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Gaussian expansion approach to nuclear and Coulomb breakup
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We present an accurate method of simultaneously treating nuclear and Coulomb breakup of weakly bound
nuclei by means of the method of continuum discretized coupled channels with the pseudostate method of
discretization. Ad -type basis functions of expansion of bound and continuum states of the projectile, we take
complex-range Gaussian functions which in good approximation form a complete set in a large configuration
space which is important for both nuclear- and Coulomb-breakup processes. The accuracy of the method is
tested quantitatively fofB +°8Ni scattering at 25.8 MeV.
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The method of continuum discretized coupled channelample, the enhancement of the total reaction cross section for
(CDCQ) [1,2] has been successfully applied not only to re-5He +2°°Bi compared tdLi+ 2°Bi is considered to be due to
actions of weakly bound stable nuclg8—10Q, but also to  the electric dipole transition dfHe, which is absent ifiLi
those of unstable nucl¢l1-17. Since accurate description [2g) Thys, in order to make systematic analyses of reactions

of reaction mechanisms, including effects of projectile i, yhree-hody projectiles, inclusion of Coulomb breakup of
breakup, is necessary to derive information of incident nucle{he projectile in four-body CDCC is necessary

from experimental data', CDCC plays a prominent role in the However, question of the applicability of PS-CDCC to
study of unstable nuclei. In all the analyses referred to above . : T
oulomb breakup is quite nontrivial even for two-body pro-

D i th ti t ith three- . L . .
CDCC describes the reaction system with a three-bod ectiles. This is because the size of the coordinate space of

model as shown in Fig. 1. i ded to d ib omb breakun 1 -
However, many unstable nuclei of current interest such ad'€ Projectile needed to describe Coulomb breakup is muc
larger than that needed for nuclear breakup. For example, the

%He and'Li are known to consist of three clusters. For ex- : A _ _
ample, ®He is well described by th8He+n+n model. In ~ Maximum radius of the coordinate space is about 20 fm for

order to make detailed and systematic analyses of reactiofdiclear breakup off or °Li [18], but about 100 fm for Cou-
with such nuclei, extension of CDCC to deal with four-body lomb breakup ofB [16,17.
systems is essential. The purpose of this Brief Report is, as the first step to-

Very recently, a new treatment of breakup continuum inward the four-body CDCC analysis of nuclear and Coulomb
CDCC was proposefil8], making use of pseudostatfS  breakup of three-body projectiles, to show that three-body
wave functiong1,19,2Q obtained by diagonalizing internal PS-CDCC based on the Gaussian basis functions can well
Hamiltonian of the projectile with Gaussian basis functionsreproduce the result of three-body Av-CDCC for dissociation
[21]. For nuclear breakup processes, the method, hereaftef two-body projectiles including both nuclear- and
referred to as PS-CDCC, was found to perfectly reproduc&€oulomb-breakup processes. As for the test case webake
the “exact” breakupS-matrix elementsS(k) calculated by preakup from*®Ni at 25.8 MeV, which has intensively been
CDCC with the momentum-bin averagéAv) method analyzed by Av-CDCC including nuclear and Coulomb
[1-3,22,23 for the breakup continuur@Av-CDCC). One of  preakup channelgl6,17,26.
the most important advantages of the use of PS discretization Bejow we recapitulate the formulation of three-body
is that one can easily construct an approximately completepcc; see Refg1,2,19 for the details. We assume that the
set of internal wave functions of the projectile with a three-8g 58\ scattering is described by ther ’Be +°8Ni system.
body structure within the configuration space that is impor-The model Hamiltonian of the system is
tant for the reaction process concerned. Therefore PS-CDCC
with Gaussian basis functions makes it possible to perform
the four-body CDCC analyses of projectile breakup, a pre-
liminary result of which for®He elastic scattering offC,
including effects of three-body nuclear-breakup channels of
®He, has been publishg@4].

The four-body CDCC analysis mentioned above had the
restriction that Coulomb breakup of the projectile was ne-
glected. Obviously, however, the breakup processes are also
important at energies below the Coulomb barrier. For ex- 5 1 justration of a three-bod§A+b+c) system. The sym-

bol B=b+c stands for the projectile and A is the target. In the

calculation of°B breakup by’®Ni shown below, b, ¢, B, and A are,
*Electronic address: egami2scp@mbox.nc.kyushu-u.ac.jp respectivelyp, ‘Be, 8B, and*Ni.
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H =K, +Vpge(r) + Kg+ Upa(rpa) + Ugea(rgen) s ¢jse(r) =rfexd- (r/a))?sin(b(r/a)?] (j=1-n),

where the coordinates are defined in Fig. 1 and the symbol Avhere{a;} are assumed to increase in a geometric progres-
denotes thé®Ni target. Operator¥, andKp are kinetic en-  sion ando=/2. We refer to the basis as the complex-range
ergies associated with and R, respectively, and/ge(r) is ~ Gaussian basis, since the basis functions can be expressed by
the interaction betweenp and ’Be. The interaction Gaussian functions with a complex-range parameter,
Upa(Ugen) betweenp('Be) and A is taken to be the optical r‘exd—(1+ib)(r/a)?], and its complex conjugate. The
potential forp+A(’Be+A) scattering. Coulomb breakup is complex-range Gaussian basis functions oscillate witso
induced by Coulomb components of the optical potentials. Ithey can simulate the oscillating pattern of the continuous
this study, the intrinsic spins of the three constituents ardreakup-state wave functions as shown in &i], which is
neglected for simplicity. very important for the description of Coulomb bAreakup by
In CDCC, the eigenstates of the+ ‘Be system, i.e., the PS-CDCC. An accurate transformation from discnfé;gyo to
internal states ofB, are classified with the linear momentum continuouss, (k) is possible, when the basis functions

k, the angular momenturfi, and itsz componentm of the  form an approximate complete set in the finite region of the

system. In principle, the eigenstates consist of one boung space and space that is important for the breakup process
state with¢=1, i.e., the ground state 88, and continuum [18]. The transformation has a simple form

states with the wave functionB,(k,r)iY,(€,) in which k

and ¢ vary from 0 tow. In CDCC the continuum states are S, (k) = > <q>€(k,r)|ci>i€(r)>§w , (1)
truncated by setting upper limit&,,,, and €, to k and ¢, o i o
respectively. The truncation is the most basic assumption in . )
CDCC, and it is confirmed for various projectiles that calcu-Where () denotes the integration overand ®(k,r) and
lated S‘matrix elements converge &g,y and £may are in-  ®Pj(r) are normalized as (P (r)|D;/(r))=8; and
creased1,3,23. The converged CDCC solution is the unper- (®,(k,r)|®,(k’,r))=8k-k’). The resulting Sw/o(k), ie.,
turbed solution of the distorted Faddeev equations, an@iio(k), is smooth in the entire region &

corrections to the solution are negligible within the finite |y the Av method, on the other hand, thecontinuum

region of ther space and space that is important for the [ k1 for each¢ is divided into a finite number of bins,
reaction process concernggl7]. The continuum-state wave o5ch with a widthA.

) . . . ; o =k;—ki_1, and the continuum breakup-
functions® (K, 1)i‘Y (L) are then discretized into a finite a1 wave functiorlfin thith lbin are averaged as follows:
number of wave functiong®;,(r)i‘Y,(€,); i=1-N}, each .

of which represents a “discretized-continuum state” with a 2 _ 1
certain positive eigenenergy labeled ibyp toN. In CDCC, i) = \A— (ki (for Av). @
the resulting internal states 8B, consisting of the ground
state and the discretized-continuum states, are assumed higre, the intrinsic energies of the states are defined; by
form anhapprqximate cofmpltra]te bset i; the finit_e region of the:(q)ie(r)|HpBe|q>i{(r)>, Inserting Eq(2) into Eq.(1) leads to
space that is important for the breakup reaction. - ren

The three-body wave functioW 5, with the total angular S = Siy1 VA for k-1 =k=l [13].
momentumJ and itsz componenM is expanded in terms of In order to see the applicability of three-body PS-CDCC

the approximate complete set. Coefficients of the expansiof‘?r nuclear_ and Coué‘g”.‘b break_up, We calculated the breakup
represent center-of-mass motions & in its bound and CfOSS section ofB+*Ni scattering at 25.8 MeV, and com-

discretized-continuum states. Left-multiplying the three-Paréd it with the result of Av-CDCC calcglation. It should
body Schrédinger equatiotH - E)W ;=0 %g,’ tr?e internal be noted that the Av-CDCC calculation with a large model-
states of'B, one obtains a set of coupled differential equa_space[16,1ﬂ has succeeded in reproducing the experimental

tions for the coefficients, hereafter called CDCC equationsdata[zg] for the angular distribution ofBe fragment. For

Solving the CDCC equations with the appropriate boundar Oth the Av and the PS method, we took fi the single-
conditi%n [1.2.22, weqobtain the discretg%reF;k@matrix particle model of Esbensen and Bert§2B]; here the depth

- " o .. of the potential was chosen so as to reproduce the separation
eIement,SWo, for the transition from the initial channel with energy of the proton, i.e., 137 keV, and the same potential

quantum numbersy,=(fo,Lo,J) to the ith discretized- \as used also for the scattering states. We included snly
continuum channel withy=(¢,L,J), whereL(£) shows the  andp states of'B to save the computation time. As for the
orbital angular momentum regardirig (r) in the breakup distorting potentials fop+°&Ni and ’Be +>®Ni, respectively,
channel and the corresponding quantum numbers in the elagre took the potentials of Ref§16,30. CDCC equations
tic channel are denoted by the subscript 0. were solved with the predictor-corrector Numerov method

Discretization of the breakup continuum in the PS methodwith stabilization[31]; here the matching radius was 500 fm
is done by diagonalizing the internal Hamiltonigige=K, and the maximund was 1000.

i07kig

+Vpee(r) in @ space spanned by a finite numberiéftype In the Av-CDCC calculation, we took,,=0.66 fnT* and
basis functions, for which we here take the following pairs ofA;,=0.66/16(0.66/32 fm™ for ¢=1 (0). The integration
functions[21]: overr in the calculation of coupling potentials was truncated
c ‘ ) 5 by setting an upper limit;,,,,,, at 100 fm. The above model-
¢yo(r) =1 exd - (r/a))“Jcog b(r/ay)“], space was found to give convergence of the resulting total
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FIG. 2. Discretized momentum spectra &8; the left (right)
side corresponds to thestate(p statg. The horizontal dotted line
represents the cutoff momentuiy, taken to be 0.66 fitt.

breakup cross section. In order to obtain the correc
asymptotic form of the Coulomb coupling potentials, we first
rewrite the monopole components of them as

R
R = C{ éj @;,,, () D;(r)rodr
0

Coul
Uirgrig

!
ire i 2
+fR/ﬁ,:8r o OB r}
SR A VYR
] o )i (0P d
{fwﬁj(ﬁjr R) irer (N Pig(r)redr
1
+§6Ni%}' (3)

wherep;=1/8 (7/8) for j= p('Be) andC:ZjZSBNieZ; we have

used the orthonormality o{fi)ig}. Then, we putr . to EqQ.
(3) as

1

(R) {f max(__
RIB;

Br

Coul
Virgrig

1
Fe) D}, (1) Dy (r)redr

X Ot RIB) + 15. m} (@)

which tends to Eq(3) whenr ,— .

In Egs. (3) and (4), we used Coulomb interactions be-
tween two point charges for simplicity, while in actual cal-
culations we took account of finite charge radii ‘@e and
%8Ni. The result thus obtained with Av-CDCC is hereafter
called the “exact” solution.

In the PS-CDCC calculation, we used the complex-range

Gaussian basis witfa;=1.0,a,=35.0, 21=60,b=7/2) and
took r,ax=130 fm, which gave good convergence. Figure 2
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FIG. 3. Angular distribution of the total breakup cross section
for 5&Ni(®B,®B") at 25.8 MeV. The solid and dashed lines represent
the results with the Av and PS methods, respectively.
t
method. This is also seen for the case of other projectiles
[18]. The ®;,(r) thus obtained turned out to oscillate up to
aboutr=100 fm.
In actual PS-CDCC calculations, the discretized-

continuum states witk;, > k;,.,=0.66 fnT! had no effect on
the result. So the PS-CDCC calculations were done with the
truncation, that is, by taking 18 low-lying states for each of
€=0 and 1. Thus the number of channels required by PS-
CDCC was much smaller than that by Av-CDCC. As a con-
sequence, the typical computation time with the former was
about half that with the latter. This is an important merit of
the use of the PS method.

We show in Fig. 3 the calculated angular distribution
of ®B total breakup cross section f6fNi(®B,%B") at 25.8
MeV. The solid and dashed lines correspond to the Av
and PS methods, respectively. One sees that the result
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shows the level sequence of the resulting discrete eigen- FIG. 4. The squared moduli of break@matrix elements af

states, each with a discretized momentfq@ndefined ase,
:(hkw)?/(zﬂ) by the corresponding eigenenergy, where

w is the reduced mass betweprand ‘Be. One sees that the
intervals of thd(w are almost even. Thus the PS method well

=150, as a function ok, for 8B +°&Ni scattering at 25.8 MeV. Pan-
els (a)«d) correspond to(¢,L,Ly)=(1,150,15Q, (1,149,15),
(1,151,153, and(0,150,153, respectively. In each panel, the solid
line represents the result of PS-CDCC, while the step line is the
result of Av-CDCC assumed as the “exac®matrix elements.

simulates the corresponding level sequence in the AwWther components not shown here are negligibly small.
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with  PS-CDCC almost perfectly reproduces thatrange of the Coulomb coupling potentials, the model-
with Av-CDCC. It should be noted that our result in Fig. 3 space required for CDCC is very large. In particular, one
agrees with that in Refl26] quite well; the disagreement must prepare the internal wave functions of the projectile,
IS probablé/ due to the small difference in the model-poth in bound and continuum states, for a wide range of
space used. - internal coordinate, say, 0—100 fm, which is in general diffi-
In order to see the validity of PS-CDCC for ttfig It for PS methods. We find that this can easily be achieved
nuclear and Coulomb breakup more precisely, we compare§u : . S
@S (10 with S . p y using the complex-range Gaussian basis, in the case of
%70( ) with WO(k). In the calculation of the latter, the “ex- two-bodv proiectile. The basis is al licable to the reac-
t'S, . (k) was given withA;,=0.66/32 fmi' for both thes -0 nooy PTOISCHIS. T1€ BASIS 1S &1So applicabe fo e reac
act’ Sy, g : = tion processes with three- and four-body projectiles, since
Z’T\? FI)< states. hTQIS reﬂ(;\ementhmade_ tk(;deplend_ence dOf energies and wave functions of the pseudostates of such pro-
mo( ) smoot ut_ma e no change in the elastic an tOtajectiles are given easilj21]. Moreover, all coupled-channel
breakup cross sections. , , potentials in four- and five-body PS-CDCC can be given
Figure 4 shows the result g8, (K)|* at ‘]‘150°Wh'0h analytically by the expansion of individual nuclear-optical
corresponds to the elastic scattering angle of 10° when thgengials in terms of Gaussian functions. Thus we conclude
classical path is assumed. The CDCC calculation with onlyn4t ps-cDCC based on the complex-range Gaussian basis

Coulomb coupling potentials gave a peak at 10° in the totanctions is an effective method of practical use for nuclear

breakup cross section. One sees that the result of PS-CDCg,

(solid line) very well reproduces the “exact” solutiqistep

line) for all k that is significant for théB nuclear and Cou-

lomb breakup.

In summary, three-body PS-CDCC proposed

d Coulomb breakup of three- and four-body projectiles.
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