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The influence of exact angular-momentum projection and configuration mixing on properties of a heavy,
well-deformed nucleus is discussed for the example of240Pu. Starting from a self-consistent model using
Skyrme interactions, we analyze the resulting modifications of the deformation energy, the fission barrier
height, the excitation energy of the superdeformed minimum associated with the fission isomer, the structure of
the lowest rotational bands with normal deformation and superdeformation, and the corresponding quadrupole
moments and transition moments. We present results obtained with the Skyrme interactions SLy4 and SLy6,
which have slightly different surface tensions.

DOI: 10.1103/PhysRevC.70.054304 PACS number(s): 21.60.Jz, 21.30.Fe, 21.10.2k, 27.90.1b

I. INTRODUCTION

Microscopic mean-field methods[1] are particularly well
suited to describe nuclei with a well-defined shape. When the
energy of a nucleus depends softly on a shape degree of
freedom or presents several minima as a function of this
shape, correlations beyond mean field can affect the proper-
ties of the ground state strongly. In such cases, the two most
relevant types of correlations are associated with the rotation
of the nucleus and with its vibrations with respect to defor-
mation. The inclusion of rotational correlations can be per-
formed by a symmetry restoration and that of vibrations by a
mixing of mean-field states corresponding to different
shapes. In both cases, this requires to go beyond mean-field
models.

We have recently developed a method that achieves these
goals [2]. Applications have been carried out for neutron-
deficient Pb isotopes[3,4]. The low-energy spectrum of these
nuclei varies rapidly with neutron number with states exhib-
iting strong mixing between oblate, spherical, and prolate
configurations. Qualitative properties of their spectra, includ-
ing transition properties, were nicely explained. However,
since the results depend strongly on the amount of mixing
between several configurations, a detailed agreement with
the data has not been achieved.

A very different situation occurs when the mean-field ap-
proximation is better justified as a first approximation, such
as when coexisting states lie in well separated energy
minima. This is the case at low excitation energies for super-
deformed bands in nuclei around Hg and for fission isomers
[5]. Nevertheless, it is only using beyond mean-field models
that one can calculate spectra with well-defined spin assign-
ments as well as the corresponding transition probabilities.

The nucleus240Pu has often been used as a benchmark to
study mean-field theories and effective interactions. We
present here an application of our method to this nucleus. It
will allow us to address the following issues:

(i) Are quadrupole correlations influencing a well-
deformed nucleusa priori well described by mean-field cal-
culations?

(ii ) How does the exact angular momentum projection
modify the fission barrier and the excitation energy of fission
isomers?

(iii ) How much do the predictions depend upon different
parameterizations of the effective interaction?

In what follows, we briefly recall the basic ingredients of
the theory, then we present our results for the spectrum of
240Pu in the ground state and the superdeformed well. The
fission barrier obtained with two different effective interac-
tions is discussed and compared with earlier, more phenom-
enological, approaches.

II. THE MODEL

The starting point of our method is a set of Hartree-
Fock+BCS wave functions generated by self-consistent
mean-field calculations with a constraint on a collective co-
ordinate, the axial quadrupole momentq=kQ20l in the
present study. In the language of the spherical nuclear shell
model, such mean-field states incorporate particle-particle
(pairing) correlations as well as many-particle–many-hole
correlations by allowing deformations of the nucleus in its
intrinsic frame. As a consequence, the mean-field states
break several symmetries of the exact many-body states.
This symmetry violation makes it difficult to relate mean-
field results to spectroscopic data that are obtained in the
laboratory frame of reference. The second step of our method
is a restoration of the symmetries associated with particle
numbers and rotation. Another ambiguity in the interpreta-
tion of mean-field results arises from the non-orthogonality
of mean-field states corresponding to different quadrupole
moments, so that different minima in a potential landscape
cannot always be safely associated with different physical
states. This difficulty is resolved in the third step of our
method by variational mixing of symmetry-restored mean-
field states corresponding to different quadrupole moments.
The method that we use is a discretized version of the gen-
erator coordinate method. It removes the contribution of vi-
brational excitations to the ground state and, at the same
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time, permits us to construct a spectrum of excited states.
In our method, the same effective interaction is used to

generate the mean-field states and to perform the configura-
tion mixing. We present below results obtained with two dif-
ferent Skyrme interactions, SLy4 and SLy6[6]. In both cases
a density-dependent zero-range interaction is used in the
pairing channel. We use the same strength as in previous
studies, −1250 MeV fm3 and two cutoffs, above and below
the Fermi energy, as defined in Ref.[7]. The two Skyrme
parameterizations differ mostly by their surface tension: the
surface energy coefficient obtained from Hartree-Fock(HF)
calculations of semi-infinite nuclear matter is lower for
SLy6, 17.74 MeV, than for SLy4, 18.37 MeV[8]. Such a
difference is expected to affect significantly the deformation
energy at large quadrupole moments. Both parameterizations
have been fitted in an identical way. Their differences have
their origin in a different choice for the treatment of the
spurious center-of-mass motion(c.m.): a fully variational
c.m. one for SLy6 and a simpler one-body approximation for
SLy4. The energy differences due to these two schemes in-
duce slight differences in the properties of the interactions;
see Ref.[9] for a detailed discussion.

As our main goal is an investigation of the overall effect
of symmetry restoration and configuration mixing in a heavy,
well-deformed nucleus, we restrict ourselves to axial and
reflection-symmetric shape degrees of freedom. It has been
shown that the fission barrier height obtained with SLy6 is in
agreement with experiment within 1 MeV when octupole
deformation is taken into account[1].

Our method has many interesting properties. Its sole phe-
nomenological ingredient is the effective nucleon-nucleon
interaction, which has been adjusted once and for all on ge-
neric nuclear properties. From a numerical point of view, it is
simple enough to be applied throughout the mass table up to
superheavy nuclei, utilizing the full model space of single-
particle states with the proper coupling to the continuum.
Another attractive aspect of the method is that it allows us to
determine electric transition probabilities directly in the labo-
ratory frame between any pair of states. Finally, the method
has the advantage that its results can be interpreted within
the intuitive picture of intrinsic shapes and shells of single-
particle states that is offered by the framework of mean-field
models. More details on the method can be found in Refs.
[2,4].

Spectroscopic quadrupole moments andBsEld values are
determined directly in the laboratory frame of reference[10].
To connect our results with other approaches, it is interesting
to derive quantities analogous to intrinsic frame parameters
from spectroscopic or transition moments. An intrinsic
charge quadrupole momentQc2

stdsJ,kd can be determined from
BsE2d values,

Qc2
stdsJ,kd =Î16p

5

BsE2,J → J − 2d
kJ 0 2 0uJ − 2 0l2e2 , s1d

or can be related to the spectroscopic quadrupole moment
QcsJ,kd via the relation

Qc2
ssdsJ,kd = −

2J + 3

J
QcsJ,kd. s2d

We also adopt the sharp edge liquid drop relation to relate
the b2 deformation parameter and the axial quadrupole mo-
mentQ2;

b2 =Î 5

16p

4pQ2

3R2A
, s3d

where the nuclear radiusR in fm at zero deformation is re-
lated to the massA according to the standard formulaR
=1.2 A1/3.

III. RESULTS

A. Deformation energy

There is a large set of data on fission barriers of actinide
nuclei [11,12]. Among them, the double-humped fission bar-
rier of 240Pu has been used as a benchmark for mean-field
models and effective interactions. First calculations were
performed with Skyrme forces and the Hartree-Fock+BCS
method [13], with the Gogny force and the Hartree-Fock-
Bogolyubov (HFB) method [14] or with relativistic
Lagrangians and the relativistic mean-field method(RMF)
[15]. Semi-classical approximations of the mean-field
method were performed with different Skyrme forces in
Refs. [16,17]. Several Skyrme interactions and RMF
Lagrangians were compared to the data in[18]. Axial and
triaxial barriers obtained with Skyrme, Gogny, and RMF
forces are compared in Ref.[1]. Finally, the excitation en-
ergy of fission isomers has been studied with a variety of
Skyrme forces in Refs.[5,19].

The deformation energy curves obtained after particle-
number projection and particle-number+angular-
momentum projection onJ=0 are presented in Figs. 1 and 2
for SLy4 and SLy6 interactions. For all curves, the energy of
the ground state is taken as zero. The ground state and the
fission isomer after projection are obtained from the mean-

FIG. 1. Deformation energy curve of240Pu obtained with SLy4
projected onN and Z (dashed line) and projected onN, Z, and J
=0 (solid line). All energies are normalized to the deformed ground-
state value of each curve. The available experimental data for the
excitation energy of the superdeformed band head are shown at
arbitrary deformation(see text). Shapes along the path are indicated
by the density contours atr=0.07 fm−3.
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field minima. With the normalization that we have chosen to
plot the results, the gain of energy obtained for the ground
state by angular momentum projection is given by the differ-
ence between the curves at spherical shape. This gain is
around 3.0 MeV for both interactions, bringing the calculated
total energy closer to the experimental one.

The fission isomer is obtained at ab2 value around 0.9;
angular-momentum projection lowers its excitation energy
by about 1 MeV for both forces, from 4.3 to 3.3 MeV for
SLy4, and from 2.6 to 1.6 MeV for SLy6.

B. Rotational energy

Angular-momentum projection provides the exact correc-
tion for the spurious rotational energy of the mean-field
states. It is given by the difference between the binding en-
ergies before and after projection on angular momentumJ
=0:

Erotsb2d = Emfsb2d − EJ=0sb2d. s4d

This difference does not depend much on the Skyrme param-
eterization and is plotted in the lower panel of Fig. 3 for
SLy4. It is zero at spherical shape and increases first rapidly
to values around 3 MeV for deformations smaller than
ub2u,0.1, and then moderately for larger deformations. A
similar behavior has been obtained in most of our previous
calculations[4,10]. The topology of the fission barrier is not
much affected by angular momentum projection. The height
of the second barrier is decreased by about 800 keV with
respect to the fission isomer and by 1.5 MeV with respect to
the ground state.

Rotational corrections are sometimes incorporated phe-
nomenologically as a perturbation to mean-field calculations.
In particular, it is an ingredient in the mass formulae based
on Skyrme forces[20]. In the same way, the fission barrier of
240Pu including a rotational correction was used as a con-
straint in the fit of the Gogny interaction[14]. In both cases,
the rotational energy has the form

Ẽrotsb2d =
kJ2lb2

2Qsb2d
, s5d

where kJ2l is the mean value of the square of the angular
momentum for the mean-field state, and the moment of iner-
tia Q is determined from an approximate cranking formula

QBelyaev= 2 o
i,j.0

zsi uĴyu jdz2

Ei + Ej
suiv j − viujd. s6d

The sum in Eq.(6) runs over the single-particle statesuid and
u jd in a given deformed mean-field state, andEi and Ej are
the corresponding quasiparticle energies. For the large-scale
mass fits of Ref.[20], the actual moment of inertia taken is a
mixture of Eq.(6) and of the rigid-body moment of inertia.
More involved approximations for the moment of inertia
have been developed, see, e.g., Refs.[21,22] and references
therein, but are rarely used. We can extract a moment of
inertia from our projected mean-field calculations using the
energy difference between the energy curves forJ=0 andJ
=2 as

EJ=Isb2d − EJ=0sb2d =
"2IsI + 1d
2Qsb2d

. s7d

In Fig. 3, we compare the exact and approximate rotational
energies as a function of deformation. We also show the
angular-momentum dispersion of the mean-field wave func-
tions and the moment of inertia given by Eq.(6) and ob-
tained from the 2+ excitation energy. Both of these moments
of inertia are rather close for deformations around that of the
fission isomer. For lower deformations, the Belyaev moment
of inertia is significantly larger than the “exact” one. For

FIG. 2. Same as Fig. 1, for the interaction SLy6.

FIG. 3. Top to bottom: the average angular momentumI of the
mean-field states obtained fromkJ2l="2IsI +1d, the moment of in-
ertia calculated from the difference of the projectedJ=2 andJ=0
energy curves(solid line) and the Belyaev moment of inertia(dot-
ted line), and the rotational energy obtained from the energy differ-
ence between the mean-field and theJ=0 energy curves(solid line)
and the rotational correction, Eq.(5).
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larger deformations, the Belyaev moment does not increase
as rapidly as the one extracted from our calculation. The
dispersion of the angular momentum of the mean-field wave
function increases also with deformation in a way that is
partly compensated by the increase of the Belyaev moment
of inertia. However, this compensation is not strong enough
and the Belyaev rotational energy correction overestimates at
large deformations the energy correction obtained by exact
projection. Note that this correction varies only by 1.5 MeV
from the deformation corresponding to the ground state to
the external fission barrier.

C. Configuration mixing

The properties of the four lowest states obtained from the
configuration mixing calculation are given in Table I for
SLy4 and Table II for SLy6. The corresponding collective
wave functions are shown in Fig. 4 for the SLy4 interaction.
The states separate nicely into four rotational bands, two
located in the prolate normal-deformed(ND) minimum, and
two in the superdeformed(SD) one. The wave functions are
all confined within either the ND or the SD wells. States
obtained with SLy6 are similar, except for an overall shift in
the excitation energies of the states located in the superde-

TABLE I. Properties of the rotational bands of240Pu obtained with SLy4: excitation energyE, spectro-
scopic quadrupole momentQs, corresponding quadrupole momentQ0

ssd and dimensionless deformationb2
ssd in

the intrinsic frame, reducedE2 transition probabilityBsE2d↓, and corresponding quadrupole momentQ0
std and

dimensionless deformationb2
std in the intrinsic frame.

E Qs Q0
ssd b2

ssd BsE2d↓ Q0
std b2

std

State (MeV) sebd sebd se2 b2d sebd

01
+ 0.000 — — — — — —

21
+ 0.083 −3.4 11.9 0.300 2.80 11.9 0.300

41
+ 0.277 −4.3 11.9 0.300 4.00 11.9 0.300

03
+ 3.793 — — — — — —

23
+ 3.880 −3.4 11.9 0.301 2.82 11.9 0.301

43
+ 4.088 −4.3 12.0 0.303 4.07 12.0 0.302

02
+ 2.953 — — — — — —

22
+ 2.978 −10.3 36.0 0.911 25.8 36.0 0.911

42
+ 3.045 −13.1 36.0 0.911 36.8 36.0 0.911

04
+ 4.338 — — — — — —

24
+ 4.364 −10.4 36.5 0.922 26.4 36.5 0.922

44
+ 4.429 −13.3 36.5 0.922 37.8 36.5 0.922

TABLE II. The same as Table I, but for SLy6.

E Qs Q0
ssd b2

ssd BsE2d↓ Q0
std b2

std

State (MeV) sebd sebd se2 b2d sebd

01
+ 0.000 — — — — — —

21
+ 0.083 −3.4 11.9 0.300 2.81 11.9 0.300

41
+ 0.273 −4.3 11.9 0.301 4.02 11.9 0.301

04
+ 3.794 — — — — — —

24
+ 3.879 −3.4 12.0 0.304 2.88 12.0 0.304

44
+ 4.082 −4.4 12.1 0.306 4.15 12.1 0.305

02
+ 1.251 — — — — — —

22
+ 1.277 −10.4 36.3 0.916 26.1 36.2 0.915

42
+ 1.338 −13.2 36.3 0.917 37.4 36.3 0.916

03
+ 2.519 — — — — — —

23
+ 2.550 −10.5 36.7 0.928 27.0 36.8 0.931

43
+ 2.611 −13.4 36.7 0.928 38.3 36.7 0.928
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formed well; the SD 0+ band head has an excitation energy
of 2.99 MeV with SLy4 and 1.25 MeV with SLy6. The actual
experimental value is in between the two, although there are
some conflicting values given in the literature 2.4±0.3 MeV
[11], <2.8 MeV [23] and 2.25±0.20 MeV[24].

The band head of the second ND band is obtained at 3.79
MeV for both forces. Similarly, the excitation energy of the
second SD band with respect to the first SD band head is
1.39 MeV for SLy4 and 1.27 MeV for SLy6. This suggests
that the excitation energies within a well are fairly indepen-
dent of the surface tension of the Skyrme force. Both inter-
actions give also similar values for the excitation energies
within the bands.

The ground-state band is known up to very high spin
[25–27]. It has been suggested that static octupole deforma-
tion plays a role in explaining the behavior at large angular
momentum, Refs.[26,28]. States below the 6+ decay mainly
by internal electron conversion, so the corresponding transi-
tions have not been detected ing-ray spectroscopy.

The lowest levels in the ground-state band are reported in
the NUDAT database[29] at 42.824s2+d , 141.690s4+d, and
294.319 keVs6+d. Our calculation overestimates these ener-
gies by almost a factor of two. The experimental energies in
the SD well are 20.1 keV for the 2+ and 66.8 keV for the 4+

for the SD1 band, and 769.9s0+d , 785.1s2+d, and
825.0 keVs4+d for the SD2 band. They are also overesti-
mated by our model. On the contrary, the calculated
BsE2;2+→0+d value is in excellent agreement with the ex-
perimental one of 26660±360e2 fm4 obtained from Cou-
lomb excitation[30].

A similar overestimation of excitation energies has been
found for other nuclei with our model[2,4] and in a similar
framework using a Gogny interaction[31]. A hint of a pos-
sible origin of this discrepancy can be found from cranked
mean-field calculations. In this case, neither configuration
mixing nor restoration of symmetries are performed. How-
ever, time-reversal invariance is broken and the mean-field
potential is optimized for eachJ value and not only forJ
=0. An unprojected cranked HFB calculation[32] using the
same effective interaction as here gives excitation energies
for the ground-state band of 0.030s2+d , 0.121s4+d, and
0.271 MeVs6+d, respectively, in much better agreement with
the data. Looking at Fig. 4 one can see that, within a band,

the amplitudes of the collective wave functions for different
J values differ by less than 1% for each deformation. The
wave functions for differentJ values are therefore probably
too close to each other in our model. The slight breaking of
time-reversal symmetry of mean-field states subject to a
cranking constraint might be sufficient to provide a better
starting point for exact projection and configuration mixing
for the J different from 0 states.

The deformation of the ground state stays remarkably
constant at all levels of approximations: fromb2=0.29 for
the minima of the mean-field and projected energy curves to
b2

ssds2+d=0.30 as deduced from Eq.(3) for both the spectro-
scopic and the transition quadrupole moments. All these de-
formations agree with the one deduced from the experimen-
tal BsE2d value,b2=0.29.

Since we obtain nearly equalb2
ssd andb2

std values all along
the bands, the use of the rotor model is well justified to
describe the four bands.

We obtain also very largeE0 transition matrix elements
between states in the same well. With SLy4, theMsE0;03

+

→01
+d in the first well has a value of −29e fm2 correspond-

ing to rsE0d=−0.52, while theMsE0;04
+→02

+d in the second
well is 87 e fm2, or rsE0d=1.6. As our model predicts the
collective wave functions of all members of a rotational band
to be very similar, the transition moments are calculated to
be very similar as well for all otherE0 transitions between
two given bands. The values obtained with the SLy6 intera-
tion differ only marginally from those of SLy4. TheE0 ma-
trix elements that we obtain for transitions between states in
the SD and the normal-deformed well are very small.

IV. DISCUSSION AND SUMMARY

The inclusion of correlations beyond mean-field confirms
that many properties of the240Pu nucleus are already well
described at the mean-field level of approximation. The over-
all structure of the potential energy curve is not altered by
angular momentum projection, with a well-defined prolate
ground state and a fission isomer in narrow potential wells.
Thanks to that, the properties of the lowest state in each well
after configuration mixing are very close to the properties of
the mean-field minima. The ground-state and fission isomer
wave functions have a Gaussian shape and do not spread

FIG. 4. Collective wave func-
tions (upper panel) of the lowest
0+, 2+, and 4+ states. The lower
panels display the corresponding
excitation energies at the average
deformation of the mean-field
states from which they are built,
together with the projected energy
curve.
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much around their respective minima. The superdeformed
minimum in the potential energy surface is, however, too
wide to confine completely the wave functions of the lowest
SD band which are more spread, but still of Gaussian shape.

As expected, the total binding energy is slightly increased
by angular-momentum projection, and thereby comes closer
to the experimental value. Compared to the ground state,
angular-momentum projection lowers the(axial) inner bar-
rier by about 0.6 MeV, the fission isomer by about 1 MeV,
and the(reflection-symmetric) outer barrier by about 2 MeV.
These changes of the potential landscape are going in the
same direction as a decrease of the surface tension of the
effective mean-field interaction and should therefore be con-
sidered when predicting superdeformed band heads and fis-
sion barrier heights. The schematic rotational correction used
in the literature gives too large a reduction of the fission
barrier heights by at least 2 MeV.

The energy of the superdeformed fission isomer turns out
to be too low with SLy6, while for SLy4 it is slightly too
high. We obtained similar results for SD band heads of Pb
isotopes in theA<190 region[5]. This suggests that the
surface tension might be too low for SLy6, while it is slightly
too high for SLy4. This is apparently in contradiction with
Ref. [9], where it was argued on the basis of pure mean-field
calculations for240Pu, that the surface tension of SLy6 is
more realistic than that of SLy4. However, surface tension is

not the only ingredient responsible for the energy of super-
deformed states, as their existence is usually caused by a
shell effect. Unfortunately, it is hard to disentangle the con-
tribution from the macroscopic properties of the forces from
the shell structure, which is also not identical for SLy4 and
SLy6 at large deformations.

The description of excited states in both wells is only
partly satisfactory. While we obtain quite good results forE2
transition moments and deformations, neither the excitation
energies of the excited 0+ band heads nor the excitation en-
ergies within the bands are well reproduced. Unprojected
cranked HFB calculations without any additional correla-
tions perform much better for in-band transitions. This
strongly suggests to extend our method to the use of such
states as a starting set of wave functions. Such a develop-
ment is currently underway. Using cranked mean-field states,
however, will not change the too large excitation energies of
0+ band heads.
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