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The grand canonical ensemble has been used to make predictions for composite yields using simple models
for nuclear fragmentation. While this gives correct model prediction for high energy collisions, it can give very
inaccurate results at intermediate energy.
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A very simple but very popular model for nuclear multi-
fragmentation[1–3] is this: the nucleus is heated up and
breaks up into many pieces(composites and new produced
particles if the energy is sufficient) strictly according to
phase space. This occurs in an expanded volume, about three
or four times the normal volume. Population strictly accord-
ing to phase space implies chemical and thermal equilibrium.
For simplicity, we will omit new particle production. In such
cases the number of dissociating particles is fixed. Nonethe-
less, in the past it has been customary for calculational sim-
plicity to use the grand canonical ensemble to describe mul-
tifragmentation [4–6]. (In some cases preequilibrium
fluctuations may make the grand canonical treatment more
appropriate.) In such a model(GCM), the number of par-
ticles in the dissociating system is not constant, however, one
can arrange to have the average number correspond to the
actual system. If one is in the classical regime(Fermi or
Bose statstics degenerates into Maxwell-Boltzmann limit)
then the average yield of a composite in the ground state is
given by

kni,jsgrounddl = eibmz+jbmnf i,j , s1d

wherei is the proton number,j is the neutron number of the
composite,mz is the proton chemical potential,mn is the
neutron chemical potential andf i,j is given by

f i,j = g
V

h3s2pmTd3/2a3/2 expsbEi,jd.

Here V is the volume within which the particle moves,
a= i + j is the mass number of the composite,m is the proton
mass,g is the spin degeneracy,Ei,j is the binding energy of
the composite, and the Maxwell-Boltzmann distribution of
the momentum of the particle has been integrated over. Usu-
ally populations into any states of the composite, ground, and
excited are included(a popular method of including the ex-
cited states is to use the Fermi-gas approximation) in which
casef i,j is replaced byvi,j, the one particle partition function
of the particle. Thus we have

kni,jl = eibmz+jbmnvi,j . s2d

The Wigner-Seitz approximation of the Coulomb energy
is usually included[2] and this can be incorporated in thevi,j
by replacing the Coulomb self-energy 3i2e2/5a of the com-
posite as=i + jd to s3i2e2/5ad f1−sr /r0d1/3g. The chemical
potentialsm are fixed from

o
i,j

ikni,jl = Z,

o
i,j

jkni,jl = N,

whereZ,N are the charge and neutron number of the disso-
ciating system. The connection between the GCM and the
canonical model(CM), as described in a textbook, is simple
mathematics. Let us denote the CM partition function asQ

and the GCM partition function asZ̃, then

Qni,j
=

svi,jdni,j

ni,j!
and

Z̃ = p
i,j
F o

ni,j=0

`

esibmz+jbmndni,jQni,jG
= p

i,j
expfesibmz+jbmndvi,jg .

Recently[7,8] it has become possible to use the canonical
model to calculate yields of fragmentation, whereas in the
past, the GCM was universally used. In the general case
many composites are present and hence

QZ,N = o p
i,j

vi,j
ni,j

ni,j!
. s3d

The sum is over all partitions ofZ,N into clusters and
nucleons subject to two constraints:oi,j ini,j =Z and oi,j jni,j
=N. These constraints would appear to make the computa-
tion of QZ,N prohibitively difficult which used to be the pri-
mary reason for the use of the grand canonical ensemble
where with two constantsmz,mn one merely arranged the
average values to beZ and N. It has been recently realized
that a recursion relation exists which allows the computation
of QZ,N quite easily on the computer even for largeZ or N
[9]. Three equivalent recursion relations exist, any one of*Corresponding author.
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which could be used. For example, one such relation is

QZ,N =
1

Zo
i,j

ivi,jQZ−i,N−j . s4d

The average number of particles of the speciesi , j is given
by

kni,jl = vi,j
QZ−i,N−j

QZ,N
. s5d

All nuclear properties are contained invi,j.
We are in a position to check, in the nuclear case, the

grand canonical predictions for yields with the canonical val-
ues where particle number conservation is strictly enforced.
We show this in Fig. 1 forA=200, Z=80, N=120 (on the
nuclear scale, a large system) and in Fig. 2 forA=50, Z
=25, N=25. As there are too many composites, we compare
isotope yields(yields of the sameZ are added up and then
compared). The GCM and CM predictions are quite close for
high temperaturessTù20 MeVd but at low temperatures
s<4 MeVd in spite of 200 being a large number, the GCM
predictions are significantly different. One encounters such
temperatures in intermediate energy heavy ion collisions thus
one would conclude that one should not use the GCM in
intermediate energies. GCM has been used at
100-MeV/nucleon beam energy in the lab[10] where it may

be just adequate but it has also been used at much lower
energy[11,12] where its usage is very questionable.

One has to ask if, when the two predictions differ, are
both of them wrong or only one of them? If we consider
thermal and chemical equilibrium to be the fundamental in-
gredient of the model, then the only way the present calcu-
lation in CM can be wrong is if the approximation to quan-
tum statistics[Eq. (3)] is invalid around 5 MeV. Following a
recent paper[13] we show that this is not true and thus CM
model results continue to be good. Here is the gist of the
argument from that paper.

We use large volumes(three or four times the normal
volume). At low temperaturess<4 MeVd where one might
imagine the approximation to fail, it survives because differ-
ent composites appear, thus there is not enough of any par-
ticular species to make(anti)symmetrization an important
issue. At much higher temperature, the number of protons
and neutrons increase but as is well known, then! correction
takes the approximate partition function towards the proper
one. In a different world, the problem could get very diffi-
cult. Such a scenario would arise if the physics was such that
at low temperatures we only had neutrons and protons and
no composites. An even worse situation would arise if we
had only neutrons(or protons). With these preliminaries, let
us proceed to to estimate quantitatively the errors involved in
actual cases that one might encounter. For simplicity only, in
this section we will not put in excited states of composites
and we have not put in the Wigner-Seitz correction although
that could have been retained without much extra work.

A recursive relation similar to Eq.(4) exists even with
incorporation of quantum statistics butvi,j’s are no longer

FIG. 1. The yields in the multifragmentation model using the
grand canonical ensemble and the canonical ensemble forA=200,
Z=80. Note that the two ensembles give very different values at
T=4 MeV.

FIG. 2. The same as in Fig. 1 except for the systemA=50, Z
=25. Again note the discrepancies atT=4.0 MeV.
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one-particle partition functions. We illustrate this first with
the example of only protons filling up orbitalsi , j ,k. . . in a
box. Now

ln Z̃sbmd = o
i

lns1 + ebm−beid = o
i
o

j

s− d j−1

j
ejsbm−beid.

s6d

The coefficient ofebmk is xk=fs−dk−1/kgoie
−kbei. The re-

cursion relation for the canonical partition function forZ
protons is easily derived from expression for the grand ca-
nonical partition function. The grand canonical partition
function can be formally written in two different ways:

Z̃sbmd = o
N=0

`

embNQZ s7d

=expFo
k=1

`

ekbmxkG . s8d

Differentiating with respect to the fugacitys=expfbmgd and
equating powers[13] we obtain an expression very similar to
Eq. (4) for the canonical partition function:

QZsbd =
1

Z
o
k=1

Z

kxkQZ−k. s9d

Here Q0 is 1. When the expressions forxk are used in the
above equation, orbitals are given occupancies greater than 1
and then eliminated by subtraction. This can lead to severe
round-off errors when applied to degenerate Fermi systems
but will not affect the applications here. The number of pro-
tonsZ is given by

Z = x1
QZ−1

QZ
+ 2x2

QZ−2

QZ
+ ¯ ZxZ

Q0

QZ
. s10d

For generalization, we will callxk above asy1,0
fkg . The symbol

1,0 means it is a composite with 1 proton and 0 neutron. The
symbol k means it is obtained from thekth term in the ex-
pansion;y1,0

fkg will contribute toxk,0.
If instead we had a boson, a deuteron, for example, we

would have

lnfZ̃sb,mp,mndg = o
i

− lns1 − ebmp+bmne−beid s11d

=o
i
o

j

1

j
ejsbmp+bmn−beid. s12d

Thus in the case of deuteronsy1,1
fkg (which would contribute to

xk,k) is given byois1/kde−kbei.
We can treat an assembly of protons, neutrons, deuterons,

tritons, etc. The recursive relation if the dissociating system
hasZ protons andN neutrons is

QZ,N =
1

Z o
i=1,Z,j=0,N

ixi,jQZ−i,N−j . s13d

The average number of a composite withi1 protons andi2
neutrons is given by

kni1,i2
l = yi1,i2

f1g QZ−i1,N−i2
/QZ,N + 2yi1,i2

f2g QZ−2i1,N−2i2
/QZ,N + ¯ .

s14d

Unless one is in an extreme degenerate Fermi system, one
can evaluate they factors by replacing sums with integration.
For example, y1,0

fng =fs−dn−1/ngoie
−nbei where the sum is

replaced by ee−nbegsedde=2sV/h3ds2pm/nbd3/2. Here V
is the available volume. We have included the proton
spin degeneracy;m is the proton mass. For the deuteron,
y1,1

fkg =s1/kdee−kbegsedde. This is 3323/2sV/h3ds2pm/
bd3/2sekbEb/k5/2d whereEb is the binding energy of the deu-
teron. It is clear how to compute contributions from other
composites.

We test the accuracy of the yields as calculated through-
out the main text by comparing with a calculation where the
complete theory of symmetrization and antisymmetrization
is used. Subject only to the approximation that summation
over discrete states has been replaced by an integration over
a density of states, the calculation is exact. The results are
taken from Ref.[13]. We take the dissociating system to
haveZ=25 andN=25. The lowest temperature considered is
3 MeV (one might argue that at lower temperature a model
of sequential decay is more appropriate). The highest tem-
perature shown is 30 MeV. We take a freeze-out volume in
which the composites can move freely in three times the
volume of a normal nucleus with 50 nucleons. Aside from

TABLE I. Comparision of claculations of average yields andE/A. By exact we mean a calculation with
proper symmetry. Sum over discrete orbitals in a box has been replaced by integration as is the usual practice.

Calc. p n d t 3He 4He Z.12 Temp. E/A

Approx. 0.307 0.032 0.050 0.007 0.054 0.679 0.945 3 MeV −7.863 MeV

Exact 0.306 0.031 0.051 0.007 0.053 0.696 0.945 3 MeV −7.861 MeV

Approx. 1.174 0.898 1.177 0.560 0.641 2.489 0.051 6 MeV −4.117 MeV

Exact 1.117 0.856 1.195 0.553 0.638 2.573 0.050 6 MeV −4.135 MeV

Approx. 4.127 3.955 4.812 2.099 2.052 1.985 0.000 12 MeV 4.401 MeV

Exact 3.860 3.696 4.941 2.090 2.051 2.021 0.000 12 MeV 4.308 MeV

Approx. 10.937 10.893 7.664 1.686 1.650 0.379 0.000 30 MeV 28.914 MeV

Exact 10.512 10.468 7.885 1.732 1.696 0.395 0.000 30 MeV 28.844 MeV
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neutrons and protons we allow the possibility of composites.
Spins and binding energies for deuteron, triton,3He, and4He
are taken from experiments. For higher mass composites the
binding energy is taken from empirical mass formulas. For
fermions, spin 1/2 was assumed and for bosons spin 0 was
assumed. For eachZ we take N=Z−1, Z, and Z+1. We
present in Table I average yields of protons, neutrons, tritons,
3He, 4He, and the sum of yields of all nuclei with charges
greater than 12. Temperature range of 3–6 MeV are of in-
terest to many experiments. We also show the results at
30 MeV. The CM approximation for composites is seen to
be quite good.

Granting that below a certain temperature, predictions
from a grand canonical model gets to be quite erroneous,
could one predict when it becomes bad and why? The answer
to the first part is simple. Usually, the yieldknzl (or knal
wherea is the mass number) falls with z but below a certain
value of the temperature, the yield, after falling initially, be-
gins to rise again. If this happens, one must discard the GCM
and do a CM. The rise of yields, after reaching a minimum,
signifies several interesting features in intermediate energy
multifragmentation models. In percolation and lattice gas

model [14,15] this signifies the appearence of a percolating
cluster. In thermodynamic model, the temperature at which
this rise, after the minimum, just disappears signifies a first
order phase transition(in the infinite system and no Coulomb
limit ) [7]. It suggests that at this temperature a large blob of
the system, usually identified as a liquid, has just disap-
peared. It has been shown that at the transition temperature,
the specific heat at constant volume is very different in GCM
and CM although they match admirably at higher tempera-
ture [16]. The reason for the discrepancy is an unusually
large fluctuation in the number of particles in the GCM be-
low the transition temperature. The large fluctuations may be
a finite system manifestation[17–19] of what will be a phase
separation in the thermodynamic limit. For example, in the
liquid-gas phase in a finite volume the order parameter is the
number of particles. Therefore one expects large non-
Gaussian fluctuations ofN in the coexistence region, i.e.,
below the transition temperature.
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