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We consider a simple model for the coordinate-space vacuum polarization function which is often param-
etrized in terms of a screening mass. We discuss the circumstances in which the valuemsc=pT is obtained for
the screening mass. In the model considered here, that result is obtained when the momenta in the relevant
vacuum polarization integral are small with respect to the first Matsubara frequency.
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In early work Eletskii and Ioffe[1] considered the leading
QCD diagram in the calculation of the screening mass and
suggested that forT→`, msc=2pT. On the other hand, Flo-
rkowski and Friman[2] obtained values closer tomsc=pT
for T.400 GeV in the context of an analytic study of the
Nambu-Jona-Lasinio(NJL) model at a finite temperature.

In our studies of hadronic current correlation functions we
did not obtain exponential behavior for the Euclidean-space
correlator and were not able to define a screening mass. We
have traced this problem to our use of a quite large cutoff for
the momentum circulating in the vacuum polarization dia-
gram. In the present work we wish to show that exponential
behavior is found for all values of the distancez between the
two points defining the correlation function if there is a rela-
tively small cutoff for the momentum in the polarization dia-
gram. If that momentum is less than the screening mass we
obtained the expected exponential behavior with a screening
mass that agrees with that found in Ref.[2].

In a number of recent works[3–5] we have calculated
various hadronic correlation functions and compared our re-
sults to results obtained in lattice simulations of QCD[6–8].
The lattice results for the correlators,Gst ,Td, may be used to
obtain the corresponding spectral functions,ssv ,Td, by
making use of the relation

Gst,Td =E
0

`

dv ssv,TdKst,v,Td, s1d

where

Kst,v,Td =
coshfvst − 1/2Tdg

sinhsv/2Td
. s2d

The procedure to obtainssv ,Td from the knowledge of
Gst ,Td makes use of the maximum entropy method(MEM)
[9–11], sinceGst ,Td is only known at a limited number of
points.

In our studies of meson spectra atT=0 and atT,Tc we
have made use of the Nambu-Jona-Lasinio(NJL) model. The
Lagrangian of the generalized NJL model we have used in
our studies is

L = q̄si]” − m0dq +
ḠS

2 o
i=0

8

fsq̄liqd2 + sq̄ig5liqd2g

−
ḠV

2 o
i=0

8

fsq̄ligmqd2 + sq̄lig5gmqd2g

+
GD

2
hdetfq̄s1 + l5dqg + detfq̄s1 − l5dqgj + Lconf. s3d

Here, m0 is a current quark mass matrix,m0

=diagsmu
0,md

0,ms
0d. The li are the Gell-Mann(flavor) matri-

ces andl0=Î2/31, with 1 being the unit matrix. The fourth
term is the ’t Hooft interaction andLconf represents the
model of confinement used in our studies of meson proper-
ties.

In the study of hadronic current correlators it is important
to use a model which respects chiral symmetry, whenm0

=0. Therefore, we make use of the Lagrangian of Eq.(3),
while neglecting the ’t Hooft interaction andLconf. In order
to make contact with the results of lattice simulations we use
the model with the number of flavors,Nf =1. Therefore, the
li matrices in Eq.(3) may be replaced by unity. We then
have used

L = q̄si]” − m0dq +
GS

2
fsq̄qd2 + sq̄ig5qd2g

−
GV

2
fsq̄gmqd2 + sq̄g5gmqd2g, s4d

in order to calculate the hadronic current correlation func-
tions in earlier work[3–5].

In order to present our results in the simplest form, we
consider only the scalar interaction proportional tosq̄qd2. We
also extend the definition ofssv ,Td of Eq. (1) to include a
dependence upon the total moment of the quark and anti-*Electronic address: casbc@cunyvm.cuny.edu
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quark appearing in the polarization integral. Thus we con-

sider the imaginary part of the correlator,ssv ,PW d. Since we

place PW along the z-axis this quantity may be written as
ssv ,0 ,0 ,Pzd in accord with the notation of Ref.[12]. In this
work we will present our results for the coordinate-
dependent correlatorCszd which is proportional to the cor-
relator defined in Eq.(1) of Ref. [12],

Cszd =
1

2
E

−`

`

dPz eiPzzE
0

`

dv
ssv,0,0,Pzd

v
. s5d

We may also use the form

Cszd =
1

4
E

−`

`

dPz eiPzzE
0

`

dP2ssP2,0,0,Pzd
P2 . s6d

We have made a study of the screening mass in a simple
model in order to understand the origin of exponential be-
havior for the correlator. To that end we make use of Ref.
[13]. We consider the Matsubara formalism and note that the
quark propagator may be written, withb=1/T, as

SbskW,vnd =
g0s2n + 1dp/b + gW ·kW − M

s2n + 1d2p2/b2 + kW2 + M2
. s7d

For bosons the vacuum polarization function is given as Eq.
(1.51) of Ref. [13],

PspW ,p0d =
g2

2b
o

n

d3k

s2pd3

3
1

4n2p2

b2 + kW2 + M2

·
1

S2np

b
+ p0D2

+ skW + pWd2 + M2

.

s8d

We modify Eq.(8) to refer to fermions. In this case the
Matsubara frequencies are

vn =
s2n + 1dp

b
, s9d

and we have

PspW ,p0d =
g2

2b
TrE d3k

s2pd3

3
fsg0p/b + gW ·kWdsg0sp0 + p/bd + gW · skW + pWddg

Sp2

b2 + kW2DFSp

b
+ p0D2

+ skW + pWd2G ,

s10d

if we keep only the first term in the sum, wherev0=p /b. As
a next step we dropp0, so that we have

PspW ,0d =
g2

2b
TrE d3k

s2pd3

3
fsg0p/b + gW ·kWdsg0p/b + gW · skW + pWddg

FSp

b
D2

+ kW2GFSp

b
D2

+ skW + pWd2G .

s11d

We then takepW along thez axis and writePspzd=PspW ,0d. We
define

Cszd =E dpz eipzzPspzd. s12d

In our calculation we replaceg2/2b by unity and use a sharp

cutoff so thatukWu,kmax.
The results of our calculation ofCszd of Eq. (6) are given

in Figs. 1 and 2. In Fig. 1 we usekmax=0.1 GeV and in Fig.

FIG. 1. The functionCszd of Eq. (6) is shown for a sharp cutoff
of kmax=0.1 GeV. The dotted line represents an exponential fit to
the curve usingmsc=1.23 GeV. (We recall thatpT is equal to
1.27 GeV.)

FIG. 2. The functionCszd of Eq. (6) is shown for a sharp cutoff
of kmax=0.4 GeV. The dotted line represents an exponential fit to
the curve usingmsc=0.961 GeV.(We recall thatpT is equal to
1.27 GeV.
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2we putkmax=0.4 GeV. For our calculations, we havemsc

=pT=1.27 GeV whenT=1.5 Tc and Tc=0.27 GeV. Thus,
the kmax values considered here are less thanmsc and that
feature leads to the exponential behavior seen in Figs. 1 and
2. If kmax is made larger than 0.4 GeV we begin to see de-
viations from exponential behavior forCszd. (Since in our
calculations reported in Refs.[3–5], the integrals were regu-

lated with a Gaussian regulator expf−kW2/a2g with a

.4 GeV, we can see that thekW values in those calculations

are so large as to preclude obtaining exponential behavior for
our coordinate-space correlator.)

Our goal in this work was to consider a simple quark
model for the calculation of a hadronic current correlation
function and to determine the conditions under which the
coordinate-space correlator is dominated by the screening
mass which is given by the first Matsubara frequency. We
have found that the standard result is obtained if the quark
and antiquark momenta in the vacuum polarization calcula-
tion are small compared to that frequency.
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