toNn

in the first approximation as suggested by Casten and Zamfir
[5]. However, theBsE2d value for 136Te is only slightly
larger than the value for134Te, in contrast to the trend of Ba
isotopes. As to theoretical approaches, Covello and co-
workers made shell-model calculations based on a micro-
scopic interaction as reported in Ref.[6], and Terasakiet al.
have discussed this problem in terms of the quasiparticle
random phase approximation(QRPA), while the pairing cor-
relations are put in from the observed pairing gap[9].

III. SHELL-MODEL HAMILTONIAN

We study the structure of nuclei around136Te using the
nuclear shell model. The single-particle space and Hamil-

tonian for the shell-model calculations are taken from exist-
ing ones, which have been used successfully for a systematic
description of the shape phase transition in Ba isotopes from
N=82 to 92, which was already mentioned above[8]. The
pairing correlation arises from the interplay between the
single-particle energies and the pairing interaction.

This shell-model Hamiltonian is different from the one
used by Covello and co-workers[6]. In fact, they derived a
realistic effective interaction from the bare nucleon-nucleon
(NN) interaction.

The present single-particle model space consists of the
valence orbits in theZ=50–82 proton shell and those in the
N=82–126 neutron shell. The Hamiltonian we shall use is
comprised of the three parts,

H = Hp + Hn + Vpn, s2d

whereHp sHnd means the proton(neutron) Hamiltonian and
Vpn denotes a proton-neutron interaction. TheHp sHnd in-
cludes proton(neutron) single-particle energies and a two-
body interaction between valence protons(neutrons). The
proton (neutron) single-particle energies are taken from ex-
perimental levels of133Sb s133Snd [10] ([11]). These single-
particle orbits and their energies are shown in Fig. 2.

The two-body interaction includes the monopole and
quadrupole pairing interactions and the quadrupole-
quadrupole interaction. The values for protons(neutrons) are
gs0d=0.21s0.13d MeV, gs2d=0.22s0.14d MeV, and f s2d

FIG. 1. (a) Systematics of experimental
BsE2;01

+→21
+d values[2,6,7], and (b) calculated

values for Ba isotopes[8]. The triangle, circle,
square, diamond, and triangle symbols corre-
spond to theBsE2d values of Ce, Ba, Xe, Te, and
Sn isotopes, respectively.

FIG. 2. Proton(left) and neutron(right) single-particle orbits
and their energies. The energies are taken from experiments[10,11].
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=−0.0002s0.0002d MeV/fm4, where gs0d, gs2d, and f s2d are
strength parameters of the monopole and quadrupole pairing
interactions and the quadrupole-quadrupole interaction, re-
spectively[8]. The interaction between a proton and a neu-
tron is assumed to be of quadrupole-quadrupole type with its
strength fpn

s2d=−0.0014 MeV/fm4 [8]. Although the present
shell-model Hamiltonian is schematic to a certain extent, it
has been tested as being successful in reproducing quadru-
pole collective states of Ba isotopes over the shape phase
transition. It is of a great interest to see whether such a
Hamiltonian can be still valid for the study of the anoma-
lously smallBsE2d value of136Te.

We use the same effective charges as in the calculation for
Ba isotopes: effective charges areep=1.6e and en=0.6e for
proton and neutron, respectively. We calculate magnetic tran-
sitions with standardg factors as we shall show later.

IV. CONVENTIONAL AND MONTE CARLO
SHELL-MODEL CALCULATIONS

The structure of the nucleus136Te is studied by the con-
ventional shell-model diagonalization for the Hamiltonian
discussed in the preceding section. TheOXBASH code is used
[12].

For heavier Te isotopes, however, a larger dimension of
the Hilbert space prevents us more and more severely from
diagonalizing its Hamiltonian matrix. In order to overcome
such a growing difficulty, the MCSM has been proposed
[13–15], which enabled us to apply the large-scale shell-
model calculation also to the collective states of the medium-
heavy nuclei. For the study of quadrupole collective states in
even-even nuclei, the most crucial dynamics is the competi-
tion between the quadrupole deformation and the pairing cor-
relation [16]. In order to handle such situations, the MCSM
with pair bases has been introduced and has been success-
fully applied to the description of the shape phase transition
in Ba isotopes withN.82 [8]. In addition, even to the case
of 136Te, MCSM has been used for the analysis of pair struc-
ture, because theOXBASH code does not have such a capa-
bility.

We note that a preliminary and very brief report of a part
of the following results has been presented in Ref.[17].

V. LEVELS OF 136Te

We first discuss how the 01
+ and 21

+ wave functions of
136Te are constructed. Figure 3 shows the 21

+ level of 136Te,
together with those of134Te and134Sn. The nucleus136Te has
two valence protons and two neutrons, while the neighboring
nuclei, 134Te and 134Sn, have two valence protons or two
valence neutrons, respectively. We analyze wave functions of
the 01

+ and 21
+ states in terms of shell model with these va-

lence nucleons.
The ground state wave function of134Sn is written as

uSnl = Sn
†u− l, s3d

whereu−l indicates the inert core(i.e., 132Sn) andSn
† denotes

the creation operator of a pair of valence neutrons coupled to
the angular momentum 0. TheSn

† operator is defined as

Sn
† ; o

j

a jfcj
† 3 cj

†gs0d, s4d

where cj
† denotes the creation operator of a neutron in a

single-particle orbitj , anda j indicates an amplitude giving
the proper normalization of the stateuSnl. The values ofa j’s
are determined by the diagonalization of the Hamiltonian
matrix. The ground state wave function of134Te is written
similarly as

uSpl = Sp
† u− l, s5d

with Sp
† defined correspondingly.

Likewise, the 21
+ state of134Sn is provided by a 2+ state of

two neutrons, calledDn pair, on top of the132Sn core. Simi-
larly, the 21

+ state of134Te is given by theDp pair. TheseD
pairs are created by the operators,

DM
† ; o

j j 8

b j j 8fcj
† 3 cj8

† gM
s2d , s6d

where the subscriptp or n is omitted for brevity,M means
the z component of angular momentum, andb j j 8 stands for
amplitude. The values ofb j j 8 are determined by the diago-
nalization of the Hamiltonian matrix for the stateuDlM
;DM

† u−l, so that it is properly normalized. We shall omitM
hereafter because it is not essential. TheseS andD pairs are
usually called collective pairs, because they are comprised of
coherent superposition of various nucleon pairs, although the
coherence can be modest in the following cases.

Figure 3 shows that the first 2+ level is quite well
reproduced by the present Hamiltonian. TheBsE2;01

+→21
+d

value is 0.096e2 b2 and 0.027e2 b2 for 134Te and 134Sn,
respectively. Experimentally, only the former is known as
0.096(12) e2 b2 [6], in a reasonable agreement with the
present calculation and also with the results in Refs.[6,9].
For 134Sn, theBsE2;01

+→21
+d value becomes 0.035e2 b2 in

the shell-model calculation by Coraggioet al. [18], whereas
the QRPA result by Terasakiet al. [9] gives a considerably

FIG. 3. Excitation energy of 21
+ and BsE2d of 134,136Te and

134Sn. The upper part is obtained experimentally[6], while the
lower part is calculated by the present work. The arrow widths are
proportional to theBsE2d values.
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smaller value. The present value is in between and closer to
the former one. The Nilsson result in Ref.[9] seems to re-
semble the two shell-model values.

The shell-model wave functions of the 01
+, 21

+, and 22
+

states of136Te can be written as

u01
+l = 0.913 uSn 3 Spl + ¯ , s7d

u21
+l = 0.823 uDn 3 Spl + 0.453 uSn 3 Dpl + ¯ , s8d

u22
+l = 0.383 uDn 3 Spl − 0.763 uSn 3 Dpl + ¯ , s9d

where “̄ ” means other minor components anduSn3Spl
;Sn

†Sp
† u−l, etc. Equation(7) implies that the 01

+ state is ac-
counted for by the stateuSn3Spl up to 83% in probability.

Moving to the first 2+ state, Eq.(8) indicates that the
probability of the componentuDn3Spl is larger by a factor
of about four than that ofuSn3Dpl. This asymmetry is rather
unusual for the first 2+ state of nuclei with open shells for
protons and neutrons; strong proton-neutron couplings mix
protons and neutrons more equally in other usual(maybe
stable) nuclei, giving rise to a more symmetric superposition.
Figure 3(b) shows that the excitation energy of theDn state
measured fromSn is 0.76 MeV, which is about 0.45 keV
lower than the excitation energy(1.21 MeV) of the Dp rela-
tive to theSp state. The origin of the above asymmetry in Eq.
(8) is nothing but this difference in the excitation energies of
Dp and Dn. If the proton-neutron correlation is strong
enough, such a difference is overcome, and protons and neu-
trons move in coherent manners as is the case, for instance,
with heavier Ba isotopes with the same Hamiltonian[8].
However, because of fewer valence nucleons, this is not the
case in136Te, and the difference between proton and neutron
remains crucial, yielding the asymmetry in the wave function
in Eq. (8). The small excitation energy of theDn state is
clearly due to the weaker monopole pairing between neu-
trons sgs0d=0.13 MeVd than the pairing between protons
sgs0d=0.21 MeVd. Although the quadrupole pairing interac-
tion follows the same trend and the difference in the mono-
pole pairing is partly canceled by the quadrupole pairing, the
Dn state is still lower than theDp state.

This asymmetry in Eq.(8) decreases the proton-neutron
coherence in theE2 transition from the ground to the 21

+

state, resulting in a weakerE2 transition. In addition, the
dominant weight of theuDn3Spl state makes theBsE2d
value further smaller because of the small effective charge
s0.6ed for neutrons. Thus,BsE2;01

+→21
+d value becomes

0.15e2 b2 for 136Te. This value is larger than the134Te value
only by a rather modest factor, about 1.5, consistently with
the experimental observation. In fact, this value appears to be
slightly larger than the experimental value, 0.103(15) e2 b2,
reported by Radfordet al. [6]. On the other hand, the present
value is smaller than the theoretical value, 0.25e2 b2, by
Covelloet al. [6], although their calculation was made based
on a fully microscopicNN interaction[19]. We note that a
smaller value, 0.16e2 b2, has been reported later in Ref.[20]
by the same authors as those of Ref.[6] as a result of a more
consistent calculation still within the same microscopic inter-
action. The present value is closer to the value by Terasakiet

al. obtained by a QRPA calculation using observed pairing
gaps[9].

We shall move on to higher states, as one of the advan-
tages of the shell-model calculation is the capability of
studying higher and/or side states. Figure 4 shows a level
scheme of136Te as compared to experiment[6,21–23]. The
even-spin yrast levels are shown up to 12+. The excitation
energy is well reproduced, while the levels somewhat deviate
for the 4+, 8+, and 10+ states. The calculated 4+ level is
higher, mainly because the Hamiltonian was designed not to
include the hexadecupole pairing, for simplicity. The 6+ state
is comprised mainly of the 6+ pair of neutrons in 2f7/2 and
the Sp pair. Since this state has nothing to do with the hexa-
decupole pairing, it exhibits a good agreement to experiment.
The 8+ and 10+ states, on the other hand, should contain 4+

pairs in their wave functions resulting in certain deviations.
The difference of wave function contents between the 6+ and
8+ states should be the origin of the almost vanishingE2
transition between them.

VI. MIXED-SYMMETRY STATES IN 136Te

The structure of the 22
+ state is quite interesting. Equation

(9) shows that this state contains considerable amount of the
uSn3Dpl state as well asuDn3Spl with the opposite
signs. The statehuDn3Spl− uSn3Dplj /Î2 is clearly antisym-
metric with respect to interchanges between proton pairs and
neutron pairs, and is called a mixed-symmetry state[24–26].
Although the mixed-symmetry states are defined with the
IBM-2, the bosons and the collective pairs can be mapped
onto each other[24–27], and the concept of the mixed-
symmetry states will be used in this context. The 22

+ state
[u22

+l in Eq. (9)] is dominated by this mixed-symmetry state
up to 65%. Its excitation energy is about 1.5 MeV, as shown
in Fig. 4. The mixed-symmetry states lie usually in the en-
ergy region of high level density, and therefore it is difficult
to identify them. In the present case, the situation may be

FIG. 4. Level schemes of136Te obtained by the experiments
[6,21–23] and the present shell-model calculation. The solid arrows
indicate E2 transitions with widths of proportional to theBsE2d
values [note that calculatedBsE2;21

+→01
+d=0.030 e2 b2]. The

dashed arrows representM1 transitions with widths of proportional
to theBsM1d values(see the text).
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more favorable for its identification. The 22
+→21

+ M1 transi-
tion is rather strong withBsM1d=1.04mn

2, and dominates the
22

+→21
+ transition becauseBsE2;22

+→21
+d is as small as

0.001e2 b2. This is a consequence of the fact that the 21
+ and

22
+ states have opposite proton-neutron phase contents[see

Eqs.(8) and(9)] and theM1 transition has a strong isovector
part. While there are several tentative 2+ states in experiment
in the energy region of the calculated 22

+ state, the lowest one
is indicated in Fig. 4. The calculatedBsE2;01

+→22
+d is 0.03

e2 b2, which is one fifth of theBsE2;01
+→21

+d, due to the
cancellation between proton and neutron contributions.

The calculated 11
+ and 31,2

+ states are shown also in Fig. 4.
The relevant mixed-symmetry states are of the typeuDn

3Dpl. Namely, if uDnl and uDpl are coupled to an odd an-
gular momentum, the wave function becomes antisymmetric
with respect to the interchange betweenuDnl and uDpl and
can be called of mixed symmetry[24]. The 11

+ state has the
overlap probability of 76% with theuDn3Dp ;J=1l with J
being the total angular momentum. The corresponding prob-
ability is fragmented as 23% and 51% for the 31

+ and 32
+

states, respectively, and both of them are shown in Fig. 4.
The excitation energies of 1+ and 3+ uDn3Dpl states are ex-
pected to be about equal to the sum of the excitation energies
of the 21

+ and 22
+ states, as is true for the IBM-2 cases without

so-called Majorana interaction[25]. This feature is main-
tained in Fig. 4 despite mixed impurities in actual eigen-
states.

The calculatedBsM1;01
+→11

+d turns out to be 1.14mn
2,

which is rather strong as a measure of mixed-symmetry
states, although thisM1 transition contains a spin transition
as well as an orbital one. There are many experimental levels
in the same energy region, but they are not shown in Fig. 4
because their spin/parity assignment is currently unavailable.

Thus, the present shell-model calculation exhibits the full
set of the mixed-symmetry states, 1+, 2+, and 3+, in low-
excitation energy region. The experimental identification of
the full members of these 1+, 2+, and 3+ mixed-symmetry
states has been proposed only for a few nuclei, for instance,
94Mo [27]. The mixed-symmetry states are pushed too high
in the cases with strong proton-neutron correlations which
certainly favor coherent couplings of protons and neutrons.
In exotic nuclei like136Te, this may not be the case. Thus,
with 136Te, one may be able to identify the mixed-symmetry
states and investigate their various aspects.

VII. MOMENTS OF 136Te

We next discuss properties of magnetic and quadrupole
moments of136Te. Figure 5 shows reduced matrix elements
(kJiQn iJl, andkJiQp iJl) of quadrupole operators as well as
the spectroscopic quadrupole moments. The 21

+ and 41
+ states

show small values. In the yrast states, all the matrix elements
of neutrons are larger in magnitude than the corresponding
ones of protons, because the yrast states are dominated by
the neutron excitations. The same quantities of the 22

+ state
are shown at the left end of Fig. 5, exhibiting a weak oblate
deformation.

Figure 6 shows the magnetic dipole moments. The orbital
and spin g factors are taken assgln ,glpd=s0.0, 1.0d and

sgsn ,gspd=s−2.674, 3.906d. The spin factors are quenched
by a factor 0.7 from the free sping factors, sgsn ,gspd
=s−3.82, 5.58d. We now discuss the magnetic dipole mo-
ment of the 21

+ state of136Te. The wave function in Eq.(8)
suggests that the two valence neutrons in this state are
coupled primarily to the angular momentum two, while the
two valence protons are coupled mostly to zero. The mag-
netic moment of the 21

+ state, therefore, comes mainly from
neutrons. On the other hand, the orbital and sping factors of
the neutron are zero and negative, respectively. Combining
all these facts, it is deduced that the magnetic dipole moment
of the 21

+ state is most likely negative. Figure 6 confirms that
this is the case. In contrast, the magnetic moment takes a
small positive value for the 22

+ state, owing to the orthogonal
structure. This trend does not change basically by using other
reasonable sets ofg factors. For instance, the spin quenching
0.9 and the orbital isovector correction 0.1 were used for
pf-shell nuclei by Honmaet al. [28]. Figure 6(inset) indi-
cates a negative overall shift with this set. The present result

FIG. 5. Calculated reduced quadrupole matrix elements of pro-
tons skJ+iQn iJ+ld and neutronsskJ+ uQp uJ+ld ffm2g and spectro-
scopic electric quadrupole momentsfe fm2g for 136Te. The states
are, from left to right, 22

+, 21
+, 41

+, 61
+, 81

+, 101
+, and 121

+.

FIG. 6. Magnetic dipole moments of low-lying excited states
(22

+, 21
+, 41

+, 61
+, 81

+, 101
+, and 121

+) of 136Te. The open circles in the
inset mean the result with theg factors used by Honmaet al. [28].

ANOMALOUS PROPERTIES OF QUADRUPOLE… PHYSICAL REVIEW C 70, 054313(2004)

054313-5



for the moment of the 21
+ state resembles the QRPA result

(20.174) [9]. The magnetic moments of the yrast states ex-
hibit a monotonic increase up to the 61

+ state, and a different
structure sets in as expected from the level scheme in Fig. 4.

VIII. SYSTEMATIC TRENDS IN HEAVIER Te
AND Sn ISOTOPES

We shall now look at systematic trends predicted by the
same Hamiltonian as we explore into more exotic regions of
heavier Sn and Te isotopes. In Fig. 7(a), the calculated exci-
tation energies of 21

+ states of Sn and Te isotopes are plotted
as a function ofN. The 21

+ level of Sn isotopes stays almost
constant, while it goes up slightly for largerN. This con-
stancy is a common feature of semimagic nuclei, but should
be examined experimentally. On the other hand, the 21

+ level
of Te isotopes comes down at the beginning, but again stays
constant afterN=84. This is rather unusual, because the 21

+

level continues to go down in most of medium-heavy open-

shell even-even nuclei. This nearly constant level systematics
contradict the empirical predictions[4,5] also. Such unusual
trend may become more prominent in(some) further exotic
nuclei where proton-neutron coupling is even weaker.

Certainly, by increasing the number of valence protons,
the same proton-neutron interaction can promote stronger de-
formation, static or dynamic, and “canonical” collective mo-
tions should set in. An example of this, Fig. 7(a) includes the
21

+ levels of Ba isotopes calculated by the same Hamiltonian
[8]. These calculated levels are very close to the experimen-
tal ones. The 21

+ level of Ba isotopes indeed keeps falling
down asN increases.

Figure 7(b) shows theBsE2;01
+→21

+d values of Sn and Te
isotopes. The value for136Te has been discussed in Sec. V.
This BsE2d value of Sn isotopes increases very slowly. This
behavior is similar to lighter Sn isotopes withN,82 as a
function of the number of neutron holes. TheBsE2d value
can be expected to increase linearly as a function of the
valence neutron number,Nn (=N−82 in this case), in a pic-
ture of the simple boson model[24–27], while thisBsE2d is
somewhat suppressed due to the Pauli blocking[29]. This
“sphericalNn effect” will be discussed once again.

In contrast, theBsE2d value of Te isotopes increases rela-
tively faster. The difference from the value of134Te fits well
to a linear increase as a function ofNn. Namely, the theoret-
ical prediction is somewhat consistent with the model of
Casten and co-worker[4,5]. Experimental investigations are
of great interest.

Figure 7(c) shows the reduced matrix elements of quad-
rupole operator between the 01

+ and 21
+ states for Te and Sn

isotopes. No effective charges are included. For Te isotopes,
the contributions of protons and neutrons are separated,
whereas neutrons are the only valence particles in Sn. The
tendency of the neutron matrix elements of Te isotopes is
similar to those of Sn isotopes, while the presence of valence
protons enlarges the neutron matrix elements of Te isotopes
to a certain extent.

We point out that the proton matrix element in Fig. 7(c)
decreases from134Te to 136Te. This happens because the 21

+

wave function is dominated byuDn3Spl, whereas onlyuSn

3Dpl can be excited by the proton quadrupole transition
from uSn3Spl. In this picture, the proton matrix element can
be about a half of that of136Te, because of the small ampli-
tude of uSn3Dpl component in Eq.(8). The decrease is,
however, only by about 20%, owing to rearrangements of
other minor components of the 01

+ and 21
+ wave functions so

as to enhance quadrupole collectivity.
The proton contribution increases only modestly as a

function of Nn in Fig. 7(c). The BsE2d value of Te isotopes
increases mainly due to the increase of the neutron matrix
element as the “sphericalNn effect” mentioned above. Thus,
the evolution of the collectivity/deformation in Te isotopes is
mainly due to neutron part of the wave function. The proton
part seems to be saturated already at136Te. The evolution
driven only by neutrons seems to be rather slow. In fact, one
can compare the growth of TheBsE2d value of Te isotopes to
that of Ba isotopes shown in Fig. 1. TheBsE2d of Ba iso-
topes grows so rapidly that it overscales Fig. 7(b). This dif-
ference is due to the fact that both proton and neutron wave

FIG. 7. Properties of Sn and Te isotopes as a function of the
neutron number,N. (a) Excitation energies of 2+ states. The triangle
and filled circles denote the experimental values for Sn and Te,
respectively[6], while the dotted and solid lines are calculated val-
ues for Sn and Te, respectively. The 2+ levels of Ba isotopes are
shown by open circles(experiment) and by the dashed-dotted line
(calculation). (b) BsE2;02

+→21
+d values. The bars are experimental

data[6], while lines are calculations.(c) Reduced matrix elements
of quadrupole operators.(d) Calculatedg factors of the 21

+ state.
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functions undergo the phase transition from the spherical to
deformed intrinsic structures in Ba isotopes, andbothproton
and neutron matrix elements become larger as the neutron
number approaches 90. On the other hand, both proton and
neutron wave functions remain basically spherical in Te iso-
topes and the evolution reflects only the “sphericalNn ef-
fect.”

Figure 7(d) showsg factors of the 21
+ state of Sn and Te

isotopes. Theg factor of Te isotopes shows a weak tendency
to the collective value,Z/A [30], or IBM-2 value,Np/ sNp

+Nnd [31].

IX. SUMMARY

The structure of an exotic nucleus136Te and its vicinity
has been studied by the shell model, using the MCSM tech-
nique. The unusually small value of136Te BsE2;01

+→21
+d has

been explained without any adjustment. Based on weak
proton-neutron coupling in136Te, mixed-symmetry proper-

ties are discussed, proposing this nucleus as an excellent
playground for this subject. We also provided predictions of
Te isotopes beyond136Te. The evolution of the collective
motion as a function of the neutron number may be rather
different from that in more stable nuclei, and a slow growth
of the collectivity is predicted, which deviates from empiri-
cal predictions. The calculations for heavier Te isotopes are
already huge, and have been carried out by the MCSM.
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