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Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas.
lll. Role of particle-number projection
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Starting from HFB-6, we have constructed a new mass table, referred to as HFB-8, including all the 9200
nuclei lying between the two drip lines over the rang&@ndN=8 andZ =< 120. It differs from HFB-6 in that
the wave function is projected on the exact particle number. Like HFB-6, the isoscalar effectiveMriniass
constrained to the value 0.8Dand the pairing is density independent. The rms errors of the mass-data fit is
0.635 MeV, i.e. better than almost all our previous HFB mass formulas. The extrapolations of this new mass
formula out to the drip lines do not differ significantly from the previous HFB-6 mass formula.
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[. INTRODUCTION earlier HFB models relevant for the present study. In Sec. llI
we present our formalism for particle-number restoration. In
MSec. IV we describe a new fit of the force parameters to the

. ) mass data, with the resulting parameter set being labeled
method[1-4], with the parameters of the underlying forces BSk8, and discuss its ability to predict masses and radii. A

being fitted to essentially all of the available mass data. Thi%omplete new mass table. HEB-8. is constructed and com-

papeir IS ;he tg'.rfd ”,:. a sterles 0;:;“3'85 of ]E)oss'bleﬂ:e‘cmebared with the earlier HFB-6 mass table in Sec. V. Conclu-
ments and modifications to our -2 mass formi@h the sions are drawn in Sec. V.

first of our models that was able to give a satisfactory fit to

the new data that had accumulated since the 1995 Atomic Il. SUMMARY OF THE MODEL

Mass Evaluatior{5]. The most obvious reason for making

such changes would be to improve the data fit, but there is For convenience we recall some of the essential fea_tures
also a considerable astrophysical interest in being able t8f these HFB models. They are based on conventional
generate different mass formulas even if no significant im-Skyrme forces of the form

provement in the data fit is obtained. The main point here is 1

that ther-process of stellar nucleosynthesis proceeds throughvﬁh: to(1 +xoP,) &(ryj) +ty(1 +x1PU)—2{pﬁ arj) +H.c}

the formation of nuclei that are so highly neutron rich that 2h

their properties cannot be measured but must be inferred by 1 1

extrapolating the properties of known nuclei, and there is no +1p(1 +X2Pa)ﬁpij L olryy)psj + ét3(1 +X3P,)p7(ry;)
guarantee that mass formulas giving equivalent mass-data

fits will still give the same masses out towards the neutron i

drip line. Moreover, even if they do, it is still possible that * ﬁw‘)("i o) pij X AT @)

the underlying mode(forcesg will give different results for . ) ) )
other properties relevant to theprocess(see Sec. | of the N the particle-holgph) channel, and in the particle-particle
first paper of this serieg3], referred to here as papey. | (pp) channel as-function pairing force acting between like
Predictions for the equation of state of neutron star mattepucleons treated in the full Bogoliubov framework

In the last few years we have been able to construct co
plete mass tables by the Hartree-Fock-Bogoliuljb\FB)

could likewise differ. N\

In paper I[3] we discussed the role of a possible density Uﬁpzvm{l - n(ﬁ) }5“”.), 2)

dependence of the pairing interaction, while in papeféll Po

we examined the question of the effective nucleon mass to herep=p(r) is the local density, angy, is its equilibrium

imposed on the Skyrme force. In the present paper we exte lue in symmetric infinite nuclear matt@NM). Actually, it

our HFB model by the restoration of the particle-number, only with models HFB-3], HFB-5 [4], ana HFB—7[’4]

symmetry. In Sec. Il we will recall the main features of thethat the possibility of a density dependence in the pairing
force was admitted; in all our other HFB models, HFB1],
HFB-2 [2], HFB-4 [4], and HFB-6[4] we had#=0, as will

*Electronic address: msamyn@astro.ulb.ac.be be the case in the present paper.
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An important aspect relating té-function pairing forces different for protons and neutrons, as in all our previous
concerns the cutoff to be applied to the space of singlemass models. Another feature of the HFB-2 mogdlthat
particle (s.p) states over which the force is allowed to act: we retain here is to add to the energy calculated by the HFB
both BCS and Bogoliubov calculations diverge if this spacemodel a phenomenological Wigner term of the form
is not truncated6,7]. However, making such a cutoff is not

: : : - : N-2Z\? A2
S|mp!y a co_mputatl_onal dewc_e but is rf_ither a vital part of the Ew=Voy exp{— )\<_) } + VN - Z|exp{— (_) }
physics, pairing being essentially a finite-range phenomenon. A
To represent such an interaction by-function force is thus 7)
legitimate only to the extent that all high-lying excitations
are suppressed, although how exactly the truncation of th&éhe method used to solve the HFB equations for Skyrme
pairing space should be made will depend on the precis#teractions has been presented earlier in REf.
nature of the real, finite-range pairing force. It was precisely
our ignorance on this latter point that allowed us in R&f.

to exploit the cutoff as a new degree of freedom: we found !l RESTORATION OF THE PARTICLE-NUMBER
there an optimal mass fit with the spectrum of s.p. states SYMMETRY
confined to lie in the range Mean-field approaches, such as the HFB used here, estab-
Er-ey<s& <Er+s, (3) lish an intrinsic frame of the nucleus and consequently break
<g =< ,

several symmetries of the Hamiltonian and the wave func-
whereEg is the Fermi energy of the nucleus in question, andion in the laboratory fram¢8,9]. In particular, finite nuclei
e, Is a free parameter. We shall adopt the same parametrizareak translational invariance, deformed nuclei rotational in-
tion in the present paper. variance, reflection asymmetric shapes the parity symmetry,
The mean-field states for even and odd particle numbesnd the HFB framework the particle-number symmetry.
have different structure. While they are HFB states for evermhese symmetry breakings are required to include the de-
particle number, they are one-quasiparticle excitations fosired correlations to the modelirigs multiparticle-multinole
odd particle number state$, but at the same time give rise to an admixture of
. excited states to the calculated ground state. The broken
[MF)=HFB) even particle number, ) symmetries can be restored rigogrously by projecting the
At _ wave function on the exact quantum numbers. A simpler pro-
IMF) = &;|HFB) odd particle number. (5)  cedure aims at estimating the contribution to the binding

Throughout this paper, we use the canonical basis to repr&N€9Y in a suitable approximation, and to add the resulting
sent the HFB states. The blocking of the unpaired particle i§0TTection to the binding energy. We adopted such a proce-
not calculated completely self-consistently. Doing so re-dure in some of our previous mass formulas, in particular to
quires breaking the time-reversal and axial symmetries, angStimate the center-of-magsm) correction from the recoil
adding extra fields to the Hamiltonian. This is still too costly €N€rgy, and the rotational correction within the cranking
for a large-scale mass fit as performed here. Therefore w0del [10]. As far as the cm correction is concerned, the
use an approximation, where the pairing correlations in od@PProximate prescription of Butlet al. [11] was replaced in
nuclei are determined by removing the last nuclébp The [4] by a more fundamental calculation of the re90|l energy.
occupation probability of the last occupied level is later cor-HOWeVer, so far no attempt to restore the particle-number
rected by adding the occupation contribution of the unpairedYMMetry has been undertaken in any of our HFB calcula-
nucleon. The last nucleon therefore does not contribute to théPNS related to global mass fit. The present paper is devoted
pairing (it does through the pairing tensor in the sphericalt© the projection of the wave function on the exact number of
configuration, and the corresponding level should be treated?@ticles after a variation that includes the approximate
accordingly. For the unprojected mean-field states, the occu=IPKin-Nogami projection before variationreferred to as

pation probability of the last occupied leviels PLN), and its impact on the mass fit. ,
The pair correlations included in the mean-field HFB
_(d-2vi+1

wave function|MF) are known to break the particle-number
d(k) ' (6) symmetry, as an HFB state is not an eigenstate of the
particle-number operator. While the expectation value of the

particle numbeKMF|N|MF) is constrained to have the de-

sired numbem of nucleons on the average via a Lagrange
multiplier (the chemical potentiglits dispersion

W

where the degeneradi(k) equals 2 for deformed nuclei and
2j+1 for spherical onegj being the angular momentum
quantum numbey vﬁ is the occupation probability obtained
from the HFB equations for the levilwithout the blocked
nucleon. To compensate for the approximations done for Odd<MF|(AN)2|MF> - (MF|N2|MF> _ (MF|N|MF)2: 2> UEUE-
particle number, we incorporate what is missing into the ef- k=0
fective interaction and shall allow the pairing-strength pa- )
rameterV  to be different for an odd particle number_ )

than for an even particle numbéV“;q). For example, the never vanishes in the presence of pairing. We use the stan-
pairing force between neutrons depends on whetiés  dard notation, where?=1-uZ is the occupation probability
even or odd. We also allow the pairing-strength, to be  of the levelk.
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The particle-number symmetry is restored by applying a <MF|aEa%ei¢&|MF>

. L o . _ ! — Ugog _
particle-number projection operatd" on the mean-field () = = — S = — K (D),

state[8,12—14 “ (MFIMF(¢) ~ ~ ug+u2e? ¢ ™ 7
R 13
PNMF) (13

) = —_— 9 )

(MFPTIMF) L (MFaE@ME)  ueet
which eliminates all components of the HFB state with a Ko (p) = (MFIMF(¢p) uﬁ+v§e2i¢5kk’ =~ k()
particle number different fron\. |®) is a normalized eigen- (14)

state of the particle-number operator. The particle-number
projector is given by where we introduced the shorthand notatighlF(¢))

BN = 1 Z’Td RN (10) =€&N|MF) for a MF state rotated in gauge space. We em-
“2m), ¢e ' ploy the phase conventiofu,v,)=(uy,—v,), wherek de-
notes single-particle states with positive angular momentum
The integration interval of the gauge anglecan be reduced  projection on the symmetry axis, ardthe corresponding
to [0, 7] for intrinsic wave functions with a well-defined {ine-reversed states with negative angular momentum pro-
“number parity” quantum number, i.e., for even-even sysjection on the symmetry axis. For the blocked orbital in a
tems as well as odd systems if treated in the blocking apmean-field state with odd particle number, the contractions of
proximation(see below. For practical applications, the inte- the |evelk are determined by removing the blocked nucleon,
gral over the gauge angle in the particle-number projectiojnce it should not enter the particle number projection. Of

operator has to be discretized, course, the contribution of this unpaired nucleon is added to
1 Mg R Eq. (12) afterwards[see, for instance, E¢23)]. In order to
Pa(Mg) = > @¢mN-n), (11) express the expectation value of observables in the projected
gm=1 state, it is useful to introduce normalizéddependent over-
We use the Fomenko prescriptidd5], where ¢,,=m(m laps
—-1)/Mg andMy is the number of angles in the inter\&l, 7] (MF|MF(g))e™?
used in the calculation. It can be shown that this particular O(¢,n) = (15

M —ingm,
choice of the projector removes all unwanted contaminations 8y (MF|MF(g))e™"m

of the states up tm+2M, [8]. In order to avoid certain  pased on Eq(12), the number of particles of the projected
numerical problems that arise ét=m/2 whenv; has acci-  gtate can then be written as
dentally the value 0.513] we restrict ourselves to odd values

of My, choosing finallyMy=11 for both protons and neu- . Mg

trons in all calculations. The particle number dispersion is (PIN|D) = > O(py, M Tr p(dm) ], (16)
subsequently checked to verify that the projection actually m=1

worked.

The particle-number symmetry restoration is performed inVhich reduces to the familiaiN) = 23, v if Mg=1.
two steps. First, an approximate projection before variation The particle-number projected energy depends on the
is performed within the Lipkin-Nogami prescription ¢-dependent generalized densities and is calculated by an
[13,16-19, where we take only the pairing part of the inter- integration over the spatial coordinateand the summation
action into account when calculating. In a second step, the over the two sets of gauge anglés, (q=n,p). The total
converged HFB states are then exactly projected as describ&tean-field energy can therefore be expressed as
by Eq.(10). As usually done, we constrain the HFB states to M. M
the same particle number that we project out exactly after- _ Eg 29 n
wards. In such a projection after variation approach, the main —mf~ O(¢mn’
task for the Lipkin-Nogami scheme is to enforce the pres-
ence of pair correlations in the HFB states for Mdlland Z 17

and all deformations to avoid the breakdown of pairing forwhereé’mf is the Skyrme energy density functior@btained

e eston oo o e e comaenJih ES (39 o 10 and e dependentcenisThe
PP airing energy is calculated similarly:

particle-number projectiobeforevariation[14].

nmwamfm%wﬁaﬁ@

my=1 my=1

The nuclear mass and all other observables are calculated Mg Mg
from the projected state applying a generalized Wick's theo- Epairg = > > Oo(¢0 ,MO(gh ,p)
rem. The basic contractions needed for that are givefiBy T omel my=1 " P
(MFlaja @NMF) 22 B o
pkk’(d)) = = k 2 oi g kK’ = pkk'(¢)! X drgpalr,q(r ' d)mn! d)mp)a (18)
(MF|MF(¢) Uz +p2ede
k ™ UK
(12 where
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FIG. 1. Proton(left) and neutron(right) overlaps between the 0.4
unprojected HFB wave function éf%u and its state projected on
n’ (N or Z) nucleons; diamonds refer to spherical overlaps, crosse<
to deformed ones; the full line corresponds to a Gaussian centere 0.2
on n=94 (protong or 146 (neutron$ and of standard deviatioo?
equal to the particle-number dispersion.

5pair,q(r ) d’ﬁqq- ¢qmq) = Vn-q Tria(pH]Tr{ k(4] 40 45 Z5O 5%
n p a
1o (o(r, b » b ) FIG. 2. Same as Fig. 1 for the spheri¢3h and*®In isotopes.
Y Po ) The Gaussian approximation, E@1) (thin line with dots or dashes

obtained from the spherical or deformed cpdannot describe the
(19) pronounced shell closure. FA=49 orN=51, the overlaps obtained
For the density-dependence fiy, and E; We choose the with the deformed code_ differ significantly from the over_laps cal-
mixed density obtained from Eq12), as done in most ap- cul_ated assuming _spherlcal symmetry, due to a different implemen-
plications involving the mixing of different mean-field states. tation of the blocking approximation.
This choice, however, is not unique, see the discussion in
Refs.[13,2(0 and references given therein. Jos2 level, which is equivalent to the removal of 20% of a
Decomposition of mean-field stateBhe weight of the nucleon on the last five doubly-degenerate levels of a de-
n’-nucleon wave function in the decomposition of the un-formed configuration. The weight of the wave functions of
projectedn-particle HFB statéMF,) is given by the overlap adjacent nuclei is therefore high@n the Z=49 orN=51 In
., isotopes if the spherical code is used. It is also observed that
O ={MF,|P" [MF,). (20)  the deviation between Eq21) and Eq.(20) is more pro-
. : . . nounced, due to a shell closure effect.
This quantity can be used to illustrate the particle number . consistency, the cm correction should be calculated
dispersion of the HFB states. from the particle-number projected state. Written concisely,

An example_is given_in Fig_. : fo.%dopu' where we COM- the gauge angle-dependent cm energy of the particle-number
pare the spherical configuration with the deformed equilib-

rojected state reads
rium one, which has a quadrupole momeniQf 2782 fnt. pro)
The decomposition is significantly different. In lowest order,

2
the distribution of the weights has a Gaussian sHapg EelP) = - ﬁ—[zg Pt 2 > (pron + Kk
~ 2M k>0 k>0
0. - 2 p(_(<MF|I\I|MF>—n'>2) . o
LN ex 202 (2D X(Vig-Vig+ Vi VKT)] (22)

where the width of the Gaussiarf=(MF|(AN)2MF) is de-
termined by the particle-number dispersion of the un-
projected state, Eq@). In the specific case of*Pu, the [

For odd nuclei,pyp; + ki) becomes

(d(k) — 265(K)) pic + 3p(K) (d(l) = 25,(1)) pyy + (1)
d(k) d()

Gaussian is more spread for the spherical shape, where pair-
ing is stronger due to the larger level density around the
Fermi surface.

The different blocking prescription in spherical and de- + Kk—k?”—] (23
formed configurations leads to significant variations in the
weight of neighboring nuclei in the wave function, as seen in
Fig. 2 for the spherical®in and'®In isotopes: the blocked Wwith &,(k)=1 if the blocked nucleon is on the levél (0
nucleon in the spherical case is not removed from a doublyetherwisg. The cm energyfor one nucleon specieg) is
degenerate levdlto leave it empty but removed from the then
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My TABLE I. Comparison between experimen{26—29 and the-
Ecmg= E O(qu,q)é’cm’q(r,(ﬁm)_ (24) oretical (reflection symmetric assumgénergies of shape isomers

m=1 obtained with the HFB+PLNBSk8) model using three different
. . L rotational correction prescriptions: E¢30) (modified cranking,
Finally, note that as far as the rotatlonal. correction Is CONEq (27) (mix with a=0.87), and Eq.(28) (rigid). The last two lines
cerned, we will res'grlct ourselves to' the simplified crankinggpow the rms and mean deviations, respectively, compared to ex-
formula, although _|deally th_e rotatlonal symmetry shouldperimem_ All quantities in MeV.
also be restored with projection techniques. So far, in all out

global mass fits, we adopted the rotational correction calcuy N A

exp crth mix rig

lated from the HFB states
(MF|J?|MF) 90 140 230 225 26 16 22
R (25 141 231 23 24 13 21
143 233 2.3 2.5 15 2.3
wherel is the total angular momentum operator in the intrin-92 143 235 25 23 1.2 1.9
sic frame andZ the moment of inertia. The cranking model 144 236 23 23 1.2 18
[21-23 gives this latter quantity as 145 237 29 29 0.9 19
(K|, k)2 146 238 2.6 2.4 1.4 2.0
Lor= zkk%o E +Ep (Ui = Uevi)?, (26) 147 239 1.9 1.9 0.6 15
' 93 144 237 2.7 1.7 0.7 1.3
where the summation runs over quasiparticle s.p. states, the 145 238 2.3 1.6 0.6 1.4
E, are the corresponding_quasiparticle_ energie_s, the matriy, 141 235 26 15 04 11
elezments are calculateq in the canomcal bgglg, 143 237 23 19 08 14
U are the corres_pondmg ochpatlon proba'bllmes.. 144 238 24 18 0.7 13

While the cranking model is in general quite satisfactory, ' ' ' '

a major problem in our mass-model applications arises from 145 239 2.2 18 0.6 13
the fact thata priori we do not know which nuclei will be 146 240 2.25 19 0.8 15
spherical(or quasispherical for which nuclei a numerical 147 241 1.9 13 0.1 0.9
problem arises from the 0/0 indeterminacy in E25); E 149 243 1.7 2.0 0.8 1.6
must vanish, of course, for spherical nuclei. A way around 150 244 2.0 2.2 1.0 1.7
this problem, inf[roduced in Ref24], is to take for theZ the g 144 239 24 1.4 04 1.0
linear combination 145 240 2.6 1.4 0.4 11
Tix = 8Zgr + (1 - @) Zyg, (27) 146 241 2.2 1.7 0.6 1.3
whereZ,, is the rigid-body moment of inertia 147 242 2.3 1.0 0.2 0.6
148 243 2.0 1.7 0.6 1.3
= M(2R2A+ lQ), (28) 149 244 1.6 16 0.5 13
3 2 96 145 241 2.0 1.1 0.0 0.7
in which R is the rms matter radius of the nucleld, the 146 242 18 13 0.2 08
nucleon mass, an@ the quadrupole moment. The valueaof 147 243 15 11 -0.2 0.6
was originally taken to be 0.8, but was reduced to 0.75 in 148 244 1.04 15 0.3 1.0
Ref. [25] and kept unchanged in all subsequent mass formu- 149 245 1.7 1.3 0.0 0.9
las (HFB-1-HFB-7. However, we see from Table | that with g7 147 244 2.0 0.6 -1.0 0.1

this prescription the deformation energiag;,, of highly
deformed shape isomers, i.e., their energy relative to the

ground state of the nucleus in question, are badly underestf- 0.64 1.62 0.95
mated, and can even be negative. For this reason we adopt 0.40 154 0.80
for the rotational energy the phenomenological prescription

E.ot = bEX@™®tanHc|B,)), (290  on the mass of well deformed nuclei, but also the energy of

. . ° - the shape isomers in the actinide region is used to determine
or equivalently introduce a new prescription based on theche free parametersb,c). Values of (b,c) range from
cranking value of the moment of inertia modified as foIIows:(0 6,5.5 to (0.7,3.5. For HFB-8, we adopb=0.65 andc

1 =4.5. We find that this prescription not only is equivalent to
lcrth:BIchOtk(C|BZ|)' (30)  the “mixed” prescription(27) for ground states, i.e., for
masses, and likewise avoids any problems in the spherical
Here, the dimensionless quadrupole mom@nis defined as limit, but also leads to considerable improvements in the
a function of the quadrupole momef, and the reduced estimates for the shape isomers, as can be seen from the
radiusR, by 8,=\57Q,/(3AR3). Experimental information penultimate column of Table I.
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TABLE 1l. Rms (o) and mean(e) errors(in MeV) in the pre- TABLE Ill. Skyrme-force and pairing-force parameters of BSk6
dictions of masseb obtained with the BSk6 and BSk8 forces with and BSk8.
respect to the 2135 nuclei in the 2001 AMB3] and the 2149

nuclei in the 2003 AME34]. The last two lines correspond to the BSk6 BSk8
rms and mean erro® fm) in the predictions of the 523 measured
charge radii(r,). to [MeV fm?] -2043.317 -2035.525
t; [MeV fm9] 382.127 398.8208
BSk6 BSk8 t, [MeV fm3] -173.879 —-196.0032
o(M) (2135 nucle) 0.684 0.659 ts [MeV fm?**=] 125117 12433.36
€M) (2135 nuclej 0.021 0.005 %o 0.735859 0.773828
(M) (2149 nuclej 0.666 0.635 e ~0.799153 ~0.822006
€M) (2149 nuclej 0.014 0.009 X2 ~0.358983 ~0.389640
o(re) (523 nug 0.0262 0.0250 X3 1.234779 1.309331
e(ro) (523 nug ~0.0028 0.0047 Wo [MeV fm?] 142.4 147.8
Y. 1/4 1/4
Vv, [MeV fmq] -321.2 -314.0
The rotational correction should be accompanied by corV;, [MeV fm?] -337.9 -329.8
rections for vibrational zero-point motion. To the best of ourvy [MeV fm?] -324.5 -293.0
knowledge, there exists no strategy to estimate them properly- (mev fm3] —342.4 -309.9
and at the same time include them in a global mass fit as our. 0 0

with current computing resources. Common strategies are t

calculate RPA correlationg30,31], usually restricted to 0 0
spherical nuclei, or to use the generator coordinate methoth [MeV] o 1
[32]. More research in this direction is necessary in the fu-Yw [MeV] 1.76 1.85
ture. A 700 780
Vyy [MeV] 0.58 0.66

IV. THE MASS FIT Ay 28 26

. Eq. (2 0.75
To study the impact of the PLN framework, we start from a[Ea. (271 0.65. 4.5

the BSk6 force[4], keeping some of its characteristics: an b.c [Eq. (29]

isoscalar effective masdl,/M constrained to 0.8, the sym-

metry energyJ to 28 MeV, they exponent in the; term of 2001 Atomic Mass EvaluatioPAME) of Audi and Wapstra

Eq. (1) to 1/4, and a density-independent pairing interaction33] we show results for both this data set and the 2149

(i.e., 7=0). The results of the HFB-8 mass fit of the new measured masses of the updated AME that was released and

HFB+PLN model are presented in Table I, where for com-published at the end of 20034]. Experimental and calcu-

parison we also show the results of the HFB-6 model. Sinc¢ated mass excesses are compared in Fig. 3.

the latter was fitted to the 2135 nuclei withN=8 whose The parameters of the force BSk6 and BSk8 are compared

masses had been measured and compiled in the unpublishigdTable I, while the macroscopic parameters, i.e., the pa-
rameters relating tgsemiy infinite nuclear matter calculated

4 . . for these forces, are shown in Table IV. These include, in
TABLE IV. Macroscopic parameters of the forces BSk6 and
BSk8.
— BSk6 BSk8
>
§ a, [MeV] -15.749 -15.824
— po [fm™3] 0.1575 0.1589
% - J [MeV] 28.0 28.0
) M./M 0.80 0.80
5 M, /M 0.86 0.87
. M(Exp)-M(HFBS) K, [MeV] 229 230
-4 ‘ . ‘ ‘ : ‘ ‘ Go 0.066 0.042
0 20 40 60 81% 100 120 140 160 G, 0.312 0.261
pfrmg/pO 1.82 1.70
FIG. 3. Differences between experimental and calculated mass; [MeV] 17.18 17.64
excesses as a function of the neutron nunibéor the HFB-8 mass g [MeV] 53.4 53.9
tables.
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experimental masses, as shown in Table Il. The comparison
between the HFB-6 and HFB-8 mass tables, in particular
towards the neutron drip line is further discussed in Sec. V.
Table Il also shows the rms and mean deviations between
theoretical and experimental charge radii for the 523 nuclei
listed in the 1994 compilatiof39] (for more details on the
HFB derivation of the charge radii, s¢41]). The compari-
son is given in Fig. 4. The overall agreement with experi-
ment is seen to be excellent, although some fine structure
related to local anomalies is not reproduced in all details.
Similarly, the radial charge density distribution of spherical
nuclei as obtained from the charge form factor is found to be
well reproduced even down to the center of the nucleus, see
the examples of?S and?®Pb given in Fig. 5. Such a good

FIG. 4. Comparison of the theoretical and experimental chargeagreement between theoretical and experimental densities

radii for the 523 nuclei listed in the 1994 compilation [88].

addition to the previously defined parametexs,the energy

and radii is strongly related to the adopted value of the satu-
ration densityp, (Table Ill) or equivalently the Fermi mo-
mentumkg:=1.33 fm’! given by (372py/2)Y/3. However, in
the case of densities, the excellent agreement with experi-

per nucleon at equilibrium in symmetric infinite nuclear mat-ment both in the surface and inside the nucleus must be
ter, M/M the ratio of the isovector effective nucleon mass at'®9arded as fortuitous, being completely beyond our control
density p, to the real nucleon magd, K,, the incompress- " mass fits of the kind described here.

ibility, Gy and G|, the Landau parameters as defined in Ref.
[35], prmg: the density at which neutron matter flips over into
a ferromagnetic state that has no energy minimum and would
collapse indefinitely36], ag;, the surface coefficient, ard,
the surface-stiffness coefficief87] (the meaning of5,, G,

V. EXTRAPOLATIONS

With the BSk8 Skyrme force determined as described we
S ; . constructed a complete mass table, labeled HFB-8, for the
and ppmg i critically discussed ifi9,38)). : same nuclei as were included in the HFB-6 tables, i.e., all the

‘The Skyrme parameters have changed little from the,,qei |ving between the two drip lines over the rangeZof
original BSk6 Skyrme force; the pairing strengths have in-;nyN=8 andZ<120.

stead decreased significantly, by 2% #éf, and 11% for The HFB-8 masses are compared in Figs. 6 and 7 with the
V.- For the first time we obtaiV,,<V,,, which is what HEB-6 masses.

one expects when the zero-range pairing force with different pifferences seldom exceed some 2 MeV, even close to
coupling constants for protons and neutrons, &), shall  the neutron drip line; the largest deviations are found for

simulate an attractive isospin-invariant isovector pairingopen shell nuclei. Shell effects far away from stability are

force and a repulsive isospin symmetry-breaking pairingfound to be very similar for the two mass tables. Moreover,

force originating from the Coulomb interaction. The new the HFB-8 shell gaps are very similar to the shell gaps ob-
Skyrme parametrization globally improves the prediction oftained with the HFB-6 mass formula so that they are not

208Pb

AM [MeV]

1 M(HFB-8)-M(HFB-

6)

e
‘

0 50 100

150 200

250

1 [fm]

1 [fm]

N

FIG. 5. Comparison of the theoretigdlll line) and experimen- FIG. 6. Differences between the HFB-8 and the HFB-6 masses

tal (crosses with error barscharge densities fof’S and 2°%Pb.
Experimental data are frofi#Q].

as a function of the neutron numbBr for all nuclei with 8<Z
<120 lying between the two drip lines.
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restoration of the exact particle number is done on the basis
o] of the projection technique, i.e., by projecting the wave func-
tion on the exact number of particles after a variation that
includes the approximate LN projection before variation.
Doing so, we have constructed a new Skyrme force, labeled
BSk8, the parameters of which reproduce the 2149 measured
masses with an rms error of 0.635 MeV. The final table,
. referred to as HFB-8, includes all the 9200 nuclei lying be-
e tween the two drip lines over the range HfandN=8 and
] Z=<120. The extrapolations of this new mass formula out to
10 5 0 the drip lines do not differ significantly from the previous
S [MeV] HFB-6 mass formula obtained without the restoration of the
" particle-number symmetry.
FIG. 7. Differences between the HFB-8 and the HFB-6 masses
as a function of the neutron separation enesgyor all nuclei with
8=<27=120 lying between the two drip lines.

- M(HFB;S)-M(HFﬁ-6)

&~

AM [MeV]

4

20 15
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