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Grand canonical model predictions for nuclear fragmentation
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The grand canonical ensemble has been used to make predictions for composite yields using simple models
for nuclear fragmentation. While this gives correct model prediction for high energy collisions, it can give very
inaccurate results at intermediate energy.
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A very simple but very popular model for nuclear multi-  The Wigner-Seitz approximation of the Coulomb energy
fragmentation[1-3] is this: the nucleus is heated up and is usually included?2] and this can be incorporated in thg;
breaks up into many piecésomposites and new produced by replacing the Coulomb self-energy?&/5a of the com-
particles if the energy is sufficientstrictly according to  posite a(=i+j) to (3i%€?/5a) [1-(p/py)*?]. The chemical
phase space. This occurs in an expanded volume, about thrpetentialsu are fixed from
or four times the normal volume. Population strictly accord-
ing to phase space implies chemical and thermal equilibrium. Xinp=2
For simplicity, we will omit new particle production. In such B
cases the number of dissociating particles is fixed. Nonethe-
less, in the past it has been customary for calculational sim- > jmij»=N,
plicity to use the grand canonical ensemble to describe mul- ]

tifragmgntation [4-€. (In some cases preequilibrium whereZ,N are the charge and neutron number of the disso-
fluctuatl_ons may make the grand canonical treatment mor8iating system. The connection between the GCM and the
appropriatd. In such a mode(GCM), the number of par- canonical mode(CM), as described in a textbook, is simple

ticles in the dissociating system is not constant, however, ONg ~thematics. Let us denote the CM partition functiorQas
can arrange to have the average number correspond to the ~

actual system. If one is in the classical regiiermi or ~ and the GCM partition function &8, then

Bose statstics degenerates into Maxwell-Boltzmann Jimit (w; PN
then the average yield of a composite in the ground state is Qniqj = _nj_ and
given by b

(my j(ground) = ePre1nf, |, 1)

z-11 [ S, euitunq, ]
wherei is the proton numbeij, is the neutron number of the ij Ln=0 M
composite,u, is the proton chemical potential, is the Lo
. . L = (iBuztiBun) . .
neutron chemical potential arfgl; is given by = H exp ez iPinle (],
ij

\V/ . . .
fi;= g—3(277m'l‘)3’2a3’2 explBE; ). Recently[7,8] it has_ become possible to use the can(_)nlcal
h model to calculate yields of fragmentation, whereas in the
past, the GCM was universally used. In the general case

HereV is the volume within which the particle moves, .
many composites are present and hence

a=i+j is the mass number of the compositejs the proton
mass,g is the spin degenerack, ; is the binding energy of o
the composite, and the Maxwell-Boltzmann distribution of Qn=2 H n_d,‘ 3
the momentum of the particle has been integrated over. Usu- b

ally populations into any states of the composite, ground, and The sum is over all partitions aZ,N into clusters and
excited are inCIude(ia popular method of including the ex- nucleons SUbjECt to two Constraingijinmzz and zi,jjni,j

cited states is to use the Fermi-gas approximatiowhich  =N. These constraints would appear to make the computa-
casef; ; is replaced byw; j, the one particle partition function tion of Q. prohibitively difficult which used to be the pri-
of the particle. Thus we have mary reason for the use of the grand canonical ensemble

where with two constants,, u, one merely arranged the

(ny ) = ePreiPiing . ) average values to h& andN. It has been recently realized
that a recursion relation exists which allows the computation
of Qz quite easily on the computer even for largeor N
*Corresponding author. [9]. Three equivalent recursion relations exist, any one of

0556-2813/2004/7@)/0446114)/$22.50 70044611-1 ©2004 The American Physical Society



C. B. DAS, S. DAS GUPTA, AND B. K. JENNINGS PHYSICAL REVIEW 0, 044611(2004

,
10" g g TS 10" eI e e
10° T=5.0MeV 3 C 1 ¥ ]

H 3 10° & T=4.0MeV 5§ E T=5.0MeV =
10™ E = E E E

O i ] Voo ] ]

~ 10 3 = ~— 10 E - = ~ -

> E Y > E 1 F N\~ 3

E \ E i F ]

107 - - C 1 F ]
canonical E 3 107 b 4 F —

107 ——— grandcanonical L - F 1 3

10° Lol 307 Lol oo il bl

0 20 40 60 80
1

10" grrrrrre T T T  F 10" g Ty e e T T
10° | 41 L _: 1 ["\—— canonical ]

E T=75MeV 3 E 3 1 E —— grandcanonical3

< . F . 1 ¢ ] 1 ¢ ]
~ 10 E \ = E = = E =
10° ¢ \ 3J F 5 I F \ E

: \\ 1 E 3 3 E \ T=20.0 MeV 3

- L \ 1 L ] 1 L ]
g \ 1 E

: Noodk ] 1F \ ]

10° Lo [ A Moveed Do tev v byt 108 Lo [T PRI FETRE ETREENRETE R P [FEEY FEE | VERTE STNTE P
0 20 40 60 80 0 20 30 0 5 10 15 20 25 30

4 4

FIG. 1. The yields in the multifragmentation model using the ~ FIG. 2. The same as in Fig. 1 except for the sys®mb0, Z
grand canonical ensemble and the canonical ensemblaé£@00,  =25. Again note the discrepanciesTat4.0 MeV.
Z=80. Note that the two ensembles give very different values ab

T=4 MeV. e just adequate but it has also been used at much lower

energy[11,12 where its usage is very questionable.
. o One has to ask if, when the two predictions differ, are
which could be used. For example, one such relation is  poth of them wrong or only one of them? If we consider
thermal and chemical equilibrium to be the fundamental in-
1o gredient of the model, then the only way the present calcu-
Qzn= ZE 103} Qz-i N-j- (4) lation in CM can be wrong is if the approximation to quan-
b tum statistic§Eq. (3)] is invalid around 5 MeV. Following a
The average number of particles of the spetjgss given  recent papef13] we show that this is not true and thus CM
by model results continue to be good. Here is the gist of the
argument from that paper.
We use large volumeghree or four times the normal

()= wiyjﬂl_ (5)  volume). At low temperatures~4 MeV) where one might
Qzn imagine the approximation to fail, it survives because differ-
. ] . ent composites appeatr, thus there is not enough of any par-
All nuclear properties are contained in;. ticular species to makéant)symmetrization an important

We are in a position to check, in the nuclear case, thgssue. At much higher temperature, the number of protons
grand canonical predictions for yields with the canonical val-and neutrons increase but as is well known,rtheorrection
ues where particle number conservation is strictly enforcedakes the approximate partition function towards the proper
We show this in Fig. 1 forA=200,Z=80, N=120 (on the  one. In a different world, the problem could get very diffi-
nuclear scale, a large systgrand in Fig. 2 forA=50, Z  cult. Such a scenario would arise if the physics was such that
=25,N=25. As there are too many composites, we compareit low temperatures we only had neutrons and protons and
isotope yields(yields of the same& are added up and then no composites. An even worse situation would arise if we
comparegt The GCM and CM predictions are quite close for had only neutrongor protons. With these preliminaries, let
high temperature$T=20 MeV) but at low temperatures us proceed to to estimate quantitatively the errors involved in
(=4 MeV) in spite of 200 being a large number, the GCM actual cases that one might encounter. For simplicity only, in
predictions are significantly different. One encounters suclthis section we will not put in excited states of composites
temperatures in intermediate energy heavy ion collisions thuand we have not put in the Wigner-Seitz correction although
one would conclude that one should not use the GCM irthat could have been retained without much extra work.
intermediate  energies. GCM has been wused at A recursive relation similar to Eq4) exists even with
100-MeV/nucleon beam energy in the |E0] where it may  incorporation of quantum statistics but;'s are no longer
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one-particle partition functions. We illustrate this first with inlZ = _n(1 - eBrptBrngBe 11
the example of only protons filling up orbitaisj k... in a [ (’B’Mp"u”)] 2," ( ’ ) @D
box. Now

_1 1 ) e
] el (Bu=Be) :E E JTeJ(B”P+B'u” Bei) (12)
i

In Z(Bu) = > In(1 +ePepa) = > > (_j)
i P

(6)  Thusin the case of deuterom%]l (which would contribute to

o _ X IS given by=(1/k)ekea,
k —[(—)k-1 -KBe, '
The coefficient ofe?* is x=[(=)*/Kk]Z ™. The re- We can treat an assembly of protons, neutrons, deuterons,
cursion relation for the canonical partition function f@r

! ! ' : tritons, etc. The recursive relation if the dissociating system
protons is easily derived from expression for the grand canasz protons andN neutrons is

nonical partition function. The grand canonical partition

function can be formally written in two different ways: _1 ;
y ) y Qzn= 7 i=1§=o,w iX; jQz-i N-j - (13
Z(Bp) = > e“NQ, (7 The average number of a composite withprotons and,
N=0 neutrons is given by
* )= yi[ll,]izQZ—il,N—iZ/QZ,N + 2yi[12,]izQZ—2i1,N—2i2/QZ,N T
=eX E ek‘BMXk . (8) (14)
k=1

: L . . Unless one is in an extreme degenerate Fermi system, one
D|ffer(_ant|at|ng with respect o the fugam(_yexp[ﬁ M ].) a_nd can evaluate thg factors by replacing sums with integration.
equating powergl3] we obtain an expression very similar to n_r/ -1 npe )
Eq. (4) for the canonical partition function: For example,y[lvo—[( )"n]zies where the sum is
' ' replaced by [e™"P<g(e)de=2(V/h3)(2mm/nB)*% Here V
12 is the available volume. We have included the proton
Qz(ﬂ):zz kxQz—- (9) sFin degeneracym is the proton mass. For the deuteron,
k=1 yi9=(1/Kfe*bg(ede.  This is  3x 2¥AV/h3)(2mm/
Here Q, is 1. When the expressions fag are used in the B)”(€¥%/k>?) whereE, is the binding energy of the deu-
above equation, orbitals are given occupancies greater thant@ron. It is clear how to compute contributions from other
and then eliminated by subtraction. This can lead to severé0Omposites.
round-off errors when applied to degenerate Fermi systems \We test the accuracy of the yields as calculated through-
but will not affect the applications here. The number of pro-out the main text by comparing with a calculation where the
tonsZ is given by complete theory of symmetrization and antisymmetrization
is used. Subject only to the approximation that summation

7= Qz-1 +2x Qz-2 b7 Qo (10) over discrete states has been replaced by an integration over
1Q, 2 Q, ‘Q, a density of states, the calculation is exact. The results are
taken from Ref.[13]. We take the dissociating system to
For generalization, we will cak, above aﬁy[llf]o- The symbol  havez=25 andN=25. The lowest temperature considered is

1,0 means it is a composite with 1 proton and 0 neutron. Th@ MeV (one might argue that at lower temperature a model
symbolk means it is obtained from thigh term in the ex-  of sequential decay is more appropriat€he highest tem-
pansion;y[lk]O will contribute tox . perature shown is 30 MeV. We take a freeze-out volume in
If instead we had a boson, a deuteron, for example, wevhich the composites can move freely in three times the
would have volume of a normal nucleus with 50 nucleons. Aside from

TABLE |. Comparision of claculations of average yields &A. By exact we mean a calculation with
proper symmetry. Sum over discrete orbitals in a box has been replaced by integration as is the usual practice.

Calc. p n d t SHe  “He z>12  Temp. E/A

Approx. 0.307 0.032 0.050 0.007 0.054 0.679 0.945 3 MeV -7.863 MeV
Exact 0.306 0.031 0.051 0.007 0.053 0.696 0.945 3 MeV -7.861 MeV
Approx. 1.174 0.898 1177 0560 0.641 2489 0.051 6MeV -4.117 MeV
Exact 1117 0.856 1.195 0553 0.638 2573 0.050 6MeV -4.135MeV
Approx. 4127 3955 4812 2099 2052 1985 0.000 12MeV  4.401 MeV
Exact 3.860 3.696 4.941 2090 2.051 2.021 0.000 12MeV  4.308 MeV
Approx.  10.937 10.893 7.664 1.686 1.650 0.379 0.000 30 MeV  28.914 MeV
Exact 10512 10.468 7.885 1.732 1.696 0.395 0.000 30 MeV  28.844 MeV

044611-3



C. B. DAS, S. DAS GUPTA, AND B. K. JENNINGS PHYSICAL REVIEW 0, 044611(2004

neutrons and protons we allow the possibility of compositesmodel[14,15 this signifies the appearence of a percolating
Spins and binding energies for deuteron, tritdtte, and'He  cluster. In thermodynamic model, the temperature at which
are taken from experiments. For higher mass composites thfiis rise, after the minimum, just disappears signifies a first
binding energy is taken from empirical mass formulas. Folgrder phase transitiofin the infinite system and no Coulomb

fermions, spin 1/2 was assumed and for bosons spin 0 Wagyt) [7]. It suggests that at this temperature a large blob of
assumed. For eacll we takeN=Z-1, Z, and Z+1. We the system, usually identified as a liquid, has just disap-

Eﬁ,?iﬂ;” gﬁglﬁhlea\slﬁ:ﬁg; );Iieellt?jsso;fp;(ﬁt?]ﬁi,l Qievlﬁ{ﬁ ncsh ;rrgzgspeared. It has been shown that at the transition temperature,

greater than 12. Temperature range of 3—6 MeV are of in;he specific heat at constant volume_: is very different in GCM
terest to many experiments. We also show the results &nd CM although they match admirably at higher tempera-

30 MeV. The CM approximation for composites is seen toture [16]. The reason for the discrepancy is an unusually
be quite good. large fluctuation in the number of particles in the GCM be-

Granting that below a certain temperature, predictiondow the transition temperature. The large fluctuations may be
from a grand canonical model gets to be quite erroneous finite system manifestatiqi7—19 of what will be a phase
could one predict when it becomes bad and why? The answ&eparation in the thermodynamic limit. For example, in the
to the first part is simple. Usually, the yielgh,) (or (n,) liquid-gas phase in a finite volume the order parameter is the
wherea is the mass numbgfalls with z but below a certain number of particles. Therefore one expects large non-
value of the temperature, the yield, after falling initially, be- Gaussian fluctuations dfl in the coexistence region, i.e.,
gins to rise again. If this happens, one must discard the GCMelow the transition temperature.
and do a CM. The rise of yields, after reaching a minimum,
signifies several interesting features in intermediate energy This work was supported in part by the Natural Sciences
multifragmentation models. In percolation and lattice gasand Engineering Research Council of Canada.
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