
Anomaly in the nuclear charge radii of Zr isotopes

M. Hemalatha,1,* A. Bhagwat,2 A. Shrivastava,1 S. Kailas,1 and Y. K. Gambhir2
1Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India

2Department of Physics, IIT-Powai, Mumbai 400 076, India
(Received 2 April 2004; published 29 October 2004)

The recent laser spectroscopic measurements of nuclear root-mean-square charge radii on a chain of Zr
isotopes exhibit a rich structure. A prominent kink is observed at90Zr and a sharp change is noticed between
98Zr and100Zr, in the neutron rich region. In the present work, the ground state properties of these nuclei are
calculated in the relativistic mean field(RMF) framework. The calculations are in good accord with the
experiment. The RMF densities are folded with the extended Jeukenne, Lejeune, and Mahaux energy and
density dependent nucleon-nucleon interaction to yield the semimicroscopic optical potential which in turn is
used to calculate the elastic scattering cross sections for 50 MeV proton scattering from a chain of Zr isotopes.
The differential cross sections obtained from the calculations agree remarkably well with the experiment. The
calculation reveals a correlation between the mean-square charge radii and the corresponding reaction cross
sections forAù88. There is a monotonic increase insR from A=84 to 106 with the hint of a slight jump from
A=98 to A=100.
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I. INTRODUCTION

The recent laser spectroscopic measurements of nuclear
root-mean-square(rms) charge radiiskrcld on a chain of zir-
conium isotopes[1] exhibit remarkable features. It is ob-
served that thekrcl values increase with the addition of neu-
trons. There appears a sudden jump in thekrcl values while
going from98Zr to 100Zr in the neutron rich region. Further, a
kink is observed atN=50 s90Zrd. Removal of two neutrons
from N=50 slightly increaseskrcl, instead of the decrease
expected from the conventionalr0A

1/3 relation. This is
termed as an anomalous behavior. Similar anomalous behav-
ior has been observed[2,3] for several isotopic chains
throughout the periodic table. The analysis of initial experi-
ments with the radioactive ion beams(RIB) led Tanihataet
al. [4] to associate sudden jumps in the observed reaction
cross sections with the addition of neutrons to the corre-
sponding sudden increase in the matter radius of the projec-
tile. For example, a sudden jump in the reaction cross section
observed while going from9Li to 11Li had been associated
with a large increase in the matter radius of11Li with the
addition of two neutrons. Based on this observation, it is
expected that one may observe a similar jump in the reaction
cross section(though may be less pronounced) while going
from 98Zr to 100Zr. Thep-Zr elastic scattering data are avail-
able for the stable ZrsA=90–A=96d isotopes[5]. However,
the cross section data for98Zr and100Zr are not available. In
the present work, we have predicted the reaction cross sec-
tions for p-78–106Zr systems to investigate the correlation be-
tween the charge radii values and the reaction cross sections.
With the present day available RIB facilities, it should be
possible to perform elastic scattering experiments using pro-
ton as target and the Zr isotopes as projectiles to verify these
theoretical predictions.

The calculations presented here proceed in three steps. In
the first step, the ground state properties of the Zr isotopes
are calculated in the relativistic mean field(RMF) [6] frame-
work. The calculated binding energies, the quadrupole defor-
mation parameters, the one and two neutron separation ener-
gies, the neutron and the charge radii, etc., compare well
with the experiment(where available). In the next step, the
calculated RMF densities are employed in the semimicro-
scopic optical model to determine the proton optical poten-
tials for the different Zr isotopes. For this purpose, the den-
sities are folded with the extended Jeukenne, Lejeune, and
Mahaux (JLM) energy and density dependent nucleon-
nucleon interaction using the computer codeMOM (micro-
scopic optical model) [7]. This yields both the real and
imaginary parts of the respective optical potentials. In the
final step, this optical potential(both the real and imaginary
parts) is used to compute the reaction and the differential
cross sections for 50 MeV proton scattering from the even
mass number Zr isotopes, both stable and unstable.

The essentials of RMF formulation required in the calcu-
lation of the ground state properties are contained in Sec. II.
The RMF results for Zr isotopes are presented and discussed
in the same section. Section III is devoted to the calculation
of the optical potential. In Sec. IV the differential cross sec-
tions and the reaction cross section calculations for 50 MeV
p scattering from even Zr isotopes and comparison with the
experimental data(where available) are presented.

II. ESSENTIALS OF RMF

The present version of the RMF theory, essentially based
on the Walecka model[8] starts with a Lagrangian describing
the Dirac spinor nucleons interacting via the electromagnetic
(e.m.) and meson fields. The scalar sigmassd, vector omega
svd, and iso-vector vector rhosrd mesons are considered.
The Lagrangian consists of free baryon and meson terms and
the interaction terms. The variational principle yields the*Electronic address: mhema@magnum.barc.ernet.in
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equations of motion. Replacing the fields by their expecta-
tion values(the mean field approximation), one ends up with
a set of nonlinear coupled equations.

(1) The Dirac equation with potential terms involving the
meson and e.m. fields describing the nucleon dynamics;

(2) A set of Klein-Gordon type equations with sources
involving nucleonic currents and densities, for the mesons
and photon.

This set of equations, known as RMF equations is to be
solved self-consistently.

The pairing correlations, essential for the description of
open shell nuclei, can be incorporated either by simple
Bardeen-Cooper-Schrieffer(BCS) prescription, or self-
consistently through Bogoliubov transformation. The latter
procedure leads to the relativistic Hartree Bogoliubov(RHB)
equations[9]. The RHB equations have two distinct parts:
the self-consistent fieldshDd that describes the long range

particle-hole correlations and the pairing fieldsD̂d that ac-
counts for the correlations in the particle-particle(pp) chan-
nel. The former involves the nucleon massM, the scalar field
s andvo, r3

o andAo the Lorentz time like components of the
omega, rho mesons and the e.m. fields, respectively. These
fields are to be determined self-consistently through the
Klein-Gordon equations[9] with sources(nuclear currents
and densities) involving superspinorsfUsVdg. The pairing

field D̂ is expressed in terms of the matrix elements of the
two body nuclear potentialVpp in the pp channel and the
pairing tensor involving the superspinorssU ,Vd. In the case

of the constant gap,D̂s;Dd becomes diagonal resulting in
the BCS type expressions for the occupation probabilities. As
a result, the RHB equations reduce to the RMF equations
with a constant gap. A reliable and satisfactory derivation of
Vpp is not yet achieved in RMF(see Refs.[9,10]). Therefore,
in practical calculations, it is customary to adopt a phenom-
enological approach while solving the RHB equations. As a
result, one often uses forVpp, the finite range Gogny-D1S
[11,12] interaction, which is known to have the right pairing
content. In the case of the constant gap approximation, the
required gap parameters are fixed so as to reproduce the cor-
responding Gogny D1S pairing energies.

A. Details of calculation

The explicit numerical calculations require the following
input information:

(1) parameters appearing in the Lagrangian and
(2) Vpp or the pairing gap parametersD for the calcula-

tion of occupancies.
Several sets of these parameters appearing in the Lagrang-

ian are available in the literature[9,13–15]. In the present
work, we use one of the recent and the most successful La-
grangian parameter set, NL3[13]. The equations are solved
using the oscillator basis expansion technique. The RHB
equations with the Gogny D1S interaction(for pairing) are
solved using the spherical oscillator basis. The corresponding
results are denoted by RHB(ob). To ascertain the effect of
deformation, we have also solved the RMF equations with
the constant gap approximation in the deformed oscillator

basis with axial symmetry(the corresponding results are de-
noted by DEF).

B. Results and discussion

1. Binding energies

The difference between the calculated[RHB(ob) and
DEF] and the corresponding experimental binding energies
is plotted in Fig. 1 for the various Zr isotopes. Both the
calculations agree well(within 1%) with the experiment
[16]. At a finer level, however, it is observed that inclusion of
deformation does overall improve the agreement between the
theory and the experiment. The DEF and the corresponding
RHB(ob) results almost coincide for the spherical nuclei
82–92Zr. Beyond 92Zr, all the isotopes being deformed, the
DEF and RHB(ob) results differ. DEF results in this region
are found to be closer to the experiment.

2. Quadrupole deformation parameters

The deformation parameterb2 is extracted from the cal-
culated point neutronsQnd and protonsQpd quadrupole mo-
ments through the relation

Q = Qn + Qp =Î16p

5

3

4p
AR0

2b2

with R0=1.2A1/3sfmd. The calculated quadrupole deforma-
tion parameters for the Zr isotopes are plotted in Fig. 2 along
with the corresponding Möller-Nix(MN) [17] values. The
present calculations are in tune with the MN results. Several
Zr isotopes turn out to be prolate while82–90Zr are found to
be spherical. Except for86–92Zr, in almost all the other iso-
topes, additional nearby solutions are found to exist, hinting
towards the possibility of shape coexistence. Interestingly, in
the lighter Zr isotopess78–84Zrd, all the three solutions(pro-
late, oblate, and spherical) are found to exist within total

FIG. 1. The difference between the calculated[RHB(ob) and
DEF] and the corresponding experimental[16] binding energies for
the even Zr isotopes. The open circle indicates the value corre-
sponding to the deepest solution(deeper by just about 0.5 MeV) for
98Zr.
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binding energy difference of 1 MeV(2 MeV in the case of
78Zr). On the other hand, in the heavier Zr isotopes(beyond
92Zr) almost degenerate prolate and oblate solutions exist,
while only spherical solutions are found to exist beyond
106Zr.

3. Two neutron separation energies

The systematics of the two neutron separation energies
gives a fair idea about the shell structure in the nuclei. Thus,
the two neutron separation energiessS2nd for the Zr isotopes
are now investigated. The calculated[RHB(ob) and DEF] S2n
values along with the corresponding experimental values
[16] are shown in Fig. 3. The experimental values are repro-

duced remarkably well by the present calculation. The shell
gap at90Zr is evident. However, it should be noted that theo-
retically, one gets a larger shell gap in comparison with the
experiment. This departure can be rectified through the in-
clusion of the vector meson self coupling term in the La-
grangian [18]. Beyond the shell closure, the trend in the
separation energies is almost flat, indicating the disappear-
ance of shell effects.

4. Radii

Next we present and discuss the calculated change in the
mean square charge radii relative toN=50 s90Zrd sdkrc

2lA,90d
for the chain of Zr isotopes. The calculated radii and the
corresponding experimental values[1] of dkrc

2lA,90 for even
mass number Zr isotopes are presented in Fig. 4. The graph
clearly shows that the DEF results are in good agreement
with the experiment. The observed kink at shell closure90Zr
is reproduced. Thedkrc

2lA,90 values in the neutron deficient
region A=82–A=90 remains almost a constant. This obser-
vation is in tune with the corresponding experimental values.
Another interesting feature is the predicted jump indkrc

2lA,90

between82Zr and 80Zr. Unfortunately, there are no experi-
mental measurements for these nuclei to ascertain this pre-
diction. The anomalous and dramatic jump in the measured
dkrc

2lA,90 values in going from98Zr to 100Zr is reproduced. It
is to be noted that the deepest solution(deeper by just about
0.5 MeV) for 98Zr (indicated by an open circle in the figures)
has a slightly larger(by 0.1) prolate deformation. With this
solution, the jump indkrc

2lA,90 is observed between96Zr and
98Zr, rather than between98Zr and100Zr.

Another interesting and important feature of the loosely
bound nuclei is the nuclear skin thickness(defined as differ-
ence between the respective rms neutron and proton radii).
As more neutrons are added to a nucleus, the corresponding
single neutron separation energy decreases. The neutron den-

FIG. 2. The calculated(DEF) and the corresponding Möller-Nix
(MN) [17] values of the deformation parametersb2. The open circle
indicates the value corresponding to the deepest solution(deeper by
just about 0.5 MeV) for 98Zr.

FIG. 3. Two neutron separation energies for Zr isotopes. The
results of both the calculations and the corresponding experimental
results[16] (where available) are also indicated. The open circle
indicates the value corresponding to the deepest solution(deeper by
just about 0.5 MeV) for 98Zr. Experimental points are joined by
solid lines to guide the eye.

FIG. 4. The calculated[RHB(ob) and DEF] and the correspond-
ing experimental[1] change in the mean square charge radii relative
to N=50 s90Zrd sdkrc

2lA,90d for chain of Zr isotopes. The open circle
indicates the value corresponding to the deepest solution(deeper by
just about 0.5 MeV) for 98Zr. Experimental points are joined by
solid lines to guide the eye.
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sity distribution, therefore, spreads to a larger spatial extent.
However, the proton distribution is hardly affected. The dif-
ference between the neutron and proton radii thus increases
as one moves towards the neutron rich nuclei. The skin
thickness, therefore, is a measure of neutron richness or de-
ficiency of the nucleus. The calculated values of the skin
thickness are plotted in Fig. 5. The trend discussed earlier is
clearly visible from the figure. The skin thickness turns out
to be negative for nuclei below84Zr indicating that the pro-
ton density spreads to a larger spatial extent in comparison
with the corresponding neutron density while84Zr is found to
have nearly zero skin thickness. Beyond84Zr, the positive
skin thickness is seen to be monotonically increasing withA.
The DEF and RHB(ob) results are found to be close to each
other. They differ slightly in the case of heavier Zr isotopes.
As discussed earlier, the calculated DEF charge radii are
larger than the corresponding RHB(ob) values in this mass
region.

5. Densities

The calculated(L=0 projected and renormalized DEF
densities) point proton and neutron density distributions for
80,82,90,94,98,100Zr are presented in Fig. 6. In the interior re-
gion, all these nuclei are found to have more or less similar
proton density distributions. However, in the peripheral re-
gion, the proton densities of these nuclei do deviate slightly
from each other. For example, the density of80Zr extends to
a somewhat larger spatial extent than that of82Zr. While the
isotopes98Zr and 80Zr have almost identical proton density
distributions,100Zr differs considerably from the rest. The
proton density of94Zr is found to extend to a lesser extent in
comparison with that of80Zr. The neutron densities, on the
other hand, exhibit a different systematics. The densities
hardly differ up to 90Zr (shell closure). Beyond 90Zr, the
variation in the neutron density is more or less regular. The
tail in these cases extends farther with the addition of neu-
trons.

III. CALCULATION OF OPTICAL POTENTIAL

The folding model is known to be a powerful and success-
ful tool for the analysis of the elastic scattering data. The

virtue of the folding model, in general, lies in the fact that it
directly links the density profile of the nucleus with the elas-
tic scattering cross section. In this approach, one can deter-
mine the nucleon-nucleus optical model potential(OMP) by
folding a complex, energy-dependent and density-dependent
effective interaction with the nuclear density distributions.
Once the parameters of the effective interaction are fixed, the
analysis is then sensitive only to the nuclear density distri-
butions. This approach permits probing the differences in
matter densities. In the literature a number of successful phe-
nomenological and microscopic optical model approaches
have been studied and discussed for proton(neutron)-nucleus
scattering. In the phenomenological sector, the most recent
successful one is due to Koning and Delaroche[19]. The
status of microscopic nucleon-nucleus optical model and its
development over the last two decades has been comprehen-
sively covered in a review article by Amoset al. [20]. They
have developed a microscopic(g-folding) prescription which
provides complex, nonlocal nucleon-nucleus optical poten-
tials [20,21]. Their prescription employs effective nucleon-
nucleonsNNd interactions built uponNN g matrices and the
nucleon-nucleus potentials result from folding these effective
interactions with the proton and neutron densities of the tar-
get nucleus. Using this approach Amoset al. [20] gave pre-
dictions of differential cross sections(reaction cross sec-
tions) and spin observables which were in good agreement
with the data from many nuclei(3He to 238U) and for a wide
range of energies(40–300 MeV). Amos et al. [20] and
Karataglidiset al. [22] have shown the expected sensitivity
of differential and reaction cross sections to the density dis-
tributions in general and the neutron densities in particular.
More recently Kluget al. [23] have carried out detailed mea-
surement and analysis of 96 MeV neutron scattering from
12C and 208Pb. They have discussed at length, the various
phenomenological and microscopic optical model ap-

FIG. 5. The calculated nuclear skin thickness for the chain of
even Zr isotopes.

FIG. 6. The calculated(L=0 projected and renormalized) DEF
densities for selected Zr isotopes.
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proaches[7,19–26] employed for the calculation of differen-
tial cross sections. In their study of cross section data for12C
and208Pb, they have concluded that the potentials generated
from the various approaches yield cross sections which are in
good accord with the data. They have also reported that the
results from the procedure of Amoset al. [20] yielded the
best fits to the data. In the present work, we have employed
a semimicroscopic, easy to use optical model prescription
due to JLM. This semimicroscopic optical model(MOM) [7]
is a Lane-consistent, OMP which is built by folding radial
matter densities with an effective interaction in nuclear mat-
ter that is based on the extension of the original approach
proposed by JLM. This interaction is a hybrid in which the
energy and density dependent, spin independent interaction
in nuclear matter comes from the original work of JLM
[27–30], with a new parameterization defined in Ref.[31]. It
may be pointed out that theMOM approach is limited as it
does not adequately take into account the important ex-
change(knock out) amplitudes. Theg-folding approach of
Amos et al. incorporates this feature. Consequently, proton
scattering data reflect not merely the particle densities but
rather the one body density matrices of the structure model.
Further, inMOM, the imaginary part of the effective interac-
tion is multiplied[31] by an effective mass as pointed out in
Ref. [32]. The JLM interaction, established for nuclear mat-
ter, is applied to finite nuclei by using the improved local
density approximation and is also extended to deformed nu-
clei [33,34]. To calculate the complex spin-orbit potential,
Scheerbaum’s prescription[35] coupled with the phenom-
enological complex potential depths was used as shown in
Ref. [31]. This yields through the standard codeMOM [7], the
real, imaginary, and spin-orbit parts of the optical potential.
The optical potential is then inserted into the optical model
codeECIS97[36] code to get the total reaction and the elastic
scattering differential cross sections. Such an analysis of the
scattering and the reaction data has been successfully em-
ployed in the past[7,37–40]. Here we use this approach for
the analysis of the elastic proton scattering on even Zr iso-
topes.

It is known that the real part of the potential can be de-
termined phenomenologically and microscopically without
much ambiguity whereas the imaginary part of the potential
is somewhat deficient. Alternatively, one may choose the
imaginary part of the OMP phenomenologically to be con-
sistent with the experimental data. Hemalathaet al. [41] used
the real part of the OMP calculated withMOM code employ-
ing the JLM prescription. The imaginary part was chosen
phenomenologically for the analysis of 50 MeV proton scat-
tering by a chain of even Zr isotopes. In the present work,
the discussion is restricted to microscopic optical model
analysis. The real part of the OMP is computed as in Ref.
[41]. The calculated real folded potential(with the normal-
ization factorlv=1) for the stable Zr isotopes, as a function
of the radial distancesrd, is shown in Fig. 7. These potentials
are almost identical to the corresponding real Wood-Saxon
part used by Maniet al. [5] in their phenomenological analy-
sis of 50 MeV proton scattering from stable Zr isotopes. The
phenomenological imaginary part of the Wood-Saxon poten-
tial of Ref. [41] and the calculated imaginary part of folded
potential for stable Zr isotopes are shown in Fig. 8, plotted as

a function ofr. It is evident from the figure that the Wood-
Saxon(phenomenological) potential and the corresponding
folded potential are quite close to each other at the surface
but differ in the interior region. In the present analysis, the
spin-orbit part of the potential has been switched off as it has
very little influence on the calculated cross sections.

To account for the deficiency in the imaginary part of the
OMP, one usually introduces an overall normalizationslwd
for the imaginary part of the folded OMP to achieve a better
agreement between the calculation and the experiment. In the
semimicroscopic analysis, the real and imaginary parts of the
OMP are replaced by the folded potentials. We have kept the

FIG. 7. The real folded potentialfVsrdg obtained from theMOM

calculation.

FIG. 8. The imaginary part of the optical potentialfWsrdg as a
function of r for stable Zr isotopes. The solid line is the(phenom-
enological) Wood-Saxon potential from Hemalathaet al. [41] and
the dotted line is the folded potential obtained from theMOM

calculation.
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normalization factorlv=1.0, for the real part of the OMP,
throughout. Thus the present analysis has no parameter ex-
cept lw. We have carried out a search onlw to achieve a
minimum x2 in fitting the differential cross-section data for
the stable isotopes of Zr. The errors inlw have been com-
puted by varyinglw to get a change inx2 by a factor of 2
from the best fit value. The variation oflw as a function ofA
is shown in Fig. 9. It is clear that its value is close to unity
and has a mildA dependence. It is expressed aslw
=0.017A–0.450. Theselw were then used in the codeECIS97

to get the total reaction and differential cross sections for the
even isotopes of Zr. For completeness we have also carried
out the calculations keepinglw as a constant(average value
of lw=1.13 obtained from stable isotopes) for the even Zr
isotopes.

IV. CROSS SECTIONS

The experimental and the calculated differential cross sec-
tions (using lw from the least squares fit), for the elastic
scattering of 50 MeV proton incident on88–102Zr, are shown
in Fig. 10. Clearly the semimicroscopic calculations are in
good agreement with the corresponding experimental data.
The angular distribution shapes are similar in all the iso-
topes, however, the magnitudes of the maxima and minima
in the angular distribution differ among the Zr isotopes.

The calculated total reaction cross sectionsssRd using
both the sets(average and fitted) of lw values for the chain
of Zr isotopes are given in Fig. 11. The geometric cross
section as per the relation,sR=pr0

2sAp
1/3+AT

1/3d2 where Ap

and AT are the mass of the projectilespd and Zr targets re-
spectively, andr0=1.4 fm, is also included in the same fig-
ure. Clearly, there is a deviation ofsR from the simple geo-
metric model prediction. The errors onsR (shown in Fig. 11)
are calculated by a similar procedure as that adopted forlw.
It is observed that there is a pronounced rise insR in the

neutron rich region for both sets oflw. In both the cases,
there is a rise insR in going fromA=80 toA=82 and then a
sudden fall fromA=82 to A=84. There is a monotonic in-
crease insR from A=84 untilA=106 with the hint of a slight

FIG. 9. The variation of normalization factorslwd for the imagi-
nary part of the potential for the chain of Zr isotopes. The filled
triangles are the values with minimumx2. The solid and the dashed
lines are the corresponding values with least squares fit(A depen-
dence) and the average values obtained from the stable Zr isotopes,
respectively.

FIG. 10. The ratio to Rutherford cross section for 50 MeV pro-
ton scattering from the even isotopes of Zr. The dots are the experi-
mental values taken from Ref.[5] while the dashed line corresponds
to the calculation with the least squares fittedlw values.

FIG. 11. The total reaction cross sectionssRd obtained from our
analyses of elastic scattering from the chain of even Zr isotopes.
The dots with error bars correspond tolw values with minimumx2.
The solid and the dot-dashed lines correspond to the values oflw

with least squares fit(A dependent) and averageslw=1.13d values.
The variation of the geometricsR with A is represented by the
dashed line. The inset showsDsR

A,90, the difference insR for the
chain of even Zr isotopes relative to90Zr.
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jump from A=98 toA=100. In order to bring out this effect
more clearly and be consistent withdkrc

2lA,90, we have plotted
DsR

A,90, the difference insR for the chain of Zr isotopes
relative to90Zr. The variation ofDsR

A,90 with A is shown as
an inset in Fig. 11. From the inset, the jump inDsR

A,90 from
A=98 to A=100 is evident and is consistent with that of
dkrc

2lA,90 systematics. The experimental value of reaction
cross section for 50 MeV protons interacting with90Zr was
measured to be 1214±59 by Menetet al. [42]. This is con-
sistent with the value deduced from the fit(as given in Fig.
11) to the differential cross section data.

V. CONCLUSION

The ground state properties such as binding energies,
quadrupole deformation parameter, one and two neutron
separation energies, neutron and charge radii, etc., have been
calculated in the RMF framework for a number of Zr iso-
topes withA=78–106. The calculations are found to be in
good accord with the experiment(where available). The de-
viation of mean square charge radii from the conventional
r0A

1/3 relation, termed as an anomalous behavior, is repro-
duced well by the RMF calculations. The calculated RMF
densities are folded with the extended JLM, energy, and den-
sity dependent nucleon-nucleon interaction to yield the opti-
cal potential which in turn is used in theECIS97 code to get
the differential and the reaction cross sections for 50 MeV

proton scattering by a chain of even mass number Zr iso-
topes. The differential cross sections obtained from the
semimicroscopic calculations agree remarkably well with the
corresponding experimental values. As expected, a definite
correlation is observed between the variation ofdkrc

2lA,90

with mass number and the corresponding behavior of the
reaction cross section withA. The calculation reveals a kink
in the reaction cross sectionssRd at A=82. It is interesting to
note that whilesR values are significantly larger than the
geometrical predictions for neutron rich Zr isotopes, they are
suppressed for the neutron deficient Zr isotopes forA up to
84. There is a hint of a slight jump in the microscopically
calculatedsR between98Zr and 100Zr which is in tune with
the corresponding sudden jump observed in the rms charge
radii. We have also predicted a larger reaction cross section
for 82Zr when compared to the values for80Zr and 84Zr.
Experimental verification of the prediction of cross sections
for the neutron rich and proton rich Zr isotopes, with the
existing RIB facilities, would be interesting.
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