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The absolute intensities ofg rays produced in the decay of182Hf were determined by measuring itsg-ray
spectra with high-resolution Ge spectrometers. Because the sample was chemically purified more than 30 years
ago, the daughter182Ta st1/2=114.43 dd was in secular equilibrium with182Hf st1/2=8.903106 yrd. The abso-
lute intensities of182Hf g rays were determined with respect to the intensities of182Ta g lines. In order to
minimize summing losses from the peak areas, spectra were measured at low absolute efficiencies. The
absolute intensity of the 270.4-keV-g ray was found to bes79.0±0.6d% per182Hf b− decay.
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The nuclide182Hf was first produced[1–3] by the neutron
irradiation of natural Hf and enriched180Hf targets in the
Materials Testing Reactor at Idaho Falls. In each case, the Hf
was chemically purified after175Hf st1/2=70.0 dd and 181Hf
st1/2=42.4 dd had substantially decayed and the new isotope
182Hf was identified by mass spectrometry. By determining
the number of182Hf atoms by mass spectrometry and mea-
suring theg-ray decay rate of182Hf or the daughter182Ta
with a sodium iodide detector, these authors were able to
determine the half-life of182Hf as 8.53106 yr [1], s8±5d
3106 yr [2], ands9±2d3106 yr [3].

In order to study the level structure of182Ta, larger quan-
tities of 182Hf were produced at Idaho Falls by irradiating
both enriched180Hf and natural Hf samples in the Materials
Testing Reactor[4]. After the decay of shorter-lived activi-
ties, the Hf was chemically purified and itsg-ray spectra
were measured. One sample was mass separated and the
spectrum of the collected182Hf sample was measured with a
Ge detector. These studies showed that182Hf decays byb−

particle emission and all of theb− decays populate a single
state at 270.4 keV in182Ta which deexcites by 270.405,
172.54, and 156.09 keVg rays. A level scheme constructed
in Ref. [4] is displayed in Fig. 1 withg-ray energies mea-
sured in the present study and the182Hf half-life from Ref.
[5]. After two years, the daughter182Tast1/2=114.43 dd
reached secular equilibrium, to 1.5 %, and itsg rays were
used to determine the absolute intensities of182Hf g rays. A
value of s80±5d% perb− decay was found for the intensity
of the 270.4 keVg ray.

Currently there is interest in the half-life of182Hf because
the composition of182Hf–182W samples can be used as a
chronometer for early solar system evolution[6,7]. One
component in the determination of the182Hf half-life is the
branching ratio of the 270.4-keV-g ray. The large uncertainty
in the intensity of the 270.4-keV-g ray as measured by
Helmeret al. [4] comes from the uncertainty in the intensity
of the 182Ta g ray which was used as standard. Because the
accuracy of the182Ta g-ray intensities has improved since
the previous measurement and a 30-year old source was
available to us, we undertook a new measurement of182Hf
g-ray intensities.

In the present work we have used a sample that was pro-
duced by Helmeret al. [4] for the measurement of182Hf
g-ray intensities. We have measured theg-ray spectra of the
sample with a 25% Ge detector and a high-resolution
2 cm2310 mm low energy photon spectrometer(LEPS)
with the sample at different distances from the detector. In
the decay of the daughter182Ta, b− decay populates excited
states above 1 MeV, which first decay by 100–300 keVg
rays and are then followed by,1 MeV g rays. Thus, all of
the 182Ta g rays haveg rays in coincidence, in contrast to
182Hf decay where the 270.4-keV-g ray has nog ray in co-
incidence. Summing corrections should therefore be applied

FIG. 1. Decay scheme of182Hf constructed in Ref.[4]. Energies
are from the present measurement and the half-life from Ref.[5].
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to the 182Ta g rays in order to use them as standard for the
intensity of the 270.4-keV-g ray. We used two approaches to
measure the absolute intensities of182Hf g rays. One is to
use a counting setup with low absolute efficiencies and the
other is to use a system where one can measure the summing
effect. For the former, we used a 2 cm2310 mm LEPS de-
tector because most of the high energyg rays pass through
the 10 mm thick Ge crystal requiring a small summing cor-
rection. For the second approach, we used a 25% Ge detector
and measured the photopeak–photopeak summing with a
pure182Ta source. The bigger Ge crystal has another advan-
tage that the detector efficiency is almost flat in the
200–300 keV range, which causes less uncertainty in the
intensity of the182Hf g rays from efficiency correction.

Theg-ray spectra were measured by placing the source at
0.7 and 3 cm from the LEPS spectrometer. At the shorter
distance, the spectrum was counted for 12 days, and was
used to determine the energies and the relative intensities of
182Hf g rays. This spectrum is displayed in Fig. 2 and the
energies measured relative to the182Ta g-ray energies[8] are
given in Table I. The energy of the 156.0-keV-g ray could
not be determined from this spectrum because it overlaps the
156.3865 keV peak from182Ta decay. In the table we give
the energy of the 156.09-keV-g ray as measured by Helmer
et al. [4].

In order to obtain a precise intensity of the 270.4-keV-g
ray, the spectrum of the182Hf sample was measured by plac-
ing it 3 cm from the LEPS detector and counting it for 15
days. At this geometry the absolute photopeak efficiency was
0.63% at 100 keV and 0.093% at 270 keV. We did not ob-
serve any photopeak–photopeak sum peak in any of the spec-
tra measured with the LEPS detector because of its small
peak efficiencies. The contribution of the summing between
a peak of interest and the continuous distribution from an-
other g ray was calculated using the total efficiency of the
detector and the182Ta decay scheme. The intensity of the
182Hf 270.4-keV-g ray was determined relative to that of the
222.1 keV line of182Ta.

The intensity of the 270.4-keV-g ray was also determined
from a 182Hf spectrum measured with the 25% Ge detector
with the source placed at 10.5 cm. For determining the sum-
ming correction and the relative efficiencies at different en-
ergies, the spectrum of a pure182Ta source was measured. In
this spectrum, summing of182Ta g rays in the 200–300 keV
range is withg rays with energies of 1000–1500 keV. The
photopeak efficiency, measured with a calibrated60Co source
at 10.5 cm, was 0.13% at 1.17 MeV and the corresponding
total efficiency was 1.1%. We observed severalg-g sum
peaks whose intensities agreed with the values calculated
from the measured photopeak efficiencies. The loss of the
counts from the 222.1-keV-photopeak was calculated with
these total detector efficiencies to be 1.1% of the area. This
loss was added to the 222.1-keV-photopeak area and the cor-
rected counts were used to determine the absolute intensity
of the 270.4-keV-g ray.

The absolute intensity of the 222.1-keV-g ray has previ-
ously been measured[9] as s7.48±0.03d% per 182Ta b− de-
cay. This is in good agreement with the value of
s7.49±0.03d% per182Ta decay deduced by Helmer and Tuli
[10] from decay scheme balance of infeed and outfeed tran-
sitions. The uncertainties from counting statistics in the peak
areas, detector relative efficiencies, and the summing correc-
tion are each less than 0.5%. Combining all uncertainties in

FIG. 2. Theg-ray spectrum of
a 400-Bq182Hf source measured
with a 2 cm2310 mm LEPS
spectrometer. In addition to182Hf
lines, the spectrum containsg rays
from the daughter 182Ta and
31 yr 178Hfm. B denotes back-
ground peaks. The source-to-
detector distance was 0.7 cm and
the counting time was 12 d.

TABLE I. 182Hf g rays.

Energy Intensity Transitions

skeVd (%) Initial–Final

97.85±0.04 0.11±0.01 97.85–0.0

114.32±0.01 3.0±0.1 114.32–0

156.09±0.02a 7.0±0.2 270.408–114.32

172.55±0.04 0.20±0.02 270.408–97.85

270.408±0.010 79.0±0.6 270.408–0

aThis energy is taken from Ref. 4.
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quadrature, we determine the uncertainty in the 270.4-keV-
g ray intensity as 1.0%. The absolute intensity of the
270.4-keV-g ray as determined from the LEPS data and the
25% Ge detector data ares79.1±0.8d% ands79.0±0.8d% per
182Hf decay, respectively. The weighted mean of these two
numbers gives the intensity of the 270.4-keV-g ray as
s79.0±0.6d% per182Hf b− decay.

The absolute intensity of the 270.4-keV-g ray can also be
deduced by normalizing the intensities ofg rays and conver-
sion electron transitions deexciting the 270.4 keV level to
100% as was done in Ref.[4]. The intensities ofg rays in
Table I were used as relative intensities for this normaliza-
tion. We have used internal-conversion coefficients[11] for
pure E2 multipolarities for the 270.408, 172.52, and
156.09 keV transitions as was done in Ref.[4]. The absolute
intensity thus determined iss78.8±0.6d%, in good agreement

with the value obtained by direct measurement.
In summary, the absolute intensity of the 270.4-keV-g ray

associated with the decay of182Hf has been measured rela-
tive to the intensity of the 222.1-keV-g ray of 182Ta. Using
the 222.1 keV intensity ass7.48±0.03d% per182Ta b− decay,
we obtain the intensity of the 270.4-keV-g ray as
s79.0±0.6d% per 182Hf decay. This small uncertainty in the
182Hf g-ray branching ratio is important to reduce the overall
uncertainty in the new half-life of182Hf [5].
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