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We compute the vector analyzing power(VAP) for the elastic scattering of transversely polarized electrons
from protons at low energies using an effective theory of electrons, protons, and photons. We study all
contributions through second order inE/M, where E and M are the electron energy and nucleon mass,
respectively. The leading-order VAP arises from the imaginary part of the interference of one- and two-photon
exchange amplitudes. Subleading contributions are generated by the nucleon magnetic moment and charge
radius as well as recoil corrections to the leading-order amplitude. Working toOsE/Md2, we obtain a prediction
for An that is free of unknown parameters and that agrees with the recent measurement of the VAP in backward
angleep scattering.
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I. INTRODUCTION

The study of the vector analyzing power(VAP), An, in
polarized electron-proton scattering has recently become a
topic of considerable interest in nuclear physics. The VAP is
a time-reversal(T) odd, parity(P) even correlation between
the electron spin and the independent momenta associated
with the scattering process,

An , emnabPmSnKaKb8 , s1d

whereS, P, andKsK8d denote the electron spin, initial proton
momentum, and incident(scattered) electron momentum, re-
spectively. A nonzero VAP cannot arise at leading-order in
quantum electrodynamics(QED), but could be generated by
new T-odd, P-even interactions involving electrons and
quarks. Searches for such interactions have been carried out
in neutron and nuclearb-decay as well as nuclearg-decays
[1–3]. Indirect constraints may also be obtained from limits
on the permanent electric dipole moments of neutral atoms
under various assumptions regarding the pattern of
symmetry-breaking[4–8]. The sensitivity of direct searches
for T-odd, P-even interactions is generally limited by the
presence of QED “final state interactions”(FSIs) that break
the T-symmetry between initial and final states and give rise
to nonvanishing T-odd, P-even observables. Uncertainties in
theoretical calculations of these final state interactions would
cloud the interpretation of a sufficiently precise T-odd,
P-even measurement in terms of new interactions. Observa-
tions of T-odd, P-even correlations in nuclearg-decays are
consistent with theoretical calculations of QED final state
interactions[9], while T-odd, P-even searches in neutron
b-decay have yet to reach the sensitivity needed to discern
these effects.

Recently, the SAMPLE Collaboration has reported a non-
zero measurement of the VAP in polarized, elastic electron-
proton scattering[10], making it the first nonzero result for
any T-odd, P-even observable in any electron scattering pro-
cess. The result has received widespread attention, as it dif-
fers substantially from the simplest theoretical estimate of
QED final state contributions that neglects proton recoil and

internal structure[11]. While one might speculate that this
difference reflects the presence of new physics, a more likely
explanation lies in elements of nucleon structure omitted
from the simplest treatments of QED FSIs.

If so, then the SAMPLE result, as well as other VAP
measurements that have been completed or are under consid-
eration, could have important implications for the interpreta-
tion of other precision observables involving hadrons that
require computation of QED corrections to the leading-order
amplitude. Such observables include the ratio of proton elec-
tromagnetic form factors obtained via Rosenbluth separation
in elasticep scattering[12], higher-order “box graph” con-
tributions to weak interaction observables[13], or QED final
state interactions in direct searches for T-odd, P-even effects.
In each instance, a calculation of QED corrections requires a
realistic and sufficiently precise treatment of hadronic inter-
mediate states, particularly those arising in two-photon ex-
change amplitudes,Mgg, or the analogous amplitudes in-
volving the exchange of one heavy gauge boson and one
photon. Since the leading QED contribution toAn arises from
Im Mgg, experimental measurements of the VAP provide an
important test of theoretical calculations ofMgg needed for
the interpretation of other measurements.

At the same time, the VAP provides a new window on
nucleon structure, asMgg probes the doubly virtual Comp-
ton scattering(VVCS) amplitude. In recent years, virtual
Compton scattering(VCS) on the proton has become an im-
portant tool in probing the internal structure of the proton.
VCS involves the coupling of one virtual and one real pho-
ton to a hadronic system. In the case of the proton, the VCS
cross section is sensitive to the generalized polarizabilities of
the proton, and its measurement should provide insight into
the proton structure[14]. In practice, however, this cross
section includes Bethe-Heitler(BH) amplitudes associated
with radiation of a real photon from the electrons. Proper
treatment of the cross section must therefore be taken in
order to obtain a correct interpretation of the measurement.
In contrast, the process involving the coupling of two virtual
photons to the hadronic system is immune to background BH
amplitudes and, thus, offers an alternative to VCS in probing
the proton structure.
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With the aforementioned motivation in mind, we study
the VAP in the framework of an effective theory of low-
energyep scattering. Since the SAMPLE measurement cor-
responds to kinematics close to the pion electroproduction
threshold, we consider only the electron, photon, and
nucleon as dynamical degrees of freedom. In this respect, our
analysis corresponds to the use of heavy baryon chiral per-
turbation theory with the pions integrated out. To make the
treatment systematic, we expandAn in powers of p/M,
where p is either the incident electron energysEd or mass
smd andM is the nucleon mass. Working to second order in
p/M, we obtain all contributions toAn that arise uniquely
from one-loop, two-photon exchange amplitudes and obtain
a prediction that is free from any unknown parameters. We
also write down the leading, nonrenormalizable T-odd,
P-eveneepp operators whose intereference withMg can
generate a nonzero VAP and show that they contribute at
Osp/Md4.

We find that inclusion of all one-loop effects through
Osp/Md2 in Mgg as well as all terms inMg through this
order is sufficient to resolve the disagreement between the
SAMPLE result and the simplest potential scattering predic-
tions. This resolution follows from several effects that occur
beyond leading order inp/M: recoil corrections to the pure
charge scattering result obtained in Ref.[11], the nucleon
isovector magnetic moment, and the proton charge radius. In
the absence of dynamical pions, contributions from the
nucleon polarizability arise at higher order than we consider
here and appear unnecessary to account for the experimental
result. Given that the incident electron energyE is of the
same order asmp, we have noa priori reason to expect
agreement of our computation with experiment. What it sug-
gests, however, is that for this kinematic regime, pions play a
less important role in the VVCS amplitude than one might
naively expect. Future low-energyAn measurements, taken
over a broader range inq2 and scattering angle than relevant
to the SAMPLE measurement, would provide additional,
useful tests of this conclusion.

We also considerAn at forward scattering angles and en-
ergies somewhat higher than those of the SAMPLE experi-
ment, since preliminary results for this kinematic domain
have been reported by the A4 Collaboration at the MAMI
facility in Mainz [15]. Although we would not expect our
framework to be reliable in this kinematic regime, where the
electron energyE is much closer toM, it is nonetheless
instructive to compare with the Mainz preliminary results as
a way of pointing to the physics that may be operative in this
domain. Indeed, we find substantial disagreement with the

preliminary Mainz data. The culprit could be that going to
the Mainz kinematics exceeds the limit of validity of our
effective theory, that we must include additional dynamical
degrees of freedom such as thep or Ds1230d resonance, or
both. Future studies using alternative methods such as dis-
persion relations may be needed to explore this kinematic
domain.

Finally, we also considerAn for polarized Møller scatter-
ing. The VAP for this process has been measured by the
E158 Collaboration at SLAC[16], and theoretical computa-
tions given in Refs.[17–19]. Our computation agrees with
these earlierAnseed calculations, providing a useful cross-
check on our study of the VAP forep scattering.

Our discussion of these points is organized in the remain-
der of the paper as follows. In Sec. II, we discuss general
features ofAn and our approach to the computation. Section
III provides details of the calculation. In Sec. IV, we give
numerical results and discuss their significance, while Sec. V
gives our conclusions. Technical details are provided in the
Appendixes.

II. GENERAL CONSIDERATIONS

We are interested in computing the VAP in elasticepscat-
tering:

An =
ds↑ − ds↓
ds↑ + ds↓

=
2 Im Mgg

* Mg

uMgu2
, s2d

whereds↑s↓d is the differential cross section for scattering of

electrons with incident spin parallel(antiparallel) to KW 3KW 8.
In a phase convention where the singleg-exchange ampli-
tude Mg is purely real,An requires a nonvanishing imagi-
nary part ofMgg.1 To compute the latter, one must consider
both the box and crossed-box diagrams of Fig. 1. Simple
power-counting arguments indicate that the contribution to
Mgg arising from the leading-ordergp couplings is ultravio-
let finite but infrared divergent. Thus, in general, one must
also compute the contributions toAn arising from the brems-
strahlung diagrams of Fig. 2. As we show by explicit calcu-
lation in Appendix A, however, the bremsstrahlung contribu-
tion to An vanishes identically, while ImMgg is infrared
finite. The resulting, leading-order contribution toAn is
Osp/Md0.

1By Im Mgg, we mean the coefficients of the various products of

fermion bilinears,ēGeN̄G8N, etc. that appear in the amplitude.

FIG. 1. (Color online) Two photon exchange diagrams. The
wavy lines indicate virtual photons, whileksk8d and psp8d denote
the initial (final) electron and proton momenta, respectively.

FIG. 2. (Color online) Bremsstrahlung contributions. Labels are
the same as in Fig. 1.
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Additional contributions toMgg arise from higher-order
operators that couple one or more virtual photons to the pro-
ton and electron. We neglect the latter since they are sup-
pressed by additional powers of the fine structure constant.2

In contrast, thegp operators are induced by strong interac-
tions and have couplings of ordere. In order to treat their
contributions systematically, we adopt an effective theory
framework since we cannot compute the operator coeffi-
cients from first principles in quantum chromodynamics. The
natural framework for doing so is heavy baryon chiral per-
turbation theorysHBxPTd, which provides a systematic ex-
pansion in powers ofp/Lx andp/M, whereLx=4pFp is the
scale of chiral symmetry-breaking andp is an external mo-
mentum or mass with magnitude much less thanM andLx.
In the present case, where we integrate out the pions, we take
p=E or m and useM as the heavy scale. For the kinematics
of the SAMPLE experiment,E. .m. Since there are no
hard collinear infrared singularities in ImMgg, we may drop
all power corrections involving the electron mass and obtain
our result as an expansion inE/M.

The leading terms in a heavy baryon Lagrangian for
nucleons and photons relevant to our computation are

LNg = B̄viv ·DBv +
1

2M
B̄vfsv ·Dd2 − D2gBv

+
em

2M
emnabFmnvaB̄vS

bBv −
eCr

M2 B̄vvmBv]lFml + ¯ ,

s3d

whereBv is the field for a heavy proton of velocityvm, where
Dm=]m− ieAm, and where we have shown explicitly allgp
interactions throughOsp3d. The latter arise from the sublead-
ing kinetic term in Eq.(3) as well as from the operators
containing the field strength,Fmn. The coefficientm=2.793 is
the proton magnetic moment, whileCr determines the proton
Sachs, or electric, radius,

UCr =
M2

6
kr2lE = M2dGE

pstd
dt

U
t=0

, s4d

where t=q2. The experimental value forkr2lE=0.743 fm2

[20,21] implies Cr =2.81. When included in the loop dia-
grams of Fig. 1, these interactions generate contributions to
theep amplitudeMg andMgg through ordersp/Md2 relative
to the leading term. To this order, operators associated with
the nucleon polarizability[see Fig. 3(e)] do not contribute, as
they occur atOsp4d in LNg when the pion is treated as heavy.

Higher-order contributions toAn can also arise from ef-
fective T-odd, P-eveneeNNinteractions. The origin of such
operators could be either physics that we have integrated out,
such as contributions toMgg from pN or D intermediate
states, or explicit T-odd, P-even interactions arising from
new physics. As shown in Appendix B, there exist no Her-
mitian, four-fermion operators at dimension 6 that contribute
to An. The lowest dimension T-odd, P-even four-fermion op-

erators have dimension 7 and would nominally contribute to
An at Osp/Md3. We show, however, that contributions from
these operators vanish to this order and first arise at
Osp/Md4. Since we truncate our analysis at two orders lower,
we may neglect these operators and obtain a parameter-free
prediction for the VAP. Nevertheless, we discuss these opera-
tors briefly in Sec. IV when considering the possible size of
neglected, higher-order contributions.3

As we show in detail in Sec. III, the leading one-loop
contributions toAn—generated by twoOspdgp insertions in
the VVCS amplitude[Fig. 3(a)]—are finite, non-analytic in
p, and occurOsp/Md0, whereas those generated by the
dimension-7 T-odd, P-even operators arise atOsp/Md4.
Thus, the leading contributions are uniquely determined
from the one-loop calculation. Similarly, contributions to
Mgg involving oneOspd and oneOsp2dgp interaction[Figs.
3(b) and 3(c)] contribute toAn at Osp/Md, are also finite and
nonanalytic inp, and are unique to the loop calculation. The
Osp/Md2 loop contributions arise either from twoOsp2dgp
operators[e.g., two insertions of the nucleon magnetic mo-
ment operator, Fig. 3(d)] or oneOspd and oneOsp3d term
(viz., the proton charge radius). We find, however, that the
Osp/Md2 components ofMgg arise only from thegp mag-
netic moment interaction as well as from recoil order terms
in LNg. Contributions toMgg from the proton charge radius
vanish, though it does contribute toAn as a higher-order term
in Mg.

III. TWO-PHOTON EXCHANGE

The evaluation of four-point functions for general kine-
matics does not readily lend itself to evaluation using stan-
dard Feynman parametrization in the loop integrals. Alter-
nate methods for evaluating these integrals that do not rely
explicitly on Feynman parameters have been worked out in
Refs.[23,24] and have become standard. In the present case,
where we are interested in backward angle scattering at non-
zero q2, we would ideally like to use this formalism. How-
ever, the form of the heavy baryon propagator does not per-

2For high energy scattering, these higher-order QED contributions
may receive logarithmic enhancements[19].

3For an earlier, phenomenological calculation that includes some
of these higher order contributions, see Ref.[22].

FIG. 3. (Color online) Contributions to the VVCS amplitude
appearing in Fig. 1. Open circles indicate the leading-ordergN
couplings, while dark circles indicate higher-order couplings, such
as the magnetic moment and charge radius. Shaded circle denotes
that nucleon polarizability operator.
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mit one to adopt the t’Hooft-Passarino-Veltmann formulation
directly.

We circumvent these difficulties by carrying out the com-
putation with relativistic baryon propagators and expanding
our result in powers ofp/M. Doing so allows us to evaluate
the loop integrals using the standard formulation of Refs.
[23,24]. It has been shown in other contexts[25] that doing
so allows one to recover the heavy baryon result so long as
the external momenta are sufficiently small. Moreover, our
loop results are entirely nonanalytic inp and, thus, must
match the corresponding nonanalytic results obtained with
heavy baryon propagators. To the order of our analysis, there
exist no four-fermion operators that could account for differ-
ences between relativistic and nonrelativistic treatments of
An.

The one-loopMgg is nominally infrared singular and
must, therefore, be regulated with an IR regulator such as a
photon mass. On general grounds, the regulator dependence
should be canceled by a corresponding dependence of the
bremsstrahlung contribution to the spin-dependent cross sec-
tion. As is well known, such a cancellation occurs for an
unpolarized scattering cross section. In Appendix B, we
work out the corresponding bremsstrahlung contribution to
An and show that it vanishes identically. Consequently,
Im Mgg must be IR regulator-independent.

In general, the amplitudeMgg depends on each of the
eleven integrals obtained in Ref.[24]. The imaginary part,
however, depends on only four,

D0 =
2p

− t
ln S− t

l2D 1
ÎL

Q„s− sm+ Md2
…,

C0s1,2,3d =
p

ÎL
ln S L

sl2DQ„s− sm+ Md2
…,

C0s1,3,4d = C0s1,2,3d = C0,

B0s1,3d = p
ÎL

s
Q„s− sm+ Md2

…, s5d

where the three labels associated with theB0 and C0 func-
tions indicate which propagators are used for the two-point
and three-point integral as discussed in Appendix C,l is the
photon mass, and

L = s2 − 2ssM2 + m2d + sM2 − m2d2. s6d

These integrals have been previously computed in Refs.
[24,26] (in [26] they are obtained by the use of dispersion
techniques). The D0 andC0 loop integrals diverge asl→0,
but the combination

2C0 + D0t =
2p

ÎL
ln S L

− st
DQ„s− sm+ Md2

… s7d

is finite in this limit and is the only combination ofD0 and
C0 integrals that is so. As such, the two-photon contribution
to An must only contain terms proportional to this combina-
tion or to theB0 integral.

In evaluating the loop contributions toAn, it is most effi-
cient to identify the terms inMgg that generate the correla-
tion of Eq.(1) by carrying out the Dirac algebra in the inter-
ference term ImMggMg

* before evaluating the momentum
integrals. After carrying out the momentum integration, the
contribution from the box diagram of Fig. 1(a) is

2 Im Mgg
boxMg

* = −
s4pad2

4p4t

16mp2s4pad
sL + std

emnabPmSnKaKb8HF4sM2 − m2 − 3sdM2R+ khs6R+ 2dL − fsm2 − M2 − sdR+ 2sgtj

+ k2R
1

8M2sL + std
h2s3m3 + 16M2dL2+ Lf11m4 − 2s13M2 + 8sdm2 + 15M4 + 11s2 + 14M2sg

3t+ 4sf2m4 − s5M2 + 4sdM2 + 3M4 + 2s2 − 3M2sgt2jGs2C0 + D0td− 4
L + ts

L
sk2 + 4k + 2dB0J . s8d

Here,s, t, andu are the Mandelstaam variables,k=m−1 is the nucleon anomalous magnetic moment, and

R− 1 = tF k

4M2 −
Cr

M2G . s9d

To obtain the result consistent with our power counting, we expand Eq.(8) in powers ofp/M up to second order relative
to the leading term4,

4This procedure introduces no ambiguities because ImMgg is finite to the order of our analysis.
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Im Mgg
boxMg

* = −
s4pad2

t

32p2amM

ÎE2 − m2SsE2 − m2 + t/4d +
Et

2M
+

m2t

4M2D emnabPmSnKaKb8

3HFln S4sE2 − m2d
− t

D − 2E/M + s2E2 − m2d/M2GFR+
3E

M
+

2m2

M2 +
k2

M2

32sE2 − m2d2 + t2/2 + 10sE2 − m2dt
4sE2 − m2d + t

+
4k

M2sm2 − E2dG −
k2 + 4k + 2

M2 FsE2 − m2d +
t

4
GJQ„s− sm+ Md2

… s10d

where theQ function arises from the integrals 2C0+2D0t andB0. Note that we have retained them dependence purely for
illustrative purposes, asm, ,E for the experiments of interest here. The corresponding contribution from the crossed-box
diagram can be obtained by crossing symmetry with the replacements→u. In this case, theQ function vanishes, so only
Im Mgg

boxMg
* contributes.

In the expression(10), the terms that go as powers ofE/M or m/M but do not contain factors ofk or Cr arise purely from
recoil effects. The proton charge radius contributes solely viaMg. Although it also contributes to the absorptive part ofMgg,
the resulting terms do not contribute to the spin-dependent correlation of Eq.(1). Including the magnetic moment, charge
radius, and recoil-order terms inMg along with the loop contributions in Eq.(10) leads to the following expression for the
VAP:

An = −
2atm

ÎE2 − m2SsE2 − m2 + t/4d +
Et

2M
+

m2t

4M2DSW ·KW 3 KW 8HFlnS4sE2 − m2d
− t

D − 2E/M + s2E2 − m2d/M2G
3FR+

3E

M
+

2m2

M2 +
k2

M2

32sE2 − m2d2 + t2/2 + 10sE2 − m2dt
4sE2 − m2d + t

+
4k

M2sm2 − E2dG−
k2 + 4k + 2

M2 FsE2 − m2d +
t

4
GJ

3Fs8E2 + 2tdR2 +
4Et

M
+ t

t + 2m2 + 2kst + 2m2d + k2ft + 4sm2 − E2dg/2
M2 G−1

. s11d

Dropping all terms that go as powers ofE/M, m/M, or t /M2

yields the result obtained in Ref.[11] that was obtained for
scattering from an infinitely heavy, pointlike proton.

IV. RESULTS AND DISCUSSION

The expression forAn given in Eq. (11) provides a
parameter-free prediction for low-energy electron scattering.
In Figs. 4 and 5, we plotAn as a function of energy for fixed
laboratory frame scattering anglesu=146.1° (Fig. 4) and u
=30° (Fig. 5), while in Fig. 6 we show the VAP for fixed
energy E=192 MeV while varying u. In call cases, the
leading-order calculation is shown for comparison. In Fig. 6,
the relative importance of the recoil, magnetic moment, and
charge radius contributions is also indicated.

The result obtained in the SAMPLE measurement is also
shown. While the leading-order calculation overestimates the
magnitude ofAn by a factor of roughly 4, inclusion of the
higher-order terms considered here produces agreement with
the experimental value. Interestingly, there appears to be
scant evidence that dynamical pions or theD play a signifi-
cant role inAn for this kinematic regionsE=192 MeVd, de-
spite one’s expectation that they might.

At higher energies, our result forAn cannot be considered
reliable, since the convergence of the effective theory expan-
sion breaks down forE,M. The A4 Collaboration at Mainz

has measuredAn at E=570.3 MeV andE=854.3 MeV and
25°øuø35°. Preliminary results for the higher-energy VAP
have been reported in Ref.[15]. A comparison with our com-
putation indicates that the preliminary experimental values

FIG. 4. (Color online) VAP vs energy for fixed scattering angle,
u=146.1°. The dashed line is the leading-order result, and the solid
line shows the full calculation. The SAMPLE result[10] is also
shown atE=192 MeV.
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for forward angle scattering and higher energies are substan-
tially larger in magnitude than we are able to obtain via the
low-energy expansion toOsE/Md2. Presumably, a resumma-
tion of higher-order contributions inE/M using nonpertur-
bative techniques, such as dispersion relations, would be re-
quired to compute reliablyAn in this domain[12,27–30]. We
would also expect that inclusion of nucleon resonances5 and
pions as explicit degrees of freedom would be needed to
account for the experimental results.

One indication of the possible strength of these higher-
order contributions may be given by considering the T-odd,
P-even dimension-7 operators. As shown in Appendix B,
there exist twod=7 operators that could, in principle, con-
tribute. From an explicit calculation, we find that only one of
the two—OeN

7a—leads to a nonvanishingAn. Here, it is useful
to consider the form of this operator for relativistic proton
fields,N,

OeN
7a =

a2C7a

M3 ēsmng5sDW + DQ dneN̄g5gmN. s12d

Rewriting this operator in terms of the heavy fieldsBv leads
to

ÕeN
7a = − 2

a2C7a

M2 ēsmng5sDQ + DW dneB̄vSm
v Bv, s13d

where Sm
v is the nucleon spin. The contribution fromÕeN

7a

to the interference amplitude ImM̃eN
7aMg

* goes as
emnabSmvnvaKb8 and, thus, vanishes. On the other hand, using
the relativistic form of the operator,OeN

7a, leads to the

correlationemnabSmPnPa8Kb8 that is nonvanishing forPÞP8.
The resulting contribution to the VAP is

An
s7d =

aC7a

4p

t2uKW uuKW 8u sin u

M2f8M2E2 + 2s2E + MdtM + t2g
, s14d

a result that isOsp/Md4. In short, the only heavy baryon
operators that can contribute involve either fields with two
different velocities(viz., Bv andBv8) whose contribution re-
quires nonzero proton recoil, or dimension-8 operators in-
volving the Bv fields only and carrying an additionalp/M
recoil suppression.

The SAMPLE result forAn allows for a nonvanishing, but
small coefficient for the leading, higher-order T-odd, P-even
operator. Using the relativistic operatorOeN

7a for illustration
and including the loop contributions throughOsp/Md2 leads
to C7a=3.07±6.64. Naive dimensional analysis would have
suggested a magnitude forC7a or order unity, so the
SAMPLE results do not appear to imply the presence of any
unnatural hadronic scale physics. We may now use this range
for C7a to estimate the possible size of higher-order effects at
other kinematics. The resulting band is shown in Fig. 7 for
backward anglessu=146.1°d and in Fig. 8 for forward angles
su=30°d. For the Mainz measurement atE=570 MeV and
u=30°, we find −2.0øAn

s7dø0.7 ppm, while An
loop=

−0.64 ppm. Thus, one might expect the impact of the physics
we have integrated out to grow in importance relative to the
loop effects considered here as the energy of the beam is
increased, and it appears reasonable to expect a magnitude of
a few ppm at the Mainz kinematics. We caution, however,
that the precise value obtained in our calculation is unlikely
to be correct in this energy regime, where the convergence of
the E/M expansion is slow at best.

As a final comparison, we also considerAn in fixed target,
polarized Møller scattering. The VAP for this process has

5For recent studies that pertain to such contributions, see Refs.
[32–34].

FIG. 6. (Color online) VAP vs scattering angle for the SAMPLE
kinematicssE=192 MeVd. The dotted line gives the leading-order
result, the dashed line adds the recoil corrections, the dash-dotted
line adds the magnetic corrections, and the solid line shows the full
calculation throughOsp/Md2.

FIG. 5. (Color online) VAP vs energy for fixed scattering angle,
u=30°. The dashed line is the leading-order result, and the solid
line shows the full calculation.
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been measured at SLAC by the E158 Collaboration[16], and
one expects results to be forthcoming in the near future. Cal-
culations of this quantity have been performed by several
authors[17–19]. As a cross-check on our VAP forep scat-
tering, we carry out the analogous calculation here. It can be
performed completely relativistically without performing an
expansion in electron energy. However, since we are now
dealing with identical particles in the final state, we need to
compute the interference between tree diagams in Fig. 9(b)
and the box diagrams of Fig. 9(a). For the SLAC measure-
ment, one hasE=46 GeV. Performing the calculation in the
center of mass frame, we obtain

ds↑

dV
−

ds↓

dV
=

a3

8

m

t2u2Îs
sinuÎ1 −

4m2

s

3H3ss− 4m2dFtsu − s+ 2m2dlnS − t

s− 4m2D
− ust − s+ 2m2dlnS − u

s− 4m2DG − 2st − udtuJ
ds↑

dV
+

ds↓

dV
=

a2

2st2u2fst2 + tu + u2d2

+ 4m2sm2 − t − udst2 − tu + u2dg, s15d

Our results are in agreement with those of Refs.[17–19].6

The resulting asymmetry is ploted in Fig. 10, and agrees with
the corresponding figure in Ref.[19] (note thatin Ref.[19],
the VAP is plotted versus cosu rather than versusu as we do
here).

V. CONCLUSIONS

In this study, we have computed the low-energy, back-
ward angle VAP using an effective theory involving elec-
trons, photons, and protons, and we have obtained a
parameter-free prediction throughOsp/Md2. The VAP to this
order is determined entirely by the imaginary part of the
interference between the two-photon exchange, one-loop am-
plitude, and the tree-level one-photon-exchange amplitude.
In the limit that M→`, our result exactly reproduces the
VAP obtained in Ref.[11] for scattering from a structureless,
infinitely heavy proton that over predicts the magnitude ofAn
at the kinematics of the SAMPLE experiment. We find that
inclusion of all contributions throughOsp/Md2 leads to

6In Ref. [19], Osa2d contributions arising from initial and final
state radiation effects were also computed. The corresponding con-
tributions for theepVAP are smaller than the hadronic uncertainties
arising atOsad, so we do not consider them.

FIG. 8. (Color online) Possible contribution fromOeN
7a to the

VAP at u=30°, given constraints on the operator coefficientC7a

implied by the SAMPLE result.

FIG. 7. (Color online) Possible contribution from the dimension
seven, T-odd, P-even operatorOeN

7a to the backward angle VAPsu
=146.1°d.

FIG. 9. (Color online) Diagrams contributing to the VAP for
Møller scattering.
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agreement with experiment and leaves little room for impor-
tant effects arising from dynamical pions or nucleon reso-
nances at these energies. The leading counterterm contribu-
tions arise atOsp/Md4 and are consistent with zero. Thus,
the SAMPLE measurement provides no evidence for unusual
hadronic physics effects at these scales. The data also con-
strain the magnitude of the counterterm coefficients to be of
natural size, and lead one to expect the VAP as measured by
the A4 Collaboration at Mainz to be at most of the order of a
few ppm. Given the range of validity of our effective theory,
however, we cannot produce a reliable prediction for VAP at
the Mainz energies.

In this context, the results of the SAMPLE measurement
have notable consequences for studies of weak interaction
processes. In the case of both neutronb-decay and parity-
violating epscattering, theoretical consideration of final state
QED corrections to the leading-order weak amplitudes is im-
portant for the interpretation of various measurements[13].
To the extent that these measurements involve relatively low
lepton energies, an analogous effective field theory compu-
tation of one-loop graphs involving the exchange of one
weak vector boson and one photon should be reliable at the
,20% level relative to the size of otherOsad corrections.
Future, more precise measurements of the VAP at low ener-
gies and overa range of angles would provide important tests
of this provisional assessment.

One might also ask how competitive the SAMPLE mea-
surement is with other direct searches for new T-odd, P-even
interactions. As discussed in Refs.[4,5], direct searches are
most relevant in symmetry-breaking scenarios wherein parity
is broken at or above the scale for the breakdown of T. Ex-
isting direct searches imply thataT& few310−3, whereaT is
the ratio of a typical T-odd, P-even nuclear matrix element to
those of the residual strong interaction. When translated into
bounds on generic, dimension-7 operator coefficientsC7 [un-
der the normalization of Eq.(12)], one obtainsuC7u&2. The
sensitivity of the SAMPLE measurement is comparable.
Given that conventional, hadronic final state effects that have
been integrated out in our computation naturally imply a

value of C7a with a magnitude of order unity, it appears
unlikely that one will be able to circumvent the correspond-
ing theoretical hadronic uncertainties as needed to make the
VAP a direct probe of new physics. On the other hand, low-
energy studies ofAn could provide important information for
the theoretical interpretation of other precision, electroweak
observables.
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APPENDIX A: BREMSSTRAHLUNG COMPUTATION

Here, we show that the bremsstrahlung amplitudes corre-
sponding to Fig. 2 give a vanishing contribution to the VAP.
The amplitudes are

Ma =
− i

q2 ūsK8dsiedgm

isK” − l”d + m

sK − ld2 − m2sied

3gaea

1 + g5S”

2
usKdūsp8dsiedgmuspd,

Mb =
− i

q2 ūsK8dsiedgaea

isK” 8 + l”d + m

sK8 + ld2 − m2siedgm

1 + g5S”

2

3usKdūsp8dsiedgmuspd,

Mc =
− i

q2 ūsK8dsiedgmusKdūsp8dsiedgm

3
isp”8 + l”d + M

sp8 + ld2 − M2siedgaeauspd,

Md =
− i

q2 ūsK8dsiedgmusKdūsp8dsiedgaea

3
isp” − l”d + M

sp − ld2 − M2siedgmuspd. sA1d

Here,lm is the radiated photon momentum. The square of the
invariant amplitude

MB = uMa + ¯ + Mdu2 sA2d

FIG. 10. (Color online) The Møller VAP vs CM scattering angle
at the E158 kinematics.
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depends on ten different products of leptonic and hadronic
tensors. The leptonic tensors are

Lmn
aa = TrSsK” 8 + mdgm

sK” − l” + md
sK − ld2 − m2ga

1 + g5S”

2
sK” + md

3gb

sK” − l” + md
sK − ld2 − m2gnDeae*b,

Lmn
ab = TrSsK” 8 + mdgm

sK” − l” + md
sK − ld2 − m2ga

1 + g5S”

2
sK” + md

3gn

sK” 8 + l” + md
sK8 + ld2 − m2gbDeae*b,

Lmn
ac = TrSsK” 8 + mdgm

sK” − l” + md
sK − ld2 − m2ga

1 + g5S”

2
sK” + mdgnDea,

Lmn
ad = Lmn

ac ,

Lmn
bb = TrSsK” 8 + mdga

sK” 8 + l” + md
sK8 + ld2 − m2gm

1 + g5S”

2
sK” + md

3gn

sK” 8 + l” + md
sK8 + ld2 − m2gbDeae*b,

Lmn
bc = TrSsK” 8 + mdga

sK” 8 + l” + md
sK8 + ld2 − m2gm

1 + g5S”

2

3sK” + mdgnDea,

Lmn
bd = Lmn

bc ,

Lmn
cc = TrSsK” 8 + mdgm

1 + g5S”

2
sK” + mdgnD ,

Lmn
cd = Lmn

cc ,

Lmn
dd = Lmn

cc . sA3d

The corresponding hadronic tensors are

Haa
mn = Trfsp”8 + Mdgmsp” + Mdgng,

Hab
mn = Haa

mn,

Hac
mn = Tr Ssp”8 + Mdgmsp” + Mdgb sp” − l” + Md

sp − ld2 − M2gnDeb
* ,

Had
mn = Tr Ssp”8 + Mdgmsp” + Mdgn sp”8 + l” + Md

sp8 + ld2 − M2gbDeb
* ,

Hbb
mn = Haa

mn,

Hbc
mn = Haa

mn,

Hbd
mn = Had

mn,

Hcc
mn = Tr Ssp”8 + Mdga sp” − l” + Md

sp − ld2 − M2gmsp” + Md

3gn sp” − l” + Md
sp − ld2 − M2gbDeaeb

* ,

Hcd
mn = Tr Ssp”8 + Mdga sp” − l” + Md

sp − ld2 − M2gmsp” + Md

3gb sp”8 + l” + Md
sp8 + ld2 − M2gnDeaeb

* ,

Hdd
mn = Tr Ssp”8 + Mdgm sp”8 + l” + Md

sp8 + ld2 − M2gasp” + Md

3gb sp”8 + l” + Md
sp8 + ld2 − M2gnDeaeb

* . sA4d

We now need to compute

MB = o
pol
E d4lH 1

q4fLmn
aaHaa

mn + Lmn
abHab

mn + LacHac
mn + Lmn

adHad
mn

+ Lmn
bbHbb

mn+ Lmn
bcHbc

mn + Lmn
bdHbd

mn + Lmn
cc Hcc

mn

+ Lmn
cdHcd

mn + Lmn
ddHdd

mng + H . c.J
=o

pol
E d4lH 1

q4fsHac
mn + Had

mndsLmn
ac + Lmn

add + Haa
mnsLmn

aa

+ Lmn
ab + Lmn

bbd+ Lcc
mnsHmn

cc + Hmn
cd + Hmn

dddg + H . c.J ,

sA5d

where the sum is over all polarizations of the radiated pho-
ton. We are only interested in the terms proportional to
eabgdS

akbk8gpd. First we investigate the momentum inte-
grals,

ip2IB =E d4lF 1

sp8 + ld2 − M2

1

sp8 + ld2 − M2

+
1

sp8 + ld2 − M2

1

sp − ld2 − M2

+
1

sp − ld2 − M2

1

sp − ld2 − M2

+
1

sk8 + ld2 − m2

1

sk8 + ld2 − m2 + ¯G . sA6d

We can evaluate the generic two-point integral as defined by
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ip2Bsp2;m1
2,m2

2d = m4−nE dnqF 1

q2 + m1
2 − ie

3
1

sq + pd2 + m2
2 − ie

G . sA7d

We are only interested in the imaginary part ofB. We find
that above the physical thresholds=−p2ù sm1+m2d2 this in-
tegral develops an imaginary part[31]

Im Bsp2;m1
2,m2

2d = p
Îlss,m1

2,m2
2d

s
Q„s− sm1 + m2d2

….

sA8d

Evaluating theB functions for the kinematics involved here,
we find that none of the integrals of Eq.(A6) develop an
imaginary part. As such, evaluating the traces and perform-
ing the integration, we obtain a result of the form

MB = f1sm,M,s,t,ud + f2sm,M,s,t,ud

3ieabgdS
akbk8gpd + H . c .

= 2f1sm,M,s,t,ud. sA9d

Hence, we find no contribution toAn.

APPENDIX B: LOCAL OPERATORS

As discussed in the text, we are interested in computing
the contribution to the VAP from local, four-fermioneeNN
operators. The lowest dimension operators of this form have
dimension 6. First, we show by explicit calculation that all
d=6 operators give vanishing contributions toAn. The most
general forms for thed=6 operators are

OeN
6a =

a2

M2ēsC1 + C2g5deN̄sC18 + C28g5dN,

OeN
6b =

a2

M2ēsC3 + C4g5dgmeN̄sC38 + C48g5dgm, sB1d

OeN
6c =

a2

M2ēsC5 + C6g5dsmneN̄sC58 + C68g5dsmnN, sB2d

where we have used relativistic nucleon fieldsN (the corre-
sponding argument carries over straightforwardly in the
heavy baryon formalism). To make the above Hermitian we
require all the constantsCeN

i to be real. We now compute the
interference of the amplitudes associated with these opera-
tors and the tree amplitudeMg, retaining only the desired
structureeabgdS

apbKgK8d. The corresponding leptonic and
hadronic tensors are

L6a
m = TrSsK” 8 + mdsC1 + C2g5d

1 + g5S”

2
sK” + mdgmD ,

L6b
mn = TrSsK” 8 + mdsC3 + C4g5dgn1 + g5S”

2
sK” + mdgmD ,

L6c
mna = TrSsK” 8 + mdsC5 + C6g5dsna1 + g5S”

2
sK” + mdgmD ,

H6a
m = Trssp”8 + mdsC18 + C28g5dsp” + mdgmd,

H6b
mn = Trssp”8 + mdsC38 + C48g5dgmsp” + mdgmd,

H6c
mna = Trssp”8 + mdsC58 + C68g5dsmasp” + mdgmd,

M6Mg
* + H.c. =

s4pada2

tM2 fL6a
m Hms6ad + L6b

mnHmns6bd

+ L6c
mnaHmnas6cdg + H.c. sB3d

Evaluating the traces and keeping only the terms of interest,
we obtain

M6Mg
* + H.c. = i16

s4pada2

tM2 sC1C18M − C4C48mdeabgd

3SapbKgK8d + H.c. sB4d

Since all theC’s are real, we see there is no contribution
from dimension-6 terms. This results is as expected, as the
operatorsO6a−c are even under both T and P.

Now considerd=7 operators. As for thed=6 operators,
all contributions from T-even P-evend=7 operators will van-
ish. We may, however, write down two Hermitian T-odd,
P-evend=7 operators,

OeN
7a =

a2

M3C7aēg5smnsDQ + DW dneN̄g5gmN, sB5d

OeN
7b =

a2

M3C7bēg5gmeN̄g5smnsDQ + DW dnN. sB6d

As before, we evaluate the interference of the above with
Mg. The corresponding leptonic and hadronic tensors are

L7a
mn = i TrSsK” 8 + mdg5smaqa

1 + g5S”

2
sK” + mdgnD

L7b
mn = TrSsK” 8 + mdg5gm1 + g5S”

2
sK” + mdgnD

H7a
mn = Trssp”8 + mdg5gmsp” + mdgnd

H7b
mn = i Trssp”8 + mdg5smaqasp” + mdgnd

M7Mg
* + H.c. = i

s4pada2

tM3 fC7aL7a
mnHmns7ad

+ C7bL7b
mnHmns7bdg + H.c. sB7d

Evaluating the traces, we note that only theL7a
mnHmns7ad con-

tributes,

M7Mg + H.c. =
16s4pada2C7a

M3 eabgdS
apbkgk8d. sB8d

We are interested in the contribution such a term gives to the
VAP. Keep only the leading piece of the tree amplitude, we
get
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An
s7d =

aC7a

4p

t2uKW uuKW 8usinu

M2f8M2E2 + 2s2E + MdtM + t2g
. sB9d

APPENDIX C: LOOP INTEGRALS

Here, we provide additional details about the computation
of Mgg. As noted in the text, the contribution from the
crossed-box diagram vanishes, so we consider only
Im Mgg

boxMg
* . Using the momentum routing shown in Fig. 11

we express the latter in terms of the leptonic and hadronic
tensors:

Lmna = ūsK8dsiedgm is− ł” + md
l2 − m2 siedgn1 + g5S”

2
usKdūsKd

3siedgausK8d,

Hmna = ūsp8dSief1 + rsl + K8d2ggm −
ksmb

2M
sl + K8dbD

3
isł + K” 8 + p”8 + Md
sl + K8 + p8d2 − M2Sief1 + rsl + Kd2ggn

+
ksnd

2M
sl + KddDuspdūspdSief1 + rsK − K8d2gga

+
ksag

2M
sK − K8dgDusp8d,

Mgg
boxMg

* =E d4l

s2pd2Lmna − i

sl + K8d2

− i

sl + Kd2

− i

sK − K8d2Hmna,

sC1d

where

r = R− 1. sC2d

We define the loop integrals from above as follows:

ip2D0 =E d4l
1

sl2 − m2dsl + K8d2fsl + K8 + p8d2 − M2gsl + Kd2 ,

ip2Da =E d4l
la

sl2 − m2dsl + K8d2fsl + K8 + p8d2 − M2gsl + Kd2 ,

ip2Dab

=E d4l
lalb

sl2 − m2dsl + K8d2fsl + K8 + p8d2 − M2gsl + Kd2 ,

ip2Dabg

=E d4l
lalblg

sl2 − m2dsl + K8d2fsl + K8 + p8d2 − M2gsl + Kd2 ,

ip2Dabgd

=E d4l
lalblgld

sl2 − m2dsl + K8d2fsl + K8 + p8d2 − M2gsl + Kd2 .

sC3d

In order to evaluate these integrals, we follow the methods of
Refs.[23,24], and our notation follows that of Ref.[24]. To
this end, we need to compute the following three-point func-
tions:

ip2C0s1,2,3d =E d4l
1

sl2 − m2dsl + K8d2fsl + K8 + p8d2 − M2g
,

ip2C0s1,2,4d =E d4l
1

sl2 − m2dsl + K8d2sl + Kd2 ,

ip2C0s1,3,4d =E d4l
1

sl2 − m2dfsl + K8 + p8d2 − M2gsl + Kd2 ,

ip2C0s2,3,4d =E d4l
1

sl + K8d2fsl + K8 + p8d2 − M2gsl + Kd2 ,

sC4d

and two-point functions

ip2B0s1,2d =E d4l
1

sl2 − m2dsl + K8d2 ,

ip2B0s1,3d =E d4l
1

sl2 − m2dfsl + K8 + p8d2 − M2g
,

ip2B0s1,4d =E d4l
1

sl2 − m2dsl + Kd2 ,

ip2B0s2,4d =E d4l
1

sl + K8d2sl + Kd2 ,

ip2B0s2,3d =E d4l
1

sl + K8d2fsl + K8 + p8d2 − M2g
,

ip2B0s3,4d =E d4l
1

fsl + K8 + p8d2 − M2gsl + Kd2 . sC5d

For all the B, C, and D integrals above, we are interested
only in the imaginary part. The only two-, three-, and four-
point integrals with nonvanishing imaginary parts are

FIG. 11. (Color online) Momentum routing for thegg box graph
integrals.
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Im D0 =
2p

− t
lnS− t

l2D 1
ÎL

Q„s− sm+ Md2
…,

Im C0s1,2,3d =
p

ÎL
lnS L

sl2DQ„s− sm+ Md2
…,

Im C0s1,3,4d = ImfC0s1,2,3dg = C0,

Im B0s1,3d = p
ÎL

s
Q„s− sm+ Md2

…, sC6d

In the above,l is the photon mass andL=s2−2ssM2+m2d
+sM2−m2d2.

Although space considerations preclude a complete delin-
eation of the calculation here, it is instructive to consider in
more detail the evaluation of one of the four-point integrals
required. Specifically, we consider

Da = p1
aD11 + p2

aD12 + p3
aD13. sC7d

For the kinematics considered here, the Passarino and Velt-
man momenta and masses are

p1 = K, m1 = m,

p2 = p, m2 = 0,

p3 = − p8, m3 = M ,

p4 = − K8, m4 = 0. sC8d

We then have for the ImDij

Im1D11

D12

D13
2 = X−1 Im1R20

R21

R22
2 , sC9d

where

R20 =
1

2
ff1D0 + C0s1,3,4d − C0s2,3,4dg

=
1

2
s2D0m

2 + C0d,

R21 =
1

2
ff2D0 + C0s1,2,4d − C0s1,3,4dg

=
1

2
f2D0ss− M2 − m2d − C0g,

R22 =
1

2
ff3D0 + C0s1,2,3d − C0s1,2,4dg

=
1

2
f− 2D0ss− M2 − m2d + C0g, sC10d

where

f1 = m1
2 − m2

2 − p1
2 = 2m2,

f2 = m1
2 − m2

2 + p1
2 − p5

2 = ss− M2 − m2d,

f3 = m2
2 − m4

2 − p4
2 + p5

2 = − f2, sC11d

and where the inverse of the momentum matrixX is

X−1 = 1 p1
2 p1p2 p1p3

p1p2 p2
2 p2p3

p1p3 p2p3 p3
2 2

−1

=1
4M2 − t

L + ts

3M2 + m2 − s− t

L + ts

M2 − m2 + s

L + ts

3M2 + m2 − s− t

L + ts

2sM2 + s+ tdm2 − ss+ t − M2d2 − m4

tsL + tsd
M2 − m2

L + ts
−

1

t

M2 − m2 + s

L + ts

M2 − m2

L + ts
−

1

t

s

L + ts
−

1

t

2 . sC12d

After performing the necessary algebra, we obtain

ImfD11g = −
D0h2fsm− Md2 − sgfsm+ Md2 − sg + sm2 − M2 + sdtj − 2C0ss+ M2 − m2d

2sL + tsd
,

ImfD12g = −
D0hm4 + ft − 2sM2 + sdg + sM2 − sdsM2 − s− tdjm2 + 2C0sm2 − M2d

2sL + tsd
,

ImfD13g =
− D0L + 2C0s

2sL + tsd
. sC13d

Similar steps are required in evaluating the other four-point integrals.
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