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The liquid-gas phase transition in strange hadronic matter is studied utilizing an extended Furnstahl-Serot-
Tang model with nucleons and hyperons. The system is treated as of two components. The phase transition is
analyzed by investigating the stability of the system and Gibbs conditions for phase equilibrium. A two-
dimensional binodal surface resulting from the two-phase equilibrium—namely, the phase boundary—is ob-
tained. For each temperature ranging fromT=8 to 12 MeV, a limit pressure on the binodal surface section is
found, while a critical point is spotted for the temperature aroundT=13 MeV. Maxwell constructions are also
illustrated to give a vivid description of the course of the phase transition. Moreover, the entropy per baryon
and heat capacity per baryon as functions of temperature are examined. The entropy is continuous during the
phase transition but the heat capacity is discontinuous, indicating that the phase transition is of second order.
By these efforts, the liquid-gas phase transition can be concluded to exist in strange hadronic matter.
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I. INTRODUCTION

Since the nuclear interaction is very similar to the van der
Waals potential between molecules, the possible existence of
a liquid-gas (L-G) phase transition in nuclear matter was
predicated by theoretical studies[1–3]. This predication was
supported later by intermediate-energy heavy-ion collisions
[4] and high-energy proton-induced reactions[5]. The idea of
an L-G phase transition in nuclear matter emerged and at-
tracted much interest[6–12]. This interest has increased in
the last decade, with attempts by the EOS Collaboration to
extract exponents of 1 GeV/nucleon Au nuclei with a carbon
target [13] and with the extraction by the ALADIN/LAND
Collaboration of a caloric curve resulting from the fragmen-
tation of the quasiprojectile formed in the collision Au+Au
at 600 MeV/nucleon exhibiting a behavior expected for a
first-order L-G phase transition[14]. Very rich information
has already been extracted from exclusive experimental data
during the intermediate-energy heavy-ion collisions, as the
new generation 4p detectors have been developed and are
now operating at different accelerator facilities, such as
Dubna, GANIL, GSI, LNL, LNS, MSU, and Texas A-M
[15].

This L-G phase transition in nuclear matter occurs at
lower density than the normal nuclear densityr0 [16]. The
two phases are of cold nuclear Fermi liquid on the one hand
and a nuclear gas consisting of free nucleons on the other
hand. For symmetric nuclear matter, having an equal number
of protons and neutrons, this L-G phase transition is known
to be of first order. However, Müller and Serot have indi-
cated that the phase transition in asymmetric nuclear matter

is of second order by Ehrenfest’s definition[17]. The entropy
and volume as the first-order derivatives of the chemical po-
tentials are continuous and the heat capacity as the second-
order derivative is discontinuous at the point of the phase
transition. The phase coexistence surface of this binary sys-
tem of two phases is two dimensional[17–24].

Since the first hypernucleus was detected in emulsion by
Danysz and Pniewski[25] in 1953, strangeness carried by
the s quark has opened a new dimension for the studies in
nuclear physics. With the hyperons included in, nuclear mat-
ter is extended to strange hadronic matter(SHM). Employing
different models, the equation of state and the stability of the
SHM have been investigated[26–31]. However, besides the
deconfinement phase transition to the quark gluon plasma
(QGP), whether there exists an L-G phase transition in the
SHM is still an open question in theoretical physics. As the
interactions between hyperons and nucleons or between hy-
perons are also of the behavior of the van der Waals poten-
tial, it is reasonable to guess that there will also be a L-G
phase transition in the SHM. It is the main purpose of this
paper to study this problem.

It is believed that the descriptions of nuclear matter and
finite nuclei are ultimately governed by the physics of low-
energy quantum chromodynamics(QCD). Because of the
nonperturbative properties of QCD, it is very difficult to es-
tablish a fundamental theory of the nuclear system from
QCD. One usually adopts various phenomenological models
based on either the hadron degree of freedom or quark de-
gree of freedom. In our previous papers[31,32], we sug-
gested an effective model, constructed by introducing hyper-
ons in the Furnstahl-Serot-Tang(FST) model [33,34], to
study the saturation properties and stabilities of the SHM.
The details of this model can be found in Ref.[31]. Here we
only give a short description.

In Refs. [31,32], we extended the original FST model to
include not only nucleons ands ,v mesons, but alsoL ,J
hyperons. A new hyperon-hyperon interaction mediated by
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two additional strange mesonss* andf, which couple only
to hyperons, is introduced. The reactionsL+L→J−+p,L
+L→J0+n and their reverses are considered. In this model,
we did not consider the mixture of theS hyperons. The
reason, as was explained in Ref.[31], is twofold. First, theS
potential in nuclear matter at the saturation density is rather
uncertainly predicted, ranging from completely unbound[35]
to US=−25±5 MeV [36]. As pointed out by Balberget al.
[37], systems involvingS’s together with nucleons orL’s
generally will be unstable with respect to the strong decays
S+N→L+N or S+L→J+N. Second, theQ values for the
strong transitions S+N→L+N,S+S→L+L ,S+L→J
+N, andS+J→L+J are about 78, 156, 50, and 80 MeV,
respectively[38]. To Pauli-block these processes, we need a
rather high density ofL. On the other hand, theQ value of
J+N→L+L is only about 28 MeV. This process can be
Pauli blocked by a relatively lowL density. Based on this
model, the stability, the density, temperature, and strangeness
fraction dependence of the effective masses of nucleons and
baryons, the pressure, the free energy, and the equation of
state are studied, and the results are reasonable.

The paper evolves from an attempt to study the L-G phase
transition of SHM by employing the extended FST model. In
Sec. II the extended FST model is laid out. The SHM is
modeled as a two-component system ready for the discussion
of the phase transition. The thermodynamic quantities for
this model are briefly derived. By analyzing the equilibrium
conditions the phase sections are addressed in Sec. III. The
thermodynamical properties and the phase transition are dis-
cussed and the order of the phase transition is also examined.
Section IV finally summarizes the main results about the
existence of the L-G phase transition in the SHM.

II. EXTENDED FST MODEL

The original FST model is extended by includingL and
J hyperons and two additional strange mesonss* andf to
describe the hyperons and the interactions between them as
suggested in Ref.[31]. Since we are studying the unpolarized
system, thep meson has no influence on the system and is
omitted. To reduce the degrees of freedom, we need some
assumptions. First, we assume thatJ− and J0 appear in
equal amounts. Also we have protons and neutrons in equal
amounts, which is similar to protons and neutrons in sym-
metric nuclear matter. These assumptions mean that we are
looking at matter with zero isospin. But the remarkable new
degree of freedom—strangeness—is included. The Lagrang-
ian of the extended FST model is presented as follows:

Lsxd = c̄Nsigm]m − gvNgmVm − MN + gsNsdcN + c̄Lsigm]m

− gvLgmVm − gfLgmfm − ML + gsLs + gs*Ls*dcL

+ c̄Jsigm]m − gvJgmVm − gfJgmfm − MJ + gsJs

+ gs*Js*dcJ −
1

4
GmnG

mn +
1

2
S1 + h

s
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Dmv

2VmVm
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zsgvN
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In the mean-field approximation, the Lagrangian can be writ-
ten as

LMFT = c̄Nsigm]m + gvNg0V0 − MN + gsNs0dcN + c̄Lsigm]m

− gvLg0V0 − gfLg0f0 − ML + gsLs0 + gs*Ls0
*dcL

+ c̄Jsigm]m − gvJg0V0 − gfJg0f0 − MJ + gsJs0
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where the meson field operators have been replaced by their
mean-field valuesf0, V0, s0, ands0

* . Heregij are the cou-
pling constants of baryonj to mesoni field. By using the
standard technique of statistical mechanics, the thermody-
namic potentialV is obtained:

V = VXHgHS1 −
s0

S0
D4/dF1

d
lnS1 −

s0

S0
D −

1

4
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1

4
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1
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* 2C − 2kBTHo
i,k

lnf1 + e−bsEi
* skd−nig

+ o
i,k

lnf1 + e−bsEi
* skd+nidgJ , s3d

whereb is the inverse temperature andV is the volume of
the system,

Ei
*skd = ÎMi

*2 + k2, s4d

with the effective masses of the hyperons and nucleons,

Mi
* = Mi − gsis0 − gs* is0

* si = L,Jd, s5d

Mi
* = Mi − gsis0 si = Nd. s6d

The mean-field valuesf0, V0, s0, ands0
* are determined by

the corresponding extreme conditions of the thermodynamic
potential. For instance, the equation forf meson is deter-
mined by

] V

] f0
s0,V0,s0

* ,mi
= 0 s7d

in explicit form

mf
2f0 − gfLrBL − gfJrBJ = 0. s8d

The baryon densityrBi is given by
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rBi = kci
+cil =

gi

p2 E dkk2fniskd − n̄iskdg, s9d

wheregi =4 for i =N or J andgi =2 for i =L. The baryon and
antibaryon distributions are, respectively, expressed as

niskd = hexpfbsEi
*skd − nidg + 1j−1 s10d

and

n̄iskd = hexpfbsEi
*skd + nidg + 1j−1, s11d

in which ni are related to chemical potentialmi by

mN = nN + gvNV0,

mL = nL + gvLV0 + gfLf0,

mJ = nJ + gvJV0 + gfJf0. s12d

In the system with an equal number of protons and neutrons
as well as an equal number ofJ0 and J−, the chemical
equilibrium condition for the reactionsL+L
n+J0 and
L+L
p+J− reads

2mL = mN + mJ. s13d

Equation(13) implies that only two components are indepen-
dent amongN, L, andJ. The system of SHM described by
the extended FST model is a two-component system. The
nucleons(p andn) and the hyperons(L , J−, andJ0) play
the role of different components, respectively. The strange-
ness fraction is introduced as

fS;
rBL + 2rBJ

rB
, s14d

which plays the similar role as that of the asymmetric param-
eter a=srn−rpd / srn+rpd in asymmetric nuclear matter. We
can use the same method as that in Refs.[17–21] to address
the L-G phase transition.

Following the usual procedure of statistical physics, we
can easily calculate the other thermodynamic quantities from
thermodynamic potentialV. For example, the pressure and
entropy density are calculated by formulasp=−V /V and
S/V=−f]V /]s1/bdgV,mi

/V=f]p/]s1/bdgV,mi,s0,V0,f0,s0
*. The

results are expressed as follows:
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III. L-G PHASE TRANSITION

In this section, we employ the extended FST model to
investigate the L-G phase transition in the SHM at different
strangeness fractions. In the calculation, the parameter set T1
given in Ref.[31] is used.

As the hot and dilute SHM is only obtained on Earth by
relativistic heavy-ion collisions, investigations of the thermo-
dynamic properties of the SHM are based on two basic as-
sumptions. One is that we can apply equilibrium thermody-
namics for such a small system of only a few hundred
constituents at the most. The other is that a thermalized uni-
form system is formed in heavy-ion collisions before multi-
fragmentation takes place[39]. Although the equilibrium
analysis oversimplifies the study of the SHM, we still follow
the thermodynamic approach for the reason that this can give
some concrete descriptions of the phase structure of the
SHM and characterize certain aspects of the evolution.

We would like to discuss the stability of SHM first. To
address the stability, we consider the Helmholtz free energy
densityFsT,rid defined by temperatureT and baryon densi-
ties ri. A system is stable against separation into two phases
if its free energy is lower than the free energy in all two-
phase configurations. This statement is formulated as

FsT,rid , s1 − ldFsT,ri8d + lFsT,ri9d, s17d

with

ri = s1 − ldri8 + lri9. s18d

The two phases are denoted by a prime and a double prime.
In asymmetric nuclear matter, we may chooseri as the
nuclear densityr and asymmetry parametera. The param-
eterl=V9 /V specifies the volume fraction of the phase with
double prime. Equation(18) ensures that the overall baryon
densities are conserved. In the SHM here, we may use vari-
ablesrB, fs instead ofri. The above stability condition im-
plies the following set of inequalities[17]

rS ] p

] rB
D

T,fs

= r2S ]2F
] rB

2D
T,fs

. 0, s19d

S ] mN

] fs
D

T,p
, 0 or S ] mJ

] fs
D

T,p
. 0, s20d

wherep, mN, andmJ are, respectively, the pressure, chemi-
cal potentials for the nucleon, andJ. The first inequality
(19) means that the isothermal compressibility is positive;
i.e., the system is mechanically stable. The second condition,
Eq. (20), reflects the special character of the binary system. It
expresses “diffusive stability” which guarantees that energy
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is required to change the concentration in a stable system,
while holding the remaining variables(p andT) fixed.

Now we begin to discuss the regionfsø1.0 [28] and
show the possibility for an L-G phase transition in the SHM.
To be more specific, Fig. 1 shows the pressure-baryon den-
sity isotherms at temperatureT=8 MeV with different
strangeness fractions(fs=0.1, 0.3, 0.5, 0.8, and 1.0). One can
see that there is always a mechanical unstable section where
condition(19) is violated for any strangeness fractionfs con-
sidered. This means that the system always encounters an
unstable region and has to separate into two phases to main-
tain mechanical stability. This phenomenon remains up to
T.13 MeV. At temperatureT=13 MeV, as is illustrated in
Fig. 2, there is a mechanical inflection point which satisfies
the condition

U ] p

] r
U

fs=fs
M

= U ]2p

] r2U
fs=fs

M
= 0, s21d

with fs
M =0.5 and the corresponding pressurep

=0.24 MeV fm−3 and rB=0.063 fm−3. For fsù0.8, it starts
to decrease in the high-density region and a mechanically
unstable section will occur. However, one cannot find a so-
lution which satisfies the Gibbs conditions in this region(see
below in Fig. 7). To find the temperature dependence offs

M,
we also show the situation forT=14 MeV in Fig. 3. The
mechanical inflection point is aroundp=0.18 MeV fm−3 and
rB=0.04 fm−3 on the isotherm withfs=0.1 for T=14 MeV.
We find thatfs

M decreases when the temperature increases. In
Fig. 4, we present the pressure-density isotherms of fixed
strangeness fractionfs=0.5 at different temperatures. One
can see again an inflection point on the curve withT
=13 MeV.

Next, we will discuss the chemical instability by showing
the chemical potential isobars for nucleons andJ against
strangeness fractionsfs at a temperatureT=13 MeV for

pressurep=0.10, 0.18, 0.28, and 0.35 MeV fm−3, respec-
tively, in Fig. 5. There is an inflection point on the curve with
pressurepC=0.28 MeV fm−3. This pressure is called the
critical pressure[17,20], above which the system is stable
but below which condition(20) is violated and the system
becomes chemically unstable. The critical pressurepC is de-
termined by the inflection point condition

FIG. 1. Pressure as a function of baryon density at temperature
T=8 MeV for various strangeness fractionsfs.

FIG. 2. Pressure as a function of baryon density at temperature
T=13 MeV for various strangeness fractionsfs. The mechanical
inflection point is at isotherm withfs

M =0.5.

FIG. 3. Pressure as a function of baryon density at temperature
T=14 MeV for various strangeness fractionsfs. A mechanical in-
flection point is found at isotherm withfs

M =0.1.
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S ] mN

] fs
D

T,p
= S ]2mN

] fs
2 D

T,p

= 0. s22d

The resultspC, fs
Cd=s0.28 MeV fm−3,0.65d defines a critical

point for a given temperatureT=13 MeV.
When the system separates into two phases, the two co-

existent phases are governed by the Gibbs conditions, which
say that for two phases(or more) the system should be in

chemical, thermal, and mechanical equilibrium:

mq
LsT,rL, fs

Ld = mq
GsT,rG, fs

Gd sq = N,Jd, s23d

pLsT,rL, fs
Ld = pGsT,rG, fs

Gd, s24d

where the superscriptsL and G denote the liquid and gas
phases, respectively. Here we only consider the situation of
the two-phase case. As to more than two phases, there is
some discussion in Ref.[17]. The solutionhrL , fs

L ;rG, fs
Gj

specifying the two separate phases in equilibrium can be eas-
ily found through a geometric approach. As an example, we
present in Fig. 6 the chemical-strangeness fraction isotherms
at temperatureT=10 MeV and pressurep=0.09 MeV fm−3.
The desired solutions form the edges of a rectangle shown by
dotted lines. The phase with lower(higher) fs corresponding
to a higher(lower) density is the liquid(gas) phase. It is
obvious that the strangeness fractions are different in the two
phases. The collection of all such pairssp,T, fs

Ld and
sp,T, fs

Gd forms a binodal surface of two dimensions, which
defines the phase separation boundary. The shape of the
whole binodal surface is similar to that in Refs.[17,20]. To
explain clearly we show in Fig. 7 a section of the binodal
surface atT=13 MeV. In Fig. 7 the binodal curve is divided
into two branches by the zero-strangeness point and critical-
pressure(CP) point. The branch for largerfs represents the
gas phase with lower density and the other for the liquid
phase with higher density. In an isothermal compression, a
system with zero strangeness evolves until it encounters the
binodal and then remains there until the transition is com-
pleted. In an isothermal compression withfsù0.8, the L-G
phase transition cannot take place because the isothermal
line does not cross the binodal surface. At the CP point, the

FIG. 4. Pressure as a function of baryon density for fixed
strangeness fractionfs=0.5 at various temperatures. A mechanical
inflection point is at isothermT=13 MeV, below which isotherms
have mechanically unstable regions.

FIG. 5. Chemical potential isobars as a function of the strange-
ness fractionfs at fixed temperatureT=13 MeV. The curves labeled
a–d have pressuresp=0.10, 0.18, 0.28, and 0.35 MeV fm−3, re-
spectively. PointA denotes the inflection point at the critical pres-
surepC=0.28 MeV fm−3.

FIG. 6. Geometrical construction used to obtain the strangeness
fraction and chemical potentials in the two coexisting phases at
fixed temperatureT=10 MeV and pressurep=0.09 MeV fm−3. The
two solid crossing curves formN (or mJ) are the different parts of
the same continuous curve.
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liquid branch and gas branch join together smoothly and then
the two phases can no longer be distinguished by their den-
sities. The CP point determines the maximum pressure in the
two-phase region. If the system is represented by the point in
the section lower than the gas phase branch, the system is in
the gas phase, whereas if the system is at the point higher
than the liquid phase branch, it is in the liquid phase. Be-
tween the two branches, the system is in the mixed phase
with a special proportion between the liquid and gas phases.
The feature of the binodal curve at temperatureT=13 MeV
is very similar to those in asymmetric nuclear matter[17,20].
But for a temperature lower thanT=13 MeV, the critical
points could not be attained. Instead, we can always find a
limit pressure in the binodal surface. As an example, we
show in Fig. 8 the section of the binodal surface at the tem-
perature T=10 MeV, where a limit pressure plim
=0.095 MeV fm−3 is denoted by a horizontal dotted line.
When the pressure is higher than the limit pressureplim, the
L-G phase transition cannot take place. The cutoff behavior
for the binodal surface has also been found in asymmetric
nuclear matter described by the FST model with density-
dependentNNr coupling gr [18,20]. If gr is constant, the
cutoff behavior will not happen so that a critical point could
always be found and no limit pressure is obtained. In this
case, the L-G phase transition becomes more complicated.
The limit pressure exists whenT,13 MeV even all cou-
plings are constant.

The Maxwell construction of the phase transition can nar-
rate a phase transition clearly and give concrete proof for the
existence of the L-G phase transition. For a given tempera-
ture, we will expatiate the behavior of SHM under isother-
mal compression. AtT=10 MeV, for instance, Fig. 8 illus-
trates the situation of the isothermal compression. Assume
that the system is initially in the gas phase with strangeness

fraction fs=0.15. During the compression, the phase bound-
ary is encountered at pointA. At this point, the liquid phase
is about to emerge at pointB, where the strangeness fraction
fs
B=0.05. During the whole compression, the total strange-

ness fraction of the system conserves but the strangeness
fractions for the liquid and gas phases are changeable. As the
compression proceeds, the gas phase evolves along the gas
phase branch of the binodal surface from pointA to D, while
the liquid phase evolves fromB to C along the liquid branch.
When the pressure of the system continues to increase, the
system leaves the two-phase region at pointC, which has the
same strangeness fraction with pointA. Correspondingly, at
point D on the gas branch with strangeness fractionfs=0.4,
the gas phase disappears. Since the two pointsA andC are at
different branches of the binodal surface, the SHM has un-
dergone an L-G phase transition.

To configure out the evolution of the system between
pointsA andC, we must solve the conservation equations

rB = s1 − ldrB
G + lrB

L , s25d

rBfs = s1 − ldrB
Gfs

G + lrB
L fs

L, s26d

for the baryon density, strangeness fractions on the binodal
surface, and the proportionl for given total baryon density
rB and strangeness fractionfs. The proportionl is 0 at point
A and 1 at pointC, and it runs through the interval[0, 1]. The
result is the generalized Maxwell construction in the binary
system. The isotherms corresponding to Fig. 8 are drawn in
Fig. 9. The system dose not evolve along the unphysical
curve (the dotted line). It follows the nearly strait solid line
between pointsA andC, which is the result of the Maxwell
construction. Each point on the line corresponds to the stable
configuration at each intermediate density during the phase

FIG. 7. Binodal surface atT=13 MeV. A critical pressure(CP)
and the zero strangeness are indicated. The upper branch is for the
liquid phase and the lower for the gas phase. The two branches join
at the CP point.

FIG. 8. Binodal surface atT=10 MeV. The binodal surface is
cut off at a limit pressurep=0.095 MeV fm−3. PointsA–D denote
phases participating in a normal phase transition. Another phase
transition for fs=0.5 is also illustrated by the dotted line.
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transition. Moreover, if the system is initially in the gas
phase withfs=0.5, the process of isothermal compression
will make it such that the system begins at the gas phase,
then enters a two phase region, and becomes unstable at the
limit pressureplim.

Finally, we would like to discuss the order of the L-G
phase transition in the SHM. By Ehrenfest’s definition, the
first-order phase transition is characterized by the disconti-
nuities of the first-order derivatives of the chemical potential,
such as the discontinuities of entropy and volume, while the
second-order phase transition unfolds the discontinuous be-
havior for the second-order derivatives of the chemical po-
tential, such as the heat capacity. Using the entropy density
of the SHM in Eq.(16), we have the entropy per baryon as

ssT,p, fsd =
SsT,p, fsd

rB
. s27d

The total entropy per baryon of the system is calculated by
the equation

s= s1 − ldsG + lsL. s28d

The entropy per baryon as a function of temperature for a
matter offs=0.50 during the phase transition at a fixed pres-
surep=0.17 MeV fm−3 is delineated in Fig. 10. It is obvious
that the entropy per baryon varies continuously during the
phase transition. To make our result more transparent, we
calculate the heat capacityCp of the SHM:

Cp = TS ] S

] T
D

p,fs

= To
i

gi

6p2 E dk
k4

Ei
*skd

Fd2ni

dT2 +
d2n̄i

dT2G ,

s29d

where

d2ni

dT2 =
ebfEi

* skd−nighfEi
*skd − nig2sebfEi

* skd−nig − 1d − 2TfEi
*skd − nigsebfEi

* skd−nig + 1dj
T4sebfEi

* skd−nig + 1d3
, s30d

d2n̄i

dT2 =
ebfEi

* skd+nighfEi
*skd + nig2sebfEi

* skd+nig − 1d − 2TfEi
*skd + nigsebfEi

* skd+nig + 1dj
T4sebfEi

* skd+nig + 1d3
. s31d

The heat capacity per baryon is expressed ascp=Cp/rB. In
Fig. 11 the specific heat capacity as a function of temperature
for a fixed pressurep=0.17 MeV fm−3 for fs=0.50 is pre-

sented. A finite discontinuity of the heat capacity is observed,
which demonstrates clearly that the L-G phase transition in
SHM is of second order.

FIG. 9. Isotherms for a phase transition atT=10 MeV and the
initial condition fs=0.15. The solid lineAC is built up by Maxwell
construction, and the system evolves alongAC.

FIG. 10. Entropy as a function of temperature at constant pres-
sure p=0.17 MeV fm−3 for strangeness fractionfs=0.50. The en-
tropy evolves continuously through the phase transition.
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Now, we can draw a definite conclusion that a L-G phase
transition does exist in the SHM and it is of second order.

IV. SUMMARY

In this paper we have employed an extended FST model
with nucleons andL ,J hyperons to describe the thermody-

namical properties of SHM. By using the reactions between
hyperons and nucleons and making some assumptions, we
have simplified the SHM into a two-component system,
which is mathematically feasible to be discussed. When hav-
ing set the strangeness fraction to be zero, the model can also
obtain results which match those of symmetric nuclear mat-
ter. Applying the model, we have investigated the L-G phase
transition of the SHM. A mechanically unstable region al-
ways exists for all strangeness fractions at temperatures
lower thanT=13 MeV. Meanwhile, a chemical instability is
also found in chemical potential-strangeness fraction isobars
at these temperatures. By using the Gibbs conditions of
phase equilibrium, we have figured out the binodal surface as
the phase separation boundary and have found a limit pres-
sure at each temperature, above which there is no L-G phase
transition. The limit pressure gives rise to a cutoff on the
section of the binodal surface. But for a temperature as high
as T=13 MeV, a critical pressure has been obtained in the
binodal surface section. At the critical pressure point the liq-
uid and gas branches join together, resulting in a closed bin-
odal curve. The Maxwell constructions for the phase transi-
tion have been depicted in detail. The entropy and heat
capacity have also been examined and the L-G phase transi-
tion in the SHM has been determined to be of second order.
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