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The reactionsgp→K+L and gd→K+Ln have been investigated over the energy range fromEg

=1.0 GeV to Eg=1.8 GeV in a tree-level effective Lagrangian model that incorporates most of the well-
established resonances of spins1

2 and 3
2 below 1.9 GeV. Several sets of values for the resonance couplings are

generated by fitting empirical cross section curves for the proton reaction at three different energies. Results
obtained with a number of these fits are then presented for the cross sections and several single polarization
observables for both reactions. The deuteron reaction is treated within the impulse approximation with final
state interactions incorporated by means of a nonrelativistic overlap integral in momentum space. We explore
the dependences of the calculated quantities on several facets of the model, including the particular resonance
fit employed, the treatment of the spin3

2 resonance propagator, the prescription used for the resonance widths,
and for the deuteron reaction, the final state interaction and deuteron wave function employed. We find that for
neither reaction are the cross sections very sensitive to any of the model details. The polarization observables,
on the other hand, are quite sensitive to certain model details, particularly to the resonance model employed
and to the prescription used for the resonance widths. In general the polarization observables in the proton
reaction are more sensitive to model details than the polarization observables in the deuteron reaction. The
calculated deuteron observables are not strongly dependent on either the final state interaction or the deuteron
wave function employed.
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I. INTRODUCTION

The electromagnetic production of strangeness from pro-
tons has been of interest in the nuclear community for almost
40 years but, until recently, has suffered from a lack of high
quality data, particularly polarization data. Despite this, nu-
merous theoretical approaches have been developed based on
effective Lagrangian models[1–10], quark models[11–14],
and SU(3) chiral dynamics[15,16]. Recent polarization data
from both photoproduction experiments[17,18] and electro-
production experiments[19,20] provide stringent constraints
on these models and on future theoretical work. Indeed, the
beam polarization asymmetries measured in the most recent
photoproduction experiment do not agree with the predic-
tions of a recent Lagrangian model calculation[18], even
though that calculation incorporates the SAPHIR polariza-
tion data in its fit of the resonance coupling strengths.

In contrast with electromagnetic strangeness production
from the proton, comparatively little effort has been directed
toward the electromagnetic production of strangeness from
heavier targets. Renard and Renard[21] first examined kaon
photoproduction from the deuteron in the late 1960s. Later
studies of this reaction have concentrated primarily on the
role of final state interactions between the outgoing baryons
[22–24]. There were a few photoproduction[25] and electro-
production[26] experiments carried out with deuteron tar-
gets in the 1970s, but these were mainly concerned with the
extraction of the cross section forS− production from the
neutron. Moreover, the photoproduction experiments in-
volved the use of quite high energy photon beams at SLAC.
More recent work at TJNAF is expected to yield data of
much greater abundance and quality, but as yet there is no
published data from these experiments.

In view of the range and quality of forthcoming data for
electromagnetic strangeness production and the wide variety

of theoretical work that addresses these reactions, it is per-
haps of interest to reexamine some model dependent aspects
of the calculations within the context of a particular model.
Here we concentrate on the photoproduction ofL’s using an
effective Lagrangian model simliar to that introduced in Ref.
[1]. For reactions involving proton targets, the main uncer-
tainties connected with this model arise from the choice of
resonances to include in the model and the extent to which
the couplings of these resonances can be fixed by the exist-
ing data. There is additional model dependence, however,
associated with the forms adopted for the intermediate
baryon propagators and electromagnetic vertices, especially
for higher spin resonances, and with the treatment of the
energy and momentum dependence of thes-channel reso-
nance widths. In the case of deuteron targets, the treatment of
final state interactions and the deuteron wave function are
further sources of model dependence.

In this work, we present a variety of results for both pro-
ton and deuteron targets in an effort to explore these various
types of model dependence. In the case of deuteron targets,
we employ the impulse approximation supplemented with
final state interactions. Since our calculations are meant to be
exploratory in nature, we content ourselves with a non-
relativistic deuteron wave function. The main effect that the
incorporation of relativity has on the deuteron wave function
is to introduce smallp-wave components arising from the
lower components of the Dirac spinors. The effect of these
small p-wave components on kaon photoproduction was ex-
amined in Ref.[22] and found to be relatively unimportant.

The model employed for the proton reaction,

g + p → K+ + L s1d

consists ofs-channel,u-channel, andt-channel contributions.
These various contributions are discussed in detail in Sec. II,
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where the set of resonances included in the model is enumer-
ated and various options presented for the treatment of the
spin 3

2 propagator. This section also outlines two different
prescriptions for the treatment of thes-channel resonance
widths.

Within the impulse approximation, the incident photon in
the deuteron reaction,

g + d → K+ + L + n s2d

must be absorbed by the proton, so that the same model that
is employed to analyze the proton reaction can be used to
examine the deuteron reaction as well. This is discussed in
Sec. III, where a prescription is presented for the inclusion of
final state interactions by means of an overlap integral in
momentum space.

Results for both proton and deuteron targets are contained
in Sec. IV. Here, we compare several fits to the proton data
using different sets of resonances, different prescriptions for
the spin 3

2 propagator, and different resonance width pre-
scriptions. The various fits are then used to calculate single
polarization observables in the proton reaction and both
cross sections and polarization observables in the deuteron
reaction. We also study the dependence of the deuteron re-
sults on the input wave functions by employing three differ-
ent potentials to generate the final state interactions and by
using two different deuteron wave functions.

II. THE REACTION MODEL

Figure 1 displays the various contributions to reaction[1]
that are included in the present work. In thes-channel, the
Born contribution with an intermediate proton is supple-
mented by additional contributions involving the excitation
of an intermediate nucleon resonance. Similarly, the
u-channel Born terms are supplemented with contributions
involving the excitation of intermediate hyperon resonances,
while in the t-channel, contributions from bothK!s892d and
K1s1270d exchange are included.

A list of all the resonances incorporated in the present
work is given in Table I. The spin-parity assignments in the
third column have been taken from the particle data tables
[27], while the symmetry assignments in column 4 are con-
sistent with those used in SU(6) X O(3) analyses of spectra
and decay rates[28,29]. Included in this table are all of the
well-established resonances(those of three or four star status
in the particle data tables) below 1.9 GeV that have spins of
1
2 or 3

2. The restriction to spins less than52 was imposed
mainly for the sake of simplicity. There are not many well-
established resonances below 1.9 GeV with spins larger than
3
2 in any case, so that their exclusion should not qualitatively
affect our results.

The impulse amplitudes depicted in Fig. 1 have the gen-
eral form

T̂s = o
R

VK
†spKdDspdVgspgd, s3d

T̂u = o
R

Vg
†spgdDsp8dVKspKd, s4d

and

T̂t = o
K!

VgK
† spg,pK!dDK!spK!dVpLspK!d, s5d

where p=pL+pK and p8=pL−pg are the intermediate
4-momenta in thes- and u-channel terms, respectively, and
pK! is the kaon resonance 4-momentum in thet-channel
term. TheV’s here denote electromagnetic and strong inter-
action vertex functions, while theD’s denote the propagators
associated with the intermediate baryon and meson lines.

In the t-channel the vertex functions are given by the ex-
pressions

VgK
m =

ggKK!

msc
emnrlenpgrpK!l s6d

and

FIG. 1. Contributions to the amplitude for the reactiongp
→K+L.
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VpL
m = SgpLK!

V +
gpLK!

T

mp + mL

g · pK!Dgm s7d

for the K!s892d resonance and

VgK
m =

ggKK1

msc
se · pK1pg

m − pg · pK1emd s8d

and

VpL
m = SgpLK1

V +
gpLK1

T

mp + mL

g · pK1Dgmg5 s9d

for theK1s1270d resonance, wheremsc is a scaling mass that
we set equal to 1000 MeV. The two kaon resonances have
propagators of the same form,

DK! =

− gmn +
pK!mpK!n

mK!
2

pK!
2 − mK!

2 + imK!GK!

, s10d

where now the labelK! refers to either of the two reso-
nances.

The vertex functions and propagators associated with the
s and u-channels depend upon the spin and parity of the
intermediate baryon line. For intermediate baryons of spin1

2,
we employ the standard expression at the electromagnetic
vertex and use the pseudoscalar coupling form at the meson
vertex. This gives for positive parity baryons

VKs1/2d+spKd = gg5 s11d

and

Vgs1/2d+spgd = ggemismnspgdn, s12d

with

gg =
ek

2mB
, s13d

wheremB is the proton mass in thes-channel and theL mass
in the u-channel, andk is defined by its relation to the tran-
sition magnetic moment,

mT =
ek

mB + mI
. s14d

In the last expressionmI denotes the mass of the intermediate
baryon. The corresponding expressions for negative parity
baryons just have theg5 factor transposed from the meson
vertex to the electromagnetic vertex. For intermediate proton
states, there is an additional charge term,

Vchargespgd = egmspgdm s15d

that has to be added to the positive parity electromagnetic
vertex above.

For the spin1
2 propagator, we employ a relativistic Breit-

Wigner form,

D1/2spd =
g · p + mI

p2 − mI
2 + imIGI

, s16d

where GI is the width associated with the intermediate
baryon in thes-channel and is zero in theu-channel. This
form has been used in most of the previous photoproduction
studies. However, Benmerroucheet al. have noted that Eq.
(16) leads to inconsistent amplitudes in different partial
waves and hence, violates unitarity[30]. Ideally, one should
generate the imaginary part of thet-matrix self-consistently
through aK-matrix approach; however, this would entail the
solution of a large set of coupled channel equations that
would complicate the analysis considerably.

There has been considerable discussion in the literature
concerning the correct forms for the propagator and interac-
tion vertices of spin3

2 baryons. On the baryon mass shell, the
various prescriptions for the propagator reduce to the Rarita-
Schwinger form, which is obtained by multiplying the spin1

2
propagator on the right by the projection operator

Pmn = gmn −
1

3
gmgn +

1

3

pmgn − pngm

mI
−

2

3

pmpn

mI
2 . s17d

Off the mass shell, this form does not preserve gauge invari-
ance. The authors of Ref.[1] attempted to restore gauge in-
variance by replacing the baryon masses in the expression
above and the numerator of Eq.(16) by Îs, but this yields a
form that does not satisfy the differential equation defining
the Green’s function, as demonstrated in Ref.[30]. More
recent work has shown that a full description of the off-shell
structure of the spin 3

2 propagator and interaction
Lagrangians requires the incorporation of additional param-
eters [7,30,31]. In this work, we attempt to estimate the

TABLE I. Resonances included in the model.

Resonance I JP SUs3d

Ns1440d 1/2 1/2+ 28

Ns1520d 1/2 3/2− 28

Ns1535d 1/2 1/2− 28

Ns1650d 1/2 1/2− 48

Ns1700d 1/2 3/2− 48

Ns1710d 1/2 1/2+ 28

Ns1720d 1/2 3/2+ 28

Ls1405d 0 1/2− 21

Ls1520d 0 3/2− 21

Ls1600d 0 1/2+ 28

Ls1670d 0 1/2− 48

Ls1690d 0 3/2− 28

Ls1810d 0 1/2+ 28

Ls1890d 0 3/2+ 28

Ss1385d 1 3/2+ 410

Ss1660d 1 1/2+ 28

Ss1670d 1 3/2− 28

Ss1750d 1 1/2− 210
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model dependence associated with these parameters by com-
paring results obtained with two different forms for the
propagator, the Rarita-Schwinger form(RS propagator) and
the form employed in Ref.[1] (ABW propagator). We note
that, aside from its failure to satisfy the differential equation
defining the Green’s function, the ABW propagator intro-
duces unphysical singularities in theu-channel whereÎs can
vanish.

For the sake of simplicity, the forms employed here for
the spin 3

2 interaction vertices do not incorporate off-shell
parameters. The positive parity interaction vertices are given
by

VKs3/2d+
m spKd = −

g

mp

pK
m s18d

and

Vgs3/2d+
m spgd = F g1

2mB
semg · pg − pg

mg · ed

+
g2

4mB
2 se · pBpg

m − pg · pBemdGg5, s19d

wherepB is the ground state baryon 4-momentum, and the
factormp in the first expression makesg dimensionless. The
negative parity vertices just have theg5 factor transposed
from the electromagnetic vertex to the meson vertex.

A. Coupling strengths

To evaluate the various amplitudes discussed above, val-
ues are required for the products of the coupling strengths at
the two interaction vertices. We adopt fixed values for the
coupling strength products in thet-channel and in the Born
contributions to thes and u-channels and then adjust the
coupling strengths associated with thes andu-channel reso-
nance contributions to fit the cross section data for reaction
(1).

For the t-channel coupling products, we employ the val-
ues used in Ref.[6]. These are given by

gpLK!
V ggKK! = − 2.01,

gpLK!
T ggKK! = 1.00,

gpLK1
V ggKK1 = 0.25,

gpLK1
T ggKK1 = 2.13. s20d

The s andu-channel Born contributions involve the elec-
tromagnetic coupling parameterskp, kL, andkLS, defined by
Eq. (14), and the strong interaction couplingsgLKp andgSKp.
For the electromagnetic couplings, we use the values given
in the particle data tables[27] with the exception ofkLS for
which it was necessary to use a reduced value. The required
strong interaction couplings can be deduced from the well
establishedpN coupling strength using SU(3) symmetry
[32], but this yields a value forgLKp that is difficult to ac-
commodate with experimental data. Instead, as in many

other fits to strangeness photo and electroproduction data, we
employ a value for this coupling that is substantially smaller
than the SU(3) estimate. These considerations yield thes and
u-channel Born coupling products

ekpgLKp = − 2.88,

ekLgLKp = 0.75,

ekLSgSKp = 1.46, s21d

where e=0.3029 is the electron charge in dimensionless
units.

For the spin1
2 s and u-channel resonance contributions,

we define the coupling strength products

FN! = ekpN!gLKN!,

FL! = ekLL!gL!Kp,

FS! = ekLS!gS!Kp s22d

and for the spin3
2 resonance contributions, the products

GN!
1 = g1

pN!
gLKN!,

GN!
2 = g2

pN!
gLKN!,

GL!
1 = g1

LL!
gL!Kp,

GL!
2 = g2

LL!
gL!Kp,

GS!
1 = g1

LS!
gS!Kp,

GS!
2 = g2

LS!
gS!Kp. s23d

B. Resonance widths

In addition to the coupling strength products, we need
values for thes-channel resonance widths to evaluate the
reaction amplitudes depicted in Fig. 1. The low lying
nucleon resonance widths are reasonably well known on the
resonance mass shells but are generally required at positions
far off the mass shells. In this work we compare results ob-
tained with two different prescriptions for the energy and
momentum dependence of the resonance widths.

The first prescription, which was introduced in Ref.[33]
and which we term the full width model, involves a decom-
position of the empirical on-shell width into partial widths
for decay into particular two-body and multibody channels.
In each such channel, the off-shell energy and momentum
dependence is treated using an effective Lagrangian model
with the required coupling strength adjusted to yield the em-
pirical on-shell branching ratio for decay into that channel.

The two-body channels all involve the decay of a nucleon
resonance into a pseudoscalar meson and a spin1

2 baryon. In
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the resonance rest frame, the widths for these decays are
given by

GS1

2

P

→ 1

2

+

+ 0−D =
f2

4p

p
Îs

fEB − hPmBg s24d

for spin 1
2 resonances and by

GS3

2

P

→ 1

2

+

+ 0−D =
1

12p

f2

mp
2

p3

Îs
fEB + hPmBg, s25d

for spin 3
2 resonances, whereP specifies the resonance parity,

p is the channel momentum,EB is the energy of the baryon
decay product, andhP is +1 or −1 for even or odd parity
resonances, respectively. Below the threshold for a particular
channel, the partial width for decay into that channel is set
equal to zero. At higher energies, decay channels not avail-
able at the on-shell position may open up. Since we have no
method for estimating the branching ratios into these chan-
nels, we simply ignore them. The intermediate baryon propa-
gators are significantly reduced away from the on-shell po-
sitions, so this omission should not be important.

That part of the on-shell decay width not accounted for by
two-body channels is assigned to multibody channels. These
multibody channels are treated approximately as two-body
decays into either a stable spin1

2 baryon and a meson reso-
nance or a stable pseudoscalar meson and a baryon reso-
nance. In particular, for the low lying nucleon resonances,
we include decays intoNr, Ns, andDs1232dp channels. For
some of these channels, there exist empirical branching ra-
tios with large error bars[27]. After adding the correspond-
ing widths to the two-body widths, any remaining width still
not accounted for is assigned to whatever other channels are
open for that resonance. The resulting branching ratios for all
theN! resonances considered in this work are listed in Table
II.

For fixed decay product masses, width expressions for
channels involving vector mesons or spin3

2 baryons are
given in Ref. [33]. This reference also provides a method,
which we employ here, for taking into account the fact that
the mass of an unstable decay product is not fixed, but dis-
tributed over a finite range. Briefly, this method requires the
replacement of the unstable decay product mass in the width
expression by a variable mass and then the integration of the
product of the phase space factor in the width expression and

a Breit-Wigner distribution function. Details are given in
Ref. [33].

To test the sensitivity of the calculated observables to the
width prescription, we also make use of a second, greatly
simplified width prescription, which we term the simplified
width model. This second prescription makes use of the on-
shell partial widths at all energies and momenta above
threshold; i.e., the on-shell widths in each channel are used
off shell as well, except that, as in the full model, the partial
width is set equal to zero below the channel threshold.

C. Matrix elements and observables for the reactiongp\K+L

The baryon matrix elements of the amplitudes given by
Eqs. (3), (4), and (5) between an incident proton and an
outgoingL all have the general structure

ūML
spLdT̂uMp

sppd = ūML
spLdfÂ + B̂g5 + Ĉg0

+ D̂g0g5guMp
sppd, s26d

wherepp andMp are the 4-momentum and spin projection of
the proton, andpL and ML the 4-momentum and spin pro-

jection of theL. For each amplitude, the operatorsÂ, B̂, Ĉ

and D̂ depend upon the spin and parity of the particular
intermediate resonance considered. Detailed expressions for
these operators can be found in the Appendix of Ref.[33].

Carrying out the Dirac algebra in Eq.(26) yields the
equivalent Pauli form,

ūML
spLdT̂uMp

sppd

= NLNpxML

† fsÂ + Ĉd + sB̂ + D̂ds · p̂p

+ s · p̂LsD̂ − B̂d + s · p̂LsĈ − Âds · p̂pgxMp
, s27d

with

N =ÎE + m

2m
s28d

and

TABLE II. N! resonance on-shell branching ratios.

Resonance

Two body channels Three body channels

Np Nh LK Nr Ns Ds1232dp

Ns1440d 0.65 0.10 0.25

Ns1520d 0.55 0.20 0.05 0.20

Ns1535d 0.45 0.50 0.03 0.02

Ns1650d 0.75 0.06 0.06 0.08 0.05

Ns1700d 0.10 0.017 0.063 0.22 0.60

Ns1710d 0.15 0.01 0.15 0.26 0.43

Ns1720d 0.15 0.012 0.07 0.768

TABLE III. Parameters in theLn interaction.

Singlet parameters

U0 a0 W0 b0

Model A 167.34 1.100 246.80 0.82

Model B 373.94 0.790 246.80 0.82

Model C 131.49 1.095 246.80 0.82

Triplet parameters

U1 a1 W1 b1

Model A 132.42 1.100 181.68 0.82

Model B 144.14 1.059 181.68 0.82

Model C 189.60 0.964 181.68 0.82
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p̂ =
p

E + m
. s29d

This last expression can be further reduced analytically, but
the procedure is rather tedious. Instead, Eq.(27) is evaluated
numerically.

Equation(26) can also be evaluated numerically without
recourse to a Pauli reduction. We have generated a code to
accomplish this and checked that the results agree with the
numerical evaluation of Eq.(27). This not only confirms the
accuracy of the numerical codes, but also provides a check
on the Dirac algebra.

In terms of these matrix elements, the unpolarized differ-
ential cross section for reaction(1) is given in the center of
mass(c.m.) by

ds

dV
=

1

s2pd2

mpmLpF

4Egs

1

4 o
spins

ukFuT̂uIlu2, s30d

wherepF and s are the outgoing 3-momentum and squared
total energy in the c.m., andEg is the incident photon energy.

In addition to the unpolarized cross section, we have also
obtained results for the hyperon polarization asymmetryP,
the polarized photon beam asymmetryS, and the polarized
proton target asymmetryT defined by

P =
dsL

+ − dsL
−

dsL
+ + dsL

− , s31d

S =
dsg

' − dsg
i

dsg
' + dsg

i , s32d

and

T =
dsp

+ − dsp
−

dsp
+ + dsp

− , s33d

where the superscripts+ and − refer to spin projections
above and below the scattering plane, i.e., along the positive
and negativey axes, respectively, and the superscripts' and
i refer to photon polarizations perpendicular and parallel to
the scattering plane, respectively.

TABLE IV. Coupling constant products.

Spin 1
2 resonances

A B C D E F

Ns1440d FN! −6.301 −2.495 −4.134 −8.365 −0.140 −8.251

Ns1535d FN! −0.210 1.497 0.057 −0.356 0.186 −0.375

Ns1650d FN! −0.709

Ls1405d FL! 2.331 4.774 3.171 0.557 3.161 −0.309

Ls1600d FL! −1.720 0.496 −3.612 1.813 0.855 −1.504

Ls1670d FL! 0.0073 0.0073 0.0073

Ls1810d FL! −2.804

Ss1660d FS! −3.465 −3.465 −3.465

Ss1750d FS! 0.0014 −0.934 0.794 −0.904 1.192 0.091

Spin 3
2 resonances

A B C D E F

Ns1520d GN!
1 0.027 0.079 0.082 0.079 0.062 −0.275

GN!
2

Ns1700d GN!
1 0.0051 −0.0075 0.024 −0.021 −0.0031 0.012

GN!
2 −0.0006 −0.0005 0.0062 0.0010 0.034 −0.038

Ns1720d GN!
1 0.020 0.023 −0.010 0.031 −0.0018 0.026

GN!
2

Ls1690d GL!
1 0.319 0.319 0.551

GL!
2 −0.110

Ls1890d GL!
1 1.493 1.493 1.029 1.029

GL!
2 −1.173 −1.173 −0.617 −0.617

Ss1385d GS!
1 −0.422 −0.601 −0.233 −0.391

GS!
2 −0.069 −0.958 −1.339 −1.223

Ss1670d GS!
1 0.601 0.221 0.414 −0.255

GS!
2 2.256 2.283 0.618 −0.114
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III. THE REACTION gd\K+Ln

A. Matrix elements and observables
with no final state interaction

Within the impulse approximation for reaction(2), the
incident photon absorption and the outgoing kaon emission
occur on the same baryon line, so that the reaction amplitude
is identical to that given previously for a proton target. How-
ever, in contrast with the proton reaction, the matrix element
for reaction(2) must be evaluated between two-body baryon
states. This is most readily accomplished in momentum
space in the rest frame of the deuteron.

The initial deuteron state consists of the product of an
isospin factor and a spin-spatial wave function,

CMspd = uspndI = 0lFMspd, s34d

whereM andp are the deuteron spin projection and relative
3-momentum, and

uspndI = 0l =
1
Î2

supnl − unpld. s35d

The two terms on the right side of the last expression yield
identical matrix elements that can be accounted for by mul-
tiplying the reaction amplitude discussed previously by a
factor two. Combined with the inverseÎ2 above, this yields
an overall factorÎ2 in the deuteron matrix elements as com-
pared with the proton matrix elements. Nonrelativistically,
the functionFM can be further decomposed into products of
spin and spatial wave functions,

FMspd = o
Ms

cM,MS
spdu1MSl s36d

with

u1MSl = o
Mp,Mn

S1

2
Mp

1

2
Mnu1MSDxMp

xMn
s37d

and

FIG. 2. Differential cross sections for the reactiongp→K+L at (a) Eg=1.1 GeV,(b) Eg=1.4 GeV, and(c) Eg=1.7 GeV. The solid curves
were obtained with fit A, the dashed curves with fit B, the dot-dashed curves with fit C, and the dotted curves with fit D, as described in the
text. The double solid curves are empirical fits from Ref.[34].
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cM,MS
spd = o

L=0,2
sLM − MS1MSu1Mdf̃LspdYLM−MS

sup,fpd,

s38d

where

f̃Lspd =Î 2

p
iLE

0

`

r2fLsrd jLsprddr s39d

is the radial part of the deuteron wave function in momentum
space. To assess the sensitivity of the deuteron model to the
initial state employed, we compare results obtained with two
different deuteron wave functions, one based on the Reid
nucleon-nucleon(NN) potential and the other based on the
Paris NN potential.

In the absence of final state correlations, the matrix ele-
ment for reaction(2) can be simply expressed in terms of the
wave function defined above and the matrix element for re-
action (1). In particular,

kFuT̂uIld = Îs2pd32mdTMLMnFMspd, s40d

with

TMLMnFMspd = o
MS

S1

2
MS− MnF

1

2
MnFu1MSDcM,MS

spdūML
spLd

3T̂uMS−MnF
sppddspnF − pnId, s41d

where the subscriptsnI and nF refer to the initial and final
neutron states,p=pp=−pnF in the deuteron rest frame, and
the factor containing the deuteron massmd in Eq. (40) is a
normalization factor.

In terms of this matrix element, the unpolarized differen-
tial cross section for reaction(2) is given in the deuteron rest
frame by

FIG. 3. Differential cross sections for the reactiongp→K+L at the same incident photon energies as in Fig. 2. The solid curves were
obtained with fit A, the dashed curves with fit E, the dotted curves with fit D, and the dot-dashed curves with fit F, as described in the text.
The double solid curves are empirical fits from Ref.[34].
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d5s

dpKdVKdVL

=
1

12

1

s2pd2

mLmnpLpK
2

EBEKEg

gsuLd o
spins

ukFuT̂uIldu2,

s42d

with

g−1 = F1 −
ELPB

EBpL

cossuLdG , s43d

whereEB and PB are the total outgoing baryon energy and
3-momentum in the deuteron rest frame, anduL is the angle
between thepL andPB. Results have also been obtained for
the hyperon polarization asymmetry P defined by Eq.(31)
and the polarized photon beam asymmetry defined by Eq.
(32).

B. Inclusion of the final state interaction

The interaction between the neutron and theL in the final
state is incorporated by means of a nonrelativistic overlap
integral,

MMLMnFMspd = o
ML8 MnF8

E d3q

s2pd3/2CMLMnFM
L8 MnF8

sp,qd

3TM
L8 MnF8 Msqd, s44d

which is substituted into Eq.(40) in place of Eq.(41). The
quantityC here is essentially the three dimensional Fourier
transform of theLn final state wave function. It is defined by
the expression

CMLMnFM
L8 MnF8

sp,qd = o
S=0,1

S1

2
ML

1

2
MnFuSMSD

3S1

2
ML8

1

2
MnF8 uSMSDcSsp,qd, s45d

with

FIG. 4. Hyperon polarization asymmetry for the reactiongp→K+L at (a) Eg=1.0 GeV,(b) Eg=1.25 GeV,(c) Eg=1.55 GeV, and(d)
Eg=1.7 GeV. The solid curves were obtained with fit A, the long dashed curves with fit B, the short dashed curves with fit E, the dotted
curves with fit D, and the dot-dashed curves with fit F, as described in the text. The data points are from Ref.[35] (solid squares), Ref. [36]
(open triangles), Ref. [37] (open squares), Ref. [38] (solid triangles), Ref. [39] (open diamonds), and Ref.[17] (crosses).
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cSsp,qd =E d3r

s2pd3/2 expsiq · r dfS
*sp,r d

=Î 2

p
o

,

s2, + 1dR,Ssp,qdP,scosupqd, s46d

whereupq is the angle between the vectorsp andq, and

R,Ssp,qd =E
0

`

r2dr
u,S

* sp,rd
r

j,sqrd s47d

is the overlap of theLn radial wave function,u,S/ r, with the
plane wave radial wave function,j,.

To represent theLn potential, we employ a central poten-
tial consisting of the sum of attractive and repulsive Gauss-
ians,

VSsrd = − US expS−
r2

aS
2D + WS expS−

r2

bS
2D , s48d

and use the same parameter values as used in Ref.[23].

These values are listed in Table III. The authors of Ref.[23]
also investigated more elaborateLn interactions but obtained
results very similar to those obtained with the simple form of
Eq. (48).

It is useful to decompose the quantityC defined by Eq.
(45) into a plane wave piece and an interacting part,

CMLMnFM
L8 MnF8

sp,qd = s2pd3/2dsp − qddM
L8 ML

dMnF8 MnF

+ FMLMnFM
L8 MnF8

sp,qd, s49d

whereF, the interacting part, is given by the same expres-
sion asC but with the full radial overlap functionR,S re-
placed by

R̃,Ssp,qd =E
0

`

r2drFu,S
* sp,rd

r
− j,sprdG j,sqrd. s50d

Even with the plane wave part removed, the numerical

integration required to obtainR̃,S does not converge when
q=p. To circumvent this difficulty we divide the integrand of

FIG. 5. Polarized photon beam asymmetry for the reactiongp→K+L at (a) Eg=1.0 GeV,(b) Eg=1.25 GeV,(c) Eg=1.55 GeV, and(d)
Eg=1.75 GeV. Identification of curves as in Fig. 4. The data points are from Ref.[18].
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Eq. (50) into two parts, an asymptotic part, which can be
integrated analytically, and the remainder, which has to be
integrated numerically. This yields

R̃,Ssp,qd = R̃,S
asysp,qd + R̃,S

remsp,qd, s51d

with

R̃,S
asysp,qd =

exps− id,Sdsind,S

q2 − p2 + ie
Sd,,even

p
+

d,,odd

q
D , s52d

whered,S is theLn phase shift.

After constructing the radial integralsR̃,Ssp,qd, it is still
necessary to carry out the integration overq in Eq. (44). The
angle integrals can be easily evaluated using a two dimen-
sional Gauss points technique. The radial integrals require
more care because of numerical instabilities associated with
the denominator in Eq.(52). We have developed a numerical
procedure that allows us to avoid these instabilities and to
numerically take the limits of the integrals as the parametere
approaches zero. We have checked that the procedure con-
verges well and that it yields the correct result for a test
integral that can be evaluated analytically.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Results for the reactiongp\K+L

Although reaction(1) has been the subject of numerous
studies over the past several decades, there is still relatively
little polarization data for this reaction. Moreover, the exist-
ing data are not always in agreement. Consequently, in gen-
erating fits to the photoproduction of strangeness from pro-
tons, we have concentrated on the unpolarized differential
cross section. Our strategy is to produce several fits to the
cross section data and then to compare the polarization ob-
servables obtained with those fits. Since the main interest
here is the study of parameter dependence within a particular
model, rather than the quantitative reproduction of data, we
choose to fit empirical representations of the cross section
data generated by the SAID facility[34], rather than fit the
data directly. In particular, we fit the SAID cross sections for
reaction (1) at laboratory photon energies of 1.1 GeV,
1.4 GeV, and 1.7 GeV as functions of the c.m. scattering
angle. To measure the quality of our fits, we define a cumu-
lative relative error parameter through the relation

FIG. 6. Polarized proton target asymmetry for the reactiongp→K+L at (a) Eg=1.1 GeV,(b) Eg=1.3 GeV,(c) Eg=1.55 GeV, and(d)
Eg=1.7 GeV. Identification of curves as in Fig. 4. The data points are from Ref.[40].
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x2 = o sdscalc − dsempd2

d̄s2
, s53d

where dscalc is the calculated cross section at a particular
energy and angle,dsemp is the corresponding empirical cross

section, andd̄s2 is the angle average ofdsemp
2 at each energy.

The resulting fits are presented in Table IV, which lists the
coupling constant products defined by Eqs.(22) and(23) for
the various resonances included in the fits. With the excep-
tions of fits E and F, all the fits here were obtained using the
RS propagator for the spin32 resonances and the full, energy
dependent resonance width prescription described in Sec. II.
Fit E was obtained using the simplified width prescription in
place of the full width prescription, while fit F was obtained
using the ABW spin3

2 propagator in place of the RS propa-
gator. Both spin1

2 and spin3
2 resonances were included in the

s andu-channels of fits A, B, C, and E; whereas, in fits D and
F, only spin1

2 resonances were incorporated in theu-channel.
The two lowestx2 values, which are nearly identical, were
achieved with fits A and E. The two highest values, also
nearly identical, result from fits D and F.

Comparison of the various coupling products listed in
Table IV makes it clear that cross section data alone do not

constrain the coupling products very effectively. It is pos-
sible to achieve fits of comparable quality with quite differ-
ent choices for the couplings of individual resonances. There
are, however, some general trends in the fits that are worth
noting. First, there are certain resonances that do not appear
at all in the fits, namely, theNs1710d and theLs1520d. At-
tempts to include either of these resonances lead to unaccept-
ably large values ofx2. Other resonances seem to require
similar coupling product values in most of the fits. The
Ns1440d coupling product, for example, is negative in all the
fits and with the exception of fit E, tends to be large in
magnitude. TheLs1670d coupling product, on the other
hand, is either zero or very small in all the fits. Another
interesting characteristic of the fits is that thes-channel spin
3
2 resonances all have zero or very small values for theGN!

2

coupling product. Finally, it should be noted that there is a
high degree of correlation among certain groups of cou-
plings; i.e., an increase in one coupling can be nearly com-
pensated by an increase or decrease in another coupling in
the same group.

The quality of the various fits is exhibited in Fig. 2, which
displays the differential cross sections obtained with fits A,
B, C and D, and Fig. 3, which displays the differential cross
sections obtained with fits A, E, D, and F. Although the vari-

FIG. 7. Differential cross sections for the reactiongd→K+Ln at (a) Eg=1.1 GeV,TK=325 MeV, anduK=15°; (b) Eg=1.4 GeV,TK

=600 MeV, anduK=17°; and(c) Eg=1.7 GeV,TK=925 MeV, anduK=12°. Identification of curves as in Fig. 2.
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FIG. 8. Hyperon polarization asymmetry(left-hand panels) and polarized photon beam asymmetry(right-hand panels) for the reaction
gd→K+Ln and the same kinematics as in Fig. 7. Identification of curves as in Fig. 2.
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ous parameter sets have different values ofx2 associated
with them, they all yield fits to the SAID curves of compa-
rable quality. Note, however, that fits D and F, which do not
incorporate spin3

2 resonances in theu-channel, are not quite
as good as the other four fits. In Fig. 3, there is little differ-
ence between the solid and dashed curves and between the
dotted and dot-dashed curves, indicating that different
choices for the resonance width prescription and different
choices for the spin32 propagator have little influence on the
calculated cross sections.

Figures 4, 5, and 6 display results for the polarization
parameters defined by Eqs.(31), (32), and (33) for several
photon energies between 1.0 GeV and 1.75 GeV. In Fig. 4,
the data points from Refs.[35–37] shown in panel(a) repre-
sent data taken at several energies between 1.00 GeV and
1.05 GeV, the data points from Refs.[38,39] shown in panel
(b) represent data taken at 1.3 GeV, and the data point from
Ref. [39] in panel(c) represents data taken at 1.5 GeV. The
energies of the SAPHIR data points shown in Fig. 4 have not
been determined precisely but only over ranges in energy
that are centered at the energies listed for each panel. This is
also true of the LEPS data points shown in panels(c) and(d)
of Fig. 5.

These figures clearly show that similar cross section fits
can yield quite different predictions for polarization observ-
ables. The hyperon polarization asymmetries obtained with
fits A and B, for example, are quite dissimilar, even though
the same resonance width and propagator prescriptions were
employed in the two fits. The proton target asymmetries ob-
tained with these two fits are also quite different. One rather
surprising feature of the polarization results is the dissimilar-
ity in the results obtained with fits A and E(solid and short
dashed curves in the figures). These two fits differ in the
width prescriptions employed but have almost identicalx2

values. Evidently, the polarization observables obtained in
effective Lagrangian models are rather sensitive to the treat-
ment of the resonance widths. On the other hand, as a com-
parison of the dotted and dot-dashed curves reveals, the cal-
culated polarization observables are not very sensitive to the
form of the resonance propagator adopted, at least not in the
absence of spin32 resonances in theu-channel.

A comparison of the calculated polarization observables
with the data is not very encouraging. The calculated hy-
peron asymmetries all disagree with the SAPHIR data, par-
ticularly at back angles, where the SAPHIR values are posi-
tive and the calculated asymmetries generally zero or
negative. At the highest photon energy considered, there is

FIG. 9. Differential cross sections for the reactiongd→K+Ln and the same kinematics as in Fig. 7. Identification of curves as in
Fig. 3.
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FIG. 10. Hyperon polarization asymmetry(left-hand panels) and polarized photon beam asymmetry(right-hand panels) for the reaction
gd→K+Ln and the same kinematics as in Fig. 7. Identification of curves as in Fig. 3.
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also disagreement between the LEPS data for the beam po-
larization asymmetry and our calculated values. The authors
of Ref. [18] comment that their beam polarization results are
not consistent with theoretical predictions based on tree-level
effective Lagrangians. Our results seem to conform with this
observation and may indicate a fundamental shortcoming of
such approaches.

B. Results for the reactiongd\K+Ln

The differential cross section defined by Eq.(42) for re-
action (2) in the deuteron rest frame depends on five inde-
pendent kinematic variables, which may be chosen as the
incident photon energyEg, the kaon kinetic energyTK, the
kaon scattering angleuK defined relative to the photon beam
direction, theL angleuL defined in the preceding section,
and the anglef between the plane containing the outgoing
baryon momentum and the plane containingpg and pK .
Since the calculated observables depend rather weakly on
this last observable, only results obtained withf=0 will be
reported here.

In Fig. 7 we present cross section results for the four
resonance coupling fits displayed in Fig. 2. At each photon

energy, the values forTK anduK have been chosen to make
the calculated cross sections lie close to the quasielastic peak
where the reaction amplitude is well represented by the im-
pulse approximation. All the results shown were obtained
with the Paris deuteron wave function and a final state wave
function generated from interaction model A in Table III. As
is evident from the figure, the cross section is strongly for-
warded peaked inuL for the kinematic choices considered,
and there is very little dependence on the particular reso-
nance fit employed, particularly at the two higher photon
energies.

Corresponding results for the hyperon polarization asym-
metry and the photon beam polarization asymmetry are dis-
played in Fig. 8. Except for the hyperon polarization atEg

=1100 MeV, the dependence on the particular resonance fit
employed is considerably less here than for reaction(1).
Even atEg=1100 MeV, the shapes of the hyperon polariza-
tions as functions ofuL are similar for the four fits; only the
overall polarization magnitudes are different. This suggests
that polarization data taken with deuteron targets will be less
valuable than that taken with proton targets for distinguish-
ing between different Lagrangian model fits.

FIG. 11. Differential cross sections for the reactiongd→K+Ln and the same kinematics as in Fig. 7. The solid curves were obtained with
final state interaction A, the long dashed curves with final state interaction B, the short dashed curves with final state interaction C, the dotted
curves with no final state interaction, and the dot-dashed curves with the Reid deuteron wave function.
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FIG. 12. Hyperon polarization asymmetry(left-hand panels) and polarized photon beam asymmetry(right-hand panels) for the reaction
gd→K+Ln and the same kinematics as in Fig. 7. Identification of curves as in Fig. 11.
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Figures 9 and 10 display cross section and polarization
results for reaction(2) for the four resonance coupling fits
presented in Fig. 3. Again, there is very little dependence
exhibited in the cross sections on the particular resonance
model employed. The polarization observables show greater
resonance model dependence, but not as much as for the
photoproduction of strangeness from protons. As for reaction
(1), the most significant dependence is on the resonance
width prescription(compare the solid and dashed curves),
while the dependence on the resonance propagator prescrip-
tion is much less important(dotted and dot-dashed curves).

In the last two figures, we explore the dependences of the
calculated cross sections and polarization observables on the
initial and final state wave functions. In these figures results
are displayed for the three final state interaction models
listed in Table III and for an initial deuteron wave function
obtained from the Reid potential. Figure 11 reveals that the
cross section has virtually no dependence on the final state
interaction and depends only weakly on the deuteron wave
function. The polarization observables, on the other hand,
depend more strongly on the final state interaction than on
the deuteron wave function, particularly away from forward
values ofuL. Unfortunately, the cross section drops so rap-

idly as uL increases that is doubtful whether the polarization
observables can be measured precisely enough to distinguish
between different final state interactions, at least for the ki-
nematic choices considered here(see Fig. 12).

In summary, we have studied the model dependence of
kaon photoproduction from both protons and deuterons
within an effective Lagrangian model. The differential cross
section and a number of single polarization observables have
been examined at several different energies for both reac-
tions. In the case of the proton reaction, we find that fitting
the empirical cross sections does not constrain the calculated
polarization observables very effectively. We find, moreover,
that the polarization observables calculated for proton targets
are quite sensitive to the manner in which the resonances
widths are treated but relatively insensitive to the prescrip-
tion used for the spin32 resonance propagators. Overall, our
results indicate that the polarization observables calculated
for deuteron targets are less model dependent than those cal-
culated for proton targets. For the kinematics considered, we
also find that the deuteron target results are not especially
sensitive to either the deuteron wave function or the final
state interaction.
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