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The inelastic neutral reaction of neutrino on4He is calculated microscopically, including full final state
interaction among the four nucleons. The calculation is performed using the Lorentz integral transform method
and the hyperspherical-harmonic effective interaction approach, with a realistic nucleon-nucleon interaction. A
detailed energy dependent calculation is given in the impulse approximation. With respect to previous calcu-
lations, this work predicts an increased reaction cross section by 10–30% for neutrino temperature up to
15 MeV.
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The interest in neutrino reactions with nuclear targets
stems from the role they play in major questions of contem-
porary physics. Such reactions are of central importance in
various astrophysical phenomena, such as supernova explo-
sion and the nucleosynthesis of the elements. In this Brief
Report, we present a microscopicab initio calculation of the
neutral inelastic reactions of4He with nxsnxd sx=e,m ,td.

Core collapse supernovae are widely accepted to be a
neutrino driven explosion of a massive star. When the iron
core of a massive star becomes gravitationally unstable it
collapses until short-range nuclear forces halt the collapse
and drive an outgoing shock through the outer layers of the
core and the inner envelope. However, the shock loses en-
ergy through dissociation of iron nuclei and neutrino radia-
tion, and gradually stalls; it becomes an accretion shock. It is
believed, but to date not proven, that the shock is then re-
vived as neutrinos emitted from the collapsed core(the
proto-neutron star) deposit energy in the collapsing layers to
overcome the infall and eventually reverse the flow to an
outgoing shock which explodes the star. Hydrodynamic
simulations of a collapsing star, which are restricted to
spherical symmetry, fail in reviving the shock[1]. Lately it
was shown[2] that even in full two-dimensional(2D) calcu-
lations the shock is not revived. In order to revive the shock,
the neutrinos must deposit about 1% of their energy in the
matter behind the shock. The latter, which is assumed to be
in thermodynamic equilibrium, is composed mainly of pro-
tons, neutrons, electrons, and4He nuclei. In contrast to the
fairly known cross sections of neutrinos with electrons and
nucleons, the interaction of neutrinos with4He is not accu-
rately known, and to date there is no realistic microscopic
calculation of the inelastic4He-neutrino cross section. The
effect of neutrino-4He interaction on the delayed shock
mechanism was investigated by Bruenn and Haxton[3],
through a presupernova 1D model of a 15M( star. In that
model, they found only a small reheating of the matter be-
hind the shock, which can be attributed to the low mean
energy of the neutrinos in comparison to the high threshold
energy of the Alpha nucleus. This conclusion may change
with different progenitor, or with enlarged inelastic neutrino-
4He cross sections.

The neutrinos migrating out of the proto-neutron star are
in flavor equilibrium for most of their migration. The elec-
tron neutrinos remain in equilibrium with matter for a longer
period than their heavy-flavor counterparts, due to the larger
cross sections for scattering of electrons and because of
charge current reactions. Thus the heavy-flavor neutrinos de-
couple from deeper within the star, where temperatures are
higher. Typical calculations yield temperatures of,10 MeV
for m andt neutrinos[4], which is approximately twice the
temperature of electron neutrinos. Consequently, there is a
considerable amount ofnm,t with energies above 20 MeV
that can dissociate the4He through neutral reaction.

The flux of neutrinos emitted in the collapse process is
sufficiently large to initiate nucleosynthesis in the overlaying
shells of heavy elements. Neutral reactions of Alpha and
neutrino in the inner helium shell are part of reaction se-
quences leading to the production of the rareA=7 lithium
and beryllium isotopes[5,6]. Thus better understanding of
the n−a reaction can lead to better prediction for the abun-
dances of these elements.

Theoretical understanding of the neutrino-nucleus scatter-
ing process is achieved through perturbation theory of the
weak interaction model. The nuclear electroweak transition
operator consists of one- and many-body components. The
many-body currents are a result of meson exchange between
the nucleons, and usually contribute up to 10% of the cross
section in the supernova energy regime. However, when
leading one-body terms are suppressed their contribution can
be even larger. The current work is done in the impulse ap-
proximation, thus taking into account only one-body terms.
The one-body currents connect the4He ground state and final
state wave functions. In order to calculate the cross section in
a percentage level accuracy, one needs a solid estimate of
these wave functions. Alas, for nuclear systems with more
than three constituents, where particle correlation plays a de-
cisive role, the computation of intermediate-energy con-
tinuum wave function is currently out of reach.

To facilitate the calculation of the neutral reaction of neu-
trino and alpha particle we introduce several modern meth-
ods. The calculation of the nuclear dynamics is carried out
by combining two powerful tools: the Lorentz integral trans-
form (LIT ) method[7] and the effective interaction hyper-
spherical harmonics(EIHH) method[8]. First we use the LIT*Electronic address: gdoron@phys.huji.ac.il
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method in order to convert the scattering problem into a
bound-state-like problem, and then the EIHH method is used
to solve the resulting equations. Using this procedure we
solve the final state interaction problem avoiding continuum
wave functions. This method was used successfully to calcu-
late the photoabsorption cross sections of up to six body
nuclei [9–11]. To this end we use nuclear Hamiltonian con-
sists of the realistic Argonne nucleon-nucleon potential
model AV88 [12].

In the limit of small momentum transfer(compared to the
Z particle rest mass), the effective Hamiltonian can be writ-
ten as

ĤW =
G
Î2
E d3xjmsxWdJmsxWd, s1d

whereG is the Fermi weak coupling constant,jmsxWd is the
leptonic current, andJm is the hadronic current. The matrix
element of the leptonic current iskf u jmuil= lme−iqW·xW, wherelm

= ūskn8dgms1−g5dusknd. The nuclear current,

Jm
hadronic= s1 – 2 sin2uWd

t0

2
Jm +

t0

2
JWm

5 − 2·sin2uW
1
2Jm, s2d

consists of one body weak currents, but also many body
corrections due to meson exchange. In this work we use the
impulse approximation. Since the momentum transfer rel-
evant to our calculation are small compared to the nucleon
mass, we ignore relativistic corrections. The differential
cross section is given by Fermi’s golden rule. Thus in order
to consider recoil effects, and with unoriented and unob-
served targets, the differential cross section takes the form

ds =E dedSe − v +
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wherekW f is the momentum of the outgoing neutrino,v is the
energy transfer, andqW is the momentum transfer.

Choosing theẑ direction to be parallel to the momentum
transfer, andu to be the angle between the incoming neutrino
direction and outgoing neutrino direction, the cross section
can be written as[13]
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the −s+d is for neutrino(antineutrino). The functions

RÔ1Ô2
svd =E dC fkC0iÔ1iC flkC fiÔ2iC0ldsEf − E0 − vd

s5d

are the response functions with respect to the transition op-

eratorsÔ1 and Ô2 (when Ô1=Ô2 we use the notationRÔ
=RÔÔ). uC0,fl andE0,f are the wave function and energy of
the ground and final state, respectively. The transition opera-
torsCJsqd ,LJsqd ,EJsqd ,MJsqd are the reduced Coulomb, lon-
gitudinal, transverse electric, and transverse magnetic multi-
pole operators. Since the relevant energy regime is up to
<60 MeV, the main operators contributing to the inelastic
cross section are the axial vector operatorsE2

5,L2
5,M1

5,L0
5 and

the vectorC1,E1,L1. Usually, the main contribution comes
from the Gamow-TellerE1

5 operator but due to the closed
shell character of the4He nucleus, it is highly suppressed. In
this energy range the long wavelength limit[13],
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q
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L00
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3
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is a rather good approximation.(Here rW is the nucleon’s lo-
cation relative to the system’s center of mass.) However, in
our calculations we have used the exact form of the multi-
pole operators, and we may comment that in this case the
long wavelength approximation is accurate to percentage
level. The same holds for the contribution of higher multi-
poles.

The response functions are calculated by inverting the
Lorentz integral transforms

LÔ1Ô2
ssd =E dv

RÔ1Ô2
svd

sv − sRd2 + sI
2 = kC̃1uC̃2l,

where s=sR+ isI, and uC̃il si =1,2d are solutions of the
Schrödinger-like equations
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sH − E0 − sduC̃issdl = ÔiuC0l.

The localized character of the ground state, and the imagi-
nary part ofs, give these equations an asymptotic boundary
condition similar to a bound state. As a result, one can solve
these equations using the EIHH[8,14] method. In this ap-
proach, the wave function is expanded in the hyperspherical-
harmonics(HH) series. The expansion parameter is the hy-
perspherical(grand) angular momentum quantum number
sKd, and the expansion is truncated at some valueK=Kmax

which defines the model space. For this model space the bare
potential is replaced by an Hermitian effective interaction
constructed via the Lee-Suzuki method[15]. The resulting

effective equations are solved by expandingC0 and C̃i in
four-body antisymmetrized HH basis functions[16,17]. We

calculate the matrix elementkC̃1uC̃2l using the Lanczos al-
gorithm [18].

The combination of the EIHH and LIT methods brings to
a rapid convergence in the Response functions. In Fig. 1, one
can see the relative error in the sum rule of the main response
functions with respect to the hyperangular momentum quan-
tum numberK. It can be seen that upon convergence the
relative error is well below 1%. The error bars presented
reflect the error in inverting the LIT. Bearing in mind that the
cross section, up to kinematical factors, is the sum of the
response functions, this is a measure of the accuracy in the
calculation of the cross section.

It is well known that realistic two-body NN potentials
lead to an underbinding of about 0.5–1 MeV for the3He and
the triton nuclei and an underbinding of about 3–4 MeV for
4He. For the AV88 force with a simple Coulomb interaction
we obtained a binding energy of 25.19 MeV for4He, and
7.76 MeV for the triton. Thus our model has a discrepancy,

D<2.4 MeV, with respect to the experimental inelastic re-
action threshold. In order to correct for this difference we
shifted the response function to the true threshold, i.e.,
Rsvd→Rsv−Dd.

It is assumed that the neutrinos are in thermal equilibrium,
thus their spectrum can be approximated by the Fermi-Dirac
distribution with characteristic temperatureT. As a result, the
interesting quantities are the temperature averaged cross sec-
tion and energy transfer cross section:

dkslT

dv
=E dki fsT,kid

ds

dkf
s7d

dksvlT

dv
= v

dkslT

dv
, s8d

where fsT,kd is the normalized Fermi-Dirac spectrum with
zero chemical potential, temperatureT, and energyk, i.e.,

fsT,kd =
0.5546

T3

k2

ek/T + 1
. s9d

As a typical example we present in Fig. 2 the calculated
cross section forT=10 MeV. In Table I we present the cal-
culated total temperature averaged cross section,kslT

= 1
2s1/Adksn+sn̄lT, and energy transfer cross section,ksvlT

= 1
2s1/Adkvsn+vsn̄lT, as a function of the neutrinos’ tem-

perature. Also presented are earlier results by Woosleyet al.
[5]. It can be seen that the current work predicts an enhance-
ment of about 10–30% in the cross section.

The energy transfer cross section was fitted by Haxton to
the formula[19]

FIG. 1. (Color online) Relative
error in the sum rule of the lead-
ing response functions with re-
spect to the hyper-angular mo-
mentum quantum numberK. The
error bars reflect the uncertainty in
inverting the LIT.
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ksvlT = aS T − T0

10 MeV
Db

s10d

with the parameters a=0.62310−40 cm2 MeV, T0
=2.54 MeV, b=3.82. A similar fit to our results yieldsa
=0.64310−40 cm2 MeV, T0=2.05 MeV, b=4.46. It can be
seen that the current work predicts a stronger temperature
dependence of the cross sections. For example, a 15% differ-
ence between these calculations atT=10 MeV grows to a
50% difference atT=16 MeV.

In conclusion, a detailed realistic calculation of the inelas-
tic neutrino-4He neutral scattering cross section is given. The
calculation was done in the impulse approximation with nu-
merical accuracy of about 1%. The different approximations
used here should result in about 10% error, mainly due to
many-body currents, which were not considered in the cur-
rent work. In order to estimate the effect of two-body cur-

rents, we present in Fig. 3 the contribution of the various
operators to the total cross section atT=10 MeV. It can be
seen that the axial vector part contributes more than 90% of
the cross section given in Fig. 2. It is known from studies of
inclusive electron scattering off4He [20] that isovector elec-
tromagnetic two-body currents, which are proportional to the
electroweak vector currents, produce a strong enhancement
of the transverse response at low and intermediate energies.
In the current case, the vector part is almost negligible with
respect to the axial part, and the two-body axial currents are
expected to give small contributions[21]. Thus two body
currents should result in a percentage level error in our esti-
mate for the cross section.

The effect of these results on the supernova explosion
mechanism should be checked through hydrodynamic simu-
lations, of various progenitors. Nonetheless, it is clear that
our results facilitate a stronger neutrino-matter coupling in
the supernova environment. First, our calculations predict an
enhanced cross section by 10–30% with respect to previous
estimates. Second, we obtained steeper dependence of the
energy transfer cross section on the neutrino’s temperature,
thus supporting the observation that the core temperature is a
critical parameter in the explosion process. It is important to
notice that the energy transfer due to inelastic reactions are
1–2 orders of magnitude larger than the elastic reactions,
ergo the inelastic cross sections are important to an accurate
description of the helium shell temperature.
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vice. This work was supported by the Israel Science Foun-
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FIG. 2. (Color online) Temperature averaged inelastic cross sec-
tions at temperatureT=10 MeV. The solid line is the differential
cross section,kds /dvlT= 1

2s1/Adkdsn /dv+dsn̄ /dvlT (left scale).
The dashed line is the differential energy transfer cross section,
kvsds /dvdlT= 1

2s1/Adkvsdsn /dvd+vsdsn̄ /dvdlT (right scale).

TABLE I. Flavor and temperature averaged inclusive inelastic
cross section and energy transfer cross section calculated. The tem-
peratures are given in MeV, the cross sections in 10−42 cm2, and the
energy transfer cross sections in 10−40 cm2 MeV.

T sMeVd kslTf10−42 cm2g ksvlT

This work Ref.[5] s10−40 cm2 MeVd

4 2.09s−3d 5.27s−4d
6 3.84s−2d 3.87s−2d 1.03s−2d
8 2.25s−1d 2.14s−1d 6.30s−2d
10 7.85s−1d 6.78s−1d 2.30s−1d
12 2.05 1.63 6.27s−1d
14 4.45 1.42

16 8.52 2.84

FIG. 3. (Color online) Temperature averaged inelastic multipole
strength at temperatureT=10 MeV. The different lines refer to dif-
ferent multipoles. The percent in the legends indicates the relative
part of the specific multipole in the inelastic cross section.
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