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We present an accurate method of simultaneously treating nuclear and Coulomb breakup of weakly bound
nuclei by means of the method of continuum discretized coupled channels with the pseudostate method of
discretization. AsL2-type basis functions of expansion of bound and continuum states of the projectile, we take
complex-range Gaussian functions which in good approximation form a complete set in a large configuration
space which is important for both nuclear- and Coulomb-breakup processes. The accuracy of the method is
tested quantitatively for8B+58Ni scattering at 25.8 MeV.
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The method of continuum discretized coupled channels
(CDCC) [1,2] has been successfully applied not only to re-
actions of weakly bound stable nuclei[3–10], but also to
those of unstable nuclei[11–17]. Since accurate description
of reaction mechanisms, including effects of projectile
breakup, is necessary to derive information of incident nuclei
from experimental data, CDCC plays a prominent role in the
study of unstable nuclei. In all the analyses referred to above,
CDCC describes the reaction system with a three-body
model as shown in Fig. 1.

However, many unstable nuclei of current interest such as
6He and11Li are known to consist of three clusters. For ex-
ample, 6He is well described by the4He+n+n model. In
order to make detailed and systematic analyses of reactions
with such nuclei, extension of CDCC to deal with four-body
systems is essential.

Very recently, a new treatment of breakup continuum in
CDCC was proposed[18], making use of pseudostate(PS)
wave functions[1,19,20] obtained by diagonalizing internal
Hamiltonian of the projectile with Gaussian basis functions
[21]. For nuclear breakup processes, the method, hereafter
referred to as PS-CDCC, was found to perfectly reproduce
the “exact” breakupS-matrix elementsSskd calculated by
CDCC with the momentum-bin average(Av) method
[1–3,22,23] for the breakup continuum(Av-CDCC). One of
the most important advantages of the use of PS discretization
is that one can easily construct an approximately complete
set of internal wave functions of the projectile with a three-
body structure within the configuration space that is impor-
tant for the reaction process concerned. Therefore PS-CDCC
with Gaussian basis functions makes it possible to perform
the four-body CDCC analyses of projectile breakup, a pre-
liminary result of which for6He elastic scattering on12C,
including effects of three-body nuclear-breakup channels of
6He, has been published[24].

The four-body CDCC analysis mentioned above had the
restriction that Coulomb breakup of the projectile was ne-
glected. Obviously, however, the breakup processes are also
important at energies below the Coulomb barrier. For ex-

ample, the enhancement of the total reaction cross section for
6He+209Bi compared to6Li+ 209Bi is considered to be due to
the electric dipole transition of6He, which is absent in6Li
[25]. Thus, in order to make systematic analyses of reactions
with three-body projectiles, inclusion of Coulomb breakup of
the projectile in four-body CDCC is necessary.

However, question of the applicability of PS-CDCC to
Coulomb breakup is quite nontrivial even for two-body pro-
jectiles. This is because the size of the coordinate space of
the projectile needed to describe Coulomb breakup is much
larger than that needed for nuclear breakup. For example, the
maximum radius of the coordinate space is about 20 fm for
nuclear breakup ofd or 6Li [18], but about 100 fm for Cou-
lomb breakup of8B [16,17].

The purpose of this Brief Report is, as the first step to-
ward the four-body CDCC analysis of nuclear and Coulomb
breakup of three-body projectiles, to show that three-body
PS-CDCC based on the Gaussian basis functions can well
reproduce the result of three-body Av-CDCC for dissociation
of two-body projectiles including both nuclear- and
Coulomb-breakup processes. As for the test case we take8B
breakup from58Ni at 25.8 MeV, which has intensively been
analyzed by Av-CDCC including nuclear and Coulomb
breakup channels[16,17,26].

Below we recapitulate the formulation of three-body
CDCC; see Refs.[1,2,18] for the details. We assume that the
8B+58Ni scattering is described by thep+7Be+58Ni system.
The model Hamiltonian of the system is
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FIG. 1. Illustration of a three-bodysA+b+cd system. The sym-
bol B=b+c stands for the projectile and A is the target. In the
calculation of8B breakup by58Ni shown below, b, c, B, and A are,
respectively,p, 7Be, 8B, and58Ni.
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H = Kr + VpBesr d + KR + UpAsr pAd + UBeAsr BeAd,

where the coordinates are defined in Fig. 1 and the symbol A
denotes the58Ni target. OperatorsKr andKR are kinetic en-
ergies associated withr and R, respectively, andVpBesr d is
the interaction betweenp and 7Be. The interaction
UpAsUBeAd betweenps7Bed and A is taken to be the optical
potential for p+As7Be+Ad scattering. Coulomb breakup is
induced by Coulomb components of the optical potentials. In
this study, the intrinsic spins of the three constituents are
neglected for simplicity.

In CDCC, the eigenstates of thep+7Be system, i.e., the
internal states of8B, are classified with the linear momentum
k, the angular momentum,, and itsz componentm of the
system. In principle, the eigenstates consist of one bound
state with,=1, i.e., the ground state of8B, and continuum
states with the wave functionsF,sk,rdi,Y,msVrd in which k
and, vary from 0 to`. In CDCC the continuum states are
truncated by setting upper limits,kmax and,max, to k and,,
respectively. The truncation is the most basic assumption in
CDCC, and it is confirmed for various projectiles that calcu-
lated S-matrix elements converge askmax and ,max are in-
creased[1,3,22]. The converged CDCC solution is the unper-
turbed solution of the distorted Faddeev equations, and
corrections to the solution are negligible within the finite
region of ther space andk space that is important for the
reaction process concerned[27]. The continuum-state wave
functionsF,sk,rdi,Y,msVrd are then discretized into a finite

number of wave functions,{F̂i,srdi,Y,msVrd; i =1−N}, each
of which represents a “discretized-continuum state” with a
certain positive eigenenergy labeled byi up to N. In CDCC,
the resulting internal states of8B, consisting of the ground
state and the discretized-continuum states, are assumed to
form an approximate complete set in the finite region of the
space that is important for the breakup reaction.

The three-body wave functionCJM with the total angular
momentumJ and itsz componentM is expanded in terms of
the approximate complete set. Coefficients of the expansion
represent center-of-mass motions of8B in its bound and
discretized-continuum states. Left-multiplying the three-
body Schrödinger equationsH−EdCJM=0 by the internal
states of8B, one obtains a set of coupled differential equa-
tions for the coefficients, hereafter called CDCC equations.
Solving the CDCC equations with the appropriate boundary
condition [1,2,22], we obtain the discrete breakupS-matrix

element,Ŝig,g0
, for the transition from the initial channel with

quantum numbersg0=s,0,L0,Jd to the ith discretized-
continuum channel withg=s, ,L ,Jd, whereLs,d shows the
orbital angular momentum regardingR sr d in the breakup
channel and the corresponding quantum numbers in the elas-
tic channel are denoted by the subscript 0.

Discretization of the breakup continuum in the PS method
is done by diagonalizing the internal HamiltonianHpBe=Kr
+VpBesr d in a space spanned by a finite number ofL2-type
basis functions, for which we here take the following pairs of
functions[21]:

f j,
C srd = r, expf− sr/ajd2gcosfbsr/ajd2g,

f j,
S srd = r, expf− sr/ajd2gsinfbsr/ajd2g s j = 1 −nd,

wherehajj are assumed to increase in a geometric progres-
sion andb=p /2. We refer to the basis as the complex-range
Gaussian basis, since the basis functions can be expressed by
Gaussian functions with a complex-range parameter,
r, expf−s1+ibdsr /ajd2g, and its complex conjugate. The
complex-range Gaussian basis functions oscillate withr, so
they can simulate the oscillating pattern of the continuous
breakup-state wave functions as shown in Ref.[21], which is
very important for the description of Coulomb breakup by

PS-CDCC. An accurate transformation from discreteŜig,g0
to

continuousSg,g0
skd is possible, when the basis functions

form an approximate complete set in the finite region of the
r space andk space that is important for the breakup process
[18]. The transformation has a simple form

Sg,g0
skd = o

i

kF,sk,rduF̂i,srdlŜig,g0
, s1d

where k l denotes the integration overr and F,sk,rd and

F̂i,srd are normalized as kF̂i,srd uF̂i8,srdl=dii8 and
kF,sk,rd uF,sk8 ,rdl=dsk−k8d. The resulting Sg,g0

skd, i.e.,
Sg,g0

PS skd, is smooth in the entire region ofk.
In the Av method, on the other hand, thek continuum

f0,kmaxg for each, is divided into a finite number of bins,
each with a widthDi,=ki −ki−1, and the continuum breakup-
state wave function in theith bin are averaged as follows:

F̂i,srd =
1

ÎDi,
E

ki−1

ki

F,sk,rddk sfor Avd. s2d

Here, the intrinsic energies of the states are defined byei,

=kF̂i,srd uHpBeuF̂i,srdl. Inserting Eq.(2) into Eq.(1) leads to

Sg,g0

Av skd=Ŝig,g0
/ÎDi, for ki−1,køki [13].

In order to see the applicability of three-body PS-CDCC
for nuclear and Coulomb breakup, we calculated the breakup
cross section of8B+58Ni scattering at 25.8 MeV, and com-
pared it with the result of Av-CDCC calculation. It should
be noted that the Av-CDCC calculation with a large model-
space[16,17] has succeeded in reproducing the experimental
data [28] for the angular distribution of7Be fragment. For
both the Av and the PS method, we took for8B the single-
particle model of Esbensen and Bertsch[29]; here the depth
of the potential was chosen so as to reproduce the separation
energy of the proton, i.e., 137 keV, and the same potential
was used also for the scattering states. We included onlys
and p states of8B to save the computation time. As for the
distorting potentials forp+58Ni and 7Be+58Ni, respectively,
we took the potentials of Refs.[16,30]. CDCC equations
were solved with the predictor-corrector Numerov method
with stabilization[31]; here the matching radius was 500 fm
and the maximumJ was 1000.

In the Av-CDCC calculation, we tookkmax=0.66 fm−1 and
Di,=0.66/16s0.66/32d fm−1 for ,=1 s0d. The integration
over r in the calculation of coupling potentials was truncated
by setting an upper limit,rmax, at 100 fm. The above model-
space was found to give convergence of the resulting total
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breakup cross section. In order to obtain the correct
asymptotic form of the Coulomb coupling potentials, we first
rewrite the monopole components of them as

vi8,8i,
Coul sRd ; CH 1

R
E

0

R/bj

F̂i8,8
* srdF̂i,srdr2dr

+E
R/bj

` 1

bjr
F̂i8,8

* srdF̂i,srdr2drJ
= CHE

R/bj

` S 1

bjr
−

1

R
DF̂i8,8

* srdF̂i,srdr2dr

+
1

R
di8id,8,J , s3d

wherebj =1/8 s7/8d for j= ps7Bed andC=ZjZ58Ni
e2; we have

used the orthonormality ofhF̂i,j. Then, we putrmax to Eq.
(3) as

vi8,8i,
Coul sRd < CHE

R/bj

rmaxS 1

bjr
−

1

R
DF̂i8,8

* srdF̂i,srdr2dr

3 usrmax− R/bjd +
1

R
di8id,8,J , s4d

which tends to Eq.(3) when rmax→`.
In Eqs. (3) and (4), we used Coulomb interactions be-

tween two point charges for simplicity, while in actual cal-
culations we took account of finite charge radii of7Be and
58Ni. The result thus obtained with Av-CDCC is hereafter
called the “exact” solution.

In the PS-CDCC calculation, we used the complex-range
Gaussian basis with(a1=1.0,an=35.0, 2n=60, b=p /2) and
took rmax=130 fm, which gave good convergence. Figure 2
shows the level sequence of the resulting discrete eigen-

states, each with a discretized momentumk̂i, defined asei,

=s"k̂i,d2/ s2md by the corresponding eigenenergyei,, where
m is the reduced mass betweenp and7Be. One sees that the

intervals of thek̂i, are almost even. Thus the PS method well
simulates the corresponding level sequence in the Av

method. This is also seen for the case of other projectiles

[18]. The F̂i,srd thus obtained turned out to oscillate up to
aboutr =100 fm.

In actual PS-CDCC calculations, the discretized-

continuum states withk̂i,.kmax=0.66 fm−1 had no effect on
the result. So the PS-CDCC calculations were done with the
truncation, that is, by taking 18 low-lying states for each of
,=0 and 1. Thus the number of channels required by PS-
CDCC was much smaller than that by Av-CDCC. As a con-
sequence, the typical computation time with the former was
about half that with the latter. This is an important merit of
the use of the PS method.

We show in Fig. 3 the calculated angular distribution
of 8B total breakup cross section for58Nis8B,8B*d at 25.8
MeV. The solid and dashed lines correspond to the Av
and PS methods, respectively. One sees that the result

FIG. 4. The squared moduli of breakupS-matrix elements atJ
=150, as a function ofk, for 8B+58Ni scattering at 25.8 MeV. Pan-
els (a)–(d) correspond tos, ,L ,L0d=s1,150,150d, (1,149,151),
(1,151,151), and(0,150,151), respectively. In each panel, the solid
line represents the result of PS-CDCC, while the step line is the
result of Av-CDCC assumed as the “exact”S-matrix elements.
Other components not shown here are negligibly small.

FIG. 2. Discretized momentum spectra of8B; the left (right)
side corresponds to thes state(p state). The horizontal dotted line
represents the cutoff momentumkmax taken to be 0.66 fm−1.

FIG. 3. Angular distribution of the total breakup cross section
for 58Nis8B,8B*d at 25.8 MeV. The solid and dashed lines represent
the results with the Av and PS methods, respectively.
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with PS-CDCC almost perfectly reproduces that
with Av-CDCC. It should be noted that our result in Fig. 3
agrees with that in Ref.[26] quite well; the disagreement
is probably due to the small difference in the model-
space used.

In order to see the validity of PS-CDCC for the8B
nuclear and Coulomb breakup more precisely, we compared
Sg,g0

PS skd with Sg,g0

Av skd. In the calculation of the latter, the “ex-
act” Sg,g0

skd was given withDi,=0.66/32 fm−1 for both thes
and p states. This refinement made thek dependence of
Sg,g0

Av skd smooth but made no change in the elastic and total
breakup cross sections.

Figure 4 shows the result ofuSg,g0
skdu2 at J=150 which

corresponds to the elastic scattering angle of 10° when the
classical path is assumed. The CDCC calculation with only
Coulomb coupling potentials gave a peak at 10° in the total
breakup cross section. One sees that the result of PS-CDCC
(solid line) very well reproduces the “exact” solution(step
line) for all k that is significant for the8B nuclear and Cou-
lomb breakup.

In summary, three-body PS-CDCC proposed in
Ref. [18] is shown to well describe nuclear and Coulomb
breakup processes simultaneously. Because of the long

range of the Coulomb coupling potentials, the model-
space required for CDCC is very large. In particular, one
must prepare the internal wave functions of the projectile,
both in bound and continuum states, for a wide range of
internal coordinate, say, 0–100 fm, which is in general diffi-
cult for PS methods. We find that this can easily be achieved
by using the complex-range Gaussian basis, in the case of
two-body projectile. The basis is also applicable to the reac-
tion processes with three- and four-body projectiles, since
energies and wave functions of the pseudostates of such pro-
jectiles are given easily[21]. Moreover, all coupled-channel
potentials in four- and five-body PS-CDCC can be given
analytically by the expansion of individual nuclear-optical
potentials in terms of Gaussian functions. Thus we conclude
that PS-CDCC based on the complex-range Gaussian basis
functions is an effective method of practical use for nuclear
and Coulomb breakup of three- and four-body projectiles.
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