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Resonance estimates for single spin asymmetries in elastic electron-nucleon scattering
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We discuss the target and beam normal spin asymmetries in elastic electron-nucleon scattering which depend
on the imaginary part of two-photon exchange processes between electron and nucleon. We express this
imaginary part as a phase space integral over the doubly virtual Compton scattering tensor on the nucleon. We
use unitarity to model the doubly virtual Compton scattering tensor in the resonance region in terms of
y*N— 7N electroabsorption amplitudes. Taking those amplitudes from a phenomenological analysis of pion
electroproduction observables, we present results for beam and target normal single spin asymmetries for
elastic electron-nucleon scattering for beam energies below 1 GeV and in the 1-3 GeV region, where several
experiments are performed or are in progress.
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I. INTRODUCTION erate momentum transfers, the weight of the term propor-

tional to Gé drops at the 1% level and one may expect that

Elastic electron-nucleon scattering in the one-photon excorrection terms due to two-photon exchange become com-
change approximation is a time-honored tool to access inforetitive and eventually dominate over & term. The po-

mation on the structure of hadrons. Experiments with inJarization transfer _me.thod, on the other hanq, is much less
creasing precision have become possible in recent yearaffected because it directly measures the rati€&gf/ Gy,

mainly triggered by new techniques to perform polarizationi-€-» depends linearly oe. Recently, several model calcu-

experiments at the electron scattering facilities. This has alldtions of the % exchange amplitude have been performed.

lowed us to reach a new frontier in the measurement of had? Ref- [7], a calculation of the 2 exchange when the had-

ron structure quantities, such as its electroweak form factor ggéct;\néerm(g)?cl:%taGnStgtic;frgc?igﬂevsghvﬂi?eerir;%rigqtgdhLtcflzgrr]]d
parity violating effects, nucleon polarizabilitie,— A tran- & 9

sition form factors, or the measurement of spin-depende an partially resolve the discrepancy between the two experi-

. . ental techniques. Recently, the @xchange contribution to
structure functions, to name a few. For example, expenment% g y, e 9

. . ) . astic electron-nucleon scattering has been estimated at
using polarized electron beams and measuring the ratio q rge momentum transfeig], through the scattering off a

the recoil nucleon in-plane polarlzqtlon components havﬁbarton in a proton by relating the process on the nucleon to
profoundly extended our understanding of the nucleon elecg generalized parton distributions. This calculation found
tromagnetic form factors. For the proton, such polarizationhat the 2y exchange contribution is indeed able to quantita-
experiments which access the raBg,/Gy,, of the proton's  tjvely resolve the existing discrepancy between Rosenbluth
electric(Ggp) to magnetidGy,) form factors have been per- and polarization transfer experiments. To push the precision
formed out to a momentum transféf of 5.6 Ge\? [1,2]. It frontier further in electron scattering, one needs a good con-
came as a surprise that these experiments extracted a ratiotadl of 2y exchange mechanisms and needs to understand
Ggp/ Gup Which is clearly at variance with unpolarized mea- how they may or may not affect different observables. This
surementg3-5] using the Rosenbluth separation techniquejustifies a systematic study of sucly 2xchange effects, both
The understanding of this puzzle has generated a lot of atheoretically and experimentally. The rédlspersive part of
tivity recently, and is a prerequisite to use electron scatteringhe 2y exchange amplitude can be accessed through the dif-
as a precision tool. It has been suggested on general grounfigence between elastic electron and positron scattering off a
in Ref.[6] that this puzzle may be explained by a two-photonnucleon. The imaginargabsorptivée part of the 2y exchange
exchange amplitude of the level of a few percent. The resultamplitude, on the other hand, can be accessed through a
ing failure of the one-photon exchange approximation to unsingle spin asymmetrySSA) in elastic electron-nucleon
polarized elastic electron-nucleon scattering can be undescattering, when either the target or beam spin are polarized
stood from the observation thaGy, and Gg, enter normal to the scattering plane, as has been discussed some
quadratically in the unpolarized cross section. It turns outime ago in Ref[9]. As time-reversal invariance forces this
that G2, may become a small quantity compared with SSA to vanish for one-photon exchange, it is of order
Gﬁ,lp, and is further suppressed by a kinematical factor=e?/(4m)=1/137. Furthermore, to polarize an ultrarelativis-
~1/Q2. Therefore, it becomes increasingly difficult to ex- tic particle in the direction normal to its momentum involves
tract this term at larger momentum transfer. Already at moda suppression facton/E (with m the mass ané& the energy
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of the particlg, which typically is of order 10*~10°3 when tons in the 3 exchange process are virtual and integrated
the electron beam energy is in the 1 GeV range. Thereforever, an observable such as the beam or target normal SSA is
the resulting target normal SSA can be expected to be ofensitive to the electroproduction amplitudes on the nucleon
order 102 whereas the beam normal SSA is of order®10 for a range of photon virtualities. This may provide informa-
-107°. A measurement of such small asymmetries is quitgjon on resonance transition form factors complementary to
demanding experimentally. However, in the case of a polarthe information obtained from current pion electroproduction
ized lepton beam, asymmetries of the order ppm are Culaxperiments.

rently accessible_ in parity yiolatio(lPV) elastic_ eIec’Fron-_ Finally, by understanding thejy2exchange contributions
nucleon scattering experiments. The parity violatings, the case of electromagnetic electron-nucleon scattering,
asymmetry involves a beam spin polarized along its momens e '3y extend this calculation to electroweak processes,

Quhere theyZ and W"W~ box diagrams are in several cases

the scattering plane can also be measured using the same . - S
experimental setups. First measurements of this beam normqehe '.e‘?‘d'”g unl_<nown contributions e.”te””g.'” glectroweak
recision experiments. We start by briefly reviewing the elas-

SSA at beam energies below 1 GeV have yielded value . :
around 10 ppnf13,14. At higher beam energies, the beam ic electron-nucleon scattering formalism beyond the one-

normal SSA can also be measured in upcoming PV elastiPh0ton exchange approximation in Sec. Il, and discuss the
electron-nucleon scattering experimefis—17. First esti- target and beam normal spin asymmetries in Sec. lll. Subse-

mates of the target normal SSA in elastic electron-nucleoffiuently, we study the imaginary part of the two-photon ex-
scattering have been performed in Ref8,10. In those change amplitudes in Sec. IV. We express th|s_|mag|nary part
works, the 2 exchange with nucleon intermediate state- @S @ phase space integral over the doubly virtual Compton
called elastic or nucleon pole contributjohas been calcu- Scattering tensor on the nucleon. In Sec. V, we use unitarity
lated, and the inelastic contribution has been estimated in & model the doubly virtual Compton scattering tensor in the
very forward angle approximation. Estimates within this ap-résonance region in terms gf*N— 7N electroabsorption
proximation have also been reported for the beam normamplitudes. We take those amplitudes fror_n a state-of-the-art
SSA in Ref.[11]. Recently, the general formalism for elastic Pheénomenological analysiAID [19]) of pion electropro-
electron-nucleon scattering with lepton helicity flip, which is duction observables. In Sec. VI, we show our results for
needed to describe the beam normal SSA, has been devégam and target normal SSA for beam energies below 1 GeV
oped in Ref.[12]. Furthermore, the beam normal SSA hasand in the 1-3 GeV region, where several experiments at
also been estimated at large momentum trans@@rm Ref. ~ MIT-Bates, MAMI, and Jefferson LablLab are performed
[12] using a parton model, which was found crudig] to ~ ©OF in progress. Our conclusions and an outlook are given in
interpret the results from unpolarized electron-nucleon elas>€¢- VII-

tic scattering, as discussed before. In the handbag model of

Refs.[8,12], the corresponding 2 exchange amplitude has Il. ELASTIC ELECTRON-NUCLEON SCATTERING
been expressed in terms of generalized parton distributions, BEYOND THE ONE-PHOTON EXCHANGE
and the real and imaginary part of thes 2xchange ampli- APPROXIMATION

tude are related through a dispersion relation. Hence in the ) i i i ,

partonic regime, a direct comparison of the imaginary part [N this section, we briefly review the elastic electron-
with experiment can provide a very valuable cross-check offucleon scattering formalism beyond the one-photon ex-
the calculated result for the real part. To use the elasti€hange approximation, as has been developed recently in

electron-nucleon scattering at low momentum transfer as RefS-[6,12). For the kinematics of elastic electron-nucleon

high-precision tool, such as in present day PV experimentsScattering,

one may also want to qgantify th(_eykxc_hange am_plitude. e (k) +N(p) — e (K') +N(p"), (1)
To this aim, one may envisage a dispersion formalism for the

elastic electron-nucleon scattering amplitudes, as has be&e adopt the usual definitions,

discussed some time ago in the literat(it8]. To develop

this formalism, the necessary first step is a precise knowl- =) ,
edge of the imaginary part of the two-photon exchange am- 2 2
plitude, which enters in bot_h the beam and target no_rmaénd choose

SSA. The study of this imaginary part of the 2xchange is

the subject of this paper. Using unitarity, one can relate the Q*=-¢? v=K-P (3)

imaginary part of the 2 amplitude to the electroabsorption as the independent invariants of the scattering. The invariant

amplitudes on a nucleon. When measuring the imaginary . o .
part of the elastic electron-nucleon amplitude through a nor—¥ is related to the polarization parameterof the virtual

mal SSA at sufficiently low energies, below or around two—phOton’ which can be expressed (asglecting the electron

pion production threshold, one is in a regime where thesénas$

electroproduction amplitudes are relatively well known using P=-M*H1+7)

pion electroproduction experiments as input. One strategy is €= vZ+M4—7(1+7-)’ (4)
therefore to investigate this new tool of beam and target nor-

mal SSA first in the region where one has a good first knowlwhereM is the nucleon mass. For a theory which respects
edge of the imaginary part of theyZxchange. As both pho- Lorentz, parity, and charge conjugation invariance, the gen-

+ I k+k,
:u, K= q:k—k’:p’—p, (2)
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eral amplitude for elastic scattering of two s;ﬁrparticles involving at least the exchange of two photons. Relative to
can be expressed by six independent helicity amplitudes dhe factore? introduced in Eqs(6) and(7), we see that they
equivalently by six invariant amplitudes. The total amplitudeare of ordere?.

can be decomposed in general in terms of a lepton spin non-

flip and spin flip part,
Il. SINGLE SPIN ASYMMETRIES IN ELASTIC

T=Toontiip * Tip- ) ELECTRON-NUCLEON SCATTERING

The nonflip amplitude which conserves the helicity of the S )
electron(in the limit m,=0) depends upon three invariant An observable which is directly proportional to the two-

amplitudes, and has been parametrized in Fifas (or multi) photon exchange is given by the elastic scattering
&2 of an unpolarized electron on a proton target polarined
Toontip= —5U(K")y,u(K) - T(p') mal to the scattering plan@r the recoil polarization normal
o

to the scattering plane, which is exactly the same assuming
time-reversal invariangeFor a target polarized perpendicu-
~ ~ P* ~ y KP#* : : - :
X| Gy —Fa— + F3——— |u(p). (6) lar to the scattering plane, the corresponding single spin
M M asymmetry, which we refer to as the target normal spin
The amplitude which flips the electron heliciiye., is of the ~ asymmetry(A,), is defined by
order of the mass of the electrom,), depends on three
additional invariants which have been introduced in [REZ] -
as An= =, (13)
m €| — ~ ~v.K 71ty
Thip = M@[U(k’)U(k) - U(p’)<F4 + F5V>U(p)
where o,(o|) denotes the cross section for an unpolarized

+|~:6Wk’)75u(k) -Wp’)yg,u(p)}. 7) beam and fc_)r a nucleon spin_ parali@ntiparalle) to the
normal polarization vector, defined as

In Egs.(6) and(7), éM,IEz,IE3,I~:4,I~:5,I~:6 are complex func-
tions of v andQ?, and the factoe?/Q? has been introduced - (05 S — (KX KKk X K

. ’ : =(0,5), = . 14
for convenience. Furthermore, in E¢{), we extracted an $=0%), S=( M | (14)
explicit factorm,/M out of the amplitudes, which reflects the  As has been shown by de Rujwa al. [9], the targetor
fact that for a vector interactiosuch as in QED the elec- recoil) normal spin asymmetry is related to the absorptive
tron helicity flip amplitude vanishes whem,— 0. In the part of the elasticeN scattering amplitudesee Sec. V.

Born approximation, one obtains Since the one-photon exchange amplitude is purely real, the
- leading contribution t@\, is of orderO(¢€?), and is due to an
GBorn( Q2) =G (QZ) . .
Mo W= ' interference between one- and two-photon exchange ampli-
tudes.
F5oM(1,Q%) = F5(Q?), When neglecting terms which correspond with electron
helicity flip (i.e., settingn,=0), A, can be expressed in terms
EBomn (), Q=0 (8) of the invariants for electron-nucleon elastic scattering, de-
3,4,5,6.7» ’

fined in Eqs.(6) and(7), as[8]
whereGy, (F,) are the proton magneti®auli form factors,

respectively. The invariant amplitudé2~ can be traded for

~ . 2e(l+e) , € , -1 ~ Vo~

Gg, defined as A= ——| Gy +—Gg - GyZ| 6Gg + WF3
T T

Ge=Gy - (1+7)F,, 9 B 26 \ b~
which has the property that in the Born approximation it +GEI[ &Gy + (E)WF?»H +O(eY, (19
reduces to the electric form factor, i.e.,
Ggom(V,Qz) =Ge(Q?). (10 whereZ denotes the imaginary part. For a beam polarized
To separate the one- and two-photon exchange contributionB€"Pendicular to the scattering plane, we can also define a
it is then useful to introduce the decompositions, single spin asymmetry, analogously as in E#3), where
3 _ now o (o) denotes the cross section for an unpolarized tar-
Gy =Gy + Gy, (11 get and for an electron beam spin paraliitiparalle) to the
normal polarization vector, given by E@L4). We refer to
Gg = Gg + 6G¢. (12)  this asymmetry as the beam normal spin asymmipy. It

o _ explicitly vanishes wherm,=0 as it involves an electron
Since the amplitudesGy,, 5Gg,F3,F,4,Fs, andFg vanish in  helicity flip. Using the general electron-nucleon scattering
the Born approximation, they must originate from processeamplitude of Eqs(6) and(7), B, is given by[12]
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kK

2: (S_ M2)2
2s

Q (1 - cosb, m) + O(md), (18)

with s=(k+p)2. Furthermore,Q?=-q3=-(k—k;)? and Q3

=-q5=—(k’ —k,)? correspond with the virtualities of the two

spacelike photons. In Eq(17), the hadronic tensor

WH(p' NP, \n) corresponds with the absorptive part of

the doubly virtual Compton scattering tensor with tagace-
FIG. 1. The two-photon exchange diagram. The filled blob rep-like photons,

resents the response of the nucleon to the scattering of the virtual

photon. WP P = 2 (2m) 8% (P + dy = (P M II™(0)[X)
X
2me o e Yz 4 22 X(X|3"(0)] phy) (19
B,= ——\2e(1-¢)y/1+=|GE +-G2 PAN,
Q T T where the sum goes over all possilae-shellintermediate
~ v~ hadronic stateX. Note that in the limitp’=p, Eq. (19) re-
X\~ 7G| Pt 1+7WF5 duces to the forward tensor for inclusive electron-nucleon

1 scattering and can be parametrized by the usual four-nucleon
T, V= 4 forward structure functions. In the nonforward case, how-
GEI( Fa* 1+ ng)} +O(e). (16) ever, the absorptive part of the doubly virtual Compton scat-
tering tensor of Eq(19), which enters in the evaluation of
As for A, we immediately see tha@, vanishes in the Born farget and beam normal spin asymmetries, depends upon 18
approximation, and is therefore of orde invariant amplitude$20]. Though this may seem as a forbid-
dingly large number of new functions, we may use the uni-
tarity relation to express the full nonforward tensor in terms
IV. IMAGINARY (ABSORPTIVE) PART OF THE of electroproduction amplitudeg* N— X. The number of
TWO-PHOTON EXCHANGE AMPLITUDE intermediate stateX which one considers in the calculation
will then put a limit on how high in energy one can reliably
In this section, we relate the imaginary part of the two-ca|culate the hadronic tensor Ed.9). In the following sec-
photon exchange amplitude to the absorptive part of the douion, we will model the tensow” for the elastic contribu-
bly virtual Compton scattering tensor on the nucleon, agjon (X=N), and in the resonance region as a sum over all
shown in Fig. 1. In the following, we consider the helicity ;N intermediate stateg.e., X=mN), using a phenomeno-
amplitudes for the elastic electron-nucleon scattering, depgical state-of-the-art calculation for thet N— =N ampli-
fined in the eNc.m. frame, which are denoted by y,des. The phase space integral in ELj7) runs over the
T(h",\ih,Ay). Hereh (h") denote the helicities of the ini- 3. momentum of the intermediaten-shelj electron. Evalu-

tial (final) electrons and (Ay) denote the helicities of the ating the process in thesN c. m. system, we can express the
initial (final) nucleons. These helicity amplitudes can be ex-c.m. momentum of the intermediate electron as

pressed in terms of the invariant amplitudes introduced in

Egs. (6) and (7), and the corresponding relations can be _ 2
found in Appendix A. These relations allow us to calculate ||Zl|2= (5= WP+ mp)? -~ dsg
the invariant amplitudes, once we have constructed a model 4s
for the helicity amplitudes. (s—W2)2 , (s+W?) .
We start by calculating the discontinuity of the two- = |1 Znem +0(mg), (20
photon exchange amplitude, shown in Fig. 1, which is given

by
whereW? = pi is the squared invariant mass of the interme-

. diate stateX. The c.m. momentuﬁrﬂ of the initial (and fina)
AbsT,, = e4f Lﬁ(k’,h’)yﬁ()’- ky + my) y,u(k, h) electrons is given by the analogous expression asZy by

(277)32Ek1 replacingW? — M2, The three-dimensional phase space inte-
1 gral in Eq.(17) depends, besides the magnitlkig, upon the
X——= W' AP AAN) (17 solid angle of the intermediate electron. We define the polar
QQ c.m. angled, of the intermediate electron with respect to the

direction of the initial electron. The azimuthal anglg is
where the momenta are defined as indicated in Fig. 1, witlthosen such thaf, =0 corresponds with the scattering plane
g1=k-kq, =k’ —k;, and g;-q,=q. Denoting the c.m. of theeN— eNprocess. Having defined the kinematics of the
angle between initial and final electrons@s,, the momen- intermediate electron, we can express the virtuality of both
tum transfeiQ?=—q? in the elastic scattering process can beexchanged photons. The virtuality of the photon with four-
expressed as momentumq, is given by
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s 1 2 W2 E, = 0.855 GeV E, =3GeV
=1 (s—M)(s— 1-cosé SN
Q= 5] (s~ M) (5= WA)( ) A wom -
U 1 30D
me(s+ W2)<1 (5= M%) cosé ) o
- - o
(s=w8) " = o o’
0.5
(s-wW9)
- mi(s+ Mz)(l gy cosby | [ +O(md). . ‘ 150° 0
21) ~ 0 0.5 1 2 4 6
= W =1.232 GeV W = 1.232 GeV
The virtuality Qg of the second photon has an expression 8 ;[ 30°
analogous to Eq21) by replacing co®; by cosé,, whereb, NVN
is the angle between the intermediate and final electrons. In & 30° ,
terms of the polar and azimuthal anglés and ¢, of the 0.5 . o0
intermediate electron, one can express 0 150°
0 150°,
. . 0 0.5 1 2 4 6
cosé,=sin Sin 6, coS¢4 + COS cos6d,. (22
92 ac.m. 91 ‘/’1 ac.m. 01 ( ) le (GeVz) le (GeVz)

In case the intermediate electron is collinear with the ini-
tial electron(i.e., for ,—0, ¢;—0), one obtains from Eq.
(21) that both photon virtualities are given by

FIG. 2. Kinematical accessible region for the virtualit@$, Q3
in the phase space integral of E¢$7) and (26), for MAMI (left
panelg and JLab(right panel$ kinematics for different c.m. angles

(W2 _ M2)2 0..m.as indicated on the ellipses. The accessible regions correspond
Qlyes=Qi(6,=0,¢,=0) = M——s——, with the inside of the ellipses and are shown both for the elastic
' (s-W)(s-M?) (upper panelsand for inelastic(lower panels intermediate had-
ronic states. The intersection with the axes corresponds with quasi-
W2 VCS, whereas the situation ®{=\s—-m,, where all ellipses shrink
Qg,vcsz Q3(6,=0,¢,=0) = Ez_ MZ; Q%+ O(md). to the pointQ2=Q3=0, corresponds with quasi-RCS.

(23)

Note that when the intermediate and initial electrons are col

linear, then also the photon with momentudje k- 121 is col-
linear with this direction. For the elastic ca&/=M), this

2 _~2
Qlrcs™ Qores™ Me

(s—

M?)

(1 - cos#,).

(24)

_ _ - el _ This kinematical situation with two quasireal photons corre-
precisely corresponds with the situation where the first phosponds with quasireal Compton scatteriagasi-RC$. Due

ton is soft(i.e., g;— 0) and where the second photon carriesto the near singularities in the phase space integral of Eq.
the full momentum transfe@3=Q?. For the inelastic case (17) corresponding with the quasi-VCS and quasi-RCS pro-
(W>M), the first photon is hard but becomes quasiteal,  cesses, special care was taken when integrating over these
Qf~md). In this case, the virtuality of the second photon isregions, as the integrand varies strongly over regions gov-
smaller thanQ? An analogous situation occurs when the erned by the electron mass. Below we will show that these
intermediate electron is collinear with the final electfor.,  near singularities may give important contributighegarith-
6,—0, ¢, —0, which is equivalent with; — 6, ,). These  mic enhancementsunder some kinematical conditions. In
kinematical situations with one gquasireal photon and one virFig. 2, we show the full kinematical accessible region for the
tual photon correspond with quasivirtual Compton scatteringsirtualities Qi, Qg in the phase space integral of EG7).
(quasi-VCS, and correspond at the lepton side with the The normal spin asymmetrié, andB,, discussed in Sec.
Bethe-Heitler process, see, e.g., Refl] for details. I, are a direct measure of the absorptive part of the two-
Besides the near singularities corresponding with quasiphoton exchange amplitude and can be expresséé]as
VCS, where the intermediate electron is collinear with either
the incoming or outgoing electrons, the two-photon ex-
change process also has a near singularity when the interme-

diate electron momentum goes to zélfgﬂo (i.e., the in-
termediate electron is so¢ftin this case the first photon takes
on the full momentum of the initial electron, i.ej; —k,
whereas the second photon takes on the full momentum of

the final electron, i.e.ﬁ2—>I2’. One immediately sees from
Eq. (20) that this situation occurs when the invariant mass ofwhereT,, denotes the one-photon exchange amplitude. Us-

2 Im( > T, AbST2y>
spins
An: 1
E |le|2

spins

(25

the hadronic state takes on its maximal valMig,, = \S— M.
In this case, both photon virtualities are given by

04520

ing Eq. (17), we can express E@25) in terms of a three-
dimensional phase-space integral,
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1 @Q? [(5-my? |l21| transfer(Q?<s), coryesponding With the Regge regime. The
n="— 3 o dV\/Z—J- SLAC E158 experimen{l17], which corresponds witte,
(2m)°D(s,Q%) Jy2 4\s ~50 GeV andQ?<0.05 Ge\?, accesses this diffractive re-
1 gion and may be a good testing ground for such models. To
X f kolﬁlm{LaMH“W}. (26)  go beyond the very forward angle approximation for the had-
QA1Q; ronic tensor, and in order to compare quantitatively with
The denominator factdd(s, Q%) in Eq.(26) is given through beam normal spin asymmetry measurements performed or in
the one-photon exchange cross section as progress at MIT-BategL3], MAMI [14], and JLalf15,14 at
(4M?7)? diately faces the full complexity of the nonforward doubly

} intermediate beam energies in the 1 GeV region, one imme-

2 Q4 2 2, €2
D(S,Q)EE'EWM =8 GM+;GE .

soms 1-¢ virtual Compton scattering tensor. This nonforward tensor
can be parametrized in general in terms of 18 invariant am-
(27) plitudes[20]. As we are interested in this work in the absorp-

Furthermore in Eq(26), the leptonic(L,,,) and hadronic tive part of the nonforward doubly virtual Compton scatter-

(He*) tensors are given by ing tensor, we may use the unitarity relation to express the
full nonforward tensor in terms of electroabsorption ampli-
Layw=U(K’,h")y,(y - kg + mg) y,u(k, h) tudes y* N— X at different photon virtualities. This same

A " strategy has been used before in the description of real and

X [ulk’, ) yau(k N, (28) virtual Compton scattering in the resonance region, and

. checked against data in Ref22]. We will subsequently
He” =W [u(p’ AT (P’ pu(p A, (29 model the nonforward tenstW*” for the elastic contribution
(X=N), and in the resonance region as a sum overrall
intermediate state@.e., X=7N).

where
(p’,p) = Gy = FoPM. (30)

In Egs.(28) and(29) a sum is understood over the helicities
of the unpolarized particles. To evaluate the target normal
spin asymmetryA,,, we need the unpolarized lepton tensor, The elastic contribution t&V**, corresponding with the
which is given by(neg|ecting the terms proportiona| to the nucleon intermediate state in the blob of Flg 1, is exactly

A. Elastic contribution

electron massn,) calculable in terms of on-shell nucleon electromagnetic form
unpol factors as
Loy = THK v, Ky, Kyal- (3D _
- e | W (D M) = 2m8(WE = M2JT(p! A T¥(p! i)
The beam normal spin asymmetBy, involves the polarized )
lepton tensor, which is given by X(y - px+ M)I™(px, p)u(p,Ay), (34)

Lol — TH(K +mg)y, (K + M)y, 76k + M) v}, (32) whereI™™ is given as in Eq(30).

apv

where&f is the polarization vector, for an electron polarized

normal to the scattering plane. We see from 8®) that the B. Inelastic contribution: Sum over @N intermediate states
polarized lepton tensor vanishes for massless electrons. using the MAID model (resonance region)

Keeping only the leading term im, it is given by The inelastic contribution t&*” corresponding with the

LPol = Mel= TH{ vy, K 7oK va) + TriveK v, Ky, €70 7N intermediate states in the blob of Fig. 1 is given by

apy
= Tr{ K 7, 7, 8Ky ) + O(mp). (33 WA AL P = 1 [
AT [15.|(E, + Ep) + ELJkifky - o]

V. MODELS FOR THE HADRONIC TENSOR % E dQWU(p,l)\l,\l)‘]yl(lu(pn’)\n)
)\I’]

In this section, we discuss several models for the nonfor-
yvard. hadronic tensow*” of Eq. (19) which enters in the XU(P A IZU(PAN) (35
imaginary part of the two-photon exchange amplitude. These . R
models will be used further on to evaluate the target andVherep.=(E.,p,) andp,=(E,,py) are the four-momenta of
beam normal spin asymmetries. Ehe intermediate pion and nucleon states, respectively, and
An initial guess is to approximate the nonforward tensork,=—p,.—p,. In Eq. (35), the integration runs over the polar
by the corresponding forward tensor in terms of four nucleorand azimuthal angles of the intermediate pion, ahg and
structure functions, as was done in the calculations of RefJIT’,(, are the pion electroproduction currents, describing the
[9], and adapted in Ref11] by complementing the nucleon excitation and deexcitation of theN intermediate state, re-
structure functions by a form factor dependence. This may bepectively. Following Ref[23], we parametrize the matrix
a reliable first estimate when one is interested in the kineelement of the pion electroproduction current in terms of six
matical limit of high energy and very small momentum invariant amplitudes\ as

045206-6



RESONANCE ESTIMATES FOR SINGLE SPIN. PHYSICAL REVIEW C 70, 045206(2004)

6

U(Pn M) Iopt(P ) = BTW Uy, A) 2 AW £, Q)) 7
=t g 5| E=02Gev
XM{U(pA), (36) =
whereW?=(p+q;)2=(p,+py)? is the squared c.m. energy of 0
the 7N system, and,=(p-p,)?=(p,—q,)? is the squared 51 e
four-momentum transfer in theN— 7N process. In Eq.
(36), the covariantdVl;” are given by -10 |
v Lo y a5 |
M1:_§|75(3’ 4, - 417",
220 ‘ ‘ ‘ ‘ . ‘ ‘ ‘
1 1 ) 0 20 40 60 80 100 120 140 160 180
Mz=2i 75{ Pind - (pﬁ— qu) - (pﬂ— 5%) Qs - Pin] , Ocm, (deg)
FIG. 3. Beam normal spin asymmetBy, for e 'p—ep at a
M3 =—iys(y" 0y Pr— G1PL). beam energ¥.=0.2 GeV as a function of the c.m. scattering angle,
for different hadronic intermediate stat@§ in the blob of Fig. 1N
M2 =~ 2iy5(y"0ly - Pin — 8:P2) — 2MM?, (dashed curve 7N (dashed-dotted curyesum of theN and 7N

(solid curve. The data point is from the SAMPLE Collaboration
b v » (MIT-Bates [13].
M= iys(aiay - P+ Q3pL),
L v approaching the nonforward tensor by a forward tensor in
Mg=—iys(d01 + Q1Y"), (387 terms of unpolarized structure functions, because the positiv-

where P2 =(p+p,)*/2, and4=a,y". Analogous expressions ity of the unpolarized structure functions requires all chan-
n ’ vyt

hold for the pion electroproduction current for the secondr.‘els to antr'ZUtﬁ W't?] the S?(mg sign. Furthern;ore, one no-
virtual photon. For the calculation of the invariant ampli- €S In Fig. 4 that the peaked structure at the maximum
tudesA,, we use the phenomenological MAID analysier- ~ POSSiPle value of the integration range\M i.e., Wia= s

sion 2000 [24], which contains both resonant and nonreso-_ e is due_z o the near singularit@_n the ele_ctron masgs
nant pion production mechanisms. corresponding with quasi-RCS as discussed in Sec. IV.

We investigate the contribution of this quasireal Compton
scattering to the total asymmet, as a function of the
VI. RESULTS AND DISCUSSION beam energy at a backward andglg,,=120° in Fig. 5. In

. . his figure, we compare the full calculati¢solid curve with
In this section, we show our results for both beam andI 9 P es0 9

target normal spin asymmetries for elastic electron-proton
and electron-neutron scattering. We estimate the nonforward
hadronic tensor entering the two-photon exchange amplitude
through nucleonelastic contributiop and 7N intermediate
stateg(inelastic contributiopas described above. Our calcu-
lation covers the whole resonance region, using phenomeno-
logical #N electroproduction amplitudes as input, and ad-
dresses measurements performed or in progress at MIT-Bate
[13], MAMI [14], and JLab[15,16, where the beam ener-
gies are below 1 GeV or in the 1-3 GeV range. -50
In Fig. 3, we show the beam normal spin asymmeggy 500}
for elastice”'p—ep scattering at a low beam energy of
E.=0.2 GeV. At this energy, the elastic contributiomhere
the hadronic intermediate state is a nucleisrsizeable. The -500
inelastic contribution is dominated by the region of threshold
pion production, as is shown in Fig. 4, where we display the
integrand of thew integration forB,. When integrating the FIG. 4. Integrand inW of the beam normal spin asymmey,
full curve in Fig. 4 overW, one obtains the total inelastic ¢, e'p—ep at a beam energy df,=0.2 GeV and at different
contribution toB, (i.e., dashed-dotted curve in Fig)l.30ne ¢ m_ scattering angles as indicated in the figure. The dashed curves
sees from Fig. 4 that at backward c.m. angles., with  are the contribution from the®p channel, the dashed-dotted curves
increasingQ?) the 7*n and 7°p intermediate states contrib- show the contribution from the~"n channel, and the solid curves
ute with opposite sign. Such a behavior is because the norre the sum of the contributions from th&n and 7% channels.
forward hadronic tensor involves electroproduction ampli-The vertical dashed line indicates the upper limit of Wéntegra-
tudes at different virtualities. It would be absent whention, i.e., W= VsS—Me.

10
sk

)

wn
Integrand B, (ppm GeV
s

>
T

ec.m. = 1200 -’.l.‘i

L L 1 1 1
1.08 109 1.1 111 112
W (GeV)
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T -
50 € +p—e+p e +p—e+p
E E 3 -
e .l g
e = 40
-60
-50 ¢ -80
100 F | —03Gev
-100 | -120 ' | ‘
0 50 100 150 0 50 100 150
s | R —— 0 R e
150 0 £ 0 .
Ocm, =120 = 'gg -10
_200 L L 1 L 1 L 1 L -
01 02 03 04 05 06 07 08 09 1 -40 -15
E (GeV -50 -20
e 3
 (GeV) 0 [ B = 0570 Gey '23 E, = 0.855 GeV
-7 L L L 23 I | I
FIG. 5. Beam energy dependence of the beam normal spir 0 50 100 150 0 50 100 150
asymmetryB,, for e 'p—ep at fixed scattering anglé, ,, =120°. 0, (deg) 0, (deg)

The solid curve is the total inelastic calculation for bethn and

7% channels. The other three curves are obtained by approximating F|G. 6. Beam normal spin asymmetB, for e 'p—ep as a

the hadronic tensoW*” in Egs.(26) and (29) by its value atW  fynction of the c.m. scattering angle at different beam energies, as
=Wiax= VS—m, corresponding with the quasireal Compton scatter-indicated in the figure. The calculations are for different hadronic
ing contribution for thewp channel(dashed curvg for the 7'n  intermediate stategX) in the blob of Fig. 1:N (dashed curve 7N
channel(dashed-dotted curyeand for the sum ofs% and 7'n  (dashed-dotted curvgssum of theN and =N (solid curves. The
channelgdotted curve data points are from the A4 CollaboratioMAMI ) [14].

an approximate calculatiodotted curvg where the had- at E,=0.855 GeV and at different scattering angles. The
ronic tensoW*” in Egs.(26) and(29) is evaluated at the end resonance structure is clearly reflected in the integrands for
point Wy, and can subsequently be taken out of e  both #*n and #°p channels. At forward angles, the quasireal
integration. This calculation corresponds with the quasi-RCS&ompton scattering at the end polv=W,,,, only yields a
contribution toB,,. It is seen from Fig. 5 that for energies up very small contribution, which grows larger when going to
to aboutE.=0.4 GeV, the quasireal Compton scattering isbackward angles. This quasi-RCS contribution is of opposite
dominating the total result. It is also seen that when apsign to the remainder of the integrand, and therefore deter-
proaching thewN threshold there is a sign change By ~ mines the position of the maximuigabsolutg value of B,
which is driven by the nonresonamt'n production process when going to backward angles.
which yields a positive integrand around threshold. The
threshold region in the present calculati®®AID ) is consis- <
tent with chiral symmetry predictions, and is therefore E
largely model-independent. It is seen from Fig. 3 that the g _
inelastic and elastic contributions at a low energy of 0.2 GeV &
have opposite sign, resulting in quite a small asymmetry = -
around this particular energy. It is somewhat puzzling that g
the only experimental data point at this energy indicates a g, -
larger negative value at backward angles, although with quite € -
large error bar. N
In Fig. 6, we showB,, at different beam energies below
E.=1 GeV. It is clearly seen that at energies=0.3 GeV 50}
and higher, the elastic contribution yields only a very small 4l
relative contribution. Therefor®, is a direct measure of the
inelastic part which gives rise to sizeable large asymmetries
of the order of several tens of ppm in the backward angular
range, mainly driven by the quasi-RCS near singularity. At
forward angles, the size of the predicted asymmetries is cOM- £ 7. |ntegrand inW of the beam normal spin asymmey,
patible with the first high-precision measurements performegy, ¢-1p . &p at a beam energy d,=0.855 GeV and at different
at MAMI. It will be worthwhile to investigate if the slight ¢ m_ scattering angles as indicated in the figure. The dashed curves

overprediction(in absolute valugof By, in particular atE.  are the contribution from the®p channel, the dashed-dotted curves
=0.57 GeV, is also seen in a backward angle measuremendhow the contribution from ther*n channel, and the solid curves

which is planned in the near future at MAMI. are the sum of the contributions from th&n and #°p channels.
To gain a better understanding of how the inelastic con-The vertical dashed line indicates the upper limit of Wentegra-
tribution to B,, arises, we show in Fig. 7 the integrandByf  tion, i.e., Wa= VS—Me.

15010, = 120° ,
1.1 1.2 1.3 14 15 1.6

W (GeV)
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_— I ".'A 0,
E 60 >
£ 50} & 2f
= g 4t
a 40} g
30 = O
T o,
20 | & 2t
g -4
10 E 6t
0 8t
270 I I I I I I
0 50 100 150 0 50 100 150 10F
eC.I'I1. (deg) eC.I'I1. (deg) 5t
0,
FIG. 8. Comparison of the beam normal spin asymmBfyyor

. 1 L1 12 13 14 15 16 17 18 19 2
the processes 'p— e p (left pane), ande 'Tn—e™n (right pane)

at beam energ¥#,=0.570 GeV as a function of the c.m. scattering W (GeV)
angle, for different hadronic intermediate sta¥s$ in the blob of
Fig. 1: N (dashed curve #N (dashed-dotted curyesum ofN and
7N (solid curve.

FIG. 10. Integrand ir'w of the beam normal spin asymmey
for e 'p—ep at a beam energy d&.=3 GeV and at different c.m.
scattering angles as indicated in the figure. The dashed curves are

In Fig. 8, we compare the beam normal spin asymmetriegje contribution from ther®p channel, the dashed-dotted curves
. lshow the contribution from the™n channel, and the full curves are

atE.,=0.570 GeV for both proton and neutron. It is seen tha L . o

the proton and neutron values Bf are of opposite sign and '€ Sum of the contributions from the'n and #"p channels. Note
L . . that for E;=3 GeV, the upper integration range W is given by

similar in magnitude. This can be understood from Edp) We ~2 55 GeV

and noting that the term proportional &, dominates3,,. As max '

the magnetic form factoGy changes sign between proton using 7N intermediate states foN<2 GeV. The inelastic

and neutron, and because the two-photon exchange ampliontribution toB,, displays an interesting structure as it is

tudes in theA region (isovector transition have the same negative(around —3 ppmin the forward angular range and

sign and magnitude between proton and neutron, one obtairtanges sign arouné, ,, =90°. This can be understood by

a beam normal spin asymmetry of similar magnitude anctcomparing thew dependence of the integrands Bf be-

opposite sign between both cases. tween forward and backward angular situations, as is shown

In Fig. 9, we show our results for the beam normal spinin Fig. 10. The integrand oB, displays three prominent

asymmetry atE,=3 GeV where parity violation programs resonance structures corresponding with t@232 and

are underway at JLabG0 [16] and Happex-Z15] experi-  dominantly with theD;5(1520 andF;5(1680 resonances. At

menty. One notices from Fig. 9 that the elastic contributiong forward angle, all three resonance regions enter with the

at E.=3 GeV is negligibly small at forward angles, and same sign inB,. At a backward anglésee panel ford,

reaches its largest valya magnitude of around ~1 ppm in =120, however, one sees that the first two resonance re-

the backward angular range. The inelastic part is calculategions are largely damped whereas the third resonance region
= ) shows up prominently and yields a contributionBg with

€ +tp—e+p opposite sign. This can in turn be understood because at

A i more backward angles at fixadf, the integration range for
;: ] B, is dominated by the quasi-VCS regions, where one of the
o 3 photons has a larger virtuality than at forward angle, as is
2t o seen on Fig. 2. At larger photon virtuality, the first two reso-
1 nance regions drop faster witQ? than the third region, as
0 follows from phenomenological pion electroproduction
-1 analyses and as is built into the MAID amplitudes. Further-
2 b more, the sign change of the third resonance region at back-
3 ward angles again stresses the importance to model the full
4l E -3Gev nonforward Compton tensor. This sign change, as follows
5 c from the MAID model, is similar to the corresponding sign
0 20 40 60 80 100 120 140 160 180 change with increasingQ? for the generalized(i.e.,
0, (deg) Q?-dependent Gerasimov-Drell-Hearn(GDH) integral, as

obtained in this mode]25]. Indeed, at smalQ?, the GDH
FIG. 9. Beam normal spin asymmetBy, for € 'p—ep at a integral is largely dominated by thA(1232 resonance,
= i i whereas with increasin@?, the A(1232 contribution drops

beam energf.=3 GeV as a function of the c.m. scattering angle, - i ) ) )
for different hadronic intermediate stateg in the blob of Fig. 1IN rapidly and the higher resonance region turns over the sign
(dashed curve 7N (dashed-dotted curyesum ofN and 7N (solid ~ of the GDH integral, approaching its value as measured in
curve). For thewN intermediate states, we estimate the total contri-deep inelastic scattering. It will be interesting to confirm this
bution forw=2 GeV. behavior by comparing the values Bf, at E.=3 GeV from
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e'+pT—>e'+p e'+pT—>e'+p

1.2
I E,(GeV)

A, (%)
A, (%)

0 11

R SRR RN BRI R L +
0 20 40 60 80 100 120 140 160 180 PP A SN B
0 20 40 60 80 100 120 140 160 180

Ocm, (deg)
0, (deg)
FIG. 11. Target normal spin asymmetfy, for e'p! —ep for o
the nucleon intermediate stafee., elastic contributioi)X=N) in the FIG. 12. Dependence on the proton form factors of the elastic
b|0b Of Flg 1, as a funCtion Of the c.m. scattering angle fOr diﬁerentcontribution to the target normal Spin asymmem){ for e_pT
beam energies as indicated on the curves. —ep at two beam energie€,=11 GeV (dashed curvésand E,

=4 GeV (solid curve$. The thin upper curves are obtained using
dipole form factors. The thick lower curves are obtained using the
Gup parametrization of Ref[26], and taking theGg,/ Gy ratio
from Ref.[2].

forthcoming data at forward and backward andl&s,16.
We also note from Fig. 10 that &.=3 GeV, thenN
contribution is only known foWW<2 GeV, whereas the up-
per integration range i is given byW,,,,,=2.55 GeV. One
can deduce from Fig. 10 that there might be an additional i )
negative contribution t®,, in particular in the forward an- D&am energy oE.=0.2 GeV,A, is completely dominated by
gu|ar range_ Th|S may render the beam normal Spin asymmébe e|§StIC Cor-]t”b-uuon. G0|ng to h|gher beam enel’g_les, the
try somewhat more negative in the forward angular rangénelastlc contribution becomes of comparable magnitude to
than shown in Fig. 9. the elastic one. This is in contrast with the situation Byr
In the following figures, we discuss the corresponding
target normal spin asymmet#,. We first show in Fig. 11 e + pT Se+p
the elastic contribution to the target normal spin asymmetry__ ¢.1 0.3
A, at different beam energies. The elastic contributiol\fo & ; 4g b Fe=02GeV o [ Fe=0570Gey
depends only on the on-shell nucleon electromagnetic forrr<ﬁ‘=0 06 ’
factors and has been calculated long ésge, e.g., Ref9)). ) 0.1p
Using dipole form-factor parametrizations for ba#y, and 0
Ggp as adopted in Ref9], we are able to exactly reproduce 002

0.04 |

the results of Ref[9]. One sees from Fig. 11 that the elastic 0 . . : o L e

contribution toA,, is around or below 1%. 0 50 100 150 '0'20 50 100 150
In Fig. 12, we test the dependence of the elastic contribu-_ 1

tion on the on-shell proton electric and magnetic form fac- & 03} E =0855GeV 0.8

tors. We compare the result fak, obtained using dipole 024 . |oe
form factors, with the elastic contribution calculated using 0 2 04
the recent experimental analyses@y, from Ref.[26] and ' 0:2
taking theGg,/ Gy, ratio from Ref.[2]. One notices that the 02 0 ke A
realistic form factors reducA,, by around 0.1% at its maxi- _0:3 . , ‘ 02 ‘ ,
mum. At lower beam energiegorresponding with lower 0 50 100 150 0 50 100 150
values ofQ?), the deviations from the dipole parametrizatiqn 0, ,, (deg) 0, , (deg)
of the form factors are much smaller. Unless otherwise
stated, our results for the elastic contributions to the beam F|G. 13. Target normal spin asymmetty, for e p' —ep as a
and target normal SSA are therefore calculated using dipolginction of the c.m. scattering angle at different beam energies, as
form factors for the proton. indicated in the figure. The calculations are for different hadronic
In Fig. 13, we show the results for both elastic and inelasintermediate state€X) in the blob of Fig. 1:N (dashed curve =N
tic contributions toA, at different beam energies. At a low (dashed-dotted curyesum ofN and #N (solid curve.

-0.1
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8, = 120°
-1 11 13 3 " 13 6 FIG. 16. Comparison of the target normal spin asymmaiy
' | ’ ’ ’ ’ for the processeg p' —ep (left pane) and en! —e™n (right
W (GeV)

pane) at beam energyE,=0.570 GeV as a function of the c.m.

. . scattering angle, for different hadronic intermediate stéXgsn the
FIG. 14. Integrand itW of the target normal spin asymmetiy DS )
for ep! —ep for a beam energy &= 0.855 GeV and at different blob of Fig. 1:N (dashed curve #N (dashed-dotted curyesum of

c.m. scattering angles as indicated in the figure. The dashed (:urveNsand 7N (solid curve.

are the contribution from thep channel, the dashed-dotted curves poth cases. One sees from Eg1) that the unpolarized lep-
show the contribution from ther'n channel, and the solid curves ton tensor, which enters iA,,, vanishes linearly when the
are the sum of ther'n and 7°p channels. intermediate lepton momentutky — 0. This is in contrast

. o . with the polarized lepton tensor of E3), which becomes
where the elastic contribution already becomes negligible fognstant wherk; —0. Hence the region around/=W,,,

beam energies arourig}=0.3 GeV. We also notice from Fig. (corresponding withk; — 0) in the integrand ofA, is sup-

13 that for beam energies below 1 GeV, the elastic and inpressed compared with the corresponding region in the inte-
elastic contributions té\, have opposite sign. The integrand grand ofB,,. As a result, the elastic contribution £ can be

of the inelastic contribution at a beam energy Bf  of comparable magnitude to the inelastic contribution. Fur-
=0.855 GeV is shown in Fig. 14. The total inelastic resultthermore, one sees from Fig. 13 that, due to the partial can-
displays az'n threshold region contribution and a peak atcellation between elastic and inelastic contributiofs,for

the A(1232 resonance. Notice that the higher resonance rethe proton is significantly reduced, taking on values around
gion is suppressed in comparison with the corresponding iner below 0.1% for beam energies below 1 GeV.

tegrand forB,,. Also the quasireal Compton scattering peak At higher beam energies, the inelastic contributiorAto
around the maximunW value is absent. This different be- changes sign. This can be understood by comparing the in-
havior in comparison with the beam normal spin asymmetrytegrands ofA, at E.=0.855 GeV/(Fig. 14 with its value at

can be easily understood by comparing the lepton tensors iB.=2 GeV (Fig. 15. One sees that &,=2 GeV and back-
ward angles, theA(1232 contribution changes sign and
dominates the inelastic contribution. Because at higher ener-
gies also the elastic contribution grows larger, as was seen in
Fig. 11, one obtains larger target normal spin asymmetries
around 1%.

In Fig. 16, we compare the target normal spin asymme-
tries for elastic electron scattering off protons and neutrons.
For the elastic contribution t8,, for the neutron, we use the
parametrizations o6y, from Ref.[27], and Gg,, from Ref.

[28]. The inelastic contribution té,, for the neutron is en-
hanced in comparison with the proton. This can be under-
stood from Eq(15) for A,,. For the proton, botl@,, and Gg
terms are sizeable and tend to cancel each other. For the
0 —120° neutron, on the other hand, th8, term changes sign
e 17 ““'118 THE) whereas thé&sg term is very small so that such cancellation
does not occur. Therefore, the target normal spin asymmetry
is quite sizeable for the neutrgaround 0.65%in the reso-
FIG. 15. Integrand iW of the target normal spin asymmetdy, ~ hance region, providing an interesting opportunity for a mea-
for e'p! —ep at a beam energy d,=2 GeV and at different c.m. ~Surement.
scattering angles as indicated in the figure. The dashed curves are

S s o
N
T T

Integrand A_( 107 GeV ™)
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NS N k=S o=
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the contribution from thenop channel, the dashed-dotted curves VII. CONCLUSIONS
show the contribution from ther*n channel, and the solid curves In this paper, we have studied the target and beam normal
are the sum of ther*n and #°p channels. single spin asymmetries for elastic electron-nucleon scatter-
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ing. These asymmetries depend on the imaginary partyof 2which enter as corrections in electroweak precision experi-
exchange amplitudes. We have constructed the imaginamnents.
part of these 2 exchange amplitudes as a phase space inte-

gral over the doubly virtual Compton scattering tensor on the
nucleon. Using unitarity, we have expressed the imaginary
(absorptivg part of the nonforward doubly virtual Compton  thjs work was supported by the Deutsche Forschungsge-
tensor on the _nucleon in the resonance region in terms %einschaf(SFB443, by the Italian MIUR through the PRIN
phenomenologicay* N— 7N electroproduction amplitudes. o g etical Physics of the Nucleus and the Many-Body Sys-
Using this model for the nonforward doubly virtual Comptont ms, and by the U.S. Department of Energy under Contracts
tensor, we presented calculations for beam and target normgl /"= - ~55 04ER41302 and No. DE-ACO5-84ER40150

SSAs for several experiments performed or in progress. Th :
resonance region, where the model input is relatively Well:;ihe authors also thank the Institute for Nuclear Theory at the

understood, is a useful testing ground to study these asynyniversity of Washington and the ECT* in Trento, where

metries as a new tool to extract nucleon structure informaPart of this work was performed, for their hospitality. Fur-
tion. At a low beam energy, around pion threshold, the inthermore, the authors thank A. Afanasev, C. Carlson, M.

elastic (7N intermediate staje contribution is largely ~Gorchtein, P.A.M. Guichon, F. Maas, and S. Wells for help-

constrained from chiral symmetry predictions. Around pionful discussions.
threshold, the beam normal S$ is at the few ppm level.
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Going up in beam energy, the elastic contributiorBtovery APPENDIX: RELATIONS BETWEEN HELICITY
soon becomes negligibl@t the 1 ppm levglwhereas the AMPLITUDES AND INVARIANT AMPLITUDES FOR
resonance contributions yield large valuesBgfof the order ELASTIC ELECTRON-NUCLEON SCATTERING

of several tens of ppm in the backward angular range. This is

mainly driven by the quasi-VCS and quasi-RCS near singu- The helicity amplitudes for elastic electron-nucleon scat-
larities, in which one or both photons in the two-photon ex-tering are defined in theN c.m. frame, and are denoted by
change process become quasireal. It was found that at fof<h’,Ay;h,\y), whereh (h') denote the helicities of the ini-
ward angles, the size of the predicted asymmetries isial (final) electrons and wherky (\{) denote the helicities
compatible with the first high-precision measurements peref the initial (final) nucleons. It is also convenient to intro-
formed at MAMI. It will be interesting to check that for duce the Mandelstam invarianss (p+k)? and u=(p-k’)?,
backward angles, the beam normal SSA indeed grows to thghich, neglecting the electron mass, are related to the invari-

level of tens of ppm in the resonance region. antsQ? and v, introduced in Eq(3), as
For higher beam energies, around 3 GeV energy range,
the inelastic contribution t@, was found to display an in- s+tu=Q*+2M? s-u=4w. (A1)

teresting structure: it is negativaround —3 ppmin the for-

ward angu|ar range, and Changes Sign aro@aq.: 90°. Furthermore, the c.m. Scattering an@LE_,‘m_ is related tos, u,
This behavior can be understood from the observation that &ndQ” as

forward angles, the three main resonance regions enter with 5 4

the same sign ifB,. At backward angles, however, the first i bem._ Q'S Oem. _ (M"—sU) (A2)
two resonance regions are largely damped and the third reso- 2 (s—-M?»? 2 (s-M?»?
nance region drives the change of signBn We have also
shown our results for the target normal S8A In contrast to

the beam normal SSA, the quasi-RCS near singularity is ab-
sent in the target normal SSA, yielding much smaller inelas- u(k(k'),h(h")) = \/ﬁ[ Xh(h) } (A3)
tic contributions relative to elastic ones. At beam energies ' 2h(2h") xn(nr) '

around 1 GeV, elastic and inelastic contributionsAfptend

to cancel each other for the proton, yielding values Aqr where|l€|:(s—M2)/(2vE), and where the Pauli spinors for
around 0.1%. For the neutron, such a cancellation is absefe incoming electron are given by

and one may expect values Af, approaching 1%. Besides

providing estimates for ongoing experiments, this work can 1 0
be considered as a first step in the construction of a disper- X1/2= (O) X-1/2= (1)
sion formalism for elastic electron-nucleon scattering ampli-

tudes. In such a formalism, one needs a precise knowledge Qihereas the Pauli spinors for the outgoing electron are given
the imaginary part as input in order to construct the real parby

as a dispersion integral over this imaginary part. The real

The helicity spinors for the electrons are given by

(A4)

part of the two-photon exchange amplitudes may yield cor- 0 0
. . . c.m. H c.m.
rections to elastic electron-nucleon scattering observables, cos 5 —sin
such as the unpolarized cross sections or double polarization ro= o (A5)
. . . L . X1/2 v X-172 :
observables. It is of importance to quantify this piece of in- sin Oc.m. oS Oc.m.

formation, in order to increase the precision in the extraction
of nucleon form factors. Besides, this work may also be ex-
tended to the calculation ofZ and W*W~ box diagrams, The helicity spinors for the nucleon are given by
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2
o T T
PRI MO = B e | K ’ (5=M vs
NUEAN Xhy(NL) s+ M2 P
+M NYEN +<1+ tal’12 c.m. T3 ] (A14)
(AB) S 2

The three amplitudes which flip the electron helicity can

—\JIp12 2 i api initi
whereEy= V|k|?+M?2. The Pauli spinors for the initial proton be expressed as

are given by
0 1 = (h,_ 2 N=32. M= )
X12= (_ 1)' X-112= (0) , (A7) me 1 2As+M?) ~  ~
o - - T2k 9 [(s—Mz)( Gm ~F2)
and the Pauli spinors for the final proton are given by tan%
LM M } (A15)
X1/2= P o Xlae= 9 . (A8) VR N VER

Using the constraints of parity invariance and time rever-
sal invariance, one obtains three independent helicity ampli-

_meez{ 4sM? ~  (s+M?)%~

- M 2
tudes which conserve the electron helicite., h’=h), and M [ (s-M?)? (s—M?)?
three independent helicity amplitudes which flip the electron (S+M?) = -  ~ ~
helicity (i.e.,h’=—h), in agreement with the invariants found + = Mz)(Fg +F,) +Fs+Fg|, (A16)
in Egs.(6) and(7). In terms of the invariant&,,, F,, andF,
the three independent helicity amplitudes which conserve the B . 1.1
electron helicity can be expressed as Te= T(h ~ 3T h 2AN=" E)
2 2\2
T,=T(h' = +3\ = +3;h=+I = +3) :_mee2 asM”_ _(S+M)|”:
’ ? M [(s-MD2M (s-M2)? 2
ez = M2 Oc.m. (S_ Mz)
=-—(s=M?)-2Gy| — co§ "+ ——— (s M)~~~ o
Q S 2 S (S M )(F3+ F4) + F5_ FG . (Al?)
T Gc.m. = (S_MZ)
+ 2F, cog 5 Fepz ¢ g > [+ (A9 The inversion of these relations reads
~ M? (s+ M?)  Oem
_ ’— 1y 1., 1 _ 1 = L.
T2= (h - +§l)\N__§’h_ +§’)\N_ +§) e2F4 2\Sk|:T \’SM tan 2 T2
€ (s- |v|2) Oc m Oc . ~ 2
sin —=™ cos—2"{G),(2M?) _ (s+M?) Oem\r | M
@ M 2 2 "M Lt =T = o (T To)
- Fa(s+M?) +Fy(s- M?)}, A10 M2
o ) + F3( )} (A10) ¢ M o ey, (A18)
1 \sm, 2
TSET(h, = +2’)\N ~2 h_ +2')\N__§)
e ) Ocm. ~ ~  ~ (s=M? ~ M4 (s+M?) 0
Fs=—o 5| - T+ —F——tan—"T
QZ(S M )co§ - 2Gy + 2F, - F3 vE 5= 5@l T am 5 T2
(A11) 2)2 3
- - - - - . + (1 (S+ Mz) tanz ac.m.)T3 + M—F(TG - T5)
Inverting the relations in EqQgA9)—(A11) yields the invari- 2sM 2 2mgysk
ant amplitude$sy,, F,, andF; as M2(s+ M?) 0o
~ - ek 2 Ty, (A19)
Gy = 5{T1 - T3}, (A12) Me2S
M. Oom M. m =M
F,=—= = tan T,+ =tan—"T51, (A13) Fe=5_—(Ts+Te). (A20)
\s 2 Vs 2 2me
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