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Liquid-gas phase transition in strange hadronic matter
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The liquid-gas phase transition in strange hadronic matter is studied utilizing an extended Furnstahl-Serot-
Tang model with nucleons and hyperons. The system is treated as of two components. The phase transition is
analyzed by investigating the stability of the system and Gibbs conditions for phase equilibrium. A two-
dimensional binodal surface resulting from the two-phase equilibrium—namely, the phase boundary—is ob-
tained. For each temperature ranging frém8 to 12 MeV, a limit pressure on the binodal surface section is
found, while a critical point is spotted for the temperature arolind3 MeV. Maxwell constructions are also
illustrated to give a vivid description of the course of the phase transition. Moreover, the entropy per baryon
and heat capacity per baryon as functions of temperature are examined. The entropy is continuous during the
phase transition but the heat capacity is discontinuous, indicating that the phase transition is of second order.
By these efforts, the liquid-gas phase transition can be concluded to exist in strange hadronic matter.
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[. INTRODUCTION is of second order by Ehrenfest’s definitifitv]. The entropy
) ) o o and volume as the first-order derivatives of the chemical po-
Since the nuclear interaction is Very similar to the van dertentials are Continuous and the heat Capacity as the Second_
Waals potential between molecules, the possible existence gfder derivative is discontinuous at the point of the phase
a liquid-gas(L-G) phase transition in nuclear matter was transition. The phase coexistence surface of this binary sys-
predicated by theoretical studigs-3]. This predication was tem of two phases is two dimensior{dl7—24.
supported later by intermediate-energy heavy-ion collisions Since the first hypernucleus was detected in emulsion by
[4] and high-energy proton-induced reacti¢bp The idea of Danysz and PniewsKi25] in 1953, strangeness carried by
an L-G phase transition in nuclear matter emerged and athe s quark has opened a new dimension for the studies in
tracted much intereg§6—12. This interest has increased in nuclear physics. With the hyperons included in, nuclear mat-
the last decade, with attempts by the EOS Collaboration téer is extended to strange hadronic mag&M). Employing
extract exponents of 1 GeV/nucleon Au nuclei with a carbordifferent models, the equation of state and the stability of the
target[13] and with the extraction by the ALADIN/LAND SHM have been investigat¢d6-31. However, besides the
Collaboration of a caloric curve resulting from the fragmen-deconfinement phase transition to the quark gluon plasma

tation of the quasiprojectile formed in the collision Au+Au (QGP), whether there exists an L-G phase transition in the

at 600 MeV/nucleon exhibiting a behavior expected for aSHM is still an open question in theoretical physics. As the

first-order L-G phase transitiofi4]. Very rich information interactions between hyperon_s and nucleons or between hy-
has already been extracted from exclusive experimental da |§Ir Oirgsisaiaasliga%léhg) bgeuheasvslotrth iﬂgr\éa\?viﬁe;ggagf ;ﬁ’_teg'
during the intermediate-energy heavy-ion collisions, as the, ’ o . . 2
new generation 4 detectors %);ve bei/an developed and ar§hase transition in the SHM. It is the main purpose of this

" ¢ diff ¢ lerator facilit h aper to study this problem.
nOow operating at different accelerator faciliies, SUCh as 4 i pejieved that the descriptions of nuclear matter and

Dlubna, GANIL, GSI, LNL, LNS, MSU, and Texas A-M finite nuclei are ultimately governed by the physics of low-
[ a‘l'.h' L-G ph o | energy quantum chromodynami¢®CD). Because of the
| 'Sd > P hase rt]ran5|t|on| N nluc ezér m‘?‘“elf GOC%L]”S alhonperturbative properties of QCD, it is very difficult to es-
owerh ensity t ap t Ii norrlna nuc e_alr. e.gsmy[h ]- eh blish a fundamental theory of the nuclear system from
two phases are of cold nuclear Fermi liquid on the one hangyop ope usually adopts various phenomenological models
and a nuclear gas consisting of free nucleons on the oth ased on either the hadron degree of freedom or quark de-
hand. For symmetric nuclear matter, having an equal nUmbgf.ca of freedom. In our previous papd@d,32, we sug-
of protons_ and neutrons, this LG phase transition is k_nov_v ested an effective model, constructed by introducing hyper-
to be of first order. However, Miller and Serot have indi- J < iy the Furnstahl-Serot-TangST) model [33,34, to
cated that the phase transition in asymmetric nuclear mattesrtudy the saturation properties and stabilities o;‘ th,e SHM.
The details of this model can be found in REF1]. Here we
only give a short description.

*Electronic address: wigian@fudan.edu.cn In Refs.[31,33, we extended the original FST model to
"Electronic address: rksu@fudan.ac.cn include not only nucleons ana,» mesons, but alsd ,=
*Electronic address: songhq@sinr.ac.cn;Ref:24-430 hyperons. A new hyperon-hyperon interaction mediated by
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two additional strange mesow$ and ¢, which couple only N\ 1 [\ 1] 1 ,

to hyperons, is introduced. The reactiohs A —Z"+p,A —Hq g 2_d|n % T4 —Zs}wsﬂ
+A — E%+n and their reverses are considered. In this model,

we did not consider the mixture of the hyperons. The 1, 1 .« 2 s

reason, as was explained in REf1], is twofold. First, theS *oMbud” E(avo do —mo). (1)

potential in nuclear matter at the saturation density is rather i o ) )
uncertainly predicted, ranging from completely unbo{®&| In the mean-field approximation, the Lagrangian can be writ-
to Uy=-25+5 MeV [36]. As pointed out by Balbergt al. ~ ten as

[37], systems involvingX’s together with nucleons oA’s R B —

generally will be unstable with respect to the strong decays “MFT = In( 79, + 9unyVo = M+ Ganoo) t + Ya (170,

S+N—A+NorX+A—Z=+N. Second, th& values for the = gur Y Vo - 9¢A7’0¢o =My + Jsr 00 + Uo A 0Q) Un
strong transitions S+N—A+N,3+3 - A+A S+A—E _

+N, and>+= — A+E are about 78, 156, 50, and 80 MeV, + =199, = 9oz ¥ Vo~ Up= Y do — Mz + 9= 09
respectively{38]. To Pauli-block these processes, we need a 1 o 1

rather high density ofA. On the other hand, th@ value of + 0,200 Y= + —<1 + 77_0>miV§ + (g Vo)
E+N—A+A is only about 28 MeV. This process can be -T2 S 4l

Pauli blocked by a relatively lowA density. Based on this A 0|4

model, the stability, the density, temperature, and strangeness + §m¢¢0 - Em"*a - Hq(l - —)

fraction dependence of the effective masses of nucleons and S

baryons, the pressure, the free energy, and the equation of 1 op) 1

state are studied, and the results are reasonable. X a'” 1 ‘g al (2)

The paper evolves from an attempt to study the L-G phase
transition of SHM by employing the extended FST model. Inwhere the meson field operators have been replaced by their
Sec. Il the extended FST model is laid out. The SHM ismean-field valuespy, Vo, oo, andoy,. Hereg; are the cou-
modeled as a two-component system ready for the discussiging constants of baryoim to mesoni field. By using the
of the phase transition. The thermodynamic quantities fostandard technique of statistical mechanics, the thermody-
this model are briefly derived. By analyzing the equilibrium namic potentiak} is obtained:
conditions the phase sections are addressed in Sec. lll. The { oo\l 1 oo 1 1
thermodynamical properties and the phase transition are dis- () = V(Hg (1 - —) [—In(l - —) - —] + =
cussed and the order of the phase transition is also examined. S d S/ 4] 4
Section 1V finally summarizes the main results about the 1( oo

1
existence of the L-G phase transition in the SHM. S\ ﬂg)miVS‘ Eé(ngVo)4

1 1 2 *
Il. EXTENDED FST MODEL - Emﬁ,(ﬁ%“‘ Emi*(fo ) - 2kBT{% In[1 +e AE R
The original FST model is extended by includingand et e

E hyperons and two additional strange mesefsand ¢ to + E In[1 +e# (k)”')]}’ ()
describe the hyperons and the interactions between them as Lk

suggested in Ref31]. Since we are studying the unpolarized where 8 is the inverse temperature aiwlis the volume of
system, ther meson has no influence on the system and ishe system,
omitted. To reduce the degrees of freedom, we need some A o
assumptions. First, we assume tf&t and E° appear in Ei (k) = VM;“ + k7, (4)

equal amounts. Also we have protons and neutrons in equgith the effective masses of the hyperons and nucleons,
amounts, which is similar to protons and neutrons in sym-

metric nuclear matter. These assumptions mean that we are M; =M; - gs00= 0,00 (i=A,E), (5)
looking at matter with zero isospin. But the remarkable new X
degree of freedom—strangeness—is included. The Lagrang- M; =M;-gsiog (i=N). (6)
ian of the extended FST model is presented as follows: The mean-field valuegy, Vo, oo andag are determined by
— _ _ e the corresponding extreme conditions of the thermodynamic
L(X) = n(iyHa V,—My+ + (%) . . . .
00 = 1779, = Gny Vi = M+ Gano) i + ¥l yﬂ " potential. For instance, the equation f¢rmeson is deter-
= 0uA YV~ Gga Vb = Mp +Gaa0 + G a0 )Py mined by
+ U290, ~ 0,z YV, — g Vb, ~ Mz + Gz Al @

Voo =0
0"(15000 0% Hi

. 1 L1 o\ ,
+0,20 )bz~ 25wt 5(1 + ”g))mwvuw in explicit form

mf/,d’o =~ dgaper ~ Ygzpe= = 0. (8)

1, 1
+ UGNV VA2 + 2o
4!4“(ng wV") 277 The baryon densityy; is given by
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=wn=% [ aemw-nel, @ 2
P A 50 [k {ﬁz[Ei*(k) - wleXp(BILE; (9 = u1)
whereg,=4 fori=N or  andg,=2 fori=A. The baryon and ;67 Ei (k) [exp(B{[E; (K) = »]D) + 1
antibaryon distributions are, respectively, expressed as . B(E; (K) + v)exp(B{[E; (k) + ,,i]})}
; > (16)

() = {exd A(E; (0 = )]+ 17 (10) [exp(B{(E (0 + wl}) + 1]
and lll. L-G PHASE TRANSITION

(k) ={exd B(E; (K) + )]+ 1} (11) In this section, we employ the extended FST model to

investigate the L-G phase transition in the SHM at different
strangeness fractions. In the calculation, the parameter set T1
given in Ref.[31] is used.
_ As the hot and dilute SHM is only obtained on Earth by
HN = PN T 9unVo, relativistic heavy-ion collisions, investigations of the thermo-
dynamic properties of the SHM are based on two basic as-
sumptions. One is that we can apply equilibrium thermody-
namics for such a small system of only a few hundred
constituents at the most. The other is that a thermalized uni-

sz = vz +0d,=Vot Jy=Po- (12 form system is formed in heavy-ion collisions before multi-

fragmentation takes placg39]. Although the equilibrium
In the system with an equal number of protons and neutronanalysis oversimplifies the study of the SHM, we still follow
as well as an equal number &° and -, the chemical the thermodynamic approach for the reason that this can give
equilibrium condition for the reactiond+A=n+E° and some concrete descriptions of the phase structure of the
A+A=p+E~ reads SHM and characterize certain aspects of the evolution.
We would like to discuss the stability of SHM first. To
2up = N+ Mz (13)  address the stability, we consider the Helmholtz free energy
density A(T, p;) defined by temperatur€ and baryon densi-

Equation(13) implies that only two components are indepen-ties p;. A system is stable against separation into two phases
dent amongN, A, andZE. The system of SHM described by if its free energy is lower than the free energy in all two-
the extended FST model is a two-component system. Thphase configurations. This statement is formulated as
nucleons(p andn) and the hyperongA, Z-, and 2°) play

in which v; are related to chemical potential by

A = VA +duaVo + Gga o,

the role of different components, respectively. The strange- F(Tp) < (L =MFT,p) + MNF(Tpi), 17)
ness fraction is introduced as with
fo= PBA + 2pgx (14) pi=(1=Np{ +\pj. (18
S PB ’ The two phases are denoted by a prime and a double prime.

In asymmetric nuclear matter, we may chogseas the
which plays the similar role as that of the asymmetric paramnuclear densityp and asymmetry parameter The param-
eter a=(pn—pp)/ (pn+pp) in asymmetric nuclear matter. We eter\=V"/V specifies the volume fraction of the phase with
can use the same method as that in Rgif$—21 to address double prime. Equatio(il8) ensures that the overall baryon
the L-G phase transition. densities are conserved. In the SHM here, we may use vari-

Following the usual procedure of statistical physics, weablespg, fs instead ofp;. The above stability condition im-
can easily calculate the other thermodynamic quantities fronplies the following set of inequalitield 7]
thermodynamic potential). For example, the pressure and
entropy density are calculated by formulps-Q/V and p(ﬂ) - 2(‘92_]:> >0 (19)
SIV=—(9Q HLIB) 1/ V=[3P! HLIB Wy o Vg sy THE 3 pg Ipg)ry,
results are expressed as follows:

T.fg

g K* _ o |4 (—‘MN> <0 or (—’9“5> >0, (20)
p=2> =5 | dk=——[m(K) + (k)] - H (1—— afs/tp afs/1p
. 67 Ei (k) S , :
wherep, uy, and uz are, respectively, the pressure, chemi-
1 oo\ 1| 1 1 a0\ 22 cal potentials for the nucleon, aril. The first inequality
X aln 1“% “alTa[ T2 1+ m,Vo (19) means that the isothermal compressibility is positive;

i.e., the system is mechanically stable. The second condition,
+ i(gfu Vg + }mﬁ,dﬁ _ lmz*a*z, (15) Eq. (20), refleg:ts the speci_gl charqcter of the binary system. It
4177 2 27 expresses “diffusive stability” which guarantees that energy
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FIG. 1. Pressgre as a function of ba_ryon density at temperature FIG. 2. Pressure as a function of baryon density at temperature
T=8 MeV for various strangeness fractiofis T=13 MeV for various strangeness fractiohs The mechanical
inflection point is at isotherm withi'=0.5.
is required to change the concentration in a stable system,
while holding the remaining variablép andT) fixed.
Now we begin to discuss the regioi=<1.0 [28] and _
show the possibility for an L-G phase transition in the SHM.pressurep-O.lO, 0.18, 0.28, and 0.35 MeV ff) respec-

To be more specific, Fig. 1 shows the pressure-baryon derEi_vely, in Fig. 5. There is an inflec_tion pointon_the curve with
sity isotherms at temperatur@=8 MeV with different pressurep®=0.28 MeV fni3. This pressure is called the

strangeness fractior&,=0.1, 0.3, 0.5, 0.8, and 1.00ne can critical pressu.re[17,2q! .above _Whif:h the system is stable
see that there is always a mechanical unstable section whePyt Pelow which condition20) is violated and the system
condition(19) is violated for any strangeness fractitycon- ~ Pecomes chemically unstable. The critical presgirés de-
sidered. This means that the system always encounters &&mined by the inflection point condition
unstable region and has to separate into two phases to main-

tain mechanical stability. This phenomenon remains up to

T=13 MeV. At temperaturd =13 MeV, as is illustrated in 10 T . .

Fig. 2, there is a mechanical inflection point which satisfies T=14MeV t'=01/03/ o5
the condition 1

#p

|
f=tM o d P

” =0, (21)

f=fM ] 0.8

with fg":O.S and the corresponding pressur@ 0.6 J
=0.24 MeV fni® and pg=0.063 fni3. For fs=0.8, it starts ¢~ 19
to decrease in the high-density region and a mechanicall)§
unstable section will occur. However, one cannot find a so- 2
lution which satisfies the Gibbs conditions in this regieae -
below in Fig. 3. To find the temperature dependence‘zﬁ)‘
we also show the situation foF=14 MeV in Fig. 3. The
mechanical inflection point is arourp=0.18 MeV fni® and 0.2 .
pg=0.04 fnT3 on the isotherm withf,=0.1 for T=14 MeV.
We find thatf¥ decreases when the temperature increases. It
Fig. 4, we present the pressure-density isotherms of fixec 44 ' ' ' '
strangeness fractiofi,=0.5 at different temperatures. One 0.00 0.05 0.10 0.15 020
can see again an inflection point on the curve with og( fm®)
=13 MeV.

Next, we will discuss the chemical instability by showing  FIG. 3. Pressure as a function of baryon density at temperature
the chemical potential isobars for nucleons afdagainst T=14 MeV for various strangeness fractiohs A mechanical in-
strangeness fractionf; at a temperaturéfl=13 MeV for  flection point is found at isotherm witf}!=0.1.
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FIG. 4. Pressure as a function of baryon density for fixed

s

FIG. 6. Geometrical construction used to obtain the strangeness

strangeness fractioh,=0.5 at various temperatures. A mechanical fraction and chemical potentials in the two coexisting phases at

inflection point is at isothernrT=13 MeV, below which isotherms

have mechanically unstable regions.

22,28,
Ifs)rp \ f? .

The result(p®,f$)=(0.28 MeV fn3,0.69 defines a critical

point for a given temperaturé=13 MeV.

(22)

fixed temperatur@=10 MeV and pressurp=0.09 MeV fni3. The
two solid crossing curves fouy (or uz) are the different parts of
the same continuous curve.

chemical, thermal, and mechanical equilibrium:
pe(T.o5 ) = ug(Te ) (q=NE), (29

(24)

When the system separates into two phases, the two co-

pH(T, pb, f5) = pC(T, p,19),

existent phases are governed by the Gibbs conditions, which

. Where the superscripts and G denote the liquid and gas
say that for two phasegor morg the system should be in phases, respectively. Here we only consider the situation of

n{Mev)

1300

1250

1200 >~
1

915 4
910

905 -

T=13MeV

0.0

T
0.2

04

f

s

0.6

0.8

1.0

the two-phase case. As to more than two phases, there is
some discussion in Ref17]. The solution{p",f%;pC, S
specifying the two separate phases in equilibrium can be eas-
ily found through a geometric approach. As an example, we
present in Fig. 6 the chemical-strangeness fraction isotherms
at temperaturd =10 MeV and pressurp=0.09 MeV fni3,

The desired solutions form the edges of a rectangle shown by
dotted lines. The phase with lowérighe fg corresponding

to a higher(lower) density is the liquid(gag phase. It is
obvious that the strangeness fractions are different in the two
phases. The collection of all such pai(g,T,fg) and
(p,T,fSG) forms a binodal surface of two dimensions, which
defines the phase separation boundary. The shape of the
whole binodal surface is similar to that in Ref47,20. To
explain clearly we show in Fig7 a section of the binodal
surface aff=13 MeV. In Fig. 7 the binodal curve is divided
into two branches by the zero-strangeness point and critical-
pressurgCP) point. The branch for largef represents the
gas phase with lower density and the other for the liquid
phase with higher density. In an isothermal compression, a

FIG. 5. Chemical potential isobars as a function of the strangeSystem with zero strangeness evolves until it encounters the

ness fractiorf, at fixed temperatur&=13 MeV. The curves labeled binodal and then remains there until the transition is com-
a—d have pressurep=0.10, 0.18, 0.28, and 0.35 MeV ff) re-  pleted. In an isothermal compression witjx 0.8, the L-G
spectively. PointA denotes the inflection point at the critical pres- phase transition cannot take place because the isothermal
surep©=0.28 MeV fni3, line does not cross the binodal surface. At the CP point, the
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FIG. 7. Binodal surface af=13 MeV. A critical pressur¢CP) FIG. 8. Binodal surface af=10 MeV. The binodal surface is
and the zero strangeness are indicated. The upper branch is for t@ﬁt off at a limit pressurg=0.095 MeV fn73. PointsA-D denote
liquid phase and the lower for the gas phase. The two branches joignases participating in a normal phase transition. Another phase

at the CP point. transition forf¢=0.5 is also illustrated by the dotted line.

liquid branch and gas branch join together smoothly and then ) _
the two phases can no longer be distinguished by their derftaction f;=0.15. During the compression, the phase bound-
sities. The CP point determines the maximum pressure in th@'y is encountered at poit At this point, the liquid phase
two-phase region. If the system is represented by the point ili about to emerge at poi, where the'strangeness fraction
the section lower than the gas phase branch, the system is fa=0.05. During the whole compression, the total strange-
the gas phase7 whereas if the System is at the point h|ghé~ess fraction of the SyStem conserves but the Stl’angeneSS
than the liquid phase branch, it is in the liquid phase. Befractions for the liquid and gas phases are changeable. As the
tween the two branches, the system is in the mixed phaseéompression proceeds, the gas phase evolves along the gas
with a special proportion between the liquid and gas phase$hase branch of the binodal surface from péirto D, while
The feature of the binodal curve at temperatlirel3 Mev  the liquid phase evolves frof to C along the liquid branch.
is very similar to those in asymmetric nuclear maftet,2Q. When the pressure of the system continues to increase, the
But for a temperature lower thafi=13 MeV, the critical ~ System leaves the two-phase region at p@imvhich has the
points could not be attained. Instead, we can always find §2me strangeness fraction with pofatCorrespondingly, at
limit pressure in the binodal surface. As an example, wePoint D on the gas branch with strangeness fracfign0.4,
show in Fig. 8 the section of the binodal surface at the temthe gas phase disappears. Since the two péirtsdC are at
perature T=10 MeV, where a limit pressurepjn, different branches of the binodal surface, the SHM has un-
=0.095 MeV fm3 is denoted by a horizontal dotted line. dergone an L-G phase transition.
When the pressure is higher than the limit pressyre the To configure out the evolution of the system between
L-G phase transition cannot take place. The cutoff behavioPointsA andC, we must solve the conservation equations
for the binodal surface has also been found in asymmetric — (1 —\\,0 L
nuclear matter described by the FST model with density- pe=(1=Mpg + Ao, 29
dependenNNp coupling g, [18,20. If g, is constant, the
cutoff behavior will not happen so that a critical point could
always be found and no limit pressure is obtained. In thidor the baryon density, strangeness fractions on the binodal
case, the L-G phase transition becomes more complicatedurface, and the proportian for given total baryon density
The limit pressure exists whefi<13 MeV even all cou- pg and strangeness fractidg The proportion\ is 0 at point
plings are constant. Aand 1 at poinC, and it runs through the intervgd, 1]. The

The Maxwell construction of the phase transition can nar+esult is the generalized Maxwell construction in the binary
rate a phase transition clearly and give concrete proof for theystem. The isotherms corresponding to Fig. 8 are drawn in
existence of the L-G phase transition. For a given temperaFig. 9. The system dose not evolve along the unphysical
ture, we will expatiate the behavior of SHM under isother-curve (the dotted ling It follows the nearly strait solid line
mal compression. AT=10 MeV, for instance, Fig. 8 illus- between point®\ and C, which is the result of the Maxwell
trates the situation of the isothermal compression. Assumeonstruction. Each point on the line corresponds to the stable
that the system is initially in the gas phase with strangenessonfiguration at each intermediate density during the phase

pefs= (1= N)pSFS + NpEft, (26)
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FIG. 9. Isotherms for a phase transitionTat 10 MeV and the 10.0 110 120 130
initial condition f=0.15. The solid lineAC is built up by Maxwell T (MeV)

construction, and the system evolves aléx@

transition. Moreover. if the svstem is initially in the oas FIG. 10. Entropy as a function of temperature at constant pres-
) ! y Y 9 sure p=0.17 MeV fn72 for strangeness fractioh,=0.50. The en-

phase withf;=0.5, the process of isothermal compressiontro evolves continuously through the phase transition
will make it such that the system begins at the gas phase, Py y g P '

then enters a two phase region, and becomes unstable at the

limit pressurepm. s=(1-N)sC+As. (28)
Finally, we would like to discuss the order of the L-G

phase transition in the SHM. By Ehrenfest’'s definition, theThe entropy per baryon as a function of temperature for a

first-order phase transition is characterized by the discontimatter offs=0.50 during the phase transition at a fixed pres-

nuities of the first-order derivatives of the chemical potential,surep=0.17 MeV fm 3 is delineated in Fig. 10. It is obvious

such as the discontinuities of entropy and volume, while thehat the entropy per baryon varies continuously during the

second-order phase transition unfolds the discontinuous bghase transition. To make our result more transparent, we

havior for the second-order derivatives of the chemical pocalculate the heat capaci€y, of the SHM:

tential, such as the heat capacity. Using the entropy density

of the SHM in Eq.(16), we have the entropy per baryon as S o] K | d?n d?ne
S(T.p.f2) p:T(ﬁ) T2 57 | el e tar )
S(T.p,fg = =Pm 27) ol (0
PB (29
The total entropy per baryon of the system is calculated by
the equation where
|

oPn, _ A5 0TE! () - (A5 K - 1) - 2T[E] (k) - )5 )+ 1)} 30

dTZ - T4(eB[E:(k)_Vi] + 1)3 )

d2n, _ B ME () + P15 9] - 1) - 2T[E] () + n](e”5 9™l + 1)} a1

a1 - TA(AIE 0+l 4 1)3

The heat capacity per baryon is expressed@C,/pg. In sented. A finite discontinuity of the heat capacity is observed,
Fig. 11 the specific heat capacity as a function of temperatur&shich demonstrates clearly that the L-G phase transition in
for a fixed pressurg=0.17 MeV fni2 for f;=0.50 is pre- SHM is of second order.
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1000 5 T T T namical properties of SHM. By using the reactions between
] hyperons and nucleons and making some assumptions, we
have simplified the SHM into a two-component system,
which is mathematically feasible to be discussed. When hav-
ing set the strangeness fraction to be zero, the model can also
obtain results which match those of symmetric nuclear mat-
ter. Applying the model, we have investigated the L-G phase
transition of the SHM. A mechanically unstable region al-
/ ways exists for all strangeness fractions at temperatures
Q1004 T lower thanT=13 MeV. Meanwhile, a chemical instability is
© ] also found in chemical potential-strangeness fraction isobars
] at these temperatures. By using the Gibbs conditions of
phase equilibrium, we have figured out the binodal surface as
the phase separation boundary and have found a limit pres-
sure at each temperature, above which there is no L-G phase
transition. The limit pressure gives rise to a cutoff on the
section of the binodal surface. But for a temperature as high
as T=13 MeV, a critical pressure has been obtained in the
1‘°1o.° " o T 30 180 140 binodal surface section. At the critical pressure point the lig-
T (MeV) uid and gas branches join together_, resulting in a closed bln—
odal curve. The Maxwell constructions for the phase transi-
FIG. 11. Heat capacity as a function of temperature at fixedion have been depicted in detail. The entropy and heat
pressurep=0.17 MeV fnT for strangeness fractioh,=0.50. The ~Ccapacity have also been examined and the L-G phase transi-
discontinuity gives a strong proof for the second-order phase trandon in the SHM has been determined to be of second order.

sition. Note the logarithmic scale used on the left.

p = 0.17 MeVim™®
f=05
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