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Warm asymmetric nuclear matter and proto-neutron star structure
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The asymmetric nuclear matter equation of state at finite temperature is studied in(®@)ecBital sigma
model using mean-field approximation. The effect of temperature on effective mass, entropy, and binding
energy is discussed. Treating the system to possess two conserved charges, the liquid-gas phase transition is
investigated. We have also discussed the effect of the proton fraction on critical temperature with and without
a p-meson contribution. We also apply our model to study the structure of the proto-neutron star with neutrino
free charge-neutral matter in beta equilibrium. We found that the mass and radius of the star decreases as it
cools from the entropy per bary@r2 to S=0 and the maximum temperature of the core of the star is about
62 MeV for S=2.
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I. INTRODUCTION scribes the variation of energy density and pressure with den-

ise K led f1h . ¢ | sity and temperature, it can be used to study gaseous and
A precise knowledge of the properties of nuclear matter afiq iq nuclear matter phases up to the deconfinement transi-

normal nuclear density and higher is of great importance fofjon |t js also possible to study the liquid-gas phase transi-
the understanding of compact stellar objects like neutroRion, which may occur in the warm and dilute nuclear matter
stars and the results of heavy-ion collision experiments. Ongroduced in heavy-ion collisions. Several authors using non-
of the celebrated models for study of nuclear matter using gelativistic[12] and relativistiq{13—17 theories have studied
relativistic quantum mean field was introduced by Waleckaiquid-gas phase transition. Most of the calculations found
[1] involving a scalar and a vector field along with the the critical temperatur&, lying in the range of 14—20 MeV
nucleon field. This model and its extensid@$ while repro-  for symmetric nuclear matter. The critical temperature of
ducing familiar nuclear properties well, gives rather a highsymmetric nuclear matter for the relativistic Walecka model
value for the nuclear bulk modulus. A parallel and equallyis T.=~18.3 MeV [18]. As the asymmetry parameter or the
powerful model to study nuclear matter has been to use thproton fraction plays a vital role in determining the critical
chiral symmetry first emphasized by Lee and Wik The temperature, the addition of @meson is quite essential for
nonlinear terms in the chiral sigma model give rise to thethe study of asymmetric nuclear mat{és, 14. _
three-body forces which become significant in the high den- Field theoretical finite temperature EOS plays an impor-
sity regime[4]. Further, the energy per nucleon at saturationfant role in studying the properties and structure of hot dense
needed the introduction of a dynamically generated isoscaldP@ssive stars such as proto-neutron stars at different tem-
field [5] in addition to the scalar field of piori§]. The in- peratures and densities. The important characteristics which

: : : : P determine the composition of matter in a compact star are
corporation of the interaction of the isospin tripjetvector . . oL ;
meson has been found essential for description of neutro 19] their relative compressibilitieémportant to determine
ich asymmetri nuclear matter] The modified S@) oni- AR E TR 8 O o S e
ral sigma mode(MCH) with the introduction of cubic and

uartic interaction term$8] have been used by us in our N, p, & neutrino abundancgsand specific heatmportant
4 y to determine local temperatujehese characteristics vary

earlier works{9) to study the phase transition petween .qua”ﬂ/vith the EOS used in different models. Generally, the struc-
and nuclear matter and the structure of a hybrid star with ONg os of both hot and cold. and béth neutror’1-rich and

a.nd two conse.rvgd charges at Zero temperature. HOV.ve.V%{eutron-poor, stars are fixed by the EQS8L]. A proto-
since the description of astrophysical and heavy-ion collision

henomena requires the study of asymmetric nuclear matt feutron stafPNY is born following the gravitational col-
P d y Y %pse of the core of a massive star during a supernova explo-

(’rﬁofcljri]flitee d%ﬂg?gﬁﬁ:’s\;verh;nnigge:'v:rk r\évlasck;] tt% (fei)r(]titeen?e%lfrsion(type Il) and evolves to a cold and deleptonized neutron
9 PP star, basically through neutrino emission. This very dense

peratures. . . and hot core is also able to trap neutrinos, imparting momen-
The study of properties of hot dense asymmetric nUde"‘.‘fum to the outer layers and then cooling as it reaches a qua-
Qiequilibrium state. There can also be a quark-hadron phase
éransition in PNS at high density and temperat{2@].
In this paper we have extended our earlier st{@ij on
finite temperature EOS by addingoaneson to the Lagrang-
ian density within the MCH moddR] as the addition of the
p meson is quite essential for the study of asymmetric
*Email address: pkjena@iopb.res.in nuclear matter. In our earlier work we have studied the effect
"Email address: lambodar@iopb.res.in of temperature on EOS, effective mass, entropy, and binding

connection with astrophysical problerfid0,1]], such as su-
pernova explosions, the evolution of neutron stars, an
heavy-ion collisions. As the equation of stateOS de-
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energy for symmetric nuclear matter and investigated the Ng

liquid-gas phase transition using the same model without the wo = R 3
p meson. We now study here how the asymmetry parameter @

or proton fraction in addition to thp meson changes those and that for thep field is given by
properties at finite temperatures. As finite temperature EOS

has an important role in studying the structure and properties Po=(9,/2m)(ny = ny). (4)
of astrophysical objects, we have also investigated the StrUGrg(=n,+n,) is the baryon number density at temperatiire
ture of PNS takings-stable charge neutral matter without gng is given by

neutrinos consisting of neutrons, protons, and electrons only.

In Sec. I, application of our model to the study of asym- 2 —
metric nuclear matter at finite temperature is presented. In Mg = 2m®), d*k[ni(T) = m(M], (5)
Sec. lll, we apply our model to study the characteristics of
the proto-neutron star. We conclude with some remarks invith
Sec. IV. L
N = Ewway 1 (6)
Il. ASYMMETRIC NUCLEAR MATTER
AT FINITE TEMPERATURE 1
A. Equation of state m(T) = B (K+m)B 4 17 ()

Continuing our earlier investigatiof®] on the study of wherei=n,p, E* (k)=(k?+y?m?)2 is the effective nucleon
the finite temperature effect of asymmetric nuclear matteenergy, 8= 1/KgT, and y(=2) is the spin degeneracy factor
using the MCH model, we include here thefield in the  jth n,(T) andn;(T) being Fermi-Dirac distribution functions
Lagrangian density. The EOS for the hadronic phase is cakyy particle and antiparticle, respectively, at finite tempera-
culated by using the Lagrangian densfi3] (with 2=C  {yre y is the effective baryon chemical potential which is

=Kaottzman=1), related to the chemical potential as
_1 = d 1 v A 2 2\2 = —CwnB—Eﬂn—n 8
L—E(&MW-&“W+ o"Ma(?"U)—ZFWF" _Z(X - X9 Bp=HpT T2 4( p~ N, (8)
AB 2 2\3 AC 2 2\4 Y, . s >
- —(Xc - - — (X = —_ =+ | . Cwn C
or? < O g X X0 G DT My =i =g = ). ©
+ Z(i Yu" = QoY ") Yt %gixzw#w“ - %GWG’“’ The effective mass factor=x/x, must be determined self-

consistently from the equation of motion for the scalar field

. 1, 1 — L which is given by
> Mol P = 5951, V). 1) 2 5 ¢ L ac.Ck
(1—y)—mzc (1-y9) +m4C2(1—y) +m2—y4
In the above LagrangianF,,=d,0,-d,0,,G,,=d,p, ¢ ¢
=3,p,, andx=(7%+0?)Y2, y is the nucleon isospin doublet, _Cyy (” dkk(ni(T) + ni(T)) 0 10
7 is the pseudoscalar-isovector pion field,is the scalar = ), K2+ m2 T

field, and w, is a dynamically generated isoscalar vector
field, which couples to the conserved baryonic currfgnt  m* =ymis the effective mass of the nucleon and the cou-

=4y, . f,, is the isotriplet vector meson field with mass. ~ Pling constants are expressed through

B andC are constant coefficients associated with the higher- gz gz
order self-interactions of the scalar field. C,= FH C,=—5, and C,= gﬁ/mﬁ. (11
The masses of the nucleon, scalar meson, and vector me- o m,
son generated spontaneously by the Higgs mechanism argne symmetry energy coefficient that follows from the semi-
respectively, given by empirical nuclear mass formula 8]
3 2
m= gch01 ma' = V’/XXOI mw = ngO' (2) = Cpkf + kf

12w e m?

Here g is the vacuum expectation value of thefield; g,, N )
g,, andg, are the coupling constants for the vector and sca- Now the nucleon number densities, energy density, and
lar fields, respectively, and=(m?-mZ)/(2f2), wherem, is ~ Pressure at finite temperature and finite density are given by
the pion mass anél, is the pion decay coupling constant. o

Using mean-field approximation, the equation of motion Np= L4 3f BNy (T) = ny(M1, (12)
for the isoscalar vector meson field is (2m)Jo
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The entropy densityS/V) and entropy per baryof®) can be nB(fm_3)
obtained as
FIG. 1. Effective mass as a function of baryon number density at
SV=(P+ €~ uyn, — unhp) B, different temperatures.
S=(P+ €~ upny — o) B/Ng. (16)  ofisospin[lz=(n,—n,/2)] or equivalently the proton fraction

. ) (Yp)- Thus the stability criteria may be expressed by the fol-
In order to describe the asymmetric nuclear matter one caging relations[16]:

introduce the proton fraction which is defined as

P
n nB = <_) > 0, (18)
yp= _E, (17) 0nB T,yp
Ng
for the neutron mattey,=0 and for symmetric nuclear mat- (5_:“9) >0 Or(ﬂﬂn> <0. (19)
tery,=0.5. Yo /1P IYp /1P

The values of four paramete&;,,C,,,C,,B andC occur-
ring in the above equations are obtair@ by fitting with
the saturation values of binding energy/nucleon
(-16.3 MeV), saturation density0.153 fn73), symmetry en-
ergy (32 MeV), effective (Landay mass (0.85 m, and
nuclear incompressibility~300 MeV), are C,=1.999 fn,
C,=6.816 fnf, C,=4.661 fnf, B=-99.985, and C
=-132.246. For a given value of; at fixedy, and/orT, the
equationg10,12,13 can be solved self-consistently to get First, we discuss the effective nucleon mass of nuclear
Mp, @nd uy, and using these values the energy density, presmatter at finite temperature and density. Figure 1 shows the
sure, entropy density, and entropy per baryon can be evaleffective mass versus number density at temperaflire,
ated. 100, and 200 MeV. The solid lines are fgg=0.5 and the

Now let us discuss the liquid-gas phase transition. In thedotted lines are foy,=0. It is observed that in all tempera-
case of the more common single component phase equilibriauires m* decreases with the increase of. For T=0 or T
such as liquid vapor, the phases are distinguished by only 100 MeV, the effective mass varies little wigh, whereas
one parameter, e.g., the density, whereas the binary mixtuieis very sensitive withy, for T=200 MeV. It is also clear
has the additional parameter, the proton fracignwhich is  that at zero density, the effective mass is the same for neu-
different from one phase to anothi@2]. For the description tron matter and symmetric matter at different temperatures.
of the liquid-gas phase transition we have followed here thedence, these results indicatg5] that the nucleons of neu-
thermodynamic approach of Refd.6,22,23. In the case of tron matter must stay in higher-energy levels compared to
asymmetric nuclear matter, the system is characterized byat of symmetric matter in order to have the same number
two conserved charges, namely, the baryon derisityn,  density and the difference will decrease as the number den-
+n,) and the total charge or equivalently the third componensity decreases. Further, the departurendf from its bare

The first inequality shows that isothermal compressibility is
positive which implies that the system is mechanically
stable. The second condition expresses the diffusive stability.
If any of the three stability criteria are violated then there
will be a phase separatidi].

B. Results and discussions
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FIG. 2. Effective mass as a function of temperature for constant

baryon number densities. FIG. 3. (a) Binding energy per nucleon as a function of baryon
é&ﬁnber density at different temperatures for symmetric nuclear
matter.(b) Pressure as a function of baryon number density at dif-
{Srent temperaturegc) Entropy density as a function of baryon

value at higher temperature as presented here has also b
observed15,25,26 by investigators working in other mod-

els. The explanation behind such an observation is obscure . N )
number density at different temperaturéd. Pressure as a function

us. . . .
In Figure 2 we show the effective mass as a function°f baryon number density for different proton fractions at tempera-

temperature at zero densitpg=0) and saturation density ture T=10 MeV.
(ng=0.153 fn3). The solid lines are for symmetric nuclear the curve becomes positive. It is also observed that as the
matter (y,=0.5 and the dotted lines for neutron mat(y,  temperature increases, the nuclear matter becomes less
=0). Itis clear from Fig. 2 that fong=0, the solid and dotted bound and the saturation curves in the MCH model look
lines are the same, whereas fy=n,, they, dependence is flatter than those observed in the Walecka mo@s,2§.
sensitive to the temperature lying between 150 andrhis result implies that the nuclear matter EOS in the MCH
240 MeV. The two lines again coincide at higher temperaimodel is softer than that obtained in the Walecka model.
tures. It is also observed that foz=n,, the m* first in- In Fig. 3b), we show the pressure as a function of density
creases slowly and then falls suddenly at abolt ng at different temperatures. The solid lines are for symmet-
=~ 240 MeV. But forng=0, m* remains almost constant as ric nuclear matter and the dotted lines are for pure neutron
the temperature increases and falls suddenly at aBout matter that is stiffer at all temperatures. For a giventhe
~235 MeV. This sudden fall indicates a first-order phasepressure has the usual trend of increasing with temperature
transition appearing fang=0, atT~235 MeV similar to the [27]. As the temperature increases the EOS becomes stiffer.
result obtained for the Walecka model, which has such dhe pressure has a nonzero valuerigr0 at and above a
phase transition al =185 MeV [24]. This effect has also temperature of 200 MeV. It indicates that the pressure has a
been observed by Wang5] at T=200 MeV and by Hua, contribution arising from the thermal distribution functions
Bo, and Di Toro[25] at T= 160 MeV. Hua, Bo, and Di Toro for baryons and antibaryons as well as from the nonzero
[25] argue that because of the strong attraction between thealue of the scalar field. Similar results were also obtained
nucleons at high temperatures the nucleon-antinucleon paitsyy Pandeet al. [28] for symmetric nuclear matter. The non-
can be formed which may lead to an abrupt changenin  zero value for scalar a field has also been observed in the
taking place in the high temperature region. But the mechawalecka mode[27].
nism of this first-order phase transition is no-clear. The entropy density as a function of density at different
Figure 3a) shows the binding energy per nucleon as atemperatures for symmetric nuclear matter and pure neutron
function of the baryon density at different temperatures formatter is presented in Fig(@. It is observed that the en-
symmetric nuclear mattey,=0.5. At zero temperature it has tropy density for both is nonzero even at a vanishing baryon
a minimum at the nuclear saturation densigywhich corre-  density at a temperature of 200 MeV with contributions from
sponds to a binding energy per nucleon of —16.3 MeV. Withthe nonzero value of the sigma field. Similar behavior was
the increase of temperature the minimum shifts towardsiso observed for the entropy density in the Walecka model
higher densities and for higher temperatures the minimum oind Zimanyi-Moszokowski{ZM) model calculationg26].
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FIG. 5. Pressure as a function of baryon number density for
FIG. 4. Chemical potentials as a function yf at temperature ~ different proton fractions.
T=10 MeV andP=0.1 MeV/fr?. ) ) .
temperature T,, which is determined by (9P/(9nB|TC
This increase of entropy density with increase of temperature ;2p/ #ng|; =0, above which the liquid-gas phase transition
S » .
indicates a phase transition. . is continuous. Foly,=0.5, we have obtained the value of
We now discuss the liquid-gas phase transition. The presgitical temperature T,~17.2 MeV, critical density n,
sure as a function of baryon density at fixed temperalure g 045 2 critical pressurep,~0.274 MeV/fni3, and
=10 MeV with different proton fractions is shown in Fig. ¢itical effective massn,~887 MeV, which is in fair agree-
3(d). It may be obs_erved from Fig.(@ that for any fixed  ment with the results obtained in other studig,25,28.
density with fixedT=10 MeV, the pressure is not constant, |, Fig. 6, we plot the variation of critical temperature with

rather it increases with decrease of the proton fraction. Thi%lifferent proton fraction$yp) with and withoutp. The criti-

clearly indicates that for asymmetric nuclear matter duringcal temperatureT, decreases monotonicalfL7,29 as the
C )

the is_otherm quuid—gas phase transition _the pressure c:ananoton fraction decreases and goes to zeroyfr0.02 with
remain constant but increases monotonically. It shows that

for smally,, particularly for neutron mattey,=0), the pres- 20
sure increases monotonically which indicates that matter is
stable at all densities. But foy,=0.2, the compressibility
becomes negative, indicating mechanical instability. The dif-
fusive unstable regions can be seen clearly from Fig. 4,
where the chemical potentials of proton and neutron are
shown as a function ofy, at fixed pressureP
=0.1 MeV/fn? and temperaturd =10 MeV. According to

the inequality[20] the region of negative slope fqr, and
positive slope foru, is unstable. Thus violation of stability
criteria is an indication of phase separation.

Figure 5 shows the variation of pressure as a function of
baryon density for different,. One can see that the region of
mechanical instability decreases both with an increase of
temperature and decrease of proton fractidr]. Figure 5
shows that at zero temperature, the pressure first decreases,
then increases and passes throlylat ng=ny (saturation
density, where the binding energy per nucleon is a mini-
mum. Decrease of pressure with density implies a negative

T, (MeV)

incompressibilityK=9(dP/dng), which is a sign of mechani- Y,
cal instability. When the temperature increases the region of
mechanical instability decreases and disappears at the critical FIG. 6. Critical temperature vs proton fractigp.
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FIG. 7. Pressure as a function of number density at fixed enSity at fixed entropy per baryon.
tropy per baryon.
consider here a case in which matter consists of neutrons,
p, whereasT.=11.6 aty,=0 without p. This indicates that protons, and electrons whose relative concentrations are de-

addition of thep meson lowers the critical temperature at termined from the conditions of charge neutrality ghequi-
smallery,. As may be seen from the equatiofg9], the librium in the absence of neutrino trappifigd].

addition of thep meson gives a repulsive potential which ~ The S equilibrium (without neutrino trappingand the
makes the nuclear matter easier to be gasified. But for neigharge neutrality conditions are, respectively, given by

tron matter(y,=0), the system only remains in the gas phase

even at zero temperatufé5s]. M= Hp + fle, (20

and

IIl. PROTO-NEUTRON STAR Ny =Ne, (21)
In this section, as our second application, we undertake a , .

study of the structure and properties of the proto-neutrof/Nere ue and ne are the chemical potentials and number

star. A PNS is born following the gravitational collapse of the d€nsity of electrons, respectively.

core of a massive star during a supernova explogigpe I). _The electron number density at finite temperature can be

It is a hot collapsed core which can reach temperatures a¥rtten as

high as few tens of MeV. The evolution of the PNS proceed- -

in_g through_ several distinc_t states with various_ outcomes is N = Y . f d*Kn(T) = ()], (22)

discussed in Ref[11]. During the early evolution of the (2m)°J,

PNS, a neutron star with an entropy per baryon of order of

unity contains neutrinos that are trapped in matter on a dywhere

namical time scale and after a lapse of a few tens of seconds

the star achieves its cold catalyzed structure with essentially _ 1 — 1

zero temperature and zero trapped neutrinos. A PNS has ap- ne(T) = e(\ym_wﬁ_k 1’ ne(T) = e(\ﬁmmew_k 1'

proximately uniform entropy per barydf) of 1-2 across the

star[30]. At birth the PNS ha$=1. After deleptonization the (23

entropy per baryon reaches its maximg8r 2) and finally ) ) ) )
cools down to its cold state wits=0 [11]. The finite tem- The number density of neutrons and protons is defined in

perature aspect of the EOS plays an important role in th&9S:(12) and(13). The extra terms which must be added to
study of the properties and structure of the PNS. the energy density and pressiigaven in Eqs(14) and(15)]

The structure of the PNS mainly depends on its composi@'®: respectively,
tion [11]. Since the composition of the neutron star basically "
depends on the nature of the strong interactions, which are Lf dkkz\/(kTmﬁ)[n (T) +1(T)] (24)
not well understood in dense matter, one has to investigate 27 ), € e
various possible conditions taking many possible models.
Out of the various possible cases discussed in Héf, we and
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FIG. 10. Chemical potential vs number density in beta equilib-
R (km) rium at fixed entropy per baryon S.

FIG. 9. Radius vs star mass at fixed entropy per baryon. 62 MeV, which is in fair agreement with the results obtained
in Ref. [11]. In neutron stars, the pressure is supported,
y (7 dkK[ng(T) + ny(T)] Iarge_ly provided by strongly int_era(_:ting baryons which hav_e
. ——— . (25 relatively smaller thermal contributions to the pressure. This
67 Jo V(k®+me) results in a small increase in the maximum mass of the neu-
tron star. Thus the compositional variable of EOS plays a
For a given value ofg, with fixed S=0,1, or 2, theequa-  more important role than the temperature for the structure of
tions [10,12,13,16,2Pare to be solved self-consistently us- neutron staf11].
ing Egs.(20) and (21) to get uy, e, Ny, Y, and T, and from The chemical potentials of,p, ande in beta equilibrium
which we getun(=up+ue) andyy(=ny/ng). Then these val-  for fixed entropy per baryo8=0,1, and 2 arshown in Fig.
ues can be substituted to get the pressure and energy density. It is clear thaju, increases linearly with number density
After getting the pressure as a function of the energy densitywhereasu,, and u,, first decrease and then increase linearly.
the TOV equations can be integrated using the proper boundrhe increase of electron chemical potential with number
ary conditions[9] to get the mass and radius of the star atdensity implies the abundance of negatively charged par-
fixed entropy per baryo®. ticles (electron$ which shows that the system has a large
The pressure as a function of number densitySe0,1,  number of protons over an extended region of density. It may
and 2 is shown in Fig. 7. One can mark from Fig. 7 that thebe seen from Fig. 10 that in the very lower-density region the
EOS becomes softer as the entropy per baryon decreaspsoton abundance is large, then decreases to some extent,
from S=2 to S=0, which indicates the lowering of mass and and then increases linearly in the high-density region.
radius, as shown in Figs. 8 and 9, respectively. For different The temperature as a function of energy density at fixed
values ofS, the radius, energy density, pressure, number derentropy per baryon is shown in Fig. 11. The temperature of
sity, and temperature corresponding to the maximum maste star increases for bo8 1 andS=2 from which one can
are given in Table I. get the critical temperature corresponding to the maximum
The results in Table | reflect the influence of entropy onmass of the star. The temperature is maximum at the center
the gross properties of stars. It is observed that an increase &f the star (where the central energy density is about
maximum mass and radius up$s2 amounts to only a few 1100-1200 MeV/fm for a maximum mass staand de-
percent of their respective values for the cold star, and thereases with decreasing energy density, which is faster par-
maximum temperature of the core is found to be aroundicularly at lower energy densities. This implies that the in-

TABLE |. Star properties for matter in beta equilibrium at finite entropy.

S Muax/ Mo R (km) e (MeV/fm3) ne (fm™) P. (MeV/fm?3) T, (MeV)
0 2.18 12.14 1230 0.97 304.71 0.0
1 2.21 12.23 1190 0.94 294.85 27.85
2 2.33 12.45 1092 0.85 272.24 62.12
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80 ; - y y y y critical temperaturelT, depends sensitively on the proton
fractiony,,. T, decreases with the decreaseypfas shown in
Fig. 6. The value of the critical temperature decreases from
T,~17.2to 11.6 MeV fory,=0.5 to 0 without thep meson
and fromT,~17.2 to 0 MeV fory,=0.5 to 0.2 with thep
meson. Hence, the addition of themeson seems to be very
important to the study of the properties of asymmetric
nuclear matter as it lowers the critical temperature. This also
shows that even at zero temperature the system remains only
in the gas phase for neutron mattgg=0). At fixed tempera-
ture and density the pressure of the system increases with the
decrease of the proton fractigghown in Fig. 8d)], which
indicates that during the isotherm liquid-gas phase transition
the pressure cannot remain constant for asymmetric nuclear
matter. In comparision with other modélg varies withy,, in
all models but the values are different in different mean-field
models such as ay,=0.5,T; varies as 18.3 MeV[1§],
. . . . s s 12.66 MeV [25], 14.30 MeV [15], 16.50 MeV [26], and
0 200 400 600 800 1000 1200 15.75 MeV[16].

We have also studied the EOS and structure of a PNS with
neutrino free charge neutral matter in beta equilibrium. We

FIG. 11. Temperature vs energy density of the proto-neutrorind that as the PNS cools fro=2 to S=0, the maximum
star. mass and radius exhibit a slow decrease. Thus the influence
of entropy per baryon, or equivalently the temperature on the
structure of PNS, is not very sensitive. It is also observed
hat at finite entropy per baryon, the star has a large number
of protons over an extended region of density. The tempera-
ture varies slowly in the interior of the star but falls rapidly
towards the low density surface region and the maximum
IV. CONCLUSIONS temperature of the core of the star 8% 2 is about 62 MeV.

We, in this work, have applied the MCH mod@l] to the All these results of the PNS are in fair agreement with that

study of asymmetric nuclear matter at finite temperature anabtamed in Ref{11].
the structure of a PNS. We have presented the behavior of
the effective nucleon mass, energy per baryon, entropy den-
sity, entropy per baryon, and pressure as a function of density P. K. Jena would like to thank the Council of Scientific
of asymmetric nuclear matter for various temperatures. Aand Industrial Research, Government of India, for the award
zero density we find that this model exhibits a phase transief SRF, with financial support under Grant No. 9/1(281)/

tion atT~ 235 MeV just as obatined in the Walecka model at2000/EMR-I. Help of the Institute of Physics, Bhubaneswar,
T~185 MeV. This model exhibits the existence of a liquid- India, is warmly acknowledged for providing the library and
gas phase transition in asymmetric nuclear matter and theomputational facility.

0

& (MeV/fm®)

terior of the star maintains a small variation of temperatur
but falls rapidly towards the surface region as the densit
decreases.
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