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A parametrization of SU(3) shell-model spectroscopic factors for light nuclei is proposed. It is shown that
spectroscopic factors, as calculated from first principles, can be reproduced nearly perfectly, including taking
full account of the Pauli principle, without recurring to sophisticated microscopic procedures. The results show
that microscopic spectroscopic factors follow a surprisingly simple pattern.
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The computation of spectroscopic factors for diverse clus-
ter systems plays an important role in the description ofa
and heavy cluster decay(cluster radioactivity) [1,2]. Much
effort was been invested in the 1970s and 1980s to derive the
spectroscopic factors in various cluster channels[3–9] within
the framework of the SU(3) shell model. All of them evoke
rather sophisticated procedures in order to assure the anti-
symmetry of the many-particle system. When more compli-
cated systems, or systems not yet addressed, are considered,
such methods turn out to be impractical and/or very unattrac-
tive. This has inhibited the use of such methods for those not
accustomed to the use of such shell-model methods.

In this Rapid Communication we propose a practical
method for the parametrization of the spectroscopic factor
within the SU(3) shell model for light nuclei. The parameters
are adjusted to reproduce somecalculatedspectroscopic fac-
tors and then compare them to the rest. The results show that
the spectroscopic factors obtained by using SU(3) shell-
model procedures can be almost perfectly reproduced using a
rather simple procedure, and raise the expectation that the
method can be applied to other systems where shell-model
results are either not available or too difficult to consider
calculating. The results show that the calculations of Refs.
[4] and [8] yield a relatively simple pattern.

The basis of the procedure is the semimicroscopic alge-
braic cluster model(SACM) [10,11]. Each cluster is repre-
sented by an irreducible representation(irrep) of the SUis3d
si =1,2d group. The relative motion is described by a SURs3d
group. The relevant group chain is

SU1s3d ^ SU2s3d ^ SURs3d . SUCs3d ^ SURs3d .

sl1,m1d sl2,m2d snp,0d slC,mCd

SUs3d . SOs3d . SOs2d

sl,md kL M , s1d

wheresli ,mid refer to the SU(3) irrep of the individual clus-
ters, which are coupled to intermediate irrepslC,mCd; np is

the number of relative oscillator quanta(vibron number),
limited from below by the Wildermuth condition[12] and
from above by the total number ofp pluss bosons(see Refs.
[10] and[11] for details); sl ,md is the total SU(3) irrep; and
L andM are the angular momentum and its projection.

In the SACM, the set of allowedsl ,md values is obtained
by multiplying the cluster irreps with that of the relative
motion, and then checking against the list of allowed SU(3)
irreps in the shell model. Only those irreps which also appear
in the shell model are retained. In this way the Pauli exclu-
sion principle is taken into account. The SACM is called
semimicroscopicbecause the model space has a shell-model
equivalent, but as noted in Refs.[10,11], the operators them-
selves contain parameters.

An attempt to parametrize the spectroscopic factor was
done successfully in[13]. However, in that case it was ap-
plied only to a limited data set and the parameters were
changed from one system to another. Furthermore, a linear
dependence on scalar operators in the SACM was proposed
in [13]. In [14,15] the spectroscopic factor for the cluster
radioactivity [2] was investigated and the need for an expo-
nential ansatz was demonstrated. The form proposed here for
the spectroscopic factor is based on the experience in[14]
and it is given by

S= expfA + Bnp + CC2sl1,m1d + DC2sl2,m2d + EC2slc,mcd

+ FC2sl,md + GC3sl,md + HDnpg

uksl1,m1dk1L1,sl2,m2dk2L2islC,mCdkCLClrC

3kslC,mCdkCLC,snp,0d1lisl,mdkLl1u2, s2d

whereC3sl ,md is the third-order Casimir operator of SU(3)
with eigenvaluesl−mds2l+m+3dsl+2m+3d, which is im-
portant in order to distinguish excited states likesl ,md and
sm ,ld that are conjugates of one another. TheC2slk,mkd sk
=1,2,Cd is the second-order Casimir operator with eigen-
value slk

2+lkmk+mk
2+3lk+3mkd. Finally, Dnp gives the dif-

ference in the number of relative quanta in excited states to
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the number in the ground state, which is determined by the
Wildermuth condition, andl is the angular momentum of the
relative motion. Here we calculate the spectroscopic factor of
the cluster system, when each cluster is in its ground state,
i.e., in the weak-coupling limit. In this paper we treat only
clusters with even proton and neutron numbers. We focus on
even-even nuclei for the sake of simplicity. For odd-even,
even-odd, and odd-odd nuclei, an additional complication
arises due to the appearance of spinsSd dependencies. This
requires more parameters but it is an interesting question for
a future investigation. The projection on the weak coupling
basis states is required by the data and is sufficient for the
light nuclei we consider.

The factor in the last two lines of(2) describes the cou-
pling of the two clusters in their ground statesL1=0=L2d to
a cluster irrepslC,mCd in its ground statesLC=0d and the
latter to a relative motion termsnp ,0d with angular momen-
tum l to a total irrepsl ,md with angular momentumL. Co-
efficients of the typek. . . .uu . .lr are isoscalar factors of the
SU(3) group [16–19] with rC a multiplicity index in the di-
rect product couplingsl1,m1d ^ sl2,m2d →slC,mCd. The
symbolki is the multiplicity of the angular momentumLi in
the irrepsli ,mid of the ith cluster,i =1,2. Asimilar explana-
tion applies forkC andLC.

The dependence onnp can be understood as follows: The
probability of finding the two clusters at a distanceR with

TABLE I. Spectroscopic factors used in the fitting procedure.Gi

si =1,2d representssli ,mid, GC slC,mCd, and G sl ,md. Data from
Ref. [4] are used, except for the last system. For12C+12C we used
Ref. [8]. All spectroscopic factors are normalized relative to the
ground state spectroscopic factor of16O+a. The “Alg” refers to the
algebraic model used in this contribution and “Data” to data against
which the results are compared.

System np G1 G2 GC G L Alg Data

16O+a 8 (0,0) (0,0) (0,0) (8,0) 0 1.00 1.00

18O+a 8 (4,0) (0,0) (4,0) (8,2) 0 0.29 0.31
18O+a 8 (4,0) (0,0) (4,0) (8,2) 6 0.010 0.012

20Ne+a 8 (8,0) (0,0) (8,0) (8,4) 0 0.22 0.21
20Ne+a 8 (8,0) (0,0) (8,0) (8,4) 6 0.032 0.032
20Ne+a 8 (4,2) (0,0) (4,2) (8,4) 0 0.15 0.19
20Ne+a 10 (8,0) (0,0) (8,0) (14,2) 0 1.68 1.68

22Ne+a 8 (8,2) (0,0) (8,2) (4,8) 0 0.13 0.12
22Ne+a 8 (8,2) (0,0) (8,2) (4,8) 6 0.0085 0.0072
22Ne+a 8 (4,4) (0,0) (4,4) (4,8) 0 0.17 0.20

24Mg+a 8 (8,4) (0,0) (8,4) (0,12) 0 0.075 0.08
24Mg+a 8 (8,4) (0,0) (8,4) (0,12) 6 0.0033 0.0032
24Mg+a 8 (6,2) (0,0) (6,2) (12,0) 0 0.058 0.057
24Mg+a 8 (8,4) (0,0) (8,4) (12,0) 0 0.048 0.042

12C+12C 14 (0,4) (0,4) (4,0) (14,2) 0 0.0043 0.0032
12C+12C 14 (0,4) (0,4) (0,8) (10,4) 0 0.17 0.15
12C+12C 14 (0,4) (0,4) (2,4) (12,0) 0 0.0071 0.010

TABLE II. Spectroscopic factors for various core-plus-
a-particle cases. The data are from[4]; an asterisk refers to the data
used in the fit. Different systems are separated by two blank rows
while a change from one SU(3) irrep to another(in the clusters or
in the total irrep) within the same system is indicated by a single
blank row. The values of the spectroscopic factors are normalized to
the ground state spectroscopic factor of16O+a.

System np G1 G2 GC G L Alg Data

16O+a 8 (0,0) (0,0) (0,0) (8,0) 0 1.00 1.00*
16O+a 8 (0,0) (0,0) (0,0) (8,0) 2 1.00 1.00
16O+a 8 (0,0) (0,0) (0,0) (8,0) 4 1.00 1.00
16O+a 8 (0,0) (0,0) (0,0) (8,0) 6 1.00 1.00

18O+a 8 (4,0) (0,0) (4,0) (8,2) 0 0.29 0.31*
18O+a 8 (4,0) (0,0) (4,0) (8,2) 2 0.22 0.24
18O+a 8 (4,0) (0,0) (4,0) (8,2) 4 0.10 0.11
18O+a 8 (4,0) (0,0) (4,0) (8,2) 6 0.010 0.012*

18O+a 8 (4,0) (0,0) (4,0) (4,4) 0 0.54 0.41
18O+a 8 (4,0) (0,0) (4,0) (4,4) 2 0.47 0.36
18O+a 8 (4,0) (0,0) (4,0) (4,4) 4 0.34 0.26
18O+a 8 (4,0) (0,0) (4,0) (4,4) 6 0.18 —

18O+a 8 (0,2) (0,0) (0,2) (8,2) 0 0.63 0.75
18O+a 8 (0,2) (0,0) (0,2) (8,2) 2 0.61 0.73
18O+a 8 (0,2) (0,0) (0,2) (8,2) 4 0.68 0.68
18O+a 8 (0,2) (0,0) (0,2) (8,2) 6 0.58 0.58

20Ne+a 8 (8,0) (0,0) (8,0) (8,4) 0 0.22 0.21*
20Ne+a 8 (8,0) (0,0) (8,0) (8,4) 2 0.081 0.078
20Ne+a 8 (8,0) (0,0) (8,0) (8,4) 4 0.0003 0.00
20Ne+a 8 (8,0) (0,0) (8,0) (8,4) 6 0.032 0.032*

20Ne+a 8 (8,0) (0,0) (8,0) (4,6) 0 0.29 0.21
20Ne+a 8 (8,0) (0,0) (8,0) (4,6) 2 0.075 0.053
20Ne+a 8 (8,0) (0,0) (8,0) (4,6) 4 0.044 0.032
20Ne+a 8 (8,0) (0,0) (8,0) (4,6) 6 0.031 0.023

20Ne+a 8 (4,2) (0,0) (4,2) (8,4) 0 0.15 0.19*
20Ne+a 8 (4,2) (0,0) (4,2) (8,4) 2 0.11 0.14
20Ne+a 8 (4,2) (0,0) (4,2) (8,4) 4 0.050 0.063
20Ne+a 8 (4,2) (0,0) (4,2) (8,4) 6 0.0045 0.0063

20Ne+a 8 (0,4) (0,0) (0,4) (8,4) 0 0.45 0.64
20Ne+a 8 (0,4) (0,0) (0,4) (8,4) 2 0.43 0.61
20Ne+a 8 (0,4) (0,0) (0,4) (8,4) 4 0.38 0.54
20Ne+a 8 (0,4) (0,0) (0,4) (8,4) 6 0.30 0.42

22Ne+a 8 (8,2) (0,0) (8,2) (4,8) 0 0.13 0.12*
22Ne+a 8 (8,2) (0,0) (8,2) (4,8) 2 0.032 0.029
22Ne+a 8 (8,2) (0,0) (8,2) (4,8) 4 0.016 0.014
22Ne+a 8 (8,2) (0,0) (8,2) (4,8) 6 0.0085 0.0072*
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respect to one another is proportional touFsRdu2 [12], where
FsRd,exps−aR2d is the relative motion wave function. On
the other hand the expectation value ofR satisfies kRl
,Înp when the SACM is mapped onto a geometrical picture
[20] and this results in thenp dependence in the exponent.
From this consideration one expects a negative value for the
parameterB=−a.

The parameters were adjusted to specific spectroscopic
factors from Refs.[4,8] listed in Table I as “Data.” For the
system12C+12C at two excitation quanta, the quality of the
fit depends on the cluster irrepsslC,mCd. The (0,4) can be
coupled with(0,4) to the irreps(4,0), (3,2), (2,4), (1,6), and
(0,8). Because the individual clusters are assumed to be in

their ground state with total angular momentum zero, the
(3,2) and(1,6) cluster irreps can be excluded because they do
not contain a zero angular momentum state. One also has to
ensure that the cluster irrepsslC,mCd can be coupled with
the relative motion factor to the corresponding final irrep.
The values ofslC,mCd as given in Table III correspond to the
best fit. The data, given in[8] where divided by 0.23[21] in
order to normalize them to the ground state spectroscopic
factor of 16O+a. For the fitting procedure we used the
MINUIT routine from the CERN library[22]. The resulting
parameter values are:A=3.616 3, B=−0.361 13, C=
−0.054 389,D=−0.11764,E=0.060 728,F=−0.008 665 4,
G=0.000 021 097, andH=1.9090. As can be seen, the domi-
nant part is given by the constant term in the exponent and
the term proportional tonp. Though the parameterG appears
to be small, one must recognize that the eigenvalues of
C3sl ,md are generally very large. For example, for(12,0) the
eigenvalue is 4860 and with the factor it gives a contribution
on the order of 0.01. The terms depending on the SU(3)
irreps are related to the deformation of the clusters and the
total system[23,24]. In Table I we show the data to which
the parameters had been adjusted. Thex2 value was defined
asoihlnfSsidg−lnfSdatsidgj2, where the sum runs over all data
points, Ssid is the spectroscopic factor as obtained by our

TABLE II. (Continued.)

System np G1 G2 GC G L Alg Data

22Ne+a 8 (8,2) (0,0) (8,2) (10,2) 0 0.091 0.083
22Ne+a 8 (8,2) (0,0) (8,2) (10,2) 2 0.026 0.023
22Ne+a 8 (8,2) (0,0) (8,2) (10,2) 4 0.0031 0.0024
22Ne+a 8 (8,2) (0,0) (8,2) (10,2) 6 0.018 0.016

22Ne+a 8 (8,2) (0,0) (8,2) (6,4) 0 0.149 0.089
22Ne+a 8 (8,2) (0,0) (8,2) (6,4) 2 0.012 0.0072
22Ne+a 8 (8,2) (0,0) (8,2) (6,4) 4 0.026 0.016
22Ne+a 8 (8,2) (0,0) (8,2) (6,4) 6 0.0008 0.00

22Ne+a 8 (4,4) (0,0) (4,4) (4,8) 0 0.17 0.20*
22Ne+a 8 (4,4) (0,0) (4,4) (4,8) 2 0.040 0.047
22Ne+a 8 (4,4) (0,0) (4,4) (4,8) 4 0.020 0.024
22Ne+a 8 (4,4) (0,0) (4,4) (4,8) 6 0.011 0.013

22Ne+a 8 (4,4) (0,0) (4,4) (10,2) 0 0.09 0.10
22Ne+a 8 (4,4) (0,0) (4,4) (10,2) 2 0.05 0.06
22Ne+a 8 (4,4) (0,0) (4,4) (10,2) 4 0.0073 0.0084
22Ne+a 8 (4,4) (0,0) (4,4) (10,2) 6 0.0072 0.0084

24Mg+a 8 (8,4) (0,0) (8,4) (0,12) 0 0.075 0.08*
24Mg+a 8 (8,4) (0,0) (8,4) (0,12) 2 0.017 0.018
24Mg+a 8 (8,4) (0,0) (8,4) (0,12) 4 0.008 0.008
24Mg+a 8 (8,4) (0,0) (8,4) (0,12) 6 0.0033 0.0032*

24Mg+a 8 (8,4) (0,0) (8,4) (12,0) 0 0.048 0.042*
24Mg+a 8 (8,4) (0,0) (8,4) (12,0) 2 0.0109 0.0096
24Mg+a 8 (8,4) (0,0) (8,4) (12,0) 4 0.0036 0.0032
24Mg+a 8 (8,4) (0,0) (8,4) (12,0) 6 0.0091 0.0080

24Mg+a 8 (8,4) (0,0) (8,4) (6,6) 0 0.081 0.057
24Mg+a 8 (8,4) (0,0) (8,4) (6,6) 2 0.0058 0.0040
24Mg+a 8 (8,4) (0,0) (8,4) (6,6) 4 0.015 0.010
24Mg+a 8 (8,4) (0,0) (8,4) (6,6) 6 0.0005 0.00

24Mg+a 8 (6,2) (0,0) (6,2) (12,0) 0 0.058 0.078*
24Mg+a 8 (6,2) (0,0) (6,2) (12,0) 2 0.033 0.046
24Mg+a 8 (6,2) (0,0) (6,2) (12,0) 4 0.0045 0.0064
24Mg+a 8 (6,2) (0,0) (6,2) (12,0) 6 0.0042 0.0056

TABLE III. The same as in Table II but for various cluster
systems In this case the data is from[8] rather than[4].

System np G1 G2 GC G L Alg. Data

12C+12C 14 (0,4) (0,4) (4,0) (14,2) 0 0.0064 0.0032*
12C+12C 14 (0,4) (0,4) (4,0) (14,2) 2 0.0055 0.0028
12C+12C 14 (0,4) (0,4) (4,0) (14,2) 4 0.0037 0.0002

12C+12C 14 (0,4) (0,4) (0,8) (10,4) 0 0.17 0.15*
12C+12C 14 (0,4) (0,4) (0,8) (10,4) 2 0.13 0.13
12C+12C 14 (0,4) (0,4) (0,8) (10,4) 4 0.051 0.072

12C+12C 14 (0,4) (0,4) (2,4) (12,0) 0 0.0071 0.010*
12C+12C 14 (0,4) (0,4) (2,4) (12,0) 2 0.0057 0.0085
12C+12C 14 (0,4) (0,4) (2,4) (12,0) 4 0.0032 0.0042

20Ne+a 10 (8,0) (0,0) (8,0) (14,2) 0 1.68 1.68*
20Ne+a 10 (8,0) (0,0) (8,0) (14,2) 2 1.17 —
20Ne+a 10 (8,0) (0,0) (8,0) (14,2) 4 0.40 —

20Ne+a 10 (8,0) (0,0) (8,0) (10,4) 0 2.99 0.60
20Ne+a 10 (8,0) (0,0) (8,0) (10,4) 2 1.63 —
20Ne+a 10 (8,0) (0,0) (8,0) (10,4) 4 0.18 —

20Ne+a 10 (8,0) (0,0) (8,0) (12,3) 0 0.14 0.34
20Ne+a 10 (8,0) (0,0) (8,0) (12,3) 2 0.89 —
20Ne+a 10 (8,0) (0,0) (8,0) (12,3) 4 1.73 —

16O+8Be 14 (0,0) (4,0) (4,0) (14,2) 0 0.069 0.065
16O+8Be 14 (0,0) (4,0) (4,0) (14,2) 2 0.063 —
16O+8Be 14 (0,0) (4,0) (4,0) (14,2) 4 0.050 —
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parametrization andSdatsid denote the data used. In Tables II
and III we show all 93 data to which we compared the fit.
The x2 value obtained in our fit is 0.52. As can be seen, the
agreement is very good, save for the(10,4) irrep of the sys-
tem 20Ne+a.

In summary, we note that a parametrization of spectro-
scopic factors from SU(3) shell-model calculations has been
introduced. The agreement with the data obtained from first
principles is very good and gives rise to an expectation that it
might be possible to extend this approach into areas not yet
considered and/or too difficult to determine from first prin-
ciples. For example, there is a renewed interest in describing
the fusion cross section of12C+12C and additional experi-
mental data will be available soon[25]. Extrapolating the
spectroscopic factor to highly excited states would be of
great use, but first it has to describe the spectroscopic factors
at low energy. The fact that such a simple parametrization
can reproduce the exact result so well suggests that the pa-
rametrization carries a deeper meaning. The dependence on
the relative oscillation quantanp is easily understood. The
dependence on the isoscalar factors of SUs3d.SOs3d can be
interpreted as representing the overlaps of the total SU(3)
state with the product of the SU(3) cluster states. The depen-
dence on the other terms in the exponential, which are re-
lated to the deformation of the system, is more difficult to
understand. The negative sign ofC and D indicate that the

spectroscopic factor increases when the deformation is low-
est for the clusters, using the result of Refs.[23,24] that the
eigenvalue of the second-order Casimir operator is propor-
tional to the deformation squared. The positive sign ofE
means that the two clusters have to be joined in the most
elongated form[20] in order to increase the decay probabil-
ity. The negative sign ofF reflects the fact that the cluster
decay probability decreases with the deformation of the par-
ent nucleus. The positiveH shows that with increasing inter-
shell excitations the spectroscopic factor increases, which is
normally observed because with increasingDnp the overlap
of the initial nucleus with the cluster configuration increases.
The positiveG requires a prolate elongation of the total sys-
tem [C3sl ,md is proportional tosl−md] for increasing the
spectroscopic factor, which is consistent with the positive
sign of E.

Since the parametrization gives very valuable information
on the dependence of the spectroscopic factor on its micro-
scopic structure and quantum numbers, it will be important
to find a deeper understanding of this simple formulation.
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