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We have developed a new framework of antisymmetrized molecular dynamics(AMD ), to adequately treat

the I =0 K̄N interaction, which is essential to study kaonic nuclei. The improved points are 1) pK−/nK̄0 mixing
and 2) total spin and isospin projections. These improvements enable us to investigate various kaonic nuclei
(ppnK−, pppK−, pppnK−, 6BeK−, 9BK−, and11CK−) systematically. We have found that they are deeply bound
and extremely dense with a variety of shapes.

DOI: 10.1103/PhysRevC.70.044313 PACS number(s): 21.80.1a, 13.75.Jz, 21.30.Fe, 21.45.1v

I. INTRODUCTION

Recently, it has been shown theoretically that aK− meson
can be deeply bound in light nuclei as a discrete state, such
as 3He+K−, 4He+K−, and 8Be+K−, where theK− meson
makes the nucleus shrink drastically to form a dense state

[1]. Exotic proton-rich bound systems withK̄, ppK−, pppK−,
pppnK−, and 9B+K−, are expected to be produced in
sK−,p−d reactions[2]. In our previous paper, we investigated

kaonic nuclei, which are denoted asK̄ nuclei hereafter,3He
+K− and8Be+K−, with a simple version of antisymmetrized
molecular dynamics(AMD ) [3,4]. Although our results are
similar to those obtained in Ref.[1], a strange property ap-
peared in8Be+K−. It is an isovector deformation, which
means that the proton distribution differs from the neutron

one in spite ofN=Z. Thus,K̄ nuclei seem to provide inter-
esting phenomena and stimulate further studies.

Apparently, these interesting properties ofK̄ nuclei can be

attributed to the bareK̄N interaction. In particular, theI

=0 K̄N interaction plays an essential role. According to a
precise experiment[5], the 1s atomic state of a kaonic hy-
drogen(i.e., proton+K−) is shown to be shifted upward. This
upward shift, which is consistent with the low-energy scat-

tering data ofK̄N [6], suggests that theK̄N interaction is
strongly attractive, so that the system of aK− and a proton
has a nuclear bound state which corresponds to theI =0
Ls1405d hyperon resonance lying at 27 MeV below theK−p
threshold. In a boson exchange potential model, the Jülich
group [7] showed that all of thev, r, and s mesons work

coherently to give a strong attraction between aK̄ and anN
which accommodates aK−-p bound state, identified as
Ls1405d. Studies based on chiral SUs3d [8] also show that

the I =0 K̄N interaction is attractive enough to form a

Ls1405d. The phenomenologicalK̄N interaction[1], which

we employ as abare K̄N interaction, is similar to those led
by the chiral SUs3d and boson exchange theories. Since the

I =0 K̄N interaction is much more attractive than theI =1

one, aK− meson attracts protons rather than neutrons, caus-

ing an isovector deformation. Thus, theI =0 K̄N interaction

is essential for studyingK̄ nuclei.

In this paper we present systematic studies ofK̄ nuclei
with AMD. Since AMD treats a system in a fully micro-
scopic way without any assumption concerning the structure

of the system, it is suitable for studyingK̄ nuclei, whose
structures might be exotic. The simple version of AMD[3],
however, has a technical problem in treating theI =0 K̄N

interaction, which dominatesK̄ nuclear systems: it cannot

include the degree of freedom ofK̄0, and fails to describe the

I =0 K̄N state. Therefore, in our previous paper we dealt with

the I =0 K̄N interaction by incorporating itsK̄0n part effec-

tively into theK−p interaction. Of course, theI =0 K̄N inter-
action should be treated as precisely as possible, because it

plays an essential role inK̄ nuclei. In this paper, we improve

the framework of AMD so that it can treat theI =0 K̄N in-
teraction adequately. We introduce the degree of freedom of

K̄0 into the model space of AMD(“pK−/nK̄0 mixing”). Since

K̄ nuclear states depend largely on their isospin due to the

strong isospin-dependence of theK̄N interaction, we carry
out the isospin projection as well as the angular momentum
projection (“J and T projections”) of the obtained intrinsic
state. With the new version of AMD, we systematically in-

vestigate a variety ofK̄ nuclei. We try to answer the follow-

ing questions:(i) What K̄ nuclei are deeply bound with nar-

row widths?(ii ) Is there any strange structure peculiar toK̄
nuclei?

This paper is composed as follows: In Sec. II, we present

the improvements of AMD;pK−/nK̄0 mixing, J and T pro-
jections, and other formalisms. In Sec. III, we demonstrate
the capability of our new framework, and then apply it to

variousK̄ nuclei(ppnK−, pppK−, pppnK−, 6BeK−, 9BK−, and
11CK−). The results and discussion are given in Sec. IV. We
summarize our study in Sec. V.
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II. FORMALISM

In the present study, we employ the AMD approach as a

means of studyingK̄ nuclei. It has succeeded in studying the
structures of light unstable nuclei[9]. In particular, it is pow-
erful for investigating the global properties of many light
nuclei systematically. We know that various few-body meth-

ods, such as summarized in Ref.[10], can treat few-bodyK̄
nuclei more accurately than AMD. Compared with these
usual methods, AMD is more handy and applicable to more
complex nuclei. Our aim is a systematic study of a variety of

K̄ nuclei.
In the simple version of AMD employed in our previous

study, we restricted its model space to the proton, neutron

andK− meson. Due to the lack ofK̄0 in the model space, we

could not describe theI =0 K̄N state,

uK̄NsI = 0dl =
1
Î2

supK−l + unK̄0ld. s1d

In other words, we could not precisely treat the coupling of

the pK− pair with thenK̄0 one through theI =0 K̄N interac-
tion in the particle basis treatment of AMD. In the previous

study, we incorporated all contributions from theI =0 K̄N
interaction into an effectiveK−p interaction, as follows:

VK−p = aVK̄NsI=0d + bVK̄NsI=1d, s2d

wherea and b are some constants determined by counting
the number ofI =0 pairs andI =1 ones in a given state of
total isospinT. For example, we setsa ,bd= s 3

4 , 1
4

d in the case
of ppnK− sT=0d. However, we have to check how this pre-

scription is reliable for variousK̄ nucleus cases. For this

purpose, we introduce the degree of freedom ofK̄0 into the

AMD framework to treat “pK−/nK̄0 mixing” directly.

A. pK−/nK̄0 mixing

First, we explain our idea for the simple case of aK̄

nucleusppnK−. In this K̄ nucleus, the component ofpnnK̄0 is

mixed because a pair ofpK− is replaced with that ofnK̄0 by

the I =0 K̄N interaction. Hereafter, we express this state as

K̄

3
H. An ordinary way to treat it is to perform a coupled chan-

nel calculation, preparing several Slater determinants for

both channels ofppnK− andpnnK̄0. In the present paper, we
deal with such systems where several channels are coupled
as follows: In stead of multi Slater determinants, we employ
a single Slater determinant withcharge-mixedsingle particle
wave functions, i.e.,

uNil = xiupl + yiunl, s3d

uKl = zuK−l + wuK̄0l, s4d

where uNil and uKl indicate a single nucleon wave function

and aK̄ meson wave function, respectively.uNil can describe
the state where a proton and a neutron are mixed, and also

uKl can describe the state whereK− and K̄0 are mixed. With
these wave functions we describe

K̄

3
H as udetfN1N2N3gKl.

This state contains the component ofupnnK̄0l as well as that
of uppnK−l. In this method, since each nucleon has a chance
to be a proton or a neutron, the important channel is auto-
matically chosen in the process of the energy variation. In
addition, we expect thatudetfN1N2N3gKl can represent a state
in which the contribution of several configurations is coher-
ently additive: for example, if two configurations such as

uppnK−l and upnnK̄0l work coherently, such state is repre-

sented asupsp+ndnsK−+K̄0dl.
However, we remark one point:udetfN1N2N3gKl is likely

to have incorrect components, for examplepppK−, ppnK̄0,
etc. which should not couple with

K̄

3
H. To avoid the mixing

of such incorrect components, we project it onto a state
whose isospin-z componentTz is equal to that of

K̄

3
H.

Now, we show the details of our wave function based on

the concept ofpK−/nK̄0 mixing. Our nucleon wave function,
uwil, is represented by the superposition of several Gaussian
wave packets[11],

uwil = o
a=1

Nn

Ca
i expF− nSr −

Za
i

În
D2Gusiluta

i l . s5d

Namely, theith nucleon is described by the superposition of
Nn Gaussian wave packets whose centers arehZa

i j. usil
means a spin wave function, and isu↑ l or u↓ l. uta

i l means an
isospin wave function, and has the following form:

uta
i l = S1

2
+ g a

i Dupl + S1

2
− g a

i Dunl , s6d

whereg a
i is a variational parameter. In the usual AMD the

isospin of each nucleon does not change, i.e., in the process
of energy variation the protons remain as protons and the
neutrons as neutrons. However, in the present paper we make
the isospins of all nucleons changeable so that we can treat

pK−/nK̄0 mixing. In the same way, aK̄ meson wave func-
tion, uwKl, has the form

uwKl = o
a=1

NK

Ca
K expF− nSr −

Za
K

În
D2Guta

Kl . s7d

Here, the isospin wave function of aK̄, uta
Kl, as well as that

of a nucleon, is changeable,

uta
Kl = S1

2
+ ga

KDuK̄0l + S1

2
− ga

KDuK−l. s8d

Because a nucleon is a Fermion, we antisymmetrize the
wave function of the nucleon’s system,uFNl=detfuwis jdlg.
Then, theK̄ meson wave function is combined to it,uFl
= uFNl ^ uwKl. Moreover, we project the total wave function
onto the eigenstate of parity,

uF±l =
1
Î2

fuFl ± PuFlg. s9d
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If we perform an energy variation with a trial wave func-
tion Eq. (9), it is likely that thez component of the isospin

sTzd of the total system is different from that of aK̄ nucleus
that we try to calculate originally. To avoid any mixing of
components having an incorrectTz, we project the total sys-
tem onto an eigenstate ofTz before the energy variation,

uP̂MF±l =E du expf− iusT̂z − MdguF±l. s10d

Thus, we can obtain a wave function containing only the

components ofTz=M. We utilize uP̂MF±l as a trial wave
function.

Our wave function includes complex number parameters
hXa

i j;hCa
i ,Za

i ,ga
i ;Ca

K ,Za
K ga

Kj and a real number parameter
snd. These are determined by the frictional cooling equation,
as mentioned in Sec. II D.

In the present study, we use a common width parameter

snd of a Gaussian wave packet for a nucleon and for aK̄
meson so as to simplify our calculation. However, it seems
natural that the spreading width of a nucleon is different

from that of aK̄ meson. We take this point into account by
using different numbers of Gaussian wave packets for a

nucleon and aK̄ meson, i.e.,Nn in Eq. (5) is not equal toNK
in Eq. (7).

B. J and T projections

The angular momentum projection(J projection) is nec-

essary to studyK̄ nuclei as well as usual nuclei. In addition,
the isospin projection(T projection) also seems to be impor-

tant because theK̄N interaction has strong isospin depen-
dence. Therefore, we perform angular-momentum and iso-
spin projections simultaneously.J projection is done
numerically by rotating the system in space, as has often
been done.T projection is performed in quite the same way,
but by rotating in isospin space. OurJ andT projections are
as follows:

uP̂MK
J P̂TzTz8

T
F±l =E dVang.DMK

J* sVang.dR̂ang.sVang.d

3E dViso.DTzTz8
T* sViso.dR̂iso.sViso.duF±l,

s11d

where uF±l is the intrinsic wave function, which is already
determined by the frictional cooling equation, as shown in
Sec. II D. We calculate various expectation values with

uP̂MK
J P̂TzTz8

T
F±l.

C. Hamiltonian

Our Hamiltonian in AMD calculations,

Ĥ = T̂ + V̂NN + V̂C + V̂KN − T̂G, s12d

is composed of the kinetic energyT̂, the effectiveNN poten-

tial V̂NN, the Coulomb forceV̂C, and the effectiveK̄N poten-

tial V̂KN. The center-of-mass motion energy,T̂G, is sub-
tracted. In the kinetic energy and the center-of-mass motion
energy, we treat the mass difference between a nucleon and a

K̄ meson correctly. For example, the kinetic energy is

T̂ = o
i=1

A
p̂i

2

2mN
+

p̂K
2

2mK
, s13d

wheremN andmK indicate the mass of a nucleon and that of
K−, respectively. The Coulomb force is represented by the
superposition of seven-range Gaussians[12].

In the study ofK̄ nuclei, we do not use existing effective
interactions which may be justified for studying phenomena
around the normal density. Since the system is likely to be-

come extremely dense due to the strongK̄ attraction, we
employ theg-matrix method[1]. We adopt the Tamagaki
potential (OPEG) [13] as a bareNN interaction, and the

Akaishi-YamazakiK̄N potential[1] as a bareK̄N interaction.
Because the Tamagaki potential can reproduceNN phase
shifts up to 660 MeV in the laboratory system[13], we ex-
pect that it can be applied to such extremely dense states.

The effectiveNN/ K̄N interactions constructed from the bare
ones are represented by the following ten-range Gaussians:

VNN
X srd = o

a=1

10

VNN,a
X expf− sr/rad2g, s14d

V
K̄N

I srd = o
a=1

10

V
K̄N,a

I
expf− sr/rad2g, s15d

“X” in Eq. (14) is 1E,3E,1O,or 3O, and “I” in Eq. (15) is 0

or 1. We use theseVNN
X srd and V

K̄N

I srd as effectiveNN/ K̄N

interactions in our AMD calculation.
Our procedure is as follows:(1) For a given density and

starting energy ofK−, we construct ag matrix; (2) using the
g matrix we carry out the AMD calculation;(3) after the
AMD calculation, we check whether or not the obtained den-
sity and binding energy ofK− are consistent with those of the
g matrix used in the calculation;(4) if no consistency is
accomplished, we guess and impose a new density and a new
starting energy ofK− for theg matrix calculation by referring
to the results obtained so far and return to(1). We repeat this
cycle until obtaining a consistent result.

D. Frictional cooling equation with constraint

Our wave function contains complex variational param-
eters, hXa

i j=hCa
i ,Za

i ,ga
i ;Ca

K ,Za
K , ga

Kj. They are determined
by the energy variation. In our study, we employ the fric-
tional cooling method as a means of energy variation,

Ẋa
i = sl + imd

1

i"
F ] H

] Xa
i* + h

] W
] Xa

i* G and c.c. s16d

Here,H is the expectation value of the Hamiltonian andW
is a constraint condition.h is a Lagrange multiplier, which is
determined bydW /dt=0. It is easily proved that, if we as-
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sumem,0 in Eq. (16) and all of the parameters are devel-
oped with time according to Eq.(16), the energy of the sys-
tem decreases while satisfying the constraint conditionW
=0. If we use the superposition of several Gaussian wave

packets to represent a nucleon and aK̄ meson wave function,
we need a constraint condition in order to fix the center of
mass of the total system to the origin, and thenW is ex-
pressed as follows:

W = kR̂Gl2 + kP̂Gl2, s17d

R̂G =
oi=1

A
mNr̂ i + mKr̂K

AmN + mK
, s18d

P̂G = o
i=1

A

p̂i + p̂K. s19d

III. TESTS OF OUR METHOD

Before applying our method to studies of variousK̄ nu-
clei, we investigate the basic properties of our method.

A. Dependence on the number of wave packets

As shown in Eqs.(5) and (7), we represent a single

nucleon wave function and aK̄ meson wave function withNn
andNK Gaussian wave packets, respectively. We investigate
how much the solution depends onNn and NK. First, we

perform a test in the case ofppnK− without pK−/nK̄0 mixing
for simplicity. Table I shows the results ofppnK− for various
Nn and NK. From this table, we find that the total binding
energy and the central density are almost converged up to
Nn=4 andNK=10. However, we notice that the shape of the
system, represented by the deformation parameterssb ,gd, is
strongly dependent ofNn. This phenomenon can be under-
stood as follows. As mentioned in our previous study[3], the
protons distribute compactly near aK− so as to decrease their
total energy by the strongly attractiveK−p interaction. On the
other hand, the neutron is widely spread and its total energy

decreases by reducing its kinetic energy. Therefore, the pro-
tons stay compactly inside the system, while the neutron re-
mains widely outside of the system. Thus, the neutron con-
tributes to the shape of the total system. In the case ofNn
=2, since the neutron is represented by two Gaussian wave
packets, it can spread only linearly. Thus, the total system
deforms prolately. In the case ofNn=3, it can spread with a
triangular shape. Thus, the total system deforms oblately. In
the case ofNn=4, it can spread with a tetrahedron shape. The
total system is therefore spherical. Thus, the shape of the
total system changes asNn is varied.

Such a dependence of the shape onNn seems to be pecu-
liar to ppnK− where the neutron number is equal to 1 and the
proton number is 2. In addition, the binding energy measured

from the threshold ofppn+K−, EsK̄d, and the central density
do not so strongly depend onNn and NK. Therefore, taking
the cost-performance of calculations into account, we adopt
the model space ofNn=2 andNK=5 in our calculations.

B. Solution of ppnK−

We now check whether our new framework,pK−/nK̄0

mixing andJ andT projections, works correctly or not. We
perform a test on a system ofppnK−.

First, we investigate the property ofJ andT projections.
Although only theJ projection has often been carried out in
the study of light unstable nuclei[9,11], the present study for
the first time makes theT projection. In Table II, we show
various quantum numbers of the wave function before pro-

jection suP̂MF±ld and that after projectionsuP̂MK
J P̂TzTz8

T
F±ld.

Apparently, the ground state ofppnK− seems to have quan-
tum numbers ofJp= 1

2
+

and T=0. We performedJ and T
projections so that the total system had such quantum num-

bers. Table II shows thatkĴ2l=0.75 andkT̂2l=0.00, which
agree with JsJ+1d= 1

2 · 3
2 and TsT+1d=0·1, respectively.

Therefore, it is found that ourJ andT projections work well.
Next, in Table III various quantities obtained in the

present calculation(present) are compared with our previous
result of a simple version of AMD(simple AMD) [3] and the
result of a BHF calculation(BHF) [1]. This table shows that
the present result is almost identical to others. Since the
isospin-z component of each particle is changeable in the
present framework, we investigated each particle number.
Although we calculatedppnK−, the numbers of protons and
neutrons after the calculation are both equal to 1.5, while

those ofK− andK̄0 are both 0.5. This means thatppnK− and

TABLE I. Results ofppnK− in variousNn andNK. EsKd: bind-
ing energy measured from the threshold ofppn+K−. rs0d: central
density.Rrms, Rrms

p , Rrms
n : root-mean-square radii of matter, proton,

and neutron, respectively.sb ,gd: deformation parameters.

Nn NK

EsKd
sMeVd

rs0d
sfm−3d

Rrms

sfmd
Rrms

p

sfmd
Rrms

n

sfmd
b g

sdeg.d

2 5 105.2 1.39 0.72 0.70 0.75 0.19 0.0

3 5 106.3 1.40 0.73 0.70 0.77 0.14 49.0

4 5 109.5 1.41 0.72 0.69 0.78 0.02 49.4

2 8 106.0 1.37 0.72 0.71 0.75 0.19 0.0

2 10 106.2 1.37 0.72 0.71 0.75 0.18 0.0

3 10 107.6 1.41 0.72 0.70 0.77 0.14 51.7

4 10 109.4 1.49 0.71 0.68 0.77 0.00 54.4

TABLE II. Quantum numbers before and after projection.JT
2:

kĴ2l of total system.JN
2, LN

2, andSN
2: kĴ2l, kL̂2l, andkŜ2l of nucleon

system.LK
2: kL̂2l of a K̄ meson.T2 and Tz: kT̂2l and kT̂2

zl of total
system.

JT
2 JN

2 LN
2 SN

2 LK
2 T2 Tz

After 0.75 0.78 0.03 0.75 0.03 0.00 0.00

Before 1.36 1.22 0.44 0.78 0.14 0.02 0.00

DOTÉ et al. PHYSICAL REVIEW C 70, 044313(2004)

044313-4



ppnK̄0 are mixed with a ratio of 1:1 as the result ofpK−/nK̄0

coupling through theI =0 K̄N interaction.

Here, we remark on the components of theK̄N interac-
tion. We can separate it into three parts in the particle base:
(i) VnK− andVpK̄0, (ii ) VpK− andVnK̄0, and (iii ) VpK−,nK̄0. The
interactions(i) and(ii ) are working in each channel ofppnK−

andpnnK̄0, and their expectation values are equal to −45 and
−255 MeV, respectively. Interaction(iii ) is related to

pK−/nK̄0 mixing through theI =0 K̄N interaction, and its ex-
pectation value is equal to −88 MeV. Thus, we find that the
binding of this system is mainly due to the type(ii ) interac-
tion and is further supported by the type(iii ) interaction,
which causes coupling between the two channels.

C. Effect of repulsive core of a bareNN interaction

The repulsive core ofNN interaction plays an essential
role in the nuclear shrinkage caused by aK− meson and the
deep binding of aK− meson. Since the Tamagaki potential
(OPEG) can reproduce theNN phase shift up to 660 MeV,
we expect that it can be applied to very dense system. How-
ever, the repulsive core part of the OPEG is represented by a
Gaussian form, not by hard core. One may question whether
or not a stronger repulsive core still allows the nuclear

shrinkage and the deep binding ofK̄.
Hence, we have investigated the effect of the repulsive

core of theNN interaction as follows. Since it is often said
that the repulsive core lies in ther ,0.4 fm region of theNN
interaction, we have regarded such a region of the OPEG as
the repulsive core. We have made the potential in the core
region more repulsive by multiplying factors of 1.5, 2, and 3.
Using such core-enhanced potentials, we have calculated
ppnK− in the same procedure with a simple version of AMD.
The total binding energy is obtained to be 109.2, 107.0, and
106.9 MeV for 1.5, 2, and 3 times enhanced core, respec-
tively. It is found that the effect of such core enhancement is
saturated at the 2 times case. Thus,ppnK− is still bound
below theSp thresholds106 MeVd and can keep narrow
width even if the repulsive core becomes three times higher
than that of the original potential. Even in the case of such
strong repulsive core, the essence of our result remains un-
changed.

D. Validity of our K̄N interaction

In this section, we comment on theK̄N interaction we use.

When we discuss on theK̄N interaction, we should not con-

fuse a bare one and an effective one(or K̄-nucleus optical
potential).

First, we consider the bare interaction. The Akaishi-
YamazakiK̄N interaction(AY K̄N interaction) employed in
this paper is a bareK̄N interaction. We have already con-
firmed that the AYK̄N interaction has almost the same prop-
erty as the chiralK̄N interactions for binding energies ofK̄
nuclear systems: the AYK̄N interaction gives −119 MeV at-
traction for a K̄ in nuclear matter at the normal density,
Weise’s chiralK̄N interaction gives −120,−130 MeV at-
traction as seen in Fig. 3 of the first paper in Ref.[8] and the
meson-exchange JülichK̄N interaction gives −103,
−120 MeV attraction in a similar treatment of in-medium
propagation as shown in Fig. 2 of Ref.[14]. Thus, the AY
K̄N interaction has the quite same property as other bareK̄N
interaction as long as the binding energies ofK̄ nuclei are
concerned. At the level of bare interaction, our empirically
basedK̄N interaction is very similar to those theoretically
derived in other studies.

Next, we proceed to the effective interaction. The prop-
erty of the effective interaction is strongly dependent on the
prescription how to construct it from a bare interaction. The

effective K̄N interaction led by ourg-matrix method[1] is
very attractive, whereas others[14–16] are less attractive.
The latter employ Lutz’s prescription[15], in which the op-

tical potential ofK̄ for intermediate states is self-consistently
treated. Here, we would like to present detailed comments

about the difference ofK̄ optical potentials between cases of
infinite nuclear matter and of few-body systems of our

present concerns. In the former case theK̄ is in a continuum
level and its optical potential must reproduce “phase shift” of

the K̄-medium scattering state, whereas in the latter case the

K̄ is in a decaying bound state isolated far from continuum
and its optical potential should reproduce not “phase shift”
but “energy-level shift,” because the phase shift no longer
takes place due to the lack of incoming component in the
decay-channel wave function. Theg matrix in this situation
has to be treated differently from the prescription given by

Lutz and the other authors. TheK̄ self-mass should be intro-
duced self-consistently not only in the intermediate-state
spectrum but also in the starting energy of theg-matrix equa-
tion. This is a natural extension of the Brueckner-Bethe-
Goldstone theory of nucleus where the self-consistency con-
dition is imposed on both of the starting and intermediate-
state energies. In our treatment, the imaginary parts of the
propagator largely cancel out between the starting and the
intermediate energies, and the resultantg matrix becomes
closer to ourg matrix used in the present AMD calculation.

We can directly confirm thatK̄ few-body systems should
be treated by our prescription as follows. In Sec. IIIc of Ref.
[1], it has already been demonstrated that ourg matrix works

well as an effective interaction for aK̄ in few-body systems.
Here, we refer to the result for a modelNNNK− system in-

teracting with a simple bareK̄N interaction of vK̄N
=−s500+i20d MeV expf−sr /0.66 fmd2g which keeps some

TABLE III. Results of ppnK−; EsKd: binding energy measured
from the threshold ofppn+K−; G: width decaying toLp; rs0d:
central density;Rrms: root-mean-square radius of nucleon system.

EsKd sMeVd G sMeVd rs0d sfm−3d Rrms sfmd

Present 110.3 21.2 1.50 0.72

Simple AMD 105.2 23.7 1.39 0.72

BHF 108 20 — 0.97

KAONIC NUCLEI STUDIED BASED ON A NEW… PHYSICAL REVIEW C 70, 044313(2004)

044313-5



essential property of theK̄N interaction used in the present
paper. A variational calculation, which uses only the bare

interaction, givesEsK̄d=−107 MeV andG=24 MeV. Ourg

matrix reproduces these values, namely, we obtainedEsK̄d
=−109 MeV andG=29 MeV which are in a good agreement
with the variational result. On the other hand, if we use ag
matrix obtained by the insertion of an optical potential, say
Uopt=−s50+i100d MeV, to the intermediate-state energy
spectrum in the propagation simulating “self-consistency”

suggested in Refs. [14–16], we obtain EsK̄d
=−84 MeV andG=128 MeV, which fails in reproducing the
variational result. These facts give a justification of using our
g matrix as an effective interaction in few-body calculations
like AMD.

E. Interpretation of the density distribution

The influence ofpK−/nK̄0 mixing can clearly be seen in
the density distribution. Figure 1 displays the density distri-
bution of protons and neutrons in theppnK− system calcu-
lated by the new framework. We can see that the proton
distribution is almost the same as the neutron one, contrary
to our previous result[3], where protons distribute more
compactly than neutrons because of the strong attraction be-
tween theK− and the proton. We can solve this contradiction
by introducing the concept of anintrinsic state in isospin
space, as follows: the calculated expectation value ofT2 with

the stateuP̂Tz=0 Fl, in the case ofppnK−, is nearly equal to
zero. Therefore, this state is the eigenstate of isospin, i.e.,
T=0, and we express it asu

K̄

3
HsT=0dl hereafter. It is easily

found that u
K̄

3
HsT=0dl is composed of two configurations

concerning thez component of isospin:

uK̄
3
HsT = 0dl = P̂Tz=0fuFNl ^ uwKlg

= P̂Tz=0FS o
m=−`

+`

P̂Tz
N=mDuFNl

^ S o
m=±1/2

P̂Tz
K=mDuwKlG

= uP̂Tz
N=1/2 FNl ^ uP̂Tz

K=−1/2 wKl

+ uP̂Tz
N=−1/2 FNl ^ uP̂Tz

K=1/2 wKl, s20d

where P̂Tz
N and P̂Tz

K are Tz projection operators for the

nucleon system and theK̄ meson, respectively. According to
the values ofTz

N andTz
K, the first term indicatesppnK−, while

the second term indicatespnnK̄0. Hereafter, we express them

as uppnK−l and upnnK̄0l, respectively. In addition, the over-

lap betweenupnnK̄0l and eipT̂yuppnK−l, calculated numeri-
cally, is found to be almost one. Since this fact indicates

upnnK̄0l.eipT̂yuppnK−l, we can say that our wave function
satisfies

uK̄
3
HsT = 0dl = o

u=0,p
ei u T̂yuppnK−l = o

u=0,p
ei u T̂yupnnK̄0l.

s21d

Namely, theuppnK−l state rotates in isospin space so that
u
K̄

3
HsT=0dl, which has the good quantum number,T=0, is

formed. Based on the analogy of an “intrinsic” state in a
deformed nucleus, rotating in the space to form the eigen-
state of the angular momentum, we can regard theuppnK−l
or equivalentupnnK̄0l as an intrinsic state in the isospin
spaceof u

K̄

3
HsT=0dl.

Figure 2 displays the proton and neutron distributions of
the intrinsic stateuppnK−l. Clearly, the proton distribution is
more compact than the neutron one; this fact is consistent
with our previous study. Here, we note one point. Investigat-

ing the density distribution ofupnnK̄0l, we find that its proton
and neutron distributions are completely identical with the
neutron and proton ones in theuppnK−l, respectively. In
other words, neutron distribution is more compact than pro-

ton one in theupnnK̄0l. After all, since Fig. 1 is drawn with

the u
K̄

3
HsT=0dl, which includes theuppnK−l and theupnnK̄0l

to form the eigenstate of isospin, the proton distribution is
quite the same as the neutron one.

IV. RESULTS

Now that we have confirmed that the new framework
works well, we proceed to an investigation ofpppK−,

FIG. 1. Proton(left) and neutron(right) distributions ofu
K̄

3
HsT

=0dl obtained in the present calculation. The size of each frame is
3 fm33 fm.

FIG. 2. Proton(left) and neutron(right) distributions ofppnK−

which is anintrinsic state in the isospin spaceof u
K̄

3
HsT=0dl.
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pppnK−, 6BeK−, 9BK−, and 11CK− with this framework.
Since the intrinsic state of isospin space is found to be mean-
ingful, as mentioned in the previous section, we generally

denoteK̄ nuclei by their intrinsic states without any loss of
validity; for example,

K̄

3
H is represented byppnK−. In all

calculations, a single nucleon andK̄ meson are described
with two Gaussian wave packets and five, respectively,
namelyNn=2 in Eq. (5) andNK=5 in Eq. (7).

A. Binding energies

The results are summarized in Table IV. We determineJp

andT by assuming that nucleons occupy the configuration of

the normal ground state and aK̄ meson occupies the 0s state.
Of course, as done in the prior section, we confirm afterJ
andT projections that the expectation values ofĴ and T̂ are
equal to those we set previously. Figure 3 displays the be-
havior of the total binding energy and the decay width, from
ppnK− to 9BK−. The previous result[3] of 8BeK− is also
shown. According to Table IV, allK̄ nuclei are bound by
about 100 MeV. Figure 3 shows us that theK̄ nuclei except
for pppK− are bound below theSp threshold which is the
main decay channel.

In Fig. 3 the thresholds of various decay modes are also
shown, from which we can estimate the stability ofpppnK−

to 9BK− for the nucleon escaping process. First,pppnK− is
found to be unstable for the nucleon escaping, since its total
binding energys112.5 MeVd is smaller than that ofppnK−

+p s117.8 MeVd. On the other hand, the deepest thresholds
for 6BeK−, 8BeK−, and9BK− are ppnK−+3He s125.3 MeVd,
ppnK−+a+n s143.5 MeVd and 8BeK−+ps159.0 MeVd,
while their total binding energies are 131.7, 159.0, and
173.5 MeV, respectively. Therefore,6BeK−, 8BeK−, and
9BK− are stable for the nucleon escaping. In the scope of the
present study,11CK− is also stable for the nucleon escaping
because its total binding energys190.9 MeVd is larger than
that of 9BK−+deuterons175.7 MeVd.

As mentioned above, theK− meson is bound by about
100 MeV in all of theK̄ nuclei that we calculated.pK− is
bound by 27 MeV based on the initial assertion that it forms
L s1405d, andppK− is bound by 48 MeV according to[2].
Therefore, the binding energy of theK− meson seems to be

saturated inK̄ nuclei heavier thanppnK−. We think that this

TABLE IV. Summary of present calculations.Jp and T: spin
parity and isospin of total system;EsKd: binding energy measured

from the threshold of nucleus+K̄; G: width decaying toSp andLp
channels.rs0d: central density;Rrms: root-mean-square radius of
nucleon system;sb ,gd: deformation parameters.

Jp T
EsKd

sMeVd
G

sMeVd
rs0d

sfm−3d
Rrms

sfmd
b g

sdeg.d

ppnK− 1
2

+ 0 110.3 21.2 1.50 0.72 0.22 9.2

pppK− 1
2

− 1 96.7 12.5 1.56 0.81 0.70 11.8

pppnK− 1− 1
2 105.0 25.9 1.29 0.97 0.54 3.8

6BeK− 0+ 1
2 104.2 33.3 0.91 1.17 0.44 0.3

9BK− 1
2

− 0 118.5 33.0 0.71 1.45 0.46 20.8
11CK− 1

2
− 0 117.5 46.0 0.81 1.48 0.35 46.5

FIG. 3. (Color) Behavior of the total binding energy and the decay width, fromppnK− to 9BK−. The decay width is toLp and op

channels. The blue square and the vertical broken line indicates the binding energy and width of theK̄ nucleus, respectively. The green-
dashed line corresponds to theop threshold. The thresholds for other decay modes are expressed by the red lines.
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saturation of the binding energy is related to the range of the

K̄N interaction. Since it is very short, the number of nucleons
which a singleK− meson can interact with is limited. We

count up the nucleons staying in the region where theK̄
meson’s density falls down from the maximum valuerMAX

K

to 1
5rMAX

K . In Table V, we show the number of strongly in-

teracting nucleons(“Nucleon”) staying around theK̄ in vari-

ousK̄ nuclei. Except forpppK−, which has a peculiar struc-
ture, as mentioned in a later section, about 1.7–2.9 nucleons

are found to stay near theK̄ meson.

B. Density distribution

Figure 4 displays the nucleon density distributions of
ppnK−, pppK−, pppnK−, 6BeK−, 9BK−, and 11CK−. It is

found that K̄ nuclei have extremely dense and peculiar
nucleon distributions.

6BeK− has a two-center-like structure similar to8BeK−

[3]. Figure 5 shows proton and neutron distributions sepa-
rately. We can find that protons have a two-center-like struc-

ture and that neutrons stay between two pairs of protons,
against our expectation that6Be should have such a structure

as a+2p. We note that theK̄ meson’s density distribution,
which is not displayed here, is very similar to the neutrons’
one. The structure of9BK− is quite similar to that of8BeK−

[3]. 11CK− has a three-cluster-like structure. Figure 6 shows
the K− meson distribution as well as the proton and neutron
distributions in the intrinsic state of isospin space, namely

pure11CK− component. All clusters are attracted by aK̄ me-
son being at the center of the system. Similarly to the case of
ppnK−, the proton distribution is more compact than the neu-
tron distribution because theK− meson attracts protons rather
than neutrons.

The most exotic system ofpppK− shows a very peculiar
density distribution. Strictly speaking, this system has not

only the component ofpppK−, but also that ofppnK̄0 due to

TABLE V. EsKd and number of strongly interacting nucleons

near theK̄ meson.

ppnK− pppK− pppnK− 6BeK− 9BK− 11CK−

EsKd 110.3 96.7 105.0 104.2 118.5 117.5

Nucleon 1.67 1.14 1.78 2.55 2.53 2.88

FIG. 4. (Color) Density contours of the nucleon distributions of variousK̄ nuclei. ppnK−, pppK−, and pppnK−: 3 fm33 fm 6BeK−,
9BK−, and11CK−: 4 fm34 fm.

FIG. 5. Proton (left) and neutron (right) distributions of
6BeK−.
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the I =0 K̄N interaction. We express this system as
K̄

3
He. Fig-

ure 7 shows only proton density distribution extracted. We
can see a “satellite” in this figure. Summing up the density of
proton in the region of this satellite, we find that the proton
number is nearly equal to one. Thus, this satellite is a single
proton. In addition, the particle numbers of proton, neutron,

K− and K̄0 are 2.67, 0.33, 0.67, and 0.33, respectively. We
can understand these particle numbers and the density distri-
bution consistently as follows. We regard this system as a
single proton combining

K̄

2
H, following its density distribu-

tion (Fig. 7). In isospin space,
K̄

2
H means theuT= 1

2 ,Tz=
1
2l

state, which is composed of two nucleons and aK̄ meson.
The weight of each component included is determined by
Clebsch-Gordan coefficients as shown below:

u
K̄

3
Hel = upl ^ u

K̄

2
Hl = upl ^ UT =

1

2
,Tz =

1

2
L

= upl ^ SÎ2

3
UTN = 1,Tz

N = 1;TK =
1

2
,Tz

K = −
1

2
L

−Î1

3
UTN = 1,Tz

N = 0;TK =
1

2
,Tz

K =
1

2
LD

= upl ^ SÎ2

3
upp ^ K−l +Î1

3
upn ^ K̄0lD . s22d

The particle numbers counted according to Eq.(22) are
the same as the above values. After all, we come to a con-
clusion that in

K̄

3
He one proton keeps its identity and that the

residual part is composed ofppK− and pnK̄0, which are

mixed due to theI =0 K̄N interaction. Note, however, that
the single proton is strongly bound to

K̄

2
H. In addition, we

studied the dependence of this system on the number of
wave packets. Even if one nucleon is represented by four
Gaussian wave packets[i.e., Nn=4 in Eq. (5)], a proton is
still pushed out, but a little less clearly. We consider that the
third proton is pushed up to the 0p-shell due to Pauli block-
ing, so that it forms a satellite-like structure.pppnK− has an
extra neutron compared topppK−. When a neutron is added
to pppK−, such a satellite-like structure disappears and a dif-
ferent structure is formed forpppnK−.

C. Relativistic correction

The present calculations have been done in the nonrela-
tivistic framework. The relativistic effect can be estimated by

using a Klein-Gordon equation forK̄,

H−
"2

2mK
¹2 + UoptJuFl = S«K +

«K
2

2mKc2DuF, s23d

where«K is the energy ofK̄ without its rest mass. The optical
potential,Uopt, is given as

Uopt = US+
US

2

2mKc2 , s24d

on the assumption that theK̄ is in a scalar mean field,US,
provided by the shrunk nuclear core. When we make a map-
ping of energy;

S«K +
«K

2

2mKc2D → «map, s25d

Eq. (23) becomes equivalent to a Schrödinger-type equation.
We do with this equivalent equation. In this treatment, how-
ever, special cautions are necessary: the threshold energies of
L+p and S+p and the complex energy ofL s1405d also
suffer the same mapping. The latter change requires refitting

of the K̄N interaction parameters.
This scheme has been carried out in the case ofppnK−.

The binding energy and decay width are found to be
sB.E. ,GKd=s127,20d MeV. The binding energy increases
by about 10% due to this relativistic effect.

FIG. 6. Proton(left), neutron(middle), andK− meson(right) distribtions of11CK−.

FIG. 7. (Color online) Proton distribution inpppK−.

KAONIC NUCLEI STUDIED BASED ON A NEW… PHYSICAL REVIEW C 70, 044313(2004)

044313-9



V. SUMMARY

We improved the antisymmetrized molecular dynamics
(AMD ) regarding two points and applied it to systematic
studies ofK̄ nuclei. One of our improvements is “pK−/nK̄0

mixing,” which enables us to treat directly the coupling of
pK− andnK̄0 through theI =0 K̄N interaction. The other one
is “ J and T projections” with which the strong isospin de-
pendence of theK̄N interaction is expected to be correctly
treated. Thus, AMD is capable of treating theI =0 K̄N inter-
action adequately, which plays an essential role inK̄ nuclei.

We have investigated the properties of our new frame-
work onppnK−. After J andT projections, the total system is
found to possess the quantum numbersJ andT, which turn
out to be equal to those which we had assigned beforehand.
Namely, we have confirmed that theJ and T projections
work correctly. The new result and the previous one are very
similar to each other, but we can see the influence of
pK−/nK̄0 mixing in the density distributions of the protons
and neutrons. Owing to the introduction ofK̄0, the present
wave function can form the eigenstate of isospin, i.e.,
u
K̄

3
HsT=0dl. When we draw the proton and neutron distribu-

tions of u
K̄

3
HsT=0dl, they are clearly different from those

shown in our previous study. We confirm that theu
K̄

3
HsT

=0dl is formed by the rotation ofuppnK−l in isospin space.
Namely, uppnK−l is considered to be an “intrinsic state in
isospin space” for theu

K̄

3
HsT=0dl. This intrinsic state

uppnK−l is found to have quite the same proton and neutron
distributions as those in our previous study. Theu

K̄

3
HsT=0dl

contains bothupnnK̄0l and uppnK−l components with the
same ratio. This is consistent with the fact that the calculated
proton and neutron numbers are both equal to 1.5. The cou-

pling of these two components due to theI =0 K̄N interaction
helps the binding of the total systemu

K̄

3
HsT=0dl.

We have studiedppnK−, pppK−, pppnK−, 6BeK−, 9BK−,

and 11CK− with our new framework. AllK̄ nuclei that we
investigated are bound by about 100 MeV below the thresh-
old of each nucleus+K−. Except forpppK−, they are bound
below theSp threshold, which is the main decay channel.
Since their decay width is 20–40 MeV and small compared
to their binding energy, they appear to be discrete states. For
the nucleon escaping process,pppnK− is found to be un-
stable, while6BeK−, 8BeK−, and9BK− are stable. We found
that they have very different structures. Especially,pppK−

shows an interesting satellite-like structure which is com-
posed of a single proton. This proton keeps its identity and is
strongly bound by the main body.

According to our present study, we predict various deeply

boundK̄ nuclei. They have very peculiar structures with ex-
tremely high densities, which we have never seen. In the

future, suchK̄ nuclei as those investigated in the present
paper may be explored experimentally. For instance,ppnK−

can be formed from a4HesstoppedK−,nd experiment[1,17].
An experiment at KEK has shown an indication for the pre-
dicted deeply bound state[19]. The use of inflightsK−,Nd
reactions is also proposed[18]. Proton-rich exoticK̄ nuclei
are expected to be produced bysK−,p−d reactions viaL*

doorway states[2]. In the present calculation, we assume that

a bareK̄N interaction in the dense nuclear matter remains to
be that in the free space. Our predictions will not only serve
as guides for experimental search, but also provide bench-
marks with which experimental binding energies will be
compared. If deeper bound states are experimentally found,

it would mean that modification of the bareK̄N interaction
occurs in high density matter as a result of the restoration of
chiral symmetry, as observed in the case of deeply bound
pionic states[20], or that the hadronic phase is changed to a
quark phase.

Finally, we would like to mention further possibility of
the new framework of AMD. Since it can be extended

straightforwardly to the case of multiK̄’s, we can investigate

multi-K̄ nuclei, which are closely related to kaon condensa-

tion and strange quark matter[21,22]. The double-K̄ nucleus,
ppnK−K−, has been shown to be an even denser nucleus with
a doubled binding energy[23]. The success of the new
framework of AMD means that we can deal with even more
fields of physics, because coupled-channel-like calculation
can be carried out in the new version of AMD. For example,
we can studyL-S mixing in hypernuclei[24] with this new
framework.

Note added in proof. Very recently, Suzukiet al. has dis-
covered a neutral “strange tribaryon”[25]. This is interpreted
as an isobaric analog state of the predictedpppK−, whereas
the observedK− binding energy is significantly larger.

ACKNOWLEDGMENTS

One of the authors(A.D.) thanks Dr. M. Kimura for giv-
ing him graphic tools, and Dr. Y. Kanada-En’yo for fruitful
discussions on our new framework. A.D. is financially sup-
ported by the JSPS. Part of the calculations in this paper are
made using Scalar System Alpha1 in Yukawa Institute for
Theoretical Physics. This work is supported by a Grant-in-
Aid for Scientific Research of Monbukagakusho of Japan.

[1] Y. Akaishi and T. Yamazaki, Phys. Rev. C65, 044005(2002).
[2] T. Yamazaki and Y. Akaishi, Phys. Lett. B535, 70 (2002).
[3] A. Doté, H. Horiuchi, Y. Akaishi, and T. Yamazaki, Phys. Lett.

B 590, 51 (2004).

[4] A. Doté, H. Horiuchi, Y. Akaishi, and T. Yamazaki, Prog.
Theor. Phys. Suppl.146, 508 (2002).

[5] M. Iwasakiet al., Phys. Rev. Lett.78, 3067(1997); T. M. Ito
et al., Phys. Rev. C58, 2366(1998).

DOTÉ et al. PHYSICAL REVIEW C 70, 044313(2004)

044313-10



[6] A. D. Martin, Nucl. Phys.B179, 33 (1981).
[7] A. Müller-Groeling, K. Holinde, and J. Speth, Nucl. Phys.

A513, 557 (1990).
[8] T. Waas, N. Kaiser, and W. Weise, Phys. Lett. B365, 12

(1996); Phys. Lett. B379, 34 (1996); N. Kaiser, P. B. Siegel,
and W. Weise, Nucl. Phys.A594, 325 (1995); W. Weise,ibid.
A610, 35 (1996).

[9] Y. Kanada-En’yo, H. Horiuchi, and A. Ono, Phys. Rev. C52,
628 (1995); Y. Kanada-En’yo, H. Horiuchi, and A. Ono, Phys.
Rev. C 52, 647(1995); Y. Kanada-En’yo, Phys. Rev. Lett.81,
5291 (1998).

[10] H. Kamadaet al., Phys. Rev. C64, 044001(2001).
[11] A. Doté, Y. Kanada-En’yo, and H. Horiuchi, Phys. Rev. C56,

1844 (1997); A. Doté and H. Horiuchi, Prog. Theor. Phys.
103, 91 (2000); 103, 261 (2000).

[12] A. Ono, Ph.D. thesis.
[13] R. Tamagaki, Prog. Theor. Phys.39, 91 (1968).
[14] L. Tolos, A. Ramos, A. Polls, and T. T. S. Kuo, Nucl. Phys.

A690, 547 (2001).
[15] M. Lutz, Phys. Lett. B426, 12 (1998).
[16] A. Ramos and E. Oset, Nucl. Phys.A671, 481 (2000); J.

Schaffner-Bielich, V. Koch, and M. Effenberg,ibid. A669, 153
(2000); A. Cieply, E. Friedman, A. Gal, and J. Mares,ibid.
A696, 173 (2001).

[17] M. Iwasaki, K. Itahashi, A. Miyajima, H. Outa, Y. Akaishi, and
T. Yamazaki, Nucl. Instrum. Methods Phys. Res. A473, 286
(2001).

[18] T. Kishimoto, Phys. Rev. Lett.83, 4701(1999).
[19] M. Iwasaki et al., nucl-ex/0310018; M. Iwasakiet al., Phys.

Lett. B. (unpublished); T. Suzukiet al., Proc. HYP2003(un-
published).

[20] K. Suzukiet al., Phys. Rev. Lett.92, 072302(2004).
[21] D. B. Kaplan and A. E. Nelson, Phys. Lett. B175, 57 (1986).
[22] G. E. Brown, C. H. Lee, M. Rho, and V. Thorsson, Nucl. Phys.

A567, 937 (1994); G. E. Brown,ibid. A574, 217c(1994); G.
E. Brown and M. Rho, Phys. Rep.269, 333 (1996).

[23] T. Yamazaki, A. Doté, and Y. Akaishi, Phys. Lett. B587, 167
(2004).

[24] Y. Akaishi, T. Harada, S. Shinmura, and K. S. Myint, Phys.
Rev. Lett. 84, 3539 (2000); H. Nemura, Y. Akaishi, and Y.
Suzuki, ibid. 89, 142504(2002).

[25] T. Suzukiet al., Phys. Lett. B597, 263 (2004).

KAONIC NUCLEI STUDIED BASED ON A NEW… PHYSICAL REVIEW C 70, 044313(2004)

044313-11


