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A significant drop of the vector meson masses in nuclear matter is observed in a chiral SU(3) model due to
the effects of the baryon Dirac sea. This is taken into account through the summation of baryonic tadpole
diagrams in the relativistic Hartree approximation. The appreciable decrease of the in-medium vector meson
masses is due to the vacuum polarization effects from the nucleon sector and is not observed in the mean field
approximation.
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I. INTRODUCTION

The medium modifications of the vector mesons(r andv)
in hot and dense matter have recently been a topic of great
interest in strong interaction physics research, both experi-
mentally[1–5] and theoretically[6–12]. One of the explana-
tions of the experimental observation of enhanced dilepton
production[1–3] in the low invariant mass regime could be a
reduction in the vector meson masses in the medium. It was
first suggested by Brown and Rho that the vector meson
masses drop in the medium according to a simple scaling law
[6], given asmV

* /mV= fp
* / fp. fp is the pion decay constant

and the asterisk refers to in-medium quantities. There have
also been QCD sum rule approaches extensively used in the
literature [8–11] for consideration of the in-medium vector
meson properties. In the framework of quantum hadrody-
namics(QHD) [13] as a description of the hadronic matter, it
is seen that the dropping of the vector meson masses has its
dominant contribution arising from the vacuum polarization
effects in the baryon sector[14–17]. This drop is not ob-
served in the mean field approximation. The vector meson
properties[18] and their effects on the low mass dilepton
spectra[19] have been investigated recently including the
quantum correction effects from the baryon as well as the
scalar meson sectors in the Walecka model[20].

In the present investigation we use the SU(3) chiral model
[21,22] for description of the hadronic matter. This model
has been shown to successfully describe hadronic properties
in the vacuum as well as nuclear matter, finite nuclei, and
neutron star properties. Furthermore the model consistently
includes the lowest lying baryon and meson multiplets, in-
cluding the vector mesons. In the mean field approximation
the vector meson masses do not show any significant drop,
similar to results in the Walecka model. The effect of the
Dirac sea is taken into account by summing over baryonic
tadpole diagrams in the relativistic Hartree approximation
(RHA). In an alternative approach to QHD renormalizability
[23], a chiral effective model has been studied emphasizing

the concept of naturalness as the guiding principle for con-
structing the model. While naturalness arguments sound ap-
pealing in themselves, they have clear limits in the study of
nuclear matter properties with relativistic meson field theo-
ries, as—independent of the approximation scheme—the cal-
culations always involve a rather “unnatural” fine tuned can-
cellation of the strong scalar attraction and vector repulsion
inherent in those approaches. We therefore follow the direct
field-theoretical path by including the full tadpole contribu-
tions from the lower continuum states. It is seen that an
appreciable decrease of the vector meson masses arises from
the nucleon Dirac sea. This shows the importance of taking
into account these contributions.

We organize the paper as follows. In Sec. II we introduce
the chiral SU(3) model used in the present investigation.
Section III describes the mean field approximation for
nuclear matter. In Sec. IV the nuclear matter properties are
considered in the relativistic Hartree approximation. Section
V gives the in-medium vector meson properties due to the
contributions from the nucleon Dirac sea. The results are
presented and discussed in Sec. VI. Finally, in Sec. VII we
summarize the findings of the present work.

II. THE HADRONIC CHIRAL SU „3…ÃSU„3… MODEL

We consider a relativistic field-theoretical model of bary-
ons and mesons built on chiral symmetry and broken scale
invariance[21,22]. A nonlinear realization of chiral symme-
try is adopted, that has been successful in a simultaneous
description of finite nuclei and hyperon potentials[21]. The
general form of the Lagrangian is as follows:

L = Lkin + o
W=X,Y,V,A,u

LBW+ LVP + Lvec+ L0 + LSB. s1d

Lkin is the kinetic energy term;LBW includes the interaction
terms of the baryons with the spin-0 and spin-1 mesons, the
former generating the baryon masses.LVP contains the inter-
action terms of vector mesons with pseudoscalar mesons.
Lvec generates the masses of the spin-1 mesons through in-
teractions with spin-0 fields and contains quartic self-
interactions of the vector fields.L0 gives the meson-meson
interaction terms which induce the spontaneous breaking of
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chiral symmetry. It also includes a scale-invariance breaking
logarithmic potential. Finally,LSB introduces an explicit
symmetry breaking of the Us1dA,SUs3dV, and chiral symme-
try.

A. Kinetic terms

The kinetic energy terms are given as[21]

Lkin = i Tr B̄gmDmB + 1
2Tr DmXDmX + TrsumXumX + XumumXd

+ 1
2Tr DmYDmY + 1

2DmxDmx − 1
4TrsṼmnṼ

mnd

− 1
4TrsFmnF

mnd − 1
4TrsAmnAmnd, s2d

whereB is the baryon octet,X is the scalar multiplet,Y is the

pseudoscalar chiral singlet,Ṽm is the vector meson multiplet

with field tensorṼmn=]nṼm−]nṼm,1 Amn=]nAm−]nAm is the
axial-vector field tensor,Fmn is the electromagnetic field ten-
sor, andx is the scalar, isoscalar glueball field. The kinetic
energy term for the pseudoscalar mesons is given in terms of
the axial vector um=−si /2dfu†]mu−u]mu†g, where u
=expfsi /2s0dpalag5g is the unitary transformation operator
[21]. The pseudoscalar mesons are given as parameters of the
symmetry transformation. Since the fields in the nonlinear
realization of chiral symmetry contain the local unitary trans-
formation operator, covariant derivativesDm=]m+ ifGm , g,
with Gm=−si /2dfu†]mu+u]mu†g have to be used to guarantee
chiral invariance[21]. For example, for the baryons this
yields

DmB = ]mB + ifGm,Bg. s3d

B. Baryon-meson interaction

The SU(3) structure of the the baryon-meson interaction
terms are the same for all mesons, except for the difference
in Lorentz space. For a general meson fieldW they read

LBW= − Î2g8
WhaWfB̄OBWgF + s1 − aWdfB̄OBWgDj

− g1
W 1

Î3
TrsB̄OBdTr W, s4d

with fB̄OBWgFªTrsB̄OWB−B̄OBWd and

fB̄OBWgDªTrsB̄OWB+B̄OBWd− 2
3TrsB̄OBdTr W. The dif-

ferent terms to be considered are those for the interaction of
baryons with scalar mesonssW=X, O=1d, with vector me-

sons(W=Ṽm , O=gm for the vector andW=Ṽmn , O=smn for
the tensor interaction), with axial-vector mesonssW
=Am , O=gmg5d, and with pseudoscalar mesonssW=um , O
=gmg5d, respectively. In the following we discuss the rel-
evant couplings for the current investigation.

1. Baryon–scalar-meson interaction (baryon masses)

The baryons and the scalar mesons transform equally in
the left and right subspaces. Therefore, in contrast to the
linear realization of chiral symmetry, anf-type coupling is
allowed for the baryon-meson interaction. In addition, it is
possible to construct mass terms for baryons and to couple
them to chiral singlets. After insertion of the vacuum expec-
tation value(VEV) for the scalar multiplet matrixkXl0, one
obtains the baryon masses as generated by the VEV of the

nonstranges,kūu+ d̄dl and the strangez,ks̄sl scalar fields
[21]. Here we will consider the limitaS=1 andg1

S=Î6g8
S. In

this case the nucleon mass does depend only on the non-
strange condensates. Furthermore, the coupling constants
between the baryons and the two scalar condensates are re-
lated to the additive quark model. This leaves only one cou-
pling constant free that is adjusted to give the correct
nucleon mass[21]. For a fine-tuning of the remaining
masses, it is necessary to introduce an explicit symmetry
breaking term, which breaks the SU(3) symmetry along the
hypercharge direction(for details see[21]). Therefore the
resulting baryon octet masses for the current investigation
read

mN = − gNss0,

mL = − gNsS2

3
s0 −

1

3
Î2z0D +

m1 + 2m2

3
,

mS = − gNsS2

3
s0 −

1

3
Î2z0D + m1,

mJ = − gNsS1

3
s0 −

2

3
Î2z0D + m1 + m2. s5d

Alternative ways of mass generation have also been consid-
ered earlier[21].

2. Baryon–vector-meson interaction

Two independent interaction terms of baryons with spin-1
mesons can be constructed in analogy with the baryon–spin-
0-meson interaction. They correspond to the antisymmetric
(f-type) and symmetric(d-type) couplings, respectively. The
general couplings are shown in[21]. From the universality
principle [24] and the vector meson dominance model one
may conclude that thed-type coupling should be small. Here
we will use puref-type coupling, i.e.,aV=1 for all fits, even
though a small admixture ofd-type coupling allows for some
fine-tuning of the single particle energy levels of nucleons in
nuclei (see [21]). As for the case with scalar mesons, we
furthermore setg1

V=Î6g8
V, so that the strange vector field

f̃m, s̄gms does not couple to the nucleon. The resulting La-
grangian reads

LBV = − Î2g8
VsfB̄gmBṼmgF + TrsB̄gmBdTr Ṽmd, s6d

or explicitly written out for the nuclear matter case,

1As described in Sec. II C, the vector mesons need to be renor-
malized. The physical fields will be denoted asVm andrm ,vm ,fm,

respectively, and the unrenormalized, mathematical fields asṼm and
r̃m ,ṽm ,f̃.
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LBV
N = 3g8

VṽmcNgmcN + g8
Vr̃mcNgmt3cN. s7d

Note that in this limit all coupling constants are fixed onceg8
V

is specified[21]. This is done by fitting the nucleon-v cou-
pling to the energy density at nuclear matter saturation
sE/A=−16 MeVd. Since we consider nuclear matter, the
couplings of the vector mesons to the hyperons will not be
discussed here.

C. Meson-meson interactions

1. Vector mesons

The vector meson-meson interactions contain the mass
terms of the vector mesons and higher order vector meson
self-interactions. The simplest scale invariant mass term is

Lvec
s1d =

1

2
mV

2 x2

x0
2Tr ṼmṼm. s8d

It implies a mass degeneracy for the vector meson nonet. The
scale invariance is assured by the square of the glueball field
x (see Sec. II C 2 for details). To split the masses, one can
add the chiral invariants[25,26]

Lvec
s2d =

1

4
m TrfṼmnṼ

mnX2g s9d

and

Lvec
s3d =

1

12
lVsTrfṼmngd2. s10d

Note that in Eq.(10) we replace the scalar multipletX by its
vacuum expectation value. Combining the contributions(9)
and (10) with the kinetic energy term(2), one obtains the
following terms for the vector mesons in the vacuum:

−
1

4
Z r

−1sṼr̃
mnd2 −

1

4
Z v

−1sṼṽ
mnd2 −

1

4
Z f

−1sṼ
f̃

mnd2, s11d

with, e.g., Ṽr̃
mn=]mr̃n−]nr̃m. With the renormalization con-

stants the new vector meson fields are defined asr

=Z r
−1/2r̃, v=Z v

−1/2ṽ, f=Z f
−1/2f̃. Explicitly the renormaliza-

tion constants are given as

Z r
−1 = S1 − m

s0
2

2
D ,

Z v,f
−1 = FS1 −

mss0
2 + 2j0

2d − 2lV

4
D ±

1

2
D1/2G , s12d

where

D =
m2

4
ss0

2 − 2j0
2d2 + lV

2 −
lV

3
mss0

2 − 2j0
2d. s13d

Then the Lagrangian for the new fields in the vacuum reads

Lvec
vac= −

1

4
fsVr

mnd2 + sVv
mnd2 + sVf

mnd2g

+
1

2

x2

x0
2smr

2r2 + mv
2v2 + mf

2f2d s14d

where

mr
2 = ZrmV

2, mv
2 = ZvmV

2, mf
2 = ZfmV

2 s15d

denote the vector meson masses in the vacuum. UsingmV
=687.33 MeV,ms0

2=0.41, andlV=−0.041, the correctv, r,
and f masses are obtained. The vector meson self-
interactions[27,28] read

Lvec
s4d = 2sg̃4d4TrsṼmṼmd2. s16d

The coupling of this self-interaction term is also modified by
the redefinition of the fields. The redefined coupling corre-
sponding to the quartic interaction for thev field can be
expressed in terms of the couplingg̃4 of the term(16). This
term gives a contribution to the vector meson masses in the
medium, i.e., for finite values of thev or r fields. The re-
sulting expressions for the vector meson masses in the me-
dium (isospin symmetric) are

smv
ef fd2 = mv

2 + 12g4
4v2, s17d

smr
ef fd2 = mr

2 + 12g4
4 Zr

Zv

v2, s18d

smf
ef fd2 = mf

2 + 24g4
4Zf

2

Zv
2 f2, s19d

with g4=ÎZvg̃4 as the renormalized coupling. Since the quar-
tic self-interaction contributes only in the medium, the cou-
pling g4 cannot be unambigiously fixed. It is fitted, so that
the compressibility is in the desired region between 200–300
MeV in the mean field approximation. Note that theN-v as
well as theN-r couplings are also affected by the redefinition
of the fields with the corresponding renormalized coupling
constants asgNv;3gV

8ÎZv andgNr;gV
8ÎZr.

2. Spin-0 potential

In the nonlinear realization of chiral symmetry the cou-
plings of scalar mesonsX and the pseudoscalar singletY
with each other are governed only by SUs3dV symmetry. In
this work we will use the same form of the potential as in the
linear s model with Us1dA breaking, as described in[21]. It
reads

L0 = −
1

2
k0x2I2 + k1sI2d2 + k2I4 + 2k3xI3, s20d

with I2=TrsX+ iYd2, I3=detsX+ iYd, andI4=TrsX+ iYd4. Fur-
thermorex denotes a scalar color-singlet gluon field. It is
introduced to construct the model to satisfy the QCD trace
anomaly, i.e., the nonvanishing of the trace of the energy-
momentum tensorum

m=sbQCD/2gdGmn
a Gmna. Here,Gmn

a is the
gluon field strength tensor of QCD.
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All the terms in the Lagrangian are multiplied by appro-
priate powers of the glueball-field to obtain a dimension
smassd4 in the fields. Then all coupling constants are dimen-
sionless and therefore the model is scale invariant[29].
Then, a scale breaking potential

Lscale break= −
1

4
x4ln

x4

x0
4 +

d

3
x4ln

I3

detkXl0
s21d

is introduced. This yieldsum
m=s1−ddx4. By identifying thex

field with the gluon condensate and the choiced=6/33 for
three flavors and three colors withbQCD as given by the
one-loop level, the correct trace anomaly is obtained. The
first term in Eq.(21) corresponds to the contribution of the
gluons and the second term describes the contribution from
the quarks to the trace anomaly. Finally the term

Lx = − k4x4 s22d

generates a phenomenologically consistent finite vacuum ex-
pectation value.

The parametersk0, k2, andk4 are used to ensure an ex-
tremum in the vacuum for thes- , z-, andx-field equations,
respectively. As for the remaining constants,k3 is constrained
by the h and h8 masses, which take the valuesmh

=520 MeV andmh8=999 MeV in all parameter sets.k1 is
fixed in the mean field fit with quartic vector meson interac-
tion such that the effective nucleon mass at saturation density
is around 0.65mN and thes mass is of the order of 500 MeV.
Then it is kept constant in all the other fits, since a change in
k1 yields quite a strong modification of the other coupling
constants in the self-consistency calculation. Since we want
to focus on the influence of the Hartree terms, we try to keep
everything else as little modified as possible.

Since the shift in thex in the medium is rather small[21],
we will in good approximation setx=x0. We will refer to
this case as thefrozen glueball limit. The VEV of the gluon
condensate,x0, is fixed to fit the pressurep=0 at the satura-
tion densityr0=0.15 fm−3.

D. Explicitly broken chiral symmetry

In order to eliminate the Goldstone modes from a chiral
effective theory, explicit symmetry breaking terms have to be
introduced. Here, we again take the corresponding term of
the linears model

LSB=
1

2
Tr ApsM + M†d = Tr ApfusX + iYdu + u†sX − iYdu†g

s23d

with Ap=1/Î2 diagsmp
2 fp ,mp

2 fp ,2mK
2 fK−mp

2 fpd and mp

=139 MeV,mK=498 MeV. This choice forAp together with
the constraints

s0 = − fp, z0 = −
1
Î2

s2fK − fpd s24d

on the VEV on the scalar condensates assure that the partial
conservation of axial-vector coupling(PCAC) relations of
the pion and kaon are fulfilled. Withfp=93.3 MeV andfK

=122 MeV we obtains0=93.3 MeV andz0=106.56 MeV.

III. MEAN FIELD APPROXIMATION

The hadronic matter properties at finite density and tem-
perature are studied in the mean field approximation[30].
Then the Lagrangian(1) becomes

LBX + LBV = − cNfgNvg0v + mN
* gcN, s25d

Lvec=
1

2
mv

2 x2

x0
2v2 + g4

4v4, s26d

V0 =
1

2
k0x2ss2 + z2d − k1ss2 + z2d2 − k2Ss4

2
+ z4D − k3xs2z

+ k4x4 +
1

4
x4ln

x4

x0
4 −

d

3
x4ln

s2z

s0
2z0

, s27d

VSB= S x

x0
D2Fmp

2 fps + SÎ2mK
2 fK −

1
Î2

mp
2 fpDzG , s28d

where mN
* is the effective mass of the nucleon. Only the

scalarsLBXd and the vector meson termssLBVd contribute to
the baryon-meson interaction. For all other mesons, the ex-
pectation value vanishes in the mean field approximation.
Now it is straightforward to write down the expression for
the thermodynamical potential of the grand canonical en-
semble,V, per volumeV at a given chemical potentialm and
at zero temperature:

V

V
= − Lvec− L0 − LSB− Vvac

+
gN

s2pd3E
0

ÎmN
* 2−mN

* 2

d3kfEN
* skd − mN

* g s29d

The vacuum energyVvac (the potential atr=0) has been
subtracted in order to get a vanishing vacuum energy. The
factor gN denotes the fermionic spin-isospin degeneracy fac-
tor, andgN=4 for symmetric nuclear matter. The single par-
ticle energy isEN

* skd=ÎkN
2 +mN

* 2 and the effective chemical
potential readsmN

* =mN−gNvv.
The mesonic fields are determined by extremizing the

thermodynamic potential. Since we use the frozen glueball
approximation(i.e., x=x0), we have coupled equations only
for the fieldss ,z, and v in the self-consistent calculation
given as

] sV/Vd
] s

= k0x2s − 4k1ss2 + z2ds − 2k2s3 − 2k3xsz − 2
dx4

3s

+ mp
2 fp +

] mN
*

] s
rN

s = 0, s30d

] sV/Vd
] z

= k0x2z − 4k1ss2 + z2dz − 4k2z3 − k3xs2 −
dx4

3z

+ FÎ2mK
2 fK −

1
Î2

mp
2 fpG = 0, s31d

ZSCHIESCHEet al. PHYSICAL REVIEW C 70, 045202(2004)

045202-4



] sV/Vd
] v

= − mv
2v − 4g4

4v3 + gNvrN = 0. s32d

In the above,rN
s andrN are the scalar and vector densities for

the nucleons, which can be calculated analytically for the
case ofT=0, yielding

rN
s = gNE d3k

s2pd3

mN
*

EN
*

=
gNmN

*

4p2 FkFNEFN
* − mN

*2lnSkFN + EFN
*

mN
* DG , s33d

rN = gNE
0

kFN d3k

s2pd3 =
gNkFN

3

6p2 . s34d

The parameters of the model are constrained by symmetry
relations, characteristics of the vacuum or nuclear matter
properties. Table I summarizes the various constraints for the
parameters within the mean field approach.

IV. RELATIVISTIC HARTREE APPROXIMATION

If we go from the mean field to the Hartree approxima-
tion, additional terms in the grand canonical potential appear.
These influence the energy, the pressure, and the meson field
equations. In the present work, we use the version of the

TABLE I. Parameters of the model, the corresponding terms in the Lagrangian, and constraints for fixing them.

Parameter Interaction Lagrange term Observable/constraint

g8
S LBM g8

SÎ2hTrsB̄BdTr X+fB̄BXgFj mN=−gNss0

g8
V LBV g8

VÎ2hTrsB̄gmBdTr Vm+fB̄gmBVmgFj E/Asr0d=−16 MeV, gNv;3g8
VZv

mV Lvec
s1d

1

2
mV

2 x2

x0
2Tr VmVm

m Lvec
s2d

1

4
m TrfVmnV

mnX2g
mv ,mr ,mf

lV Lvec
s3d 1

4lVsTrfVmngd2

g4 Lvec
s4d 2g4

4Tr VmVm K<200–300 MeV

k0
−

1

2
k0x2I2

] V

] s
vac= 0

k1 k1sI2d2 mN
* /mN,ms

k2 k2I4

] V

] z
vac= 0

k3 Scalar potential 2k3xI3 h ,h8 masses

k4 −k4x4 ] V

] x
vac= 0

d d

3
x4ln

I3

detX

bQCD

x0 psr0d=0

mp ,mK Lesb
−

1

2
Tr ApfusX + iYdu + u†sX + iYdu†g

PCAC

s0,z0
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chiral model withgNz=0, i.e., no coupling of the strange
condensate to the nucleon. Hence additional terms will only
appear due to summing over baryonic tadpole diagrams due
to interaction with the scalar fields, as in the Walecka
model. The additional contribution to the energy density is
given as

De = −
gN

16p2FmN
*4lnSmN

*

mN
D + mN

3smN − mN
* d −

7

2
mN

2smN − mN
* d2

+
13

3
mNsmN − mN

* d3 −
25

12
smN − mN

* d4G , s35d

wheremN
* =−gNss and mN is the nucleon mass in vacuum.

This will subsequently modify the pressure and thes field
equations. With inclusion of the relativistic Hartree contribu-
tions, the field equation fors as given by Eq.(30) gets
modified to

k0x2s − 4k1ss2 + z2ds − 2k2s3 − 2k3xsz − 2
dx4

3s
+ mp

2 fp

+
] mN

*

] s
srN

s + DrN
s d = 0 s36d

where the additional contribution to the nucleon scalar den-
sity is given as

DrN
s = −

gN

4p2FmN
*3lnSmN

*

mN
D + mN

2smN − mN
* d −

5

2
mNsmN − mN

* d2

+
11

6
smN − mN

* d3G . s37d

These make a refitting of some of the parameters neces-
sary. First we have to account for the change in the energy

and the pressure, i.e.,gNv andx0 have to be refitted. Due to
a change inx0 the parametersk0, k2, andk4 must be adapted
to ensure that the vacuum equations fors ,z, and x have
minima at the vacuum expectation values of the fields. Table
II shows the parameters corresponding to the the mean field
and the Hartree approximations.

V. VECTOR MESON PROPERTIES IN THE MEDIUM

A. In-medium vector meson masses

We now examine how the Dirac sea effects discussed in
Sec. IV modify the masses of the vector mesons. Rewriting
the expression for the vector interaction of these mesons
given in Eq.(6) in terms of the renormalized couplingsgNv

andgNr yields

LBV
N = gNvvmcNgmcN + gNrrWmcNgmtWcN. s38d

Furthermore a tensor coupling is introduced:

Ltensor= −
gNVkV

2mN
fc̄NsmntacN]nVa

mg s39d

wheresgNV,kVd=sgNv ,kvd or sgNr ,krd for Va
m=vm or ra

m ,ta

=1 or tW ,tW being the Pauli matrices. The vector meson self-
energy is given as

PV
mnskd = − gIgNV

2 i

s2pd4 E d4p TrfGV
mskdGspd

3GV
ns− kdGsp + kdg, s40d

wheregI =2 is the isospin degeneracy factor for nuclear mat-
ter, andGV

mskd=gmta−skV/2mNdsmnta represents the meson-
nucleon vertex function. In the above,Gskd is the interacting
nucleon propagator resulting from summing over baryonic
tadpole diagrams in the Hartree approximation. This is ex-
pressed, in terms of the Feynman and density dependent
parts, as

Gskd = sgmk̄m + mN
* dF 1

k̄2 − mN
*2 + ie

+
ip

EN
* skd

3d„k̄0 − EN
* skd…uskF − uk̄WudG

; GFskd + GDskd. s41d

The vector meson self-energy can then be written as the
sum of two parts

Pmn = PF
mn + PD

mn. s42d

In the above,PF
mn is the contribution arising from the

vacuum fluctuation effects, described by the coupling to the

NN̄ excitations, andPD
mn is the density dependent contribu-

tion to the vector self-energy. For thev meson, the tensor
coupling is generally small as compared to the vector cou-
pling to the nucleons[15]. This is neglected in the present

TABLE II. Parameters for the mean field and the Hartree fits.

Parameter Mean field Hartree

g4 2.7 0 2.7 0

k1 1.4 1.4 1.4 1.4

gNv 12.83 10.52 10.51 9.37

gNr 4.27 3.51 3.50 3.12

x0 402.7 430.1 430.2 446

k3 −2.64 −2.07 −2.07 −1.73

k0 2.37 2.07 2.07 1.93

k2 −5.55 −5.55 −5.55 −5.55

k4 −0.23 −0.23 −0.23 −0.24

mN
* /mNsr0d 0.64 0.71 0.73 0.76

ms 475.6 560.2 560.4 610.7

K 266.1 359.5 304 377.8

a4 29.0 27.4 23.9 24.1

ZSCHIESCHEet al. PHYSICAL REVIEW C 70, 045202(2004)

045202-6



calculations. The Feynman part of the self-energy,PF
mn, is

divergent and needs renormalization. We use dimensional
regularization to separate the divergent parts. For ther me-
son with tensor interactions, a phenomenological subtraction
procedure[14,15] is adopted. After renormalization, the con-
tributions to the meson self-energies from the Feynman part
are given as follows. For thev meson, one arrives at the
expression

PF
vsk2d ;

1

3
ResPF

rendm
m

= −
gNv

2

p2 k2E
0

1

dz zs1 − zdlnFmN
* 2 − k2zs1 − zd

mN
2 − k2zs1 − zd G ,

s43d

and for ther meson,

PF
rsk2d = −

gNr
2

p2 k2FI1 + mN
* kr

2mN
I2 +

1

2
S kr

2mN
D2

sk2I1 + mN
* 2I2dG

s44d

where

I1 =E
0

1

dz zs1 − zdlnFmN
* 2 − k2zs1 − zd

mN
2 − k2zs1 − zd G ,

I2 =E
0

1

dz lnFmN
* 2 − k2zs1 − zd

mN
2 − k2zs1 − zd G . s45d

The density dependent part for the self-energy is given as

PDsk0,k → 0d = −
4gNV

2

p2 E p2dp Fsupu,mN
* dffFDsm * , Td

+ f̄FDsm * , Tdg s46d

with

Fsupu,mN
* d =

1

e * spdf4e * spd2 − k0
2g
F2

3
s2upu2 + 3mN

* 2d

+ k0
2H2mN

* S kV

2mN
D +

2

3
S kV

2mN
D2

supu2 + 3mN
* 2dJG

s47d

where e* spd=sp2+mN
* 2d1/2 is the effective energy for the

nucleon. The effective mass of the vector meson is then ob-
tained by solving the equation, withP=PF+PD,

k0
2 − smV

ef fd2 + RePsk0,k = 0d = 0. s48d

In the above, the vector meson massesmV
ef f, are obtained by

inserting the classical expectation values of the meson fields
in Eqs.(17), (18), and(19). These correspond to considering
only the Fermi part of the baryon propagator and the tree
level contribution to the vector meson mass. We compare the
vector meson masses including the Dirac polarization to the
tree level vector meson massmV

ef f, which neglects the Fermi
polarization effects corresponding to nucleon-hole excita-
tions, as well as to the situation when such effects are taken
into account.

B. Meson decay properties

We next proceed to study the vector meson decay widths
as modified due to the effect of vacuum polarization effects
through the RHA. The decay width for the processr→pp is
calculated from the imaginary part of the self-energy and in
the rest frame of ther meson, it becomes

FIG. 1. Binding energy per particle as a function of density in the mean field and in the Hartree approximations.
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Grsk0d =
grpp

2

48p

sk0
2 − 4mp

2d3/2

k0
2 HF1 + fSk0

2
DGF1 + fSk0

2
DG

− fSk0

2
D fSk0

2
DJ s49d

wherefsxd=febx−1g−1 is the Bose-Einstein distribution func-
tion. The first and the second terms in the above equation
represent the decay and the formation of the resonancer.
The medium effects have been shown to play a very impor-
tant role for ther-meson decay width. In the calculation for
ther decay width, the pion has been treated as free, i.e., any
modification of the pion propagator due to effects like delta–
nucleon-hole excitation[31] have been neglected. The cou-
pling grpp is fixed from the decay width of ther meson in
vacuumsGr=151 MeVd decaying into two pions.

For the nucleon-rho couplings, the vector and tensor cou-
plings as obtained from theN-N forward dispersion relation
[15,17,32] are used. With the couplings as described above,
we consider the modification ofv- and r-meson properties
in nuclear matter due to quantum correction effects.

To calculate the decay width for thev meson, we con-
sider the following interaction Lagrangian for thev meson
[33–35]:

Lv =
gvpr

mp

emnab]mvn]ari
bpi +

gv3p

mp
3 emnabei jkvm]npi]ap j]bpk.

s50d

The decay width of thev meson in vacuum is dominated by
the channelv→3p. In the medium, the decay width forv
→3p is given as

FIG. 2. Scalar fieldss ,z and vector fieldv as a function of density in the mean field and in the Hartree approximations.

FIG. 3. Effective nucleon mass as a function of density in the mean field and in the Hartree approximations.
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Gv→3p =
s2pd4

2k0
E d3p̃1d

3p̃2d
3p̃3ds4dsP − p1 − p2 − p3d

3uMfiu2hf1 + fsE1dgf1 + fsE2dgf1 + fsE3dg

− fsE1dfsE2dfsE3dj, s51d

where d3p̃i =d3pi / s2pd32Ei , pi and the Ei’s are four-
momenta and energies for the pions, and thefsEid’s are their
thermal distributions. The matrix elementMfi has contribu-
tions from the channelsv→rp→3p [described by the first
term in Eq.(50)] and the direct decayv→3p resulting from
the contact interaction[second term in Eq.(50)] [35–37]. For
the vrp coupling we take the valuegvrp=2 which is com-
patible with the vacuum decay widthv→pg [17]. We fix
the point interaction couplinggv3p by fitting the partial de-
cay width v→3p in vacuum(7.49 MeV) to be 0.24. The
contribution arising from the direct decay turns out to be
marginal, being of the order of up to 5% of the total decay
width for v→3p.

With the modifications of the vector meson masses in the
hot and dense medium, a new channel becomes accessible,
the decay modev→rp for mv

* .mr
* +mp. This has been

taken into account in the present investigation.

VI. RESULTS AND DISCUSSION

We shall now discuss the results of the present investiga-
tion: the nucleon properties as modified due to the Dirac sea
contributions through the relativistic Hartree approximation
and their effects on vector meson properties in the dense
hadronic matter. Figure 1 shows the equation of state in the
mean field and in the Hartree approximation with and with-
out quartic self-interaction for thev field. In both cases we

observe that the additional terms resulting from the Hartree
approximation lead to a softening of the equation of state at
higher densities. However, the compressibility in the relativ-
istic Hartree approximation is higher than the mean field
value, as shown in Table II. Furthermore, the influence of the
finite value for the quarticv couplingg4 is clearly visible. In
this case the compressibility at nuclear saturation is strongly
reduced(Table II). Also, the resulting equation of state is
much softer in particular at higher densities. The reason for
this can be seen from Fig. 2. The vector fieldv, which
causes the repulsion in the system, rises much more steeply
as a function of density forg4=0 than for the case ofg4
=2.7, because the quartic self-interaction attenuates thev
field.

The effective nucleon mass for the different cases is de-
picted in Fig. 3. Here the RHA predicts higher nucleon
masses than the mean field(MF) case. At higher densities
these contributions become increasingly important. This is
also reflected in the density dependence of the nonstranges
field, showing a considerable increase due to the Hartree
contributions(Fig. 2). In contrast, the strange condensatez,
which does not couple to the nucleons, takes only slightly
lower values in the MF case.

The in-medium properties of the vector mesons are modi-
fied due to the vacuum polarization effects. The nucleon-v
vector couplinggNv is calculated from the nuclear matter
saturation properties. As already stated, theN-v tensor cou-
pling is neglected. Figure 4 shows the resulting modification
of the v-meson mass in the Hartree approximation as com-
pared to the mean field case. Forg4=0, the tree levelv mass
has no density dependence, because of the frozen glueball
approximation. However, including the effect of the nucleon
loop, the fluctuation of the Fermi sea, corresponding to the
particle-hole excitations, leads to an increase in thev mass.

FIG. 4. Effectivev-meson mass in the mean
field approximation and including the Hartree
contributions. Left: no quartic vector-meson in-
teraction. Right: includingv4 interaction. There
is a significant drop of the vector meson mass due
to the Dirac sea effect, which is not seen in the
mean field approximation.

FIG. 5. Effectiver-meson mass without and
with the Hartree contributions, with the nucleon-
rho vector and tensor couplings, as fitted from the
NN scattering datasgNr=2.63,kr=6.1d. The
Hartree approximation gives rise to the decrease
of the r mass in the medium.
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As can be seen from Eq.(46), the difference in the contribu-
tion due to the Fermi polarization in the MF theory(MFT)
and RHA at zero temperature, is purely due to difference in
the effective nucleon mass and theN-v coupling parameters.
At low densities, these contributions are seen to be very
similar in both the approaches. In the low density approxi-
mation, the Fermi part of the vector self-energy(assuming
the tensor coupling to be zero) reduces to

PD = −
4gVN

2 MN

4MN
2 − k0

2rB. s52d

Making the further assumption that the effective omega mass
k0!2MN, which may be a valid assumption at low densities,
while considering the Fermi polarization effects, one arrives
at the expression for the density dependent vector self-energy
as

PD = −
gVN

2

MN
rB, s53d

which is identical to the vector self-energy due to Fermi
polarization, as obtained earlier[16]. At low densities, thev
mass increases with density. However, it is seen that in the
mean field approximation and in the absence of a quartic
coupling, no real solution fork0 exists for the self-
consistency equation(48) for the mass of thev meson, for a
density above 1.1r0. This feature remains also in the RHA as
well as wheng4Þ0. This can be undertstood qualitatively in
the following manner. At higher densitites, the assumption
k0!2MN is no longer valid, and one should solve the self-
consistency equation

k0
2 − smV

ef fd2 −
4gVN

2 MN

4MN
2 − k0

2rB = 0, s54d

which does not have a real solution fork0
2 (and hence fork0)

whenfsmV
ef fd2−4MN

2g2,16MNgVN
2 rB. In other words, there a

critical density srBdcrit =fsmV
ef fd2−4MN

2g2/ s16gVN
2 MNd, above

which no real solution for the medium modified vector me-
son massk0 exists. Solving the self-consistency equation as
given by Eq.(48) and including only the Fermi polarization
part as given by Eq.(46) retains the same qualitative behav-
ior. In contrast, a strong reduction due to the Dirac sea po-
larization is found for densities up to around normal nuclear
matter density. At higher densities, the Fermi polarization
part of thev self-energy starts to become important, leading
to an increase in the mass. A similar behavior has been ob-
served in the Walecka model[14–16]. The quartic term in
thev field considerably enhances thev mass with increasing
density. Thus in the mean field case, the mass rises mono-
tonically. For the Hartree approximation a decrease of thev
mass for small densities can still be found. But at higher
densities the contribution from the quartic term becomes
more important and leads to an increase of the in-medium
mass.

In Fig. 5, we illustrate the medium modification for the
r-meson mass with the vector and tensor couplings to the
nucleons being fixed from theNN forward dispersion rela-
tion [15,17,32]. The values for these couplings are given as
gNr

2 /4p=0.55 andkr=6.1. We notice that the decrease in the
r meson with increasing density is much sharper than that of
the v meson. Such a behavior of ther meson undergoing a
much larger medium modification was also observed earlier
[17] within the relativistic Hartree approximation in the Wa-
lecka model. This indicates that the tensor coupling, which is

FIG. 6. Decay width ofr meson in the ab-
sence and presence of the Dirac sea effect with
the couplings fitted from theNN scattering data.

FIG. 7. Effectiver-meson mass without and
with the Hartree contributions, with the nucleon-
rho vector couplinggNr as from the chiral model,
which is compatible with the symmetry energy.
Since we do not know the medium dependent
tensor couplingkr, it is taken as a parameter. The
Hartree approximation gives rise to the decrease
of ther mass in the medium, which is seen to be
quite sensitive to the nucloen-rho tensor
coupling.
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negligible for thev meson, plays a significant role for ther
meson. The Fermi polarization effects are seen to give a rise
in ther mass with density, similar to what was seen for thev
meson mass.

The in-medium decay width forr→pp , Gr
* reflects the

behavior of the in-mediumr mass. This is because in the
present work only the caseT=0 is considered, and so there is
no Bose-enhancement effect. Therefore in the absence of the
quartic vector-meson interaction, the significant drop of the
mass of ther meson in the medium leads to a decrease of the
r decay width in the relativistic Hartree approximation.
However, only the Fermi polarization effects in the RHA or
MFT lead to an increase inr decay width, which is a reflec-
tion of the increase in the mass of ther meson in the me-
dium. These are shown in Fig. 6. Since the quartic self-
interaction yields an increase in the mass at higher densities,
it also leads to an increase of ther decay width.

In the previous calculations, ther-N coupling strengths
were used as determined from theNN forward scattering
data[32]. Now we consider the mass modification for ther
meson, with the nucleonr couplinggNr as determined from
the symmetry relations(Table II). The symmetry energy co-
efficient asym is given as[38]

asym=
1

2
F ]2

] t2
S e

r
DG

t=0
, s55d

wheret=srn−rpd /r0. The resulting values for the symmetry
energy for the different cases are shown in Table II. They are
compatible with the experiment. We take the tensor coupling
as a parameter in our calculations since this coupling cannot
be fixed from infinite nuclear matter properties. However, it
influences the properties of finite nuclei. In a recent study,
the importance of the tensor couplings(of v and r) for the

description of finite nuclei in the RHA has been discussed
[39]. It is seen that the spectra of the shell model states are
improved considerably with inclusion of these interactions,
which are otherwise not well described in the RHA due to
softening of the equation of state. The resulting in-medium
mass of ther meson is plotted in Fig. 7 as a function of
baryon densityrB/r0. It is observed that ther-meson mass
has a strong dependence on the tensor coupling. In the Har-
tree approximation ther-nucleon vector coupling does not
differ too much in the two cases, i.e., depending on whether
it is obtained fromNN scattering data or from the symmetry
relations. Thus we find a similar behavior for ther mass, if
in the latter case we choosekr=6, i.e., close to the value
from scattering data. For the same value ofkr and ther-N
vector coupling parameter as fitted from symmetry energy,
the r mass is plotted in the mean field approximation. As
already seen, the Fermi polarization gives rise to an increase
in the r-meson mass.

Figure 8 shows the decay width for ther meson when we
take theNr vector coupling as determined from symmetry
relations and the tensor coupling is taken as a parameter. In
the mean field approximation,kr is chosen as 6, a value
close to that from scattering data.

The decay width of thev meson is plotted as a function of
density in Fig. 9. In the vacuum the processv→3p is the
dominant decay mode. However, in the medium the channel
v→rp also opens up, since ther meson has a stronger drop
in the medium as compared to thev-meson mass.

The mean field approximation, does not have a contribu-
tion from the latter decay channel, whereas the inclusion of
the relativistic Hartree approximation permits both processes
in the medium. In the presence of the quartic vector meson
interaction, the channelv→rp, which opens up at around
0.3r0, no longer remains kinematically accessible at higher

FIG. 8. Decay width ofr meson in the ab-
sence and presence of the Dirac sea effect with
the nucleon-rho vector couplinggrN as from the
chiral model, which is compatible with the sym-
metry energy. The tensor couplingkr is taken as
a parameter.

FIG. 9. Effective decay width ofv meson
without and with the Hartree contributions. The
decay width has contributions fromv→3p as
well as v→rp. The latter becomes accessible
due to stronger medium modification of the
r-meson mass as compared to thev mass. The
MFT has no contribution from the processv
→rp.
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densities. This is due to the increased importance ofv4 con-
tributions to the vector meson masses at high densities.

The strong enhancement of thev-meson mass in the pres-
ence of a quartic self-interaction term for thev field makes

also the decay channelv→NN̄ kinematically accessible in
the mean field approximation. In the present investigation the
vector meson properties are considered at rest. Vector me-
sons with a finite three-momentum can also have additional
decay channels to particle-hole pairs. These decay modes,
e.g., have significant contributions, to theD decay width
[40]. Additional channels that open up in the mean field ap-
proximation in the presence of a quartic term forv, however,
have not been taken into consideration in the present work.
Here the emphasis is on the effect due to the relativistic
Hartree approximation on the in-medium vector meson prop-
erties.

Figure 10 illustrates the decay width of thev meson when
the medium dependence of therN vector coupling is taken
into account and the tensor couplingkr is taken as a param-
eter. In the mean field approximation, thekr chosen is 6,
which is close to the value obtained fromNN scattering data.
The strong dependence of ther-meson properties on the ten-
sor coupling in the relativistic Hartree approximation are re-
flected in thev decay width through the channelv→rp.

VII. SUMMARY

To summarize, in the present paper we have considered
the modification of the vector meson properties due to
vacuum polarization effects arising from the Dirac sea in
nuclear matter in the chiral SU(3) model. The baryonic prop-
erties as modified due to such effects determine the vector
meson masses in dense hadronic matter. A significant reduc-
tion of these masses in the medium is found, where the Dirac
sea contribution dominates over the Fermi sea part. This
shows the importance of the vacuum polarization effects for
the vector meson properties, as has been emphasized earlier
within the framework of quantum hadrodynamics[15,16].

The main aim of the present paper is to study the effcts of
vacuum polarizations from the nucleon sector on the vector
meson properties. The drastically different behavior of the
vector meson masses in the two approaches(RHA and MFT)
is due to the Dirac sea polarization effect leading to the large
drop of the mass of the vector meson in the RHA, and is
absent in the MFT. This effect is genuine to the RHA ap-
proach and does not reflect a mere rescaling of the MFA

coupling strengths of the rho meson. The Fermi sea polariza-
tion is seen to be dominated by the Dirac sea polarization in
the RHA, leading to a drop in the vector meson mass in the
medium, whereas the particle-hole excitations in the MFT
corresponding to the Fermi sea polarization give a rise in the
vector meson mass[13].

Ther-meson mass is seen to have a sharper drop as com-
pared to thev-meson mass in the medium. This reflects the
fact that the vector-meson–nucleon tensor coupling, which is
absent for thev meson, plays an important role for ther
mass. The decay width ofr→pp is modified appreciably
due to the modification of ther mass. At finite baryon den-
sities, the scattering due to nucleons is seen to lead to a large
increase in ther-meson decay width[7,11,42]. This, how-
ever, has not been taken into account in the present investi-
gation.

The effects discussed above influence observables in finite
nuclei, stellar objects, and relativistic heavy ion collisions.
For example, the modified vector meson properties in a me-
dium play an important role in the dilepton emission rates in
relativistic heavy ion collisions[41]. This is reflected by the
shift and broadening of the peaks in the low invariant mass
regime in the dilepton spectra. Therefore, it will be important
to investigate how the dilepton rates are modified by the
in-medium vector meson properties in hot and dense had-
ronic matter. Generalization to finite temperatures[43] to
study the spectral properties of the vector mesons and their
effects on the dilepton spectra from the hot hadronic matter
resulting from nuclear collisions are currently being studied
[44]. This apart, the study of Hartree contributions in the
analysis of the particle ratios from the relativistic heavy ion
collision experiments[45] and related problems are also un-
der investigation.
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FIG. 10. Decay width ofv meson in the ab-
sence and presence of the Dirac sea effect. For
the channelv→rp, the r-meson properties are
determined with the nucleon-rho vector coupling
gNr as from the chiral model, which is compatible
with the symmetry energy, and the tensor cou-
pling kr is taken as a parameter.
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