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We discuss the target and beam normal spin asymmetries in elastic electron-nucleon scattering which depend
on the imaginary part of two-photon exchange processes between electron and nucleon. We express this
imaginary part as a phase space integral over the doubly virtual Compton scattering tensor on the nucleon. We
use unitarity to model the doubly virtual Compton scattering tensor in the resonance region in terms of
g* N→pN electroabsorption amplitudes. Taking those amplitudes from a phenomenological analysis of pion
electroproduction observables, we present results for beam and target normal single spin asymmetries for
elastic electron-nucleon scattering for beam energies below 1 GeV and in the 1–3 GeV region, where several
experiments are performed or are in progress.
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I. INTRODUCTION

Elastic electron-nucleon scattering in the one-photon ex-
change approximation is a time-honored tool to access infor-
mation on the structure of hadrons. Experiments with in-
creasing precision have become possible in recent years,
mainly triggered by new techniques to perform polarization
experiments at the electron scattering facilities. This has al-
lowed us to reach a new frontier in the measurement of had-
ron structure quantities, such as its electroweak form factors,
parity violating effects, nucleon polarizabilities,N→D tran-
sition form factors, or the measurement of spin-dependent
structure functions, to name a few. For example, experiments
using polarized electron beams and measuring the ratio of
the recoil nucleon in-plane polarization components have
profoundly extended our understanding of the nucleon elec-
tromagnetic form factors. For the proton, such polarization
experiments which access the ratioGEp/GMp of the proton’s
electricsGEpd to magneticsGMpd form factors have been per-
formed out to a momentum transferQ2 of 5.6 GeV2 [1,2]. It
came as a surprise that these experiments extracted a ratio of
GEp/GMp which is clearly at variance with unpolarized mea-
surements[3–5] using the Rosenbluth separation technique.
The understanding of this puzzle has generated a lot of ac-
tivity recently, and is a prerequisite to use electron scattering
as a precision tool. It has been suggested on general grounds
in Ref. [6] that this puzzle may be explained by a two-photon
exchange amplitude of the level of a few percent. The result-
ing failure of the one-photon exchange approximation to un-
polarized elastic electron-nucleon scattering can be under-
stood from the observation thatGMp and GEp enter
quadratically in the unpolarized cross section. It turns out
that GEp

2 may become a small quantity compared with
GMp

2 , and is further suppressed by a kinematical factor
,1/Q2. Therefore, it becomes increasingly difficult to ex-
tract this term at larger momentum transfer. Already at mod-

erate momentum transfers, the weight of the term propor-
tional to GE

2 drops at the 1% level and one may expect that
correction terms due to two-photon exchange become com-
petitive and eventually dominate over theGE

2 term. The po-
larization transfer method, on the other hand, is much less
affected because it directly measures the ratio ofGEp/GMp,
i.e., depends linearly onGE. Recently, several model calcu-
lations of the 2g exchange amplitude have been performed.
In Ref. [7], a calculation of the 2g exchange when the had-
ronic intermediate state is a nucleon was performed. It found
that the 2g exchange correction with intermediate nucleon
can partially resolve the discrepancy between the two experi-
mental techniques. Recently, the 2g exchange contribution to
elastic electron-nucleon scattering has been estimated at
large momentum transfer[8], through the scattering off a
parton in a proton by relating the process on the nucleon to
the generalized parton distributions. This calculation found
that the 2g exchange contribution is indeed able to quantita-
tively resolve the existing discrepancy between Rosenbluth
and polarization transfer experiments. To push the precision
frontier further in electron scattering, one needs a good con-
trol of 2g exchange mechanisms and needs to understand
how they may or may not affect different observables. This
justifies a systematic study of such 2g exchange effects, both
theoretically and experimentally. The real(dispersive) part of
the 2g exchange amplitude can be accessed through the dif-
ference between elastic electron and positron scattering off a
nucleon. The imaginary(absorptive) part of the 2g exchange
amplitude, on the other hand, can be accessed through a
single spin asymmetry(SSA) in elastic electron-nucleon
scattering, when either the target or beam spin are polarized
normal to the scattering plane, as has been discussed some
time ago in Ref.[9]. As time-reversal invariance forces this
SSA to vanish for one-photon exchange, it is of ordera
=e2/ s4pd.1/137. Furthermore, to polarize an ultrarelativis-
tic particle in the direction normal to its momentum involves
a suppression factorm/E (with m the mass andE the energy
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of the particle), which typically is of order 10−4−10−3 when
the electron beam energy is in the 1 GeV range. Therefore,
the resulting target normal SSA can be expected to be of
order 10−2, whereas the beam normal SSA is of order 10−6

−10−5. A measurement of such small asymmetries is quite
demanding experimentally. However, in the case of a polar-
ized lepton beam, asymmetries of the order ppm are cur-
rently accessible in parity violation(PV) elastic electron-
nucleon scattering experiments. The parity violating
asymmetry involves a beam spin polarized along its momen-
tum. However, the SSA for an electron beam spin normal to
the scattering plane can also be measured using the same
experimental setups. First measurements of this beam normal
SSA at beam energies below 1 GeV have yielded values
around 10 ppm[13,14]. At higher beam energies, the beam
normal SSA can also be measured in upcoming PV elastic
electron-nucleon scattering experiments[15–17]. First esti-
mates of the target normal SSA in elastic electron-nucleon
scattering have been performed in Refs.[9,10]. In those
works, the 2g exchange with nucleon intermediate state(so-
called elastic or nucleon pole contribution) has been calcu-
lated, and the inelastic contribution has been estimated in a
very forward angle approximation. Estimates within this ap-
proximation have also been reported for the beam normal
SSA in Ref.[11]. Recently, the general formalism for elastic
electron-nucleon scattering with lepton helicity flip, which is
needed to describe the beam normal SSA, has been devel-
oped in Ref.[12]. Furthermore, the beam normal SSA has
also been estimated at large momentum transfersQ2 in Ref.
[12] using a parton model, which was found crucial[8] to
interpret the results from unpolarized electron-nucleon elas-
tic scattering, as discussed before. In the handbag model of
Refs. [8,12], the corresponding 2g exchange amplitude has
been expressed in terms of generalized parton distributions,
and the real and imaginary part of the 2g exchange ampli-
tude are related through a dispersion relation. Hence in the
partonic regime, a direct comparison of the imaginary part
with experiment can provide a very valuable cross-check on
the calculated result for the real part. To use the elastic
electron-nucleon scattering at low momentum transfer as a
high-precision tool, such as in present day PV experiments,
one may also want to quantify the 2g exchange amplitude.
To this aim, one may envisage a dispersion formalism for the
elastic electron-nucleon scattering amplitudes, as has been
discussed some time ago in the literature[18]. To develop
this formalism, the necessary first step is a precise knowl-
edge of the imaginary part of the two-photon exchange am-
plitude, which enters in both the beam and target normal
SSA. The study of this imaginary part of the 2g exchange is
the subject of this paper. Using unitarity, one can relate the
imaginary part of the 2g amplitude to the electroabsorption
amplitudes on a nucleon. When measuring the imaginary
part of the elastic electron-nucleon amplitude through a nor-
mal SSA at sufficiently low energies, below or around two-
pion production threshold, one is in a regime where these
electroproduction amplitudes are relatively well known using
pion electroproduction experiments as input. One strategy is
therefore to investigate this new tool of beam and target nor-
mal SSA first in the region where one has a good first knowl-
edge of the imaginary part of the 2g exchange. As both pho-

tons in the 2g exchange process are virtual and integrated
over, an observable such as the beam or target normal SSA is
sensitive to the electroproduction amplitudes on the nucleon
for a range of photon virtualities. This may provide informa-
tion on resonance transition form factors complementary to
the information obtained from current pion electroproduction
experiments.

Finally, by understanding the 2g exchange contributions
for the case of electromagnetic electron-nucleon scattering,
one may extend this calculation to electroweak processes,
where thegZ and W+W− box diagrams are in several cases
the leading unknown contributions entering in electroweak
precision experiments. We start by briefly reviewing the elas-
tic electron-nucleon scattering formalism beyond the one-
photon exchange approximation in Sec. II, and discuss the
target and beam normal spin asymmetries in Sec. III. Subse-
quently, we study the imaginary part of the two-photon ex-
change amplitudes in Sec. IV. We express this imaginary part
as a phase space integral over the doubly virtual Compton
scattering tensor on the nucleon. In Sec. V, we use unitarity
to model the doubly virtual Compton scattering tensor in the
resonance region in terms ofg* N→pN electroabsorption
amplitudes. We take those amplitudes from a state-of-the-art
phenomenological analysis(MAID [19]) of pion electropro-
duction observables. In Sec. VI, we show our results for
beam and target normal SSA for beam energies below 1 GeV
and in the 1–3 GeV region, where several experiments at
MIT-Bates, MAMI, and Jefferson Lab(JLab) are performed
or in progress. Our conclusions and an outlook are given in
Sec. VII.

II. ELASTIC ELECTRON-NUCLEON SCATTERING
BEYOND THE ONE-PHOTON EXCHANGE

APPROXIMATION

In this section, we briefly review the elastic electron-
nucleon scattering formalism beyond the one-photon ex-
change approximation, as has been developed recently in
Refs. [6,12]. For the kinematics of elastic electron-nucleon
scattering,

e−skd + Nspd → e−sk8d + Nsp8d, s1d

we adopt the usual definitions,

P =
p + p8

2
, K =

k + k8

2
, q = k − k8 = p8 − p, s2d

and choose

Q2 = − q2, n = K · P s3d

as the independent invariants of the scattering. The invariant
n is related to the polarization parameter« of the virtual
photon, which can be expressed as(neglecting the electron
mass)

« =
n2 − M4ts1 + td
n2 + M4ts1 + td

, s4d

whereM is the nucleon mass. For a theory which respects
Lorentz, parity, and charge conjugation invariance, the gen-
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eral amplitude for elastic scattering of two spin-1
2 particles

can be expressed by six independent helicity amplitudes or
equivalently by six invariant amplitudes. The total amplitude
can be decomposed in general in terms of a lepton spin non-
flip and spin flip part,

T = Tnonflip + Tflip . s5d

The nonflip amplitude which conserves the helicity of the
electron (in the limit me=0) depends upon three invariant
amplitudes, and has been parametrized in Ref.[6] as

Tnonflip =
e2

Q2ūsk8dgmuskd · ūsp8d

3SG̃Mgm − F̃2
Pm

M
+ F̃3

g . KPm

M2 Duspd. s6d

The amplitude which flips the electron helicity(i.e., is of the
order of the mass of the electron,me), depends on three
additional invariants which have been introduced in Ref.[12]
as

Tflip =
me

M

e2

Q2Fūsk8duskd · ūsp8dSF̃4 + F̃5
g . K

M
Duspd

+ F̃6ūsk8dg5uskd · ūsp8dg5uspdG . s7d

In Eqs.(6) and (7), G̃M ,F̃2,F̃3,F̃4,F̃5,F̃6 are complex func-
tions of n andQ2, and the factore2/Q2 has been introduced
for convenience. Furthermore, in Eq.(7), we extracted an
explicit factorme/M out of the amplitudes, which reflects the
fact that for a vector interaction(such as in QED), the elec-
tron helicity flip amplitude vanishes whenme→0. In the
Born approximation, one obtains

G̃M
Bornsn,Q2d = GMsQ2d,

F̃2
Bornsn,Q2d = F2sQ2d,

F̃3,4,5,6
Born sn,Q2d = 0, s8d

whereGM sF2d are the proton magnetic(Pauli) form factors,

respectively. The invariant amplitudeF̃2 can be traded for

G̃E, defined as

G̃E ; G̃M − s1 + tdF̃2, s9d

which has the property that in the Born approximation it
reduces to the electric form factor, i.e.,

G̃E
Bornsn,Q2d = GEsQ2d. s10d

To separate the one- and two-photon exchange contributions,
it is then useful to introduce the decompositions,

G̃M = GM + dG̃M , s11d

G̃E = GE + dG̃E. s12d

Since the amplitudesdG̃M ,dG̃E,F̃3,F̃4,F̃5, andF̃6 vanish in
the Born approximation, they must originate from processes

involving at least the exchange of two photons. Relative to
the factore2 introduced in Eqs.(6) and(7), we see that they
are of ordere2.

III. SINGLE SPIN ASYMMETRIES IN ELASTIC
ELECTRON-NUCLEON SCATTERING

An observable which is directly proportional to the two-
(or multi) photon exchange is given by the elastic scattering
of an unpolarized electron on a proton target polarizednor-
mal to the scattering plane(or the recoil polarization normal
to the scattering plane, which is exactly the same assuming
time-reversal invariance). For a target polarized perpendicu-
lar to the scattering plane, the corresponding single spin
asymmetry, which we refer to as the target normal spin
asymmetrysAnd, is defined by

An =
s↑ − s↓
s↑ + s↓

, s13d

where s↑ss↓d denotes the cross section for an unpolarized
beam and for a nucleon spin parallel(antiparallel) to the
normal polarization vector, defined as

Sn
m = s0,SWnd, SWn ; skW 3 kW8d/ukW 3 kW8u. s14d

As has been shown by de Rujulaet al. [9], the target(or
recoil) normal spin asymmetry is related to the absorptive
part of the elasticeN scattering amplitude(see Sec. IV).
Since the one-photon exchange amplitude is purely real, the
leading contribution toAn is of orderOse2d, and is due to an
interference between one- and two-photon exchange ampli-
tudes.

When neglecting terms which correspond with electron
helicity flip (i.e., settingme=0), An can be expressed in terms
of the invariants for electron-nucleon elastic scattering, de-
fined in Eqs.(6) and (7), as[8]

An =Î2«s1 + «d
t

SGM
2 +

«

t
GE

2D−1H− GMISdG̃E +
n

M2F̃3D
+ GEIFdG̃M + S 2«

1 + «
D n

M2F̃3GJ + Ose4d, s15d

whereI denotes the imaginary part. For a beam polarized
perpendicular to the scattering plane, we can also define a
single spin asymmetry, analogously as in Eq.(13), where
now s↑ss↓d denotes the cross section for an unpolarized tar-
get and for an electron beam spin parallel(antiparallel) to the
normal polarization vector, given by Eq.(14). We refer to
this asymmetry as the beam normal spin asymmetrysBnd. It
explicitly vanishes whenme=0 as it involves an electron
helicity flip. Using the general electron-nucleon scattering
amplitude of Eqs.(6) and (7), Bn is given by[12]
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Bn =
2me

Q
Î2«s1 − «dÎ1 +

1

t
SGM

2 +
«

t
GE

2D−1

3 H− tGMISF̃3 +
1

1 + t

n

M2F̃5D
− GEISF̃4 +

1

1 + t

n

M2F̃5DJ + Ose4d. s16d

As for An, we immediately see thatBn vanishes in the Born
approximation, and is therefore of ordere2.

IV. IMAGINARY (ABSORPTIVE) PART OF THE
TWO-PHOTON EXCHANGE AMPLITUDE

In this section, we relate the imaginary part of the two-
photon exchange amplitude to the absorptive part of the dou-
bly virtual Compton scattering tensor on the nucleon, as
shown in Fig. 1. In the following, we consider the helicity
amplitudes for the elastic electron-nucleon scattering, de-
fined in the e−N c.m. frame, which are denoted by
Tsh8 ,lN8 ;h,lNd. Hereh sh8d denote the helicities of the ini-
tial (final) electrons andlN slN8 d denote the helicities of the
initial (final) nucleons. These helicity amplitudes can be ex-
pressed in terms of the invariant amplitudes introduced in
Eqs. (6) and (7), and the corresponding relations can be
found in Appendix A. These relations allow us to calculate
the invariant amplitudes, once we have constructed a model
for the helicity amplitudes.

We start by calculating the discontinuity of the two-
photon exchange amplitude, shown in Fig. 1, which is given
by

AbsT2g = e4E d3kW1

s2pd32Ek1

ūsk8,h8dgmsg ·k1 + medgnusk,hd

3
1

Q1
2Q2

2 ·Wmnsp8,lN8 ;p,lNd, s17d

where the momenta are defined as indicated in Fig. 1, with
q1;k−k1, q2;k8−k1, and q1−q2=q. Denoting the c.m.
angle between initial and final electrons asuc.m., the momen-
tum transferQ2;−q2 in the elastic scattering process can be
expressed as

Q2 =
ss− M2d2

2s
s1 − cosuc.m.d + Osme

2d, s18d

with s=sk+pd2. Furthermore,Q1
2;−q1

2=−sk−k1d2 and Q2
2

;−q2
2=−sk8−k1d2 correspond with the virtualities of the two

spacelike photons. In Eq.(17), the hadronic tensor
Wmnsp8 ,lN8 ;p,lNd corresponds with the absorptive part of
the doubly virtual Compton scattering tensor with twospace-
like photons,

Wmnsp8,lN8 ;p,lNd = o
X

s2pd4d4sp + q1 − pXdkp8lN8 uJ†ms0duXl

3kXuJns0duplNl, s19d

where the sum goes over all possibleon-shell intermediate
hadronic statesX. Note that in the limitp8=p, Eq. (19) re-
duces to the forward tensor for inclusive electron-nucleon
scattering and can be parametrized by the usual four-nucleon
forward structure functions. In the nonforward case, how-
ever, the absorptive part of the doubly virtual Compton scat-
tering tensor of Eq.(19), which enters in the evaluation of
target and beam normal spin asymmetries, depends upon 18
invariant amplitudes[20]. Though this may seem as a forbid-
dingly large number of new functions, we may use the uni-
tarity relation to express the full nonforward tensor in terms
of electroproduction amplitudesg* N→X. The number of
intermediate statesX which one considers in the calculation
will then put a limit on how high in energy one can reliably
calculate the hadronic tensor Eq.(19). In the following sec-
tion, we will model the tensorWmn for the elastic contribu-
tion sX=Nd, and in the resonance region as a sum over all
pN intermediate states(i.e., X=pN), using a phenomeno-
logical state-of-the-art calculation for theg* N→pN ampli-
tudes. The phase space integral in Eq.(17) runs over the
3-momentum of the intermediate(on-shell) electron. Evalu-
ating the process in thee−N c.m. system, we can express the
c.m. momentum of the intermediate electron as

ukW1u2 =
ss− W2 + me

2d2 − 4sme
2

4s

.
ss− W2d2

4s
H1 − 2me

2 ss+ W2d
ss− W2d2J + Osme

4d, s20d

whereW2;pX
2 is the squared invariant mass of the interme-

diate stateX. The c.m. momentumukWu of the initial (and final)
electrons is given by the analogous expression as Eq.(20) by
replacingW2→M2. The three-dimensional phase space inte-

gral in Eq.(17) depends, besides the magnitudeukW1u, upon the
solid angle of the intermediate electron. We define the polar
c.m. angleu1 of the intermediate electron with respect to the
direction of the initial electron. The azimuthal anglef1 is
chosen such thatf1=0 corresponds with the scattering plane
of theeN→eNprocess. Having defined the kinematics of the
intermediate electron, we can express the virtuality of both
exchanged photons. The virtuality of the photon with four-
momentumq1 is given by

FIG. 1. The two-photon exchange diagram. The filled blob rep-
resents the response of the nucleon to the scattering of the virtual
photon.
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Q1
2 .

1

2s
Hss− M2dss− W2ds1 − cosu1d

− me
2ss+ W2dS1 −

ss− M2d
ss− W2d

cosu1D
− me

2ss+ M2dS1 −
ss− W2d
ss− M2d

cosu1DJ + Osme
4d.

s21d

The virtuality Q2
2 of the second photon has an expression

analogous to Eq.(21) by replacing cosu1 by cosu2, whereu2
is the angle between the intermediate and final electrons. In
terms of the polar and azimuthal anglesu1 and f1 of the
intermediate electron, one can express

cosu2 = sinuc.m. sinu1 cosf1 + cosuc.m. cosu1. s22d

In case the intermediate electron is collinear with the ini-
tial electron(i.e., for u1→0, f1→0), one obtains from Eq.
(21) that both photon virtualities are given by

Q1,VCS
2 ; Q1

2su1 = 0,f1 = 0d . me
2 sW2 − M2d2

ss− W2dss− M2d
,

Q2,VCS
2 ; Q2

2su1 = 0,f1 = 0d .
ss− W2d
ss− M2d

Q2 + Osme
2d.

s23d

Note that when the intermediate and initial electrons are col-

linear, then also the photon with momentumqW1=kW −kW1 is col-
linear with this direction. For the elastic casesW=Md, this
precisely corresponds with the situation where the first pho-
ton is soft(i.e., q1→0) and where the second photon carries
the full momentum transferQ2

2.Q2. For the inelastic case
sW.Md, the first photon is hard but becomes quasireal(i.e.,
Q1

2,me
2). In this case, the virtuality of the second photon is

smaller thanQ2. An analogous situation occurs when the
intermediate electron is collinear with the final electron(i.e.,
u2→0, f1→0, which is equivalent withu1→uc.m.). These
kinematical situations with one quasireal photon and one vir-
tual photon correspond with quasivirtual Compton scattering
(quasi-VCS), and correspond at the lepton side with the
Bethe-Heitler process, see, e.g., Ref.[21] for details.

Besides the near singularities corresponding with quasi-
VCS, where the intermediate electron is collinear with either
the incoming or outgoing electrons, the two-photon ex-
change process also has a near singularity when the interme-

diate electron momentum goes to zeroukW1u→0 (i.e., the in-
termediate electron is soft). In this case the first photon takes

on the full momentum of the initial electron, i.e.,qW1→kW,
whereas the second photon takes on the full momentum of

the final electron, i.e.,qW2→kW8. One immediately sees from
Eq. (20) that this situation occurs when the invariant mass of
the hadronic state takes on its maximal valueWmax=Îs−me.
In this case, both photon virtualities are given by

Q1,RCS
2 = Q2,RCS

2 . me
ss− M2d

Îs
s1 − cosu1d. s24d

This kinematical situation with two quasireal photons corre-
sponds with quasireal Compton scattering(quasi-RCS). Due
to the near singularities in the phase space integral of Eq.
(17) corresponding with the quasi-VCS and quasi-RCS pro-
cesses, special care was taken when integrating over these
regions, as the integrand varies strongly over regions gov-
erned by the electron mass. Below we will show that these
near singularities may give important contributions(logarith-
mic enhancements) under some kinematical conditions. In
Fig. 2, we show the full kinematical accessible region for the
virtualities Q1

2, Q2
2 in the phase space integral of Eq.(17).

The normal spin asymmetriesAn andBn, discussed in Sec.
III, are a direct measure of the absorptive part of the two-
photon exchange amplitude and can be expressed as[9]

An =

2 ImS o
spins

T1g
* · AbsT2gD

o
spins

uT1gu2
, s25d

whereT1g denotes the one-photon exchange amplitude. Us-
ing Eq. (17), we can express Eq.(25) in terms of a three-
dimensional phase-space integral,

FIG. 2. Kinematical accessible region for the virtualitiesQ1
2,Q2

2

in the phase space integral of Eqs.(17) and (26), for MAMI (left
panels) and JLab(right panels) kinematics for different c.m. angles
uc.m. as indicated on the ellipses. The accessible regions correspond
with the inside of the ellipses and are shown both for the elastic
(upper panels) and for inelastic(lower panels) intermediate had-
ronic states. The intersection with the axes corresponds with quasi-
VCS, whereas the situation atW=Îs−me, where all ellipses shrink
to the pointQ1

2=Q2
2.0, corresponds with quasi-RCS.
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An = −
1

s2pd3

e2Q2

Dss,Q2dEM2

sÎs − med2

dW2 ukW1u

4Îs

3E dVk1

1

Q1
2Q2

2ImhLamnH
amnj. s26d

The denominator factorDss,Q2d in Eq. (26) is given through
the one-photon exchange cross section as

Dss,Q2d ;
Q4

e4 · o
spins

uT1gu2 = 8
s4M2td2

1 − «
HGM

2 +
«

t
GE

2J .

s27d

Furthermore in Eq.(26), the leptonicsLamnd and hadronic
sHamnd tensors are given by

Lamn = ūsk8,h8dgmsg ·k1 + medgnusk,hd

3 fūsk8,h8dgausk,hdg* , s28d

Hamn = Wmn · fūsp8,lN8 dGasp8,pdusp,lNdg* , s29d

where

Gasp8,pd ; GMga − F2P
a/M . s30d

In Eqs.(28) and(29) a sum is understood over the helicities
of the unpolarized particles. To evaluate the target normal
spin asymmetryAn, we need the unpolarized lepton tensor,
which is given by(neglecting the terms proportional to the
electron massme)

Lamn
unpol= Trhk”8gmk”1gnk”gaj. s31d

The beam normal spin asymmetryBn involves the polarized
lepton tensor, which is given by

Lamn
pol = Trhsk”8 + medgmsk”1 + medgng5j”sk” + medgaj, s32d

wherejb is the polarization vector, for an electron polarized
normal to the scattering plane. We see from Eq.(32) that the
polarized lepton tensor vanishes for massless electrons.
Keeping only the leading term inme, it is given by

Lamn
pol = meh− Trhg5gmk”1gnj”k”gaj + Trhg5k”8gmk”1gnj”gaj

− Trhg5k”8gmgnj”k”gajj + Osme
2d. s33d

V. MODELS FOR THE HADRONIC TENSOR

In this section, we discuss several models for the nonfor-
ward hadronic tensorWmn of Eq. (19) which enters in the
imaginary part of the two-photon exchange amplitude. These
models will be used further on to evaluate the target and
beam normal spin asymmetries.

An initial guess is to approximate the nonforward tensor
by the corresponding forward tensor in terms of four nucleon
structure functions, as was done in the calculations of Ref.
[9], and adapted in Ref.[11] by complementing the nucleon
structure functions by a form factor dependence. This may be
a reliable first estimate when one is interested in the kine-
matical limit of high energy and very small momentum

transfersQ2!sd, corresponding with the Regge regime. The
SLAC E158 experiment[17], which corresponds withEg

.50 GeV andQ2ø0.05 GeV2, accesses this diffractive re-
gion and may be a good testing ground for such models. To
go beyond the very forward angle approximation for the had-
ronic tensor, and in order to compare quantitatively with
beam normal spin asymmetry measurements performed or in
progress at MIT-Bates[13], MAMI [14], and JLab[15,16] at
intermediate beam energies in the 1 GeV region, one imme-
diately faces the full complexity of the nonforward doubly
virtual Compton scattering tensor. This nonforward tensor
can be parametrized in general in terms of 18 invariant am-
plitudes[20]. As we are interested in this work in the absorp-
tive part of the nonforward doubly virtual Compton scatter-
ing tensor, we may use the unitarity relation to express the
full nonforward tensor in terms of electroabsorption ampli-
tudes g* N→X at different photon virtualities. This same
strategy has been used before in the description of real and
virtual Compton scattering in the resonance region, and
checked against data in Ref.[22]. We will subsequently
model the nonforward tensorWmn for the elastic contribution
sX=Nd, and in the resonance region as a sum over allpN
intermediate states(i.e., X=pN).

A. Elastic contribution

The elastic contribution toWmn, corresponding with the
nucleon intermediate state in the blob of Fig. 1, is exactly
calculable in terms of on-shell nucleon electromagnetic form
factors as

Wel
mnsp8,lN8 ;p,lNd = 2pdsW2 − M2dūsp8,lN8 dGmsp8,pXd

3sg · pX + MdGnspX,pdusp,lNd, s34d

whereGm is given as in Eq.(30).

B. Inelastic contribution: Sum over pN intermediate states
using the MAID model (resonance region)

The inelastic contribution toWmn corresponding with the
pN intermediate states in the blob of Fig. 1 is given by

Wmnsp8,lN8 ;p,lNd =
1

4p2

upWpu2

fupWpusEp + End + EpukW1uk̂1 · p̂pg

3 o
ln

E dVpūsp8,lN8 dJpN
†m uspn,lnd

3ūspn,lndJpN
n usp,lNd, s35d

wherepp=sEp ,pWpd andpn=sEn,pWnd are the four-momenta of
the intermediate pion and nucleon states, respectively, and

kW1=−pWp−pWn. In Eq. (35), the integration runs over the polar
and azimuthal angles of the intermediate pion, andJpN

n and
JpN

†m are the pion electroproduction currents, describing the
excitation and deexcitation of thepN intermediate state, re-
spectively. Following Ref.[23], we parametrize the matrix
element of the pion electroproduction current in terms of six
invariant amplitudesAi as
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ūspn,lndJpN
n usp,lNd = 8pW ūspn,lndo

i=1

6

AisW2,tp,Q1
2d

3Mi
nusp,lNd, s36d

whereW2=sp+q1d2=spp+pnd2 is the squared c.m. energy of
the pN system, andtp=sp−pnd2=spp−q1d2 is the squared
four-momentum transfer in thegN→pN process. In Eq.
(36), the covariantsMi

n are given by

M1
n = −

1

2
ig5sgnq”1 − q”1gnd,

M2
n = 2ig5FPin

n q1 ·Spp −
1

2
q1D − Spp −

1

2
q1Dn

q1 · PinG ,

M3
n = − ig5sgnq1 · pp − q”1pp

n d,

M4
n = − 2ig5sgnq1 · Pin − q”1Pin

n d − 2MM1
n,

M5
n = ig5sq1

nq1 · pp + Q1
2pp

n d,

M6
n = − ig5sq”1q1

n + Q1
2gnd, s37d

wherePin
n =sp+pndn /2, anda” =angn. Analogous expressions

hold for the pion electroproduction current for the second
virtual photon. For the calculation of the invariant ampli-
tudesAi, we use the phenomenological MAID analysis(ver-
sion 2000) [24], which contains both resonant and nonreso-
nant pion production mechanisms.

VI. RESULTS AND DISCUSSION

In this section, we show our results for both beam and
target normal spin asymmetries for elastic electron-proton
and electron-neutron scattering. We estimate the nonforward
hadronic tensor entering the two-photon exchange amplitude
through nucleon(elastic contribution) and pN intermediate
states(inelastic contribution) as described above. Our calcu-
lation covers the whole resonance region, using phenomeno-
logical pN electroproduction amplitudes as input, and ad-
dresses measurements performed or in progress at MIT-Bates
[13], MAMI [14], and JLab[15,16], where the beam ener-
gies are below 1 GeV or in the 1–3 GeV range.

In Fig. 3, we show the beam normal spin asymmetryBn
for elastic e−↑p→e−p scattering at a low beam energy of
Ee=0.2 GeV. At this energy, the elastic contribution(where
the hadronic intermediate state is a nucleon) is sizeable. The
inelastic contribution is dominated by the region of threshold
pion production, as is shown in Fig. 4, where we display the
integrand of theW integration forBn. When integrating the
full curve in Fig. 4 overW, one obtains the total inelastic
contribution toBn (i.e., dashed-dotted curve in Fig. 3). One
sees from Fig. 4 that at backward c.m. angles(i.e., with
increasingQ2) the p+n andp0p intermediate states contrib-
ute with opposite sign. Such a behavior is because the non-
forward hadronic tensor involves electroproduction ampli-
tudes at different virtualities. It would be absent when

approaching the nonforward tensor by a forward tensor in
terms of unpolarized structure functions, because the positiv-
ity of the unpolarized structure functions requires all chan-
nels to contribute with the same sign. Furthermore, one no-
tices in Fig. 4 that the peaked structure at the maximum
possible value of the integration range inW, i.e., Wmax=Îs
−me, is due to the near singularity(in the electron mass)
corresponding with quasi-RCS as discussed in Sec. IV.

We investigate the contribution of this quasireal Compton
scattering to the total asymmetryBn as a function of the
beam energy at a backward angleuc.m.=120° in Fig. 5. In
this figure, we compare the full calculation(solid curve) with

FIG. 3. Beam normal spin asymmetryBn for e−↑p→e−p at a
beam energyEe=0.2 GeV as a function of the c.m. scattering angle,
for different hadronic intermediate statessXd in the blob of Fig. 1:N
(dashed curve), pN (dashed-dotted curve), sum of theN and pN
(solid curve). The data point is from the SAMPLE Collaboration
(MIT-Bates) [13].

FIG. 4. Integrand inW of the beam normal spin asymmetryBn

for e−↑p→e−p at a beam energy ofEe=0.2 GeV and at different
c.m. scattering angles as indicated in the figure. The dashed curves
are the contribution from thep0p channel, the dashed-dotted curves
show the contribution from thep+n channel, and the solid curves
are the sum of the contributions from thep+n and p0p channels.
The vertical dashed line indicates the upper limit of theW integra-
tion, i.e.,Wmax=Îs−me.
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an approximate calculation(dotted curve) where the had-
ronic tensorWmn in Eqs.(26) and(29) is evaluated at the end
point Wmax, and can subsequently be taken out of theW
integration. This calculation corresponds with the quasi-RCS
contribution toBn. It is seen from Fig. 5 that for energies up
to aboutEe.0.4 GeV, the quasireal Compton scattering is
dominating the total result. It is also seen that when ap-
proaching thepN threshold there is a sign change inBn
which is driven by the nonresonantp+n production process
which yields a positive integrand around threshold. The
threshold region in the present calculation(MAID ) is consis-
tent with chiral symmetry predictions, and is therefore
largely model-independent. It is seen from Fig. 3 that the
inelastic and elastic contributions at a low energy of 0.2 GeV
have opposite sign, resulting in quite a small asymmetry
around this particular energy. It is somewhat puzzling that
the only experimental data point at this energy indicates a
larger negative value at backward angles, although with quite
large error bar.

In Fig. 6, we showBn at different beam energies below
Ee=1 GeV. It is clearly seen that at energiesEe=0.3 GeV
and higher, the elastic contribution yields only a very small
relative contribution. Therefore,Bn is a direct measure of the
inelastic part which gives rise to sizeable large asymmetries,
of the order of several tens of ppm in the backward angular
range, mainly driven by the quasi-RCS near singularity. At
forward angles, the size of the predicted asymmetries is com-
patible with the first high-precision measurements performed
at MAMI. It will be worthwhile to investigate if the slight
overprediction(in absolute value) of Bn, in particular atEe
=0.57 GeV, is also seen in a backward angle measurement,
which is planned in the near future at MAMI.

To gain a better understanding of how the inelastic con-
tribution to Bn arises, we show in Fig. 7 the integrand ofBn

at Ee=0.855 GeV and at different scattering angles. The
resonance structure is clearly reflected in the integrands for
bothp+n andp0p channels. At forward angles, the quasireal
Compton scattering at the end pointW=Wmax only yields a
very small contribution, which grows larger when going to
backward angles. This quasi-RCS contribution is of opposite
sign to the remainder of the integrand, and therefore deter-
mines the position of the maximum(absolute) value of Bn
when going to backward angles.

FIG. 5. Beam energy dependence of the beam normal spin
asymmetryBn for e−↑p→e−p at fixed scattering angleuc.m.=120°.
The solid curve is the total inelastic calculation for bothp+n and
p0p channels. The other three curves are obtained by approximating
the hadronic tensorWmn in Eqs. (26) and (29) by its value atW
=Wmax=Îs−me, corresponding with the quasireal Compton scatter-
ing contribution for thep0p channel(dashed curve), for the p+n
channel(dashed-dotted curve), and for the sum ofp0p and p+n
channels(dotted curve).

FIG. 6. Beam normal spin asymmetryBn for e−↑p→e−p as a
function of the c.m. scattering angle at different beam energies, as
indicated in the figure. The calculations are for different hadronic
intermediate statessXd in the blob of Fig. 1:N (dashed curve), pN
(dashed-dotted curves), sum of theN and pN (solid curves). The
data points are from the A4 Collaboration(MAMI ) [14].

FIG. 7. Integrand inW of the beam normal spin asymmetryBn

for e−↑p→e−p at a beam energy ofEe=0.855 GeV and at different
c.m. scattering angles as indicated in the figure. The dashed curves
are the contribution from thep0p channel, the dashed-dotted curves
show the contribution from thep+n channel, and the solid curves
are the sum of the contributions from thep+n and p0p channels.
The vertical dashed line indicates the upper limit of theW integra-
tion, i.e.,Wmax=Îs−me.
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In Fig. 8, we compare the beam normal spin asymmetries
at Ee=0.570 GeV for both proton and neutron. It is seen that
the proton and neutron values ofBn are of opposite sign and
similar in magnitude. This can be understood from Eq.(16)
and noting that the term proportional toGM dominatesBn. As
the magnetic form factorGM changes sign between proton
and neutron, and because the two-photon exchange ampli-
tudes in theD region (isovector transition) have the same
sign and magnitude between proton and neutron, one obtains
a beam normal spin asymmetry of similar magnitude and
opposite sign between both cases.

In Fig. 9, we show our results for the beam normal spin
asymmetry atEe=3 GeV where parity violation programs
are underway at JLab(G0 [16] and Happex-2[15] experi-
ments). One notices from Fig. 9 that the elastic contribution
at Ee=3 GeV is negligibly small at forward angles, and
reaches its largest value(in magnitude) of around −1 ppm in
the backward angular range. The inelastic part is calculated

using pN intermediate states forW,2 GeV. The inelastic
contribution toBn displays an interesting structure as it is
negative(around −3 ppm) in the forward angular range and
changes sign arounduc.m..90°. This can be understood by
comparing theW dependence of the integrands ofBn be-
tween forward and backward angular situations, as is shown
in Fig. 10. The integrand ofBn displays three prominent
resonance structures corresponding with theDs1232d and
dominantly with theD13s1520d andF15s1680d resonances. At
a forward angle, all three resonance regions enter with the
same sign inBn. At a backward angle(see panel foruc.m.
=120°), however, one sees that the first two resonance re-
gions are largely damped whereas the third resonance region
shows up prominently and yields a contribution toBn with
opposite sign. This can in turn be understood because at
more backward angles at fixedW, the integration range for
Bn is dominated by the quasi-VCS regions, where one of the
photons has a larger virtuality than at forward angle, as is
seen on Fig. 2. At larger photon virtuality, the first two reso-
nance regions drop faster withQ2 than the third region, as
follows from phenomenological pion electroproduction
analyses and as is built into the MAID amplitudes. Further-
more, the sign change of the third resonance region at back-
ward angles again stresses the importance to model the full
nonforward Compton tensor. This sign change, as follows
from the MAID model, is similar to the corresponding sign
change with increasingQ2 for the generalized (i.e.,
Q2-dependent) Gerasimov-Drell-Hearn(GDH) integral, as
obtained in this model[25]. Indeed, at smallQ2, the GDH
integral is largely dominated by theDs1232d resonance,
whereas with increasingQ2, the Ds1232d contribution drops
rapidly and the higher resonance region turns over the sign
of the GDH integral, approaching its value as measured in
deep inelastic scattering. It will be interesting to confirm this
behavior by comparing the values ofBn at Ee=3 GeV from

FIG. 8. Comparison of the beam normal spin asymmetryBn for
the processese−↑p→e−p (left panel), ande−↑n→e−n (right panel)
at beam energyEe=0.570 GeV as a function of the c.m. scattering
angle, for different hadronic intermediate statessXd in the blob of
Fig. 1: N (dashed curve), pN (dashed-dotted curve), sum ofN and
pN (solid curve).

FIG. 9. Beam normal spin asymmetryBn for e−↑p→e−p at a
beam energyEe=3 GeV as a function of the c.m. scattering angle,
for different hadronic intermediate statessXd in the blob of Fig. 1:N
(dashed curve), pN (dashed-dotted curve), sum ofN andpN (solid
curve). For thepN intermediate states, we estimate the total contri-
bution for Wø2 GeV.

FIG. 10. Integrand inW of the beam normal spin asymmetryBn

for e−↑p→e−p at a beam energy ofEe=3 GeV and at different c.m.
scattering angles as indicated in the figure. The dashed curves are
the contribution from thep0p channel, the dashed-dotted curves
show the contribution from thep+n channel, and the full curves are
the sum of the contributions from thep+n andp0p channels. Note
that for Ee=3 GeV, the upper integration range inW is given by
Wmax.2.55 GeV.
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forthcoming data at forward and backward angles[15,16].
We also note from Fig. 10 that atEe=3 GeV, thepN

contribution is only known forW,2 GeV, whereas the up-
per integration range inW is given byWmax.2.55 GeV. One
can deduce from Fig. 10 that there might be an additional
negative contribution toBn, in particular in the forward an-
gular range. This may render the beam normal spin asymme-
try somewhat more negative in the forward angular range
than shown in Fig. 9.

In the following figures, we discuss the corresponding
target normal spin asymmetryAn. We first show in Fig. 11
the elastic contribution to the target normal spin asymmetry
An at different beam energies. The elastic contribution toAn
depends only on the on-shell nucleon electromagnetic form
factors and has been calculated long ago(see, e.g., Ref.[9]).
Using dipole form-factor parametrizations for bothGMp and
GEp as adopted in Ref.[9], we are able to exactly reproduce
the results of Ref.[9]. One sees from Fig. 11 that the elastic
contribution toAn is around or below 1%.

In Fig. 12, we test the dependence of the elastic contribu-
tion on the on-shell proton electric and magnetic form fac-
tors. We compare the result forAn obtained using dipole
form factors, with the elastic contribution calculated using
the recent experimental analyses ofGMp from Ref. [26] and
taking theGEp/GMp ratio from Ref.[2]. One notices that the
realistic form factors reduceAn by around 0.1% at its maxi-
mum. At lower beam energies(corresponding with lower
values ofQ2), the deviations from the dipole parametrization
of the form factors are much smaller. Unless otherwise
stated, our results for the elastic contributions to the beam
and target normal SSA are therefore calculated using dipole
form factors for the proton.

In Fig. 13, we show the results for both elastic and inelas-
tic contributions toAn at different beam energies. At a low

beam energy ofEe=0.2 GeV,An is completely dominated by
the elastic contribution. Going to higher beam energies, the
inelastic contribution becomes of comparable magnitude to
the elastic one. This is in contrast with the situation forBn

FIG. 11. Target normal spin asymmetryAn for e−p↑→e−p for
the nucleon intermediate state(i.e., elastic contributionX=N) in the
blob of Fig. 1, as a function of the c.m. scattering angle for different
beam energies as indicated on the curves.

FIG. 12. Dependence on the proton form factors of the elastic
contribution to the target normal spin asymmetryAn for e−p↑

→e−p at two beam energies:Ee=11 GeV (dashed curves) and Ee

=4 GeV (solid curves). The thin upper curves are obtained using
dipole form factors. The thick lower curves are obtained using the
GMp parametrization of Ref.[26], and taking theGEp/GMp ratio
from Ref. [2].

FIG. 13. Target normal spin asymmetryAn for e−p↑→e−p as a
function of the c.m. scattering angle at different beam energies, as
indicated in the figure. The calculations are for different hadronic
intermediate statessXd in the blob of Fig. 1:N (dashed curve), pN
(dashed-dotted curve), sum ofN andpN (solid curve).
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where the elastic contribution already becomes negligible for
beam energies aroundEe=0.3 GeV. We also notice from Fig.
13 that for beam energies below 1 GeV, the elastic and in-
elastic contributions toAn have opposite sign. The integrand
of the inelastic contribution at a beam energy ofEe
=0.855 GeV is shown in Fig. 14. The total inelastic result
displays ap+n threshold region contribution and a peak at
the Ds1232d resonance. Notice that the higher resonance re-
gion is suppressed in comparison with the corresponding in-
tegrand forBn. Also the quasireal Compton scattering peak
around the maximumW value is absent. This different be-
havior in comparison with the beam normal spin asymmetry
can be easily understood by comparing the lepton tensors in

both cases. One sees from Eq.(31) that the unpolarized lep-
ton tensor, which enters inAn, vanishes linearly when the
intermediate lepton momentumk1→0. This is in contrast
with the polarized lepton tensor of Eq.(33), which becomes
constant whenk1→0. Hence the region aroundW=Wmax
(corresponding withk1→0) in the integrand ofAn is sup-
pressed compared with the corresponding region in the inte-
grand ofBn. As a result, the elastic contribution toAn can be
of comparable magnitude to the inelastic contribution. Fur-
thermore, one sees from Fig. 13 that, due to the partial can-
cellation between elastic and inelastic contributions,An for
the proton is significantly reduced, taking on values around
or below 0.1% for beam energies below 1 GeV.

At higher beam energies, the inelastic contribution toAn
changes sign. This can be understood by comparing the in-
tegrands ofAn at Ee=0.855 GeV(Fig. 14) with its value at
Ee=2 GeV (Fig. 15). One sees that atEe=2 GeV and back-
ward angles, theDs1232d contribution changes sign and
dominates the inelastic contribution. Because at higher ener-
gies also the elastic contribution grows larger, as was seen in
Fig. 11, one obtains larger target normal spin asymmetries
around 1%.

In Fig. 16, we compare the target normal spin asymme-
tries for elastic electron scattering off protons and neutrons.
For the elastic contribution toAn for the neutron, we use the
parametrizations ofGMn from Ref. [27], andGEn from Ref.
[28]. The inelastic contribution toAn for the neutron is en-
hanced in comparison with the proton. This can be under-
stood from Eq.(15) for An. For the proton, bothGM andGE
terms are sizeable and tend to cancel each other. For the
neutron, on the other hand, theGM term changes sign
whereas theGE term is very small so that such cancellation
does not occur. Therefore, the target normal spin asymmetry
is quite sizeable for the neutron(around 0.65%) in the reso-
nance region, providing an interesting opportunity for a mea-
surement.

VII. CONCLUSIONS

In this paper, we have studied the target and beam normal
single spin asymmetries for elastic electron-nucleon scatter-

FIG. 15. Integrand inW of the target normal spin asymmetryAn

for e−p↑→e−p at a beam energy ofEe=2 GeV and at different c.m.
scattering angles as indicated in the figure. The dashed curves are
the contribution from thep0p channel, the dashed-dotted curves
show the contribution from thep+n channel, and the solid curves
are the sum of thep+n andp0p channels.

FIG. 16. Comparison of the target normal spin asymmetryAn

for the processese−p↑→e−p (left panel) and e−n↑→e−n (right
panel) at beam energyEe=0.570 GeV as a function of the c.m.
scattering angle, for different hadronic intermediate statessXd in the
blob of Fig. 1:N (dashed curve), pN (dashed-dotted curve), sum of
N andpN (solid curve).

FIG. 14. Integrand inW of the target normal spin asymmetryAn

for e−p↑→e−p for a beam energy ofEe=0.855 GeV and at different
c.m. scattering angles as indicated in the figure. The dashed curves
are the contribution from thep0p channel, the dashed-dotted curves
show the contribution from thep+n channel, and the solid curves
are the sum of thep+n andp0p channels.
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ing. These asymmetries depend on the imaginary part of 2g
exchange amplitudes. We have constructed the imaginary
part of these 2g exchange amplitudes as a phase space inte-
gral over the doubly virtual Compton scattering tensor on the
nucleon. Using unitarity, we have expressed the imaginary
(absorptive) part of the nonforward doubly virtual Compton
tensor on the nucleon in the resonance region in terms of
phenomenologicalg* N→pN electroproduction amplitudes.
Using this model for the nonforward doubly virtual Compton
tensor, we presented calculations for beam and target normal
SSAs for several experiments performed or in progress. The
resonance region, where the model input is relatively well
understood, is a useful testing ground to study these asym-
metries as a new tool to extract nucleon structure informa-
tion. At a low beam energy, around pion threshold, the in-
elastic (pN intermediate state) contribution is largely
constrained from chiral symmetry predictions. Around pion
threshold, the beam normal SSABn is at the few ppm level.
Going up in beam energy, the elastic contribution toBn very
soon becomes negligible(at the 1 ppm level) whereas the
resonance contributions yield large values ofBn of the order
of several tens of ppm in the backward angular range. This is
mainly driven by the quasi-VCS and quasi-RCS near singu-
larities, in which one or both photons in the two-photon ex-
change process become quasireal. It was found that at for-
ward angles, the size of the predicted asymmetries is
compatible with the first high-precision measurements per-
formed at MAMI. It will be interesting to check that for
backward angles, the beam normal SSA indeed grows to the
level of tens of ppm in the resonance region.

For higher beam energies, around 3 GeV energy range,
the inelastic contribution toBn was found to display an in-
teresting structure: it is negative(around −3 ppm) in the for-
ward angular range, and changes sign arounduc.m..90°.
This behavior can be understood from the observation that at
forward angles, the three main resonance regions enter with
the same sign inBn. At backward angles, however, the first
two resonance regions are largely damped and the third reso-
nance region drives the change of sign inBn. We have also
shown our results for the target normal SSAAn. In contrast to
the beam normal SSA, the quasi-RCS near singularity is ab-
sent in the target normal SSA, yielding much smaller inelas-
tic contributions relative to elastic ones. At beam energies
around 1 GeV, elastic and inelastic contributions toAn tend
to cancel each other for the proton, yielding values forAn
around 0.1%. For the neutron, such a cancellation is absent
and one may expect values ofAn approaching 1%. Besides
providing estimates for ongoing experiments, this work can
be considered as a first step in the construction of a disper-
sion formalism for elastic electron-nucleon scattering ampli-
tudes. In such a formalism, one needs a precise knowledge of
the imaginary part as input in order to construct the real part
as a dispersion integral over this imaginary part. The real
part of the two-photon exchange amplitudes may yield cor-
rections to elastic electron-nucleon scattering observables,
such as the unpolarized cross sections or double polarization
observables. It is of importance to quantify this piece of in-
formation, in order to increase the precision in the extraction
of nucleon form factors. Besides, this work may also be ex-
tended to the calculation ofgZ and W+W− box diagrams,

which enter as corrections in electroweak precision experi-
ments.
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APPENDIX: RELATIONS BETWEEN HELICITY
AMPLITUDES AND INVARIANT AMPLITUDES FOR

ELASTIC ELECTRON-NUCLEON SCATTERING

The helicity amplitudes for elastic electron-nucleon scat-
tering are defined in theeN c.m. frame, and are denoted by
Tsh8 ,lN8 ;h,lNd, whereh sh8d denote the helicities of the ini-
tial (final) electrons and wherelN slN8 d denote the helicities
of the initial (final) nucleons. It is also convenient to intro-
duce the Mandelstam invariantss=sp+kd2 and u=sp−k8d2,
which, neglecting the electron mass, are related to the invari-
antsQ2 andn, introduced in Eq.(3), as

s+ u = Q2 + 2M2, s− u = 4n. sA1d

Furthermore, the c.m. scattering angleuc.m. is related tos, u,
andQ2 as

sin2uc.m.

2
=

Q2s

ss− M2d2, cos2
uc.m.

2
=

sM4 − sud
ss− M2d2 . sA2d

The helicity spinors for the electrons are given by

u„ksk8d,hsh8d… = ÎukWuF xhsh8d

2hs2h8dxhsh8d
G , sA3d

where ukWu=ss−M2d / s2Îsd, and where the Pauli spinors for
the incoming electron are given by

x1/2 = S1

0
D, x−1/2 = S0

1
D , sA4d

whereas the Pauli spinors for the outgoing electron are given
by

x1/28 =1cos
uc.m.

2

sin
uc.m.

2
2, x−1/28 =1− sin

uc.m.

2

cos
uc.m.

2
2 . sA5d

The helicity spinors for the nucleon are given by
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u„psp8d,lNslN8 d… = ÎEN + M3 xlNslN8 d

2lNs2lN8 d
ukWu

EN + M
xlNslN8 d 4 ,

sA6d

whereEN=ÎukWu2+M2. The Pauli spinors for the initial proton
are given by

x1/2 = S 0

− 1
D, x−1/2 = S1

0
D , sA7d

and the Pauli spinors for the final proton are given by

x1/28 =1 sin
uc.m.

2

− cos
uc.m.

2
2, x−1/28 =1cos

uc.m.

2

sin
uc.m.

2
2 . sA8d

Using the constraints of parity invariance and time rever-
sal invariance, one obtains three independent helicity ampli-
tudes which conserve the electron helicity(i.e., h8=h), and
three independent helicity amplitudes which flip the electron
helicity (i.e., h8=−h), in agreement with the invariants found

in Eqs.(6) and(7). In terms of the invariantsG̃M , F̃2, andF̃3,
the three independent helicity amplitudes which conserve the
electron helicity can be expressed as

T1 ; Tsh8 = + 1
2,lN8 = + 1

2 ;h = + 1
2,lN = + 1

2d

= −
e2

Q2ss− M2dH− 2G̃MFM2

s
cos2

uc.m.

2
+

ss− M2d
s

G
+ 2F̃2 cos2

uc.m.

2
− F̃3

ss− M2d
M2 cos2

uc.m.

2
J , sA9d

T2 ; Tsh8 = + 1
2,lN8 = − 1

2 ;h = + 1
2,lN = + 1

2d

= −
e2

Q2

ss− M2d
MÎs

sin
uc.m.

2
cos

uc.m.

2
hG̃Ms2M2d

− F̃2ss+ M2d + F̃3ss− M2dj, sA10d

T3 ; Tsh8 = + 1
2,lN8 = − 1

2 ;h = + 1
2,lN = − 1

2d

= −
e2

Q2ss− M2dcos2
uc.m.

2
H− 2G̃M + 2F̃2 − F̃3

ss− M2d
M2 J .

sA11d

Inverting the relations in Eqs.(A9)–(A11) yields the invari-

ant amplitudesG̃M , F̃2, andF̃3 as

e2G̃M = 1
2hT1 − T3j, sA12d

e2F̃2 =
M
Îs

tan
uc.m.

2 HT2 +
M
Îs

tan
uc.m.

2
T3J , sA13d

e2F̃3 =
M2

ss− M2dH− T1 +
2M
Îs

tan
uc.m.

2
T2

+ S1 +
s+ M2

s
tan2 uc.m.

2
DT3J . sA14d

The three amplitudes which flip the electron helicity can
be expressed as

T4 ; Tsh8 = − 1
2,lN8 = 1

2 ;h = 1
2,lN = 1

2d

= −
mee

2

2k

1

tan
uc.m.

2

F2ss+ M2d
ss− M2d

sG̃M − F̃2d

+
s+ M2

M2 F̃3 + 2F̃4 +
s− M2

M2 F̃5G sA15d

T5 ; Tsh8 = − 1
2,lN8 = − 1

2 ;h = 1
2,lN = 1

2d

=
mee

2

M
F 4sM2

ss− M2d2G̃M −
ss+ M2d2

ss− M2d2F̃2

+
ss+ M2d
ss− M2d

sF̃3 + F̃4d + F̃5 + F̃6G , sA16d

T6 ; Tsh8 = − 1
2,lN8 = 1

2 ;h = 1
2,lN = − 1

2d

= −
mee

2

M
F 4sM2

ss− M2d2G̃M −
ss+ M2d2

ss− M2d2F̃2

+
ss+ M2d
ss− M2d

sF̃3 + F̃4d + F̃5 − F̃6G . sA17d

The inversion of these relations reads

e2F̃4 = −
M2

2Îsk
FT1 −

ss+ M2d
ÎsM

tan
uc.m.

2
T2

− S1 +
ss+ M2d

s
tan2 uc.m.

2
DT3G −

M

2me
sT6 − T5d

+
M2

Îsme

tan
uc.m.

2
T4, sA18d

e2F̃5 = −
M4

2sk2F− T1 +
ss+ M2d

ÎsM
tan

uc.m.

2
T2

+ S1 +
ss+ M2d2

2sM2 tan2 uc.m.

2
DT3G +

M3

2me
Îsk

sT6 − T5d

−
M2ss+ M2d

me2sk
tan

uc.m.

2
T4, sA19d

e2F̃6 =
M

2me
sT5 + T6d. sA20d
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