Two-proton pickup reaction (⁶He, ⁸Be) on ¹²C, ¹⁶O, and ¹⁹F

M. Milin,^{1,*} D. Miljanić,¹ M. Aliotta,^{2,†} S. Cherubini,^{3,‡} T. Davinson,⁴ A. Di Pietro,^{4,§} P. Figuera,² A. Musumarra,^{3,§} A. Ninane,³ A. N. Ostrowski,^{4,#} M. G. Pellegriti,² A. C. Shotter,^{4,¶} N. Soić,¹ C. Spitaleri,² and M. Zadro¹

¹Ruđer Bošković Institute, Zagreb, Croatia

²INFN, Laboratori Nazionali del Sud and Università di Catania, Catania, Italy

³Institut de Physique Nucléaire, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

⁴Department of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

(Received 3 May 2004; published 7 October 2004)

The first results are reported on (⁶He, ⁸Be) two-proton pick-up reactions on ¹²C, ¹⁶O, and ¹⁹F nuclei. The measurements were done with an 18 MeV beam on ⁶LiF, ⁷LiF, ⁶Li₂CO₃, and ¹²C targets. The measured angular distributions for the ¹²C(⁶He, ⁸Be)¹⁰Be (g.s.) and ¹²C(⁶He, ⁸Be)¹⁰Be^{*}(3.37 MeV) reactions show a clear signature of a direct process. Although the contributions from the ⁶Li(⁶He, ⁸Be)⁴H reaction were observed, no clear extraction of the ⁴H data was possible.

DOI: 10.1103/PhysRevC.70.044603

PACS number(s): 25.60.Je, 27.20.+n

I. INTRODUCTION

Two-nucleon transfer reactions have been extensively used for the study of nuclear structure and also for the determination of nuclear masses close to the drip lines. Among them the two-proton pickup reactions are the least investigated mainly due to their inherent experimental problems. Compared to (p,t), $(p, {}^{3}\text{He})$ and even (n,t) reactions, experimental results for $(n, {}^{3}\text{He})$ reactions are very scarce. For example, (according to the CINDA database), the angular distribution for a $(n, {}^{3}\text{He})$ reaction has been measured only for the ⁴⁰Ca nucleus [1]. With heavy-ion two-proton pickup reactions, in most cases, one is confronted either with the shadow peaks in the spectra corresponding to different particle-bound states of the detected ejectile, and/or with the problem of the clear separation from neighboring isotopes. One reaction which does not have these problems is $({}^{6}Li, {}^{8}B)$ because the ground state of ⁸B is the only particle-stable state of the nucleus and because ⁷B and ⁹B are unbound [2]. However, this reaction suffers from inadequate overlap of ⁶Li and ⁸B wave functions [2] and highly negative Q values.

With A < 20 stable and radioactive $(T_{1/2} > 1 \text{ min})$ projectiles there are in total seven 2p pickup reactions with ejectiles having only one particle bound state (their ground state): $(n, {}^{3}\text{He})$, $({}^{6}\text{Li}, {}^{8}\text{B})$, $({}^{7}\text{Be}, {}^{9}\text{C})$, $({}^{10}\text{B}, {}^{12}\text{N})$, $({}^{11}\text{B}, {}^{13}\text{N})$, $({}^{12}C, {}^{14}O)$, and $({}^{15}N, {}^{17}F)$. There are also five reactions with ejectiles having the difference, ΔE , between the ground and the first excited bound state higher than 1.5 MeV: (⁹Be, ¹¹C), $\Delta E = 2.00 \text{ MeV}, ({}^{10}\text{Be}, {}^{12}\text{C}), \Delta E = 4.44 \text{ MeV}, ({}^{13}\text{C}, {}^{15}\text{O}), \Delta E$

*Electronic address: mmilin@lnr.irb.hr

[¶]Present address: TRIUMF, Vancouver, Canada.

=5.18 MeV, $({}^{14}C, {}^{16}O)$, ΔE =6.05 MeV, and $({}^{18}O, {}^{20}Ne)$. $\Delta E = 1.63$ MeV.

Results for a new two proton pickup reaction, (⁶He, ⁸Be), are reported in this paper. The ⁶He nucleus is known to have unusual, Borromean structure [3] with two loosely bound neutrons orbiting around an α -particle core. Reactions with radioactive ⁶He beams have been studied extensively in last few years (see, e.g., Ref. [4] for a recent compilation). Elastic scattering, charge exchange reactions, breakup reactions and transfers of valence neutrons onto different targets have been used mainly to investigate the exotic structure of ⁶He itself. Nevertheless, a ⁶He beam may be used to induce a variety of reactions in order to study exotic states in other nuclei, especially light ones.

Although rapidly improving over the last decade, radioactive nuclear beams are still of very low intensity and quality with respect to stable beams and this is, of course, the main experimental problem of measuring the (⁶He, ⁸Be) reaction. The use of a detector setup that covers a large solid angle and which has fine angular segmentation can partially compensate for this disadvantage.

From a spectroscopic point of view, the (⁶He, ⁸Be), reaction has several important advantages compared to other two-proton pickup reactions mentioned above. First, both ⁶He and ⁸Be have 0⁺ ground states. The only other such reaction with no particle stable excited states is the $({}^{12}C, {}^{14}O)$ reaction, recently used for the spectroscopy of exotic states in light nuclei [5,6].

Another important advantage of the (⁶He, ⁸Be) reaction is its O value. With a very high 2p-separation energy in ⁸Be $(S_{2p}=27.23 \text{ MeV})$, there are only eight stable nuclei (⁴He, ${}^{7}\text{Li}$, ${}^{9}\text{Be}$, ${}^{11}\text{B}$, ${}^{13}\text{C}$, ${}^{15}\text{N}$, ${}^{18}\text{O}$, and ${}^{48}\text{Ca}$) for which the Q value of the reaction is negative.

Further spectroscopic advantage of the (⁶He, ⁸Be) reaction concerns the wave-function overlaps between the ⁶He and ⁸Be ground states. The shell-model wave function by Boyarkina [7] for the ⁶He (g.s.) is $\Psi = 0.973 [2]^{31}S - 0.230$ [11]³³P. On the other hand, the largest component of the wave function for the ⁸Be ground state is $[4]^{11}$ S with an amplitude of 0.983; other components are much smaller:

[†]Present address: Department of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom.

[‡]Present address: Ruhr Universität Bochum, Germany.

[§]Present address: INFN-Laboratori Nazionali del Sud and Università di Catania, Catania, Italy.

Present address: Johannes Gutenberg University, Mainz, Germany.

 $[31]^{13}P$ –0.179, $[22]^{11}S$ –0.030, etc. (similar wave functions were obtained also by Barker [8]).

Finally, there is also an important experimental advantage of the (⁶He, ⁸Be) reaction. The ⁸Be nucleus in its ground state is particle unstable by 92 keV for the decay into two α particles. Such a small decay energy makes two α particles from this decay very close in space and energy. The coincident detection and mass identification with a highly efficient and segmented detector system (such as the one used in the present experiment) allows the simple and clear detection of two α particles coming from the decay of the ⁸Be ground state.

With such a simple identification of ⁸Be and favorable Q values, wave-function overlaps and spins/parities of ground states, as well as small energy loss and low kinematic spread, (⁶He, ⁸Be) reactions may become an additional spectroscopic tool in studies of neutron-rich nuclei. Indeed, in this paper it is shown that interesting results can already be obtained using currently available radioactive beams of limited quality.

II. EXPERIMENT

The experiment was performed at the radioactive beam facility in Louvain-la-Neuve [9]. The average intensity of ⁶He⁺ beam at the target was $\approx 5 \times 10^6$ pps and the purity of the beam was excellent (the only detected impurity was the easily recognizable HeH₂⁺ ions [10]). Outgoing charged particles were detected in three large silicon strip detector arrays (300 μ m thick) [11]. The angles covered were $\theta = 4^{\circ} - 12^{\circ}$ (detector array "LEDA"), $20^{\circ}-65^{\circ}$ (detector array "LAMP1"), and 115°-160° (detector array "LAMP2"), with $\Delta \phi = 2\pi$ for all of them. The number of ⁸Be events at backward angles (in LAMP2) was very small. The total solid angle was $\Delta \Omega \approx 4$ sr. A total of 320 strips were used; such a highly efficient and segmented detector setup is especially efficient for ⁸Be detection [12]. Information on the mass of detected particles was obtained by the time of flight method. The experimental setup is described in more detail in Refs. [13-15].

Monte Carlo simulations have been performed to deduce the efficiency of ⁸Be detection for each reaction as a function of ⁸Be energy and angle and this was found to be very high ($\approx 20\% - 70\%$) for ⁸Be energies higher than 2 MeV and for a large part of the detector arrays (except for their edges). The kinematics and geometry of the detector system, spot size of the beam and its offset, energy thresholds, multiple hits in a single strip, and other effects were included in the simulations. All the excitation spectra shown later are corrected for the calculated efficiency.

III. RESULTS FOR ¹²C TARGET

A ¹²C target with a thickness of 105 μ g/cm² was used in the measurements and the total number of beam particles interacting with this target was 2.3×10¹¹. Results for the elastic and inelastic scattering, as well as for the ¹²C(⁶He, α) reaction are given elsewhere [14,15].

The ${}^{10}\text{Be}$ excitation energy spectra obtained from the ${}^{12}\text{C}({}^{6}\text{He}, {}^{8}\text{Be})$ reaction for two forward detector arrays are

FIG. 1. The ¹⁰Be excitation spectrum obtained from the ¹²C(⁶He, ⁸Be)¹⁰Be reaction at $E_{lab}=18$ MeV for detector arrays LEDA (top) covering $\theta_{lab}=4^{\circ}-12^{\circ}$ and LAMP1 (bottom) covering $\theta_{lab}=20^{\circ}-65^{\circ}$.

given in Fig. 1. The LEDA spectrum has much better energy resolution mainly due to the smaller angular opening of strips in the array. In both spectra the ground state is the strongest populated state, also with a rather strong population of the first excited state at E_x =3.37 MeV. The quartet of states at $E_x \approx 6.0$ MeV could not be resolved in LAMP1. This also applies to the doublet at $E_x \approx 7.5$ MeV. In the LEDA excitation spectrum, there are two peaks around E_x =6.0 MeV; the stronger one corresponding to the 2^+ and $1^$ states at $E_r = 5.96$ MeV (the 2⁺ state probably having a stronger population [16]) and the weaker one (by a factor of ≈ 3) to the 0⁺ and 2⁻ states at $E_r \approx 6.2$ MeV. The population of the second 2⁺ state at E_x =5.96 MeV is weaker than the one for the first 2^+ state, although the transition to the former one has a much larger theoretical strength [16]. Similar results have been obtained from other two-proton pickup reactions on ¹²C [2,17–20].

The experimental angular distributions given in Fig. 2 are obviously forward peaked. Since this could indicate that the reaction proceeds via a direct mechanism, the results were compared with the DWBA predictions. The calculations, in the framework of the finite-range distorted-wave Born approximation (FRDWBA), have been performed with the computer code FRESCO [21]. The transferred pair of protons was treated as a cluster with internal quantum numbers L = S = 0, and the formalism of the one-step one-particle transfer reactions was used. Optical potentials with volume absorption for the entrance and exit channels were taken from Refs. [22,23].

The angular distributions are normalized to the most forward experimental points. The agreement of the DWBA calculation with the shape of the experimental data is satisfactory, which supports the assumption that the direct reaction

FIG. 2. The experimental angular distributions of the ${}^{12}C({}^{6}He, {}^{8}Be)$ reaction forming the ground and first excited state of ${}^{10}Be$, compared with the FRDWBA calculations.

mechanism is dominant even though the incident energy is only 3 MeV per nucleon.

Although the performed DWBA calculation is not intended to give the precise fit to the data, it is interesting to note that the ratio of extracted spectroscopic factors $S_{0+}/S_{2+}\approx 2.9$ is in very good agreement with the ratio of spectroscopic strengths for these states, $S_{\text{MAG}}/D_{\text{MAG}}\approx 2.3$, as calculated by Cohen and Kurath [16]. The differential cross sections in Fig. 2 are a factor of more than 20 larger than those quoted for the ${}^{12}\text{C}({}^6\text{Li}, {}^8\text{B})$ reaction [2] at an incident energy of 13.3 MeV per nucleon, illustrating the advantages of the (${}^6\text{He}, {}^8\text{Be}$) reaction discussed above. Of course, one should not forget the large ${}^6\text{Li}$ beams intensities as a major advantage of (${}^6\text{Li}, {}^8\text{B}$) reactions.

IV. RESULTS FOR ⁷Li TARGET

The ⁶He+⁷Li reactions were studied with a 440 μ g/cm² thick ⁷Li target (isotopically enriched in ⁷Li up to 99%) on the 50 μ g/cm² carbon backing. The total number of beam particles incident on the target was 7.9×10^{11} . Results for elastic scattering and other reactions are given elsewhere [15,24,25].

The measured ⁸Be spectrum for this target is given in Fig. 3(a). Since most of the peaks are due to the ¹⁹F(⁶He, ⁸Be)¹⁷N reaction, the ¹⁷N excitation energy is given on the *x* axis. The two lowest states of ¹⁰Be are also very strong (due to the carbon backing of the target).

Some of the known low-lying ¹⁷N states [26] can be recognized in the excitation spectrum. The strongest ¹⁷N peak at $E_x \approx 1.9$ MeV most likely corresponds to the $1/2^+$ state at $E_x=1.85$ MeV (the other state of this doublet is the $5/2^-$

FIG. 3. The composite spectrum of the (${}^{6}\text{He}, {}^{8}\text{Be}$) reaction on the (a) ${}^{7}\text{LiF}$ target and (b) ${}^{6}\text{LiF}$ target (both with carbon backing). The ${}^{17}\text{N}$ excitation energy is given on the *x* axis. The data were collected with ${}^{8}\text{Be}$ detected at $\theta_{lab} < 12^{\circ}$. The energies of the fifteen lowest-lying ${}^{17}\text{N}$ states are marked with arrows. Peaks corresponding to the ${}^{12}\text{C}({}^{6}\text{He}, {}^{8}\text{Be})$ reaction are labeled as " ${}^{10}\text{Be}$ ".

state at E_x =1.91 MeV). This state is considered as two $p_{1/2}$ proton holes (with J=0) coupled to the K=1/2⁺ band in ¹⁹F [27] so it *should* be strongly populated in the two-proton pickup reactions.

This two-proton pickup spectrum can be compared with a one-proton pickup spectrum obtained with the ¹⁸O(d, ³He) reaction at E_d =52 MeV [28]. The significant difference between these two spectra is a very strong population of the $3/2^-$ state at E_x =5.52 MeV in the ¹⁸O(d, ³He) reaction (due to its $p_{3/2}^{-1} \otimes$ ¹⁸O_{g.s.} configuration [28]), while the doublet at $E_x \approx 1.9$ MeV is populated rather weakly compared to our results. The state at E_x =2.53 MeV is barely visible in Fig. 3 whereas it is populated rather strongly through the ¹⁸O(d, ³He) reaction.

With the ⁷LiF target one could also search for the ⁵H contributions through the ⁷Li(⁶He, ⁸Be) reaction. The threshold for the ⁶He+⁷Li \rightarrow ⁸Be+*t*+2*n* events in Fig. 3(a) is above the second "¹⁰Be" peak. However, in the region of interest (several MeV above the threshold) the extraction of the events corresponding to ⁵H was not possible due to strong contributions from other reactions, as well as large influence of the detection efficiency.

V. RESULTS FOR ⁶LiF TARGET

The ⁶He+⁶Li reactions were studied with a 490 μ g/cm² thick ⁶LiF target (isotopically enriched in ⁶Li up to 96%) on the 60 μ g/cm² carbon backing. The total number of beam particles incident on this target was 5.6×10^{11} . Results for

FIG. 4. The composite spectrum of the (⁶He, ⁸Be) reaction on the ⁶Li₂CO₃ target (with carbon backing). The ¹⁴C excitation energy is given on the *x* axis. The data were collected with ⁸Be detected at $\theta_{lab} < 12^{\circ}$.

elastic scattering and other reactions are given elsewhere [15,24,25].

The ¹⁷N excitation spectrum given in Fig. 3(b) is very similar to the one measured for the ⁷LiF target. The most obvious difference is a large number of "background" events in the region between $E_x \approx 2$ and 6 MeV which cannot be seen in the spectrum obtained with the ⁷LiF target (this background will be discussed in detail).

VI. RESULTS FOR ⁶Li₂CO₃ TARGET

In the first run of the experiment [13] the ${}^{6}\text{He} + {}^{6}\text{Li}$ reactions were studied also with a 600 μ g/cm² thick Li₂CO₃ target (isotopically enriched in ${}^{6}\text{Li}$ up to 96%) on a 50 μ g/cm² carbon backing. Both the energy resolution and statistics were worse than in the ${}^{6}\text{LiF}$ target case (and the beam energy was 17 MeV rather than 18 MeV). Apart from the two lowest states of ${}^{10}\text{Be}$, the ${}^{8}\text{Be}$ spectrum was dominated by the peaks produced in the ${}^{16}\text{O}({}^{6}\text{He}, {}^{8}\text{Be}){}^{14}\text{C}$ reaction.

The ¹⁴C excitation spectrum is given in Fig. 4. The ¹⁴C ground state and two unresolved states at E_x =6.90 and 7.01 MeV are clearly seen in the spectrum (the 0⁻ state at E_x =6.90 MeV having unnatural parity is probably only weakly populated in this reaction). The ¹⁴C state at E_x =8.32 MeV is mixed with the first excited state of ¹⁰Be. The surprising difference between the spectrum in Fig. 4 and other published results for two-proton pickup from ¹⁶O is the relatively strong peak at E_x =6.1 MeV in the ¹⁴C excitation spectrum. It coincides with the ¹⁴C 1⁻ state which has a $p_{1/2} \otimes s_{1/2}$ configuration of two neutrons (see Ref. [29] for the detailed discussion of ¹⁴C spectroscopy). No alternative interpretation for the appearance of this peak was found. As expected, the second 0⁺ state at E_x =6.59 MeV is not strongly populated since it is not a *p*-shell state [29].

VII. THE ⁶Li(⁶He, ⁸Be)⁴H REACTION

As already said, by comparing the spectra in parts (a) and (b) of Fig. 3, there is a "background" for the 6 LiF target at

excitation energies of 2-5 MeV which is completely absent from the ⁷LiF part of the figure. This "background" can also be seen for the ⁶Li₂CO₃ target though the situation there is much less clear due to the worse resolution.

The main difference between these two targets is in the lithium isotope so one is tempted to check if this "background" might be coming from the ${}^{6}\text{Li}({}^{6}\text{He}, {}^{8}\text{Be})^{4}\text{H}$ reaction. The two spectra of Fig. 3 were therefore subtracted taking into account the differences between the thickness of the ${}^{19}\text{F}$ and carbon backings in the two targets. The resulting spectrum has a wide structure with the center at $\approx 3.5 \text{ MeV}$ above the ${}^{3}\text{H}+n$ threshold. This seems to be in agreement with the results for the ${}^{6}\text{Li}({}^{6}\text{Li}, {}^{8}\text{B})$ reaction measured at 80 and 93 MeV [30] and the ${}^{4}\text{H}$ level diagram from the most recent compilation [31].

However, our results for the ${}^{6}\text{He} + {}^{6}\text{Li} \rightarrow 2\alpha + t + n$ reaction obtained from triple coincidences [15,25] show that such an interpretation is still not clear. Namely, it was found that most of the events with forward detected ${}^{8}\text{Be}$ and backward detected triton proceed through the sequential decay of the ${}^{9}\text{Be}$ nuclei produced in the ${}^{6}\text{Li}({}^{6}\text{He}, {}^{9}\text{Be}){}^{3}\text{H}$ reaction. The same events produce a wide structure with the center at $\approx 4.0 \text{ MeV}$ above the ${}^{3}\text{H}+n$ threshold if the ${}^{4}\text{H}$ excitation energy is calculated. Further subtraction of these events and the search for the clear ${}^{4}\text{H}$ resonances for the present low quality data was not attempted.

The "contamination" of the ⁸Be events with the sequential decay of ⁸Be (or ⁹Be) might be a general feature of the (⁶He, ⁸Be) reaction when particle unstable states of light nuclei are investigated. Such reactions have at least four particles in the exit channel and the precise determination of the reaction process is not trivial. By detecting most of the produced particles in coincidence ambiguities in the data interpretation can be minimized.

VIII. CONCLUSION

The (⁶He, ⁸Be) reactions on ⁷LiF, ⁶LiF, ⁶Li₂CO₃, and ¹²C targets have been studied with an ≈ 18 MeV ⁶He radioactive beam. The measured angular distributions for the ¹²C(⁶He, ⁸Be)¹⁰Be(g.s.) and ¹²C(⁶He, ⁸Be)¹⁰Be^{*}(3.37 MeV) reactions show clear signatures of a direct process. The pickup of two protons from ¹⁶O and ¹⁹F was also observed. The ⁴H resonance centered at ≈ 3.5 MeV (above the *t*+*n* threshold) was found in the ⁶Li(⁶He, ⁸Be)⁴H reaction, but the data were contaminated with the neutron decay of the ⁹Be^{*} after the ⁶He+⁶Li→⁹Be+*t* reaction.

The (⁶He, ⁸Be) two-proton pickup has a potential as a rather simple reaction with respect to both experimental method and reaction dynamics. The measurement of this reaction with the same targets used here, but at higher beam energies, may provide interesting results and establish this reaction as a standard spectroscopic tool for studies of exotic nuclei.

With the rapid improvement of radioactive beams one is tempted to consider other possible, exotic reactions. For example, the (⁶He, ¹⁰C) reaction can be used as a four-proton pickup process for spectroscopy of extremely neutron-rich nuclei. This reaction has most of the favorable characteristics discussed in the introduction for the (⁶He, ⁸Be) reaction. Its Q value is not very negative, e.g., for the ⁴⁰Ca target it is Q=-2.29 MeV which already enables experiments at rather low ⁶He beam energies. This, as well as other interesting processes, makes further studies of ⁶He induced reactions very intriguing.

ACKNOWLEDGMENTS

The authors would like to thank the technicians and staff of the RNB Facility in Louvain-la-Neuve for their support during the experiment. Thanks are also due to Carmelo Marchetta from LNS for target preparation and to Wilfried Galster for help in planning the experiment.

- D. Miljanić, M. Zadro, and D. Rendić, Nucl. Phys. A419, 351 (1984).
- [2] R. B. Weisenmiller, N. A. Jelley, D. Ashery, K. H. Wilcox, G. J. Wozniak, M. S. Zisman, and J. Cerny, Nucl. Phys. A280, 217 (1977).
- [3] M. V. Zhukov, B. V. Danilin, D. V. Fedorov, J. M. Bang, I. J. Thompson, and J. Vaagen, Phys. Rep. 231, 151 (1993).
- [4] D. R. Tilley, C. M. Cheves, J. L. Godwin, G. M. Hale, H. M. Hofmann, J. H. Kelley, C. G. Sheu, and H. R. Weller, Nucl. Phys. A708, 3 (2002).
- [5] H. G. Bohlen, A. Blažević, B. Gebauer, W. von Oertzen, S. Thummerer, R. Kalpakchieva, S. M. Grimes, and T. N. Massey, Prog. Part. Nucl. Phys. 42, 17 (1999).
- [6] H. G. Bohlen et al., Phys. At. Nucl. 66, 1494 (2003).
- [7] A. N. Boyarkina, Izv. Akad. Nauk SSSR, Ser. Fiz. 28, 337 (1964).
- [8] F. C. Barker, Nucl. Phys. 83, 418 (1966).
- [9] D. Darquennes et al., Phys. Rev. C 42, R804 (1990).
- [10] D. Miljanić *et al.*, Nucl. Instrum. Methods Phys. Res. A 447, 544 (2000).
- [11] T. Davinson *et al.*, Nucl. Instrum. Methods Phys. Res. A 454, 350 (2000).
- [12] E. W. Macdonald, A. C. Shotter, D. Branford, J. Rahighi, T. Davinson, N. J. Davis, Y. El Mohri, and J. Yorkston, Nucl. Instrum. Methods Phys. Res. A **317**, 498 (1992).
- [13] M. Milin et al., Europhys. Lett. 48, 616 (1999).
- [14] M. Milin et al., Nucl. Phys. A730, 285 (2004).
- [15] M. Milin, Ph.D. thesis, University of Zagreb, 2003.
- [16] S. Cohen and D. Kurath, Nucl. Phys. A141, 145 (1970).
- [17] Th. Stolla, H. G. Bohlen, B. Gebauer, S. M. Grimes, R. Kalpakchieva, T. N. Massey, W. von Oertzen, A. N. Ostrowski, M.

Wilpert, and Th. Wilpert, Z. Phys. A 356, 233 (1996).

- [18] A. V. Belozyorov, J. Vincour, S. Piskor, R. Kalpakchieva, Yu. E. Penionzhkevich, V. S. Salamatin, and V. E. Zhuchko, Nucl. Instrum. Methods Phys. Res. A **411**, 343 (1998).
- [19] J. A. Caggiano, D. Bazin, W. Benenson, B. Davids, B. M. Sherrill, M. Steiner, J. Yurkon, A. F. Zeller, and B. Blank, Phys. Rev. C 60, 064322 (1999).
- [20] H. G. Bohlen, R. Kalpakchieva, A. Blažević, B. Gebauer, T. N. Massey, W. von Oertzen, and S. Thummerer, Phys. Rev. C 64, 024312 (2001).
- [21] I. J. Thompson, Comput. Phys. Rep. 7, 167 (1988).
- [22] D. E. Trcka, A. D. Frawley, K. W. Kemper, D. Robson, J. D. Fox, and E. G. Myers, Phys. Rev. C 41, 2134 (1990).
- [23] L. Jarczyk, B. Kamys, A. Magiera, A. Strzałkowski, A. Szczurek, K. Bodek, M. Hugi, J. Lang, R. Muller, and E. Ungricht, J. Phys. G 11, 843 (1985).
- [24] M. Milin et al., Nucl. Phys. A (to be published).
- [25] M. Milin et al. (to be published).
- [26] D. R. Tilley, H. R. Weller, and C. M. Cheves, Nucl. Phys. A564, 1 (1993).
- [27] D. W. O. Rogers, J. A. Becker, T. K. Alexander, N. Anyas-Weiss, T. A. Belote, S. P. Dolan, N. A. Jelley, and W. L. Randolph, Nucl. Phys. A226, 424 (1974).
- [28] D. Hartwig, G. Th. Kaschl, G. Mairle, and G. J. Wagner, Z. Phys. 246, 418 (1971).
- [29] W. von Oertzen, H. G. Bohlen, and M. Milin *et al.*, Eur. Phys. J. A (accepted for publication).
- [30] R. B. Weisenmiller, N. A. Jelley, K. H. Wilcox, G. J. Wozniak, and J. Cerny, Phys. Rev. C 13, 1330 (1976).
- [31] D. R. Tilley, H. R. Weller, and G. M. Hale, Nucl. Phys. A541, 1 (1992).