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The asymmetric nuclear matter equation of state at finite temperature is studied in the SUs2d chiral sigma
model using mean-field approximation. The effect of temperature on effective mass, entropy, and binding
energy is discussed. Treating the system to possess two conserved charges, the liquid-gas phase transition is
investigated. We have also discussed the effect of the proton fraction on critical temperature with and without
a r-meson contribution. We also apply our model to study the structure of the proto-neutron star with neutrino
free charge-neutral matter in beta equilibrium. We found that the mass and radius of the star decreases as it
cools from the entropy per baryonS=2 to S=0 and the maximum temperature of the core of the star is about
62 MeV for S=2.
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I. INTRODUCTION

A precise knowledge of the properties of nuclear matter at
normal nuclear density and higher is of great importance for
the understanding of compact stellar objects like neutron
stars and the results of heavy-ion collision experiments. One
of the celebrated models for study of nuclear matter using a
relativistic quantum mean field was introduced by Walecka
[1] involving a scalar and a vector field along with the
nucleon field. This model and its extensions[2], while repro-
ducing familiar nuclear properties well, gives rather a high
value for the nuclear bulk modulus. A parallel and equally
powerful model to study nuclear matter has been to use the
chiral symmetry first emphasized by Lee and Wick[3]. The
nonlinear terms in the chiral sigma model give rise to the
three-body forces which become significant in the high den-
sity regime[4]. Further, the energy per nucleon at saturation
needed the introduction of a dynamically generated isoscalar
field [5] in addition to the scalar field of pions[6]. The in-
corporation of the interaction of the isospin tripletr-vector
meson has been found essential for description of neutron-
rich asymmetric nuclear matter[7]. The modified SUs2d chi-
ral sigma model(MCH) with the introduction of cubic and
quartic interaction terms[8] have been used by us in our
earlier works[9] to study the phase transition between quark
and nuclear matter and the structure of a hybrid star with one
and two conserved charges at zero temperature. However,
since the description of astrophysical and heavy-ion collision
phenomena requires the study of asymmetric nuclear matter
at finite temperature, we, in this work wish to extend our
modified SUs2d chiral sigma model approach to finite tem-
peratures.

The study of properties of hot dense asymmetric nuclear
matter has been, in the last few years, vigorously pursued in
connection with astrophysical problems[10,11], such as su-
pernova explosions, the evolution of neutron stars, and
heavy-ion collisions. As the equation of state(EOS) de-

scribes the variation of energy density and pressure with den-
sity and temperature, it can be used to study gaseous and
liquid nuclear matter phases up to the deconfinement transi-
tion. It is also possible to study the liquid-gas phase transi-
tion, which may occur in the warm and dilute nuclear matter
produced in heavy-ion collisions. Several authors using non-
relativistic [12] and relativistic[13–17] theories have studied
liquid-gas phase transition. Most of the calculations found
the critical temperatureTc lying in the range of 14–20 MeV
for symmetric nuclear matter. The critical temperature of
symmetric nuclear matter for the relativistic Walecka model
is Tc<18.3 MeV [18]. As the asymmetry parameter or the
proton fraction plays a vital role in determining the critical
temperature, the addition of ar meson is quite essential for
the study of asymmetric nuclear matter[13,14].

Field theoretical finite temperature EOS plays an impor-
tant role in studying the properties and structure of hot dense
massive stars such as proto-neutron stars at different tem-
peratures and densities. The important characteristics which
determine the composition of matter in a compact star are
[19] their relative compressibilities(important to determine
the maximum mass of neutron star), symmetry energies(im-
portant to determine the typical stellar radius and the relative
n, p, e, neutrino abundances), and specific heats(important
to determine local temperatures). These characteristics vary
with the EOS used in different models. Generally, the struc-
tures of both hot and cold, and both neutron-rich and
neutron-poor, stars are fixed by the EOS[11]. A proto-
neutron star[PNS] is born following the gravitational col-
lapse of the core of a massive star during a supernova explo-
sion (type II) and evolves to a cold and deleptonized neutron
star, basically through neutrino emission. This very dense
and hot core is also able to trap neutrinos, imparting momen-
tum to the outer layers and then cooling as it reaches a qua-
siequilibrium state. There can also be a quark-hadron phase
transition in PNS at high density and temperature[20].

In this paper we have extended our earlier study[21] on
finite temperature EOS by adding ar meson to the Lagrang-
ian density within the MCH model[9] as the addition of the
r meson is quite essential for the study of asymmetric
nuclear matter. In our earlier work we have studied the effect
of temperature on EOS, effective mass, entropy, and binding
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energy for symmetric nuclear matter and investigated the
liquid-gas phase transition using the same model without the
r meson. We now study here how the asymmetry parameter
or proton fraction in addition to ther meson changes those
properties at finite temperatures. As finite temperature EOS
has an important role in studying the structure and properties
of astrophysical objects, we have also investigated the struc-
ture of PNS takingb-stable charge neutral matter without
neutrinos consisting of neutrons, protons, and electrons only.

In Sec. II, application of our model to the study of asym-
metric nuclear matter at finite temperature is presented. In
Sec. III, we apply our model to study the characteristics of
the proto-neutron star. We conclude with some remarks in
Sec. IV.

II. ASYMMETRIC NUCLEAR MATTER
AT FINITE TEMPERATURE

A. Equation of state

Continuing our earlier investigation[9] on the study of
the finite temperature effect of asymmetric nuclear matter
using the MCH model, we include here ther field in the
Lagrangian density. The EOS for the hadronic phase is cal-
culated by using the Lagrangian density[13] (with "=c
=KBoltzmann=1),

L =
1

2
s]mpW · ]mpW + ]ms]msd −

1

4
FmnF

mn −
l

4
sx2 − x0

2d2

−
lB

6m2sx2 − x0
2d3−

lC

8m4sx2 − x0
2d4 − gsc̄ss + ig5tW · pW dc

+ c̄sigm]m − gvgmvmdc+
1

2
gv

2x2vmvm −
1

4
GmnG

mn

+
1

2
mr

2rWm · rWm −
1

2
grc̄srWm · tWgmdc. s1d

In the above Lagrangian,Fmn;]mvn−]nvm ,Gmn;]mrn

−]nrm, andx=spW 2+s2d1/2, c is the nucleon isospin doublet,
pW is the pseudoscalar-isovector pion field,s is the scalar
field, and vm is a dynamically generated isoscalar vector
field, which couples to the conserved baryonic currentjm

=c̄gmc. rWm is the isotriplet vector meson field with massmr.
B andC are constant coefficients associated with the higher-
order self-interactions of the scalar field.

The masses of the nucleon, scalar meson, and vector me-
son generated spontaneously by the Higgs mechanism are,
respectively, given by

m= gsx0, ms = Î2lx0, mv = gvx0. s2d

Here x0 is the vacuum expectation value of thes field; gv,
gr, andgs are the coupling constants for the vector and sca-
lar fields, respectively, andl=sms

2 −mp
2d / s2fp

2d, wheremp is
the pion mass andfp is the pion decay coupling constant.

Using mean-field approximation, the equation of motion
for the isoscalar vector meson field is

v0 =
nB

gvx2 , s3d

and that for ther field is given by

r0
3 = sgr/2mr

2dsnp − nnd. s4d

nBs=np+nnd is the baryon number density at temperatureT
and is given by

nB =
g

s2pd3E
0

`

d3kfnisTd − n̄isTdg, s5d

with

nisTd =
1

esE* skd−nidb + 1
, s6d

n̄isTd =
1

esE* skd+nidb + 1
, s7d

where i =n,p, E* skd=sk2+y2m2d1/2 is the effective nucleon
energy,b=1/KBT, and gs=2d is the spin degeneracy factor
with nisTd andn̄isTd being Fermi-Dirac distribution functions
for particle and antiparticle, respectively, at finite tempera-
ture. ni is the effective baryon chemical potential which is
related to the chemical potentialmi as

np = mp −
CvnB

y2 −
Cr

4
snp − nnd, s8d

nn = mn −
CvnB

y2 +
Cr

4
snp − nnd. s9d

The effective mass factory;x/x0 must be determined self-
consistently from the equation of motion for the scalar field
which is given by

s1 − y2d −
B

m2Cv

s1 − y2d2 +
C

m4Cv
2 s1 − y2d3 +

2CsCvnB
2

m2y4

−
Csg

p2 E
0

` dkk2snisTd + n̄isTdd
Îk2 + m*2

= 0. s10d

m* ;ym is the effective mass of the nucleon and the cou-
pling constants are expressed through

Cs ;
gs

2

ms
2 , Cv ;

gv
2

mv
2 , andCr ; gr

2/mr
2. s11d

The symmetry energy coefficient that follows from the semi-
empirical nuclear mass formula is[9]

asym=
Crkf

3

12p2 +
kf

2

6Îkf
2 + m*2

.

Now the nucleon number densities, energy density, and
pressure at finite temperature and finite density are given by

np =
g

s2pd3E
0

`

d3kfnpsTd − n̄psTdg, s12d
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nn =
g

s2pd3E
0

`

d3kfnnsTd − n̄nsTdg, s13d

e =
m2s1 − y2d2

8Cs
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B

12CvCs
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C

16m2Cv
2Cs
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+
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2
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1

2
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2sr0
3d2+

g

2p2E
0

`

dkk2Îsk2 + m*2d

3fnnsTd + n̄nsTd + npsTd + n̄psTdg, s14d

P = −
m2s1 − y2d2

8Cs

+
B

12CvCs

s1 − y2d3 −
C

16m2Cv
2Cs
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0
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. s15d

The entropy densitysS/Vd and entropy per baryonsSd can be
obtained as

S/V = sP + e − mpnp − mnnndb,

S= sP + e − mpnp − mnnndb/nB. s16d

In order to describe the asymmetric nuclear matter one can
introduce the proton fraction which is defined as

yp =
np

nB
, s17d

for the neutron matteryp=0 and for symmetric nuclear mat-
ter yp=0.5.

The values of four parametersCs ,Cv ,Cr ,B andC occur-
ring in the above equations are obtained[9] by fitting with
the saturation values of binding energy/nucleon
s−16.3 MeVd, saturation densitys0.153 fm−3d, symmetry en-
ergy s32 MeVd, effective (Landau) mass s0.85 md, and
nuclear incompressibilitys,300 MeVd, are Cv=1.999 fm2,
Cs=6.816 fm2, Cr=4.661 fm2, B=−99.985, and C
=−132.246. For a given value ofnB at fixedyp and/orT, the
equations[10,12,13] can be solved self-consistently to gety,
mp, andmn, and using these values the energy density, pres-
sure, entropy density, and entropy per baryon can be evalu-
ated.

Now let us discuss the liquid-gas phase transition. In the
case of the more common single component phase equilibria,
such as liquid vapor, the phases are distinguished by only
one parameter, e.g., the density, whereas the binary mixture
has the additional parameter, the proton fractionyp, which is
different from one phase to another[22]. For the description
of the liquid-gas phase transition we have followed here the
thermodynamic approach of Refs.[16,22,23]. In the case of
asymmetric nuclear matter, the system is characterized by
two conserved charges, namely, the baryon densitysnB=np

+nnd and the total charge or equivalently the third component

of isospinfI3=snp−nn/2dg or equivalently the proton fraction
sypd. Thus the stability criteria may be expressed by the fol-
lowing relations[16]:

nB = S ] P

] nB
D

T,yp

. 0, s18d

S ] mp

] yp
D

T,P
. 0, or S ] mn

] yp
D

T,P
, 0. s19d

The first inequality shows that isothermal compressibility is
positive which implies that the system is mechanically
stable. The second condition expresses the diffusive stability.
If any of the three stability criteria are violated then there
will be a phase separation[7].

B. Results and discussions

First, we discuss the effective nucleon mass of nuclear
matter at finite temperature and density. Figure 1 shows the
effective mass versus number density at temperaturesT=0,
100, and 200 MeV. The solid lines are foryp=0.5 and the
dotted lines are foryp=0. It is observed that in all tempera-
turesm* decreases with the increase ofnB. For T=0 or T
=100 MeV, the effective mass varies little withyp, whereas
it is very sensitive withyp for T=200 MeV. It is also clear
that at zero density, the effective mass is the same for neu-
tron matter and symmetric matter at different temperatures.
Hence, these results indicate[15] that the nucleons of neu-
tron matter must stay in higher-energy levels compared to
that of symmetric matter in order to have the same number
density and the difference will decrease as the number den-
sity decreases. Further, the departure ofm* from its bare

FIG. 1. Effective mass as a function of baryon number density at
different temperatures.
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value at higher temperature as presented here has also been
observed[15,25,26] by investigators working in other mod-
els. The explanation behind such an observation is obscure to
us.

In Figure 2 we show the effective mass as a function
temperature at zero densitysnB=0d and saturation density
snB=0.153 fm−3d. The solid lines are for symmetric nuclear
mattersyp=0.5d and the dotted lines for neutron mattersyp

=0d. It is clear from Fig. 2 that fornB=0, the solid and dotted
lines are the same, whereas fornB=n0, theyp dependence is
sensitive to the temperature lying between 150 and
240 MeV. The two lines again coincide at higher tempera-
tures. It is also observed that fornB=n0, the m* first in-
creases slowly and then falls suddenly at aboutT
<240 MeV. But for nB=0, m* remains almost constant as
the temperature increases and falls suddenly at aboutT
<235 MeV. This sudden fall indicates a first-order phase
transition appearing fornB=0, atT<235 MeV similar to the
result obtained for the Walecka model, which has such a
phase transition atT<185 MeV [24]. This effect has also
been observed by Wang[15] at T<200 MeV and by Hua,
Bo, and Di Toro[25] at T<160 MeV. Hua, Bo, and Di Toro
[25] argue that because of the strong attraction between the
nucleons at high temperatures the nucleon-antinucleon pairs
can be formed which may lead to an abrupt change inm*
taking place in the high temperature region. But the mecha-
nism of this first-order phase transition is no-clear.

Figure 3(a) shows the binding energy per nucleon as a
function of the baryon density at different temperatures for
symmetric nuclear matter,yp=0.5. At zero temperature it has
a minimum at the nuclear saturation densityn0 which corre-
sponds to a binding energy per nucleon of −16.3 MeV. With
the increase of temperature the minimum shifts towards
higher densities and for higher temperatures the minimum of

the curve becomes positive. It is also observed that as the
temperature increases, the nuclear matter becomes less
bound and the saturation curves in the MCH model look
flatter than those observed in the Walecka model[25,26].
This result implies that the nuclear matter EOS in the MCH
model is softer than that obtained in the Walecka model.

In Fig. 3(b), we show the pressure as a function of density
nB at different temperatures. The solid lines are for symmet-
ric nuclear matter and the dotted lines are for pure neutron
matter that is stiffer at all temperatures. For a givennB, the
pressure has the usual trend of increasing with temperature
[27]. As the temperature increases the EOS becomes stiffer.
The pressure has a nonzero value fornB=0 at and above a
temperature of 200 MeV. It indicates that the pressure has a
contribution arising from the thermal distribution functions
for baryons and antibaryons as well as from the nonzero
value of the scalar field. Similar results were also obtained
by Pandaet al. [28] for symmetric nuclear matter. The non-
zero value for scalar a field has also been observed in the
Walecka model[27].

The entropy density as a function of density at different
temperatures for symmetric nuclear matter and pure neutron
matter is presented in Fig. 3(c). It is observed that the en-
tropy density for both is nonzero even at a vanishing baryon
density at a temperature of 200 MeV with contributions from
the nonzero value of the sigma field. Similar behavior was
also observed for the entropy density in the Walecka model
and Zimanyi-Moszokowski(ZM) model calculations[26].

FIG. 2. Effective mass as a function of temperature for constant
baryon number densities. FIG. 3. (a) Binding energy per nucleon as a function of baryon

number density at different temperatures for symmetric nuclear
matter.(b) Pressure as a function of baryon number density at dif-
ferent temperatures.(c) Entropy density as a function of baryon
number density at different temperatures.(d) Pressure as a function
of baryon number density for different proton fractions at tempera-
ture T=10 MeV.
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This increase of entropy density with increase of temperature
indicates a phase transition.

We now discuss the liquid-gas phase transition. The pres-
sure as a function of baryon density at fixed temperatureT
=10 MeV with different proton fractions is shown in Fig.
3(d). It may be observed from Fig. 3(d) that for any fixed
density with fixedT=10 MeV, the pressure is not constant,
rather it increases with decrease of the proton fraction. This
clearly indicates that for asymmetric nuclear matter during
the isotherm liquid-gas phase transition the pressure cannot
remain constant but increases monotonically. It shows that
for smallyp, particularly for neutron mattersyp=0d, the pres-
sure increases monotonically which indicates that matter is
stable at all densities. But forypù0.2, the compressibility
becomes negative, indicating mechanical instability. The dif-
fusive unstable regions can be seen clearly from Fig. 4,
where the chemical potentials of proton and neutron are
shown as a function of yp at fixed pressure P
=0.1 MeV/fm3 and temperatureT=10 MeV. According to
the inequality[20] the region of negative slope formp and
positive slope formn is unstable. Thus violation of stability
criteria is an indication of phase separation.

Figure 5 shows the variation of pressure as a function of
baryon density for differentyp. One can see that the region of
mechanical instability decreases both with an increase of
temperature and decrease of proton fraction[17]. Figure 5
shows that at zero temperature, the pressure first decreases,
then increases and passes throughP at nB=n0 (saturation
density), where the binding energy per nucleon is a mini-
mum. Decrease of pressure with density implies a negative
incompressibility,K=9s]P/]nBd, which is a sign of mechani-
cal instability. When the temperature increases the region of
mechanical instability decreases and disappears at the critical

temperature Tc, which is determined by ]P/]nBuTc
=]2P/]2nBuTc

=0, above which the liquid-gas phase transition
is continuous. Foryp=0.5, we have obtained the value of
critical temperature Tc<17.2 MeV, critical density nc
<0.045 fm−3, critical pressurepc<0.274 MeV/fm−3, and
critical effective massmc

* <887 MeV, which is in fair agree-
ment with the results obtained in other studies[17,25,26].

In Fig. 6, we plot the variation of critical temperature with
different proton fractionssypd with and withoutr. The criti-
cal temperatureTc decreases monotonically[17,29] as the
proton fraction decreases and goes to zero foryp=0.02 with

FIG. 4. Chemical potentials as a function ofyp at temperature
T=10 MeV andP=0.1 MeV/fm3.

FIG. 5. Pressure as a function of baryon number density for
different proton fractions.

FIG. 6. Critical temperature vs proton fractionyp.
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r, whereasTc=11.6 atyp=0 without r. This indicates that
addition of ther meson lowers the critical temperature at
smaller yp. As may be seen from the equations[8,9], the
addition of ther meson gives a repulsive potential which
makes the nuclear matter easier to be gasified. But for neu-
tron mattersyp=0d, the system only remains in the gas phase
even at zero temperature[15].

III. PROTO-NEUTRON STAR

In this section, as our second application, we undertake a
study of the structure and properties of the proto-neutron
star. A PNS is born following the gravitational collapse of the
core of a massive star during a supernova explosion(type II).
It is a hot collapsed core which can reach temperatures as
high as few tens of MeV. The evolution of the PNS proceed-
ing through several distinct states with various outcomes is
discussed in Ref.[11]. During the early evolution of the
PNS, a neutron star with an entropy per baryon of order of
unity contains neutrinos that are trapped in matter on a dy-
namical time scale and after a lapse of a few tens of seconds
the star achieves its cold catalyzed structure with essentially
zero temperature and zero trapped neutrinos. A PNS has ap-
proximately uniform entropy per baryonsSd of 1-2 across the
star[30]. At birth the PNS hasS=1. After deleptonization the
entropy per baryon reaches its maximumsS,2d and finally
cools down to its cold state withS=0 [11]. The finite tem-
perature aspect of the EOS plays an important role in the
study of the properties and structure of the PNS.

The structure of the PNS mainly depends on its composi-
tion [11]. Since the composition of the neutron star basically
depends on the nature of the strong interactions, which are
not well understood in dense matter, one has to investigate
various possible conditions taking many possible models.
Out of the various possible cases discussed in Ref.[11], we

consider here a case in which matter consists of neutrons,
protons, and electrons whose relative concentrations are de-
termined from the conditions of charge neutrality andb equi-
librium in the absence of neutrino trapping[11].

The b equilibrium (without neutrino trapping) and the
charge neutrality conditions are, respectively, given by

mn = mp + me, s20d

and

np = ne, s21d

where me and ne are the chemical potentials and number
density of electrons, respectively.

The electron number density at finite temperature can be
written as

ne =
g

s2pd3E
0

`

d3kfnesTd − n̄esTdg, s22d

where

nesTd =
1

esÎsk2+me
2d−medb+ 1

, n̄esTd =
1

esÎsk2+me
2d+medb + 1

.

s23d

The number density of neutrons and protons is defined in
Eqs.(12) and (13). The extra terms which must be added to
the energy density and pressure[given in Eqs.(14) and(15)]
are, respectively,

g

2p2E
0

`

dkk2Îsk2 + me
2dfnesTd + n̄esTdg, s24d

and

FIG. 7. Pressure as a function of number density at fixed en-
tropy per baryon.

FIG. 8. Star masssM /M(d as a function of central energy den-
sity at fixed entropy per baryon.

PRAVAT KUMAR JENA AND LAMBODAR PRASAD SINGH PHYSICAL REVIEW C70, 045803(2004)

045803-6



g

6p2E
0

` dkk4fnesTd + n̄esTdg
Îsk2 + med

. s25d

For a given value ofnB, with fixed S=0,1, or 2, theequa-
tions [10,12,13,16,22] are to be solved self-consistently us-
ing Eqs.(20) and (21) to get mp,me,np,y, andT, and from
which we getmns=mp+med andyps=np/nBd. Then these val-
ues can be substituted to get the pressure and energy density.
After getting the pressure as a function of the energy density,
the TOV equations can be integrated using the proper bound-
ary conditions[9] to get the mass and radius of the star at
fixed entropy per baryonS.

The pressure as a function of number density forS=0,1,
and 2 is shown in Fig. 7. One can mark from Fig. 7 that the
EOS becomes softer as the entropy per baryon decreases
from S=2 to S=0, which indicates the lowering of mass and
radius, as shown in Figs. 8 and 9, respectively. For different
values ofS, the radius, energy density, pressure, number den-
sity, and temperature corresponding to the maximum mass
are given in Table I.

The results in Table I reflect the influence of entropy on
the gross properties of stars. It is observed that an increase in
maximum mass and radius up toS=2 amounts to only a few
percent of their respective values for the cold star, and the
maximum temperature of the core is found to be around

62 MeV, which is in fair agreement with the results obtained
in Ref. [11]. In neutron stars, the pressure is supported,
largely provided by strongly interacting baryons which have
relatively smaller thermal contributions to the pressure. This
results in a small increase in the maximum mass of the neu-
tron star. Thus the compositional variable of EOS plays a
more important role than the temperature for the structure of
neutron star[11].

The chemical potentials ofn,p, ande in beta equilibrium
for fixed entropy per baryonS=0,1, and 2 areshown in Fig.
10. It is clear thatme increases linearly with number density
whereasmn andmp first decrease and then increase linearly.
The increase of electron chemical potential with number
density implies the abundance of negatively charged par-
ticles (electrons) which shows that the system has a large
number of protons over an extended region of density. It may
be seen from Fig. 10 that in the very lower-density region the
proton abundance is large, then decreases to some extent,
and then increases linearly in the high-density region.

The temperature as a function of energy density at fixed
entropy per baryon is shown in Fig. 11. The temperature of
the star increases for bothS=1 andS=2 from which one can
get the critical temperature corresponding to the maximum
mass of the star. The temperature is maximum at the center
of the star (where the central energy density is about
1100–1200 MeV/fm3 for a maximum mass star) and de-
creases with decreasing energy density, which is faster par-
ticularly at lower energy densities. This implies that the in-

FIG. 9. Radius vs star mass at fixed entropy per baryon.

TABLE I. Star properties for matter in beta equilibrium at finite entropy.

S Mmax”M( R skmd ec
sMeV/ fm3d nc sfm−3d Pc

sMeV/ fm3d Tc sMeVd

0 2.18 12.14 1230 0.97 304.71 0.0

1 2.21 12.23 1190 0.94 294.85 27.85

2 2.33 12.45 1092 0.85 272.24 62.12

FIG. 10. Chemical potential vs number density in beta equilib-
rium at fixed entropy per baryon S.
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terior of the star maintains a small variation of temperature
but falls rapidly towards the surface region as the density
decreases.

IV. CONCLUSIONS

We, in this work, have applied the MCH model[9] to the
study of asymmetric nuclear matter at finite temperature and
the structure of a PNS. We have presented the behavior of
the effective nucleon mass, energy per baryon, entropy den-
sity, entropy per baryon, and pressure as a function of density
of asymmetric nuclear matter for various temperatures. At
zero density we find that this model exhibits a phase transi-
tion atT<235 MeV just as obatined in the Walecka model at
T<185 MeV. This model exhibits the existence of a liquid-
gas phase transition in asymmetric nuclear matter and the

critical temperatureTc depends sensitively on the proton
fractionyp. Tc decreases with the decrease ofyp as shown in
Fig. 6. The value of the critical temperature decreases from
Tc<17.2 to 11.6 MeV foryp=0.5 to 0 without ther meson
and fromTc<17.2 to 0 MeV foryp=0.5 to 0.2 with ther
meson. Hence, the addition of ther meson seems to be very
important to the study of the properties of asymmetric
nuclear matter as it lowers the critical temperature. This also
shows that even at zero temperature the system remains only
in the gas phase for neutron mattersyp=0d. At fixed tempera-
ture and density the pressure of the system increases with the
decrease of the proton fraction[shown in Fig. 3(d)], which
indicates that during the isotherm liquid-gas phase transition
the pressure cannot remain constant for asymmetric nuclear
matter. In comparision with other modelsTc varies withyp in
all models but the values are different in different mean-field
models such as atyp=0.5,Tc varies as 18.3 MeV[18],
12.66 MeV [25], 14.30 MeV [15], 16.50 MeV [26], and
15.75 MeV[16].

We have also studied the EOS and structure of a PNS with
neutrino free charge neutral matter in beta equilibrium. We
find that as the PNS cools fromS=2 to S=0, the maximum
mass and radius exhibit a slow decrease. Thus the influence
of entropy per baryon, or equivalently the temperature on the
structure of PNS, is not very sensitive. It is also observed
that at finite entropy per baryon, the star has a large number
of protons over an extended region of density. The tempera-
ture varies slowly in the interior of the star but falls rapidly
towards the low density surface region and the maximum
temperature of the core of the star forS=2 is about 62 MeV.
All these results of the PNS are in fair agreement with that
obtained in Ref.[11].
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