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Starting from HFB-6, we have constructed a new mass table, referred to as HFB-8, including all the 9200
nuclei lying between the two drip lines over the range ofZ andNù8 andZø120. It differs from HFB-6 in that
the wave function is projected on the exact particle number. Like HFB-6, the isoscalar effective massMs

* is
constrained to the value 0.80M and the pairing is density independent. The rms errors of the mass-data fit is
0.635 MeV, i.e. better than almost all our previous HFB mass formulas. The extrapolations of this new mass
formula out to the drip lines do not differ significantly from the previous HFB-6 mass formula.
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I. INTRODUCTION

In the last few years we have been able to construct com-
plete mass tables by the Hartree-Fock-Bogoliubov(HFB)
method[1–4], with the parameters of the underlying forces
being fitted to essentially all of the available mass data. This
paper is the third in a series of studies of possible refine-
ments and modifications to our HFB-2 mass formula[2], the
first of our models that was able to give a satisfactory fit to
the new data that had accumulated since the 1995 Atomic
Mass Evaluation[5]. The most obvious reason for making
such changes would be to improve the data fit, but there is
also a considerable astrophysical interest in being able to
generate different mass formulas even if no significant im-
provement in the data fit is obtained. The main point here is
that ther-process of stellar nucleosynthesis proceeds through
the formation of nuclei that are so highly neutron rich that
their properties cannot be measured but must be inferred by
extrapolating the properties of known nuclei, and there is no
guarantee that mass formulas giving equivalent mass-data
fits will still give the same masses out towards the neutron
drip line. Moreover, even if they do, it is still possible that
the underlying model(forces) will give different results for
other properties relevant to ther-process(see Sec. I of the
first paper of this series[3], referred to here as paper I).
Predictions for the equation of state of neutron star matter
could likewise differ.

In paper I[3] we discussed the role of a possible density
dependence of the pairing interaction, while in paper II[4]
we examined the question of the effective nucleon mass to be
imposed on the Skyrme force. In the present paper we extend
our HFB model by the restoration of the particle-number
symmetry. In Sec. II we will recall the main features of the

earlier HFB models relevant for the present study. In Sec. III
we present our formalism for particle-number restoration. In
Sec. IV we describe a new fit of the force parameters to the
mass data, with the resulting parameter set being labeled
BSk8, and discuss its ability to predict masses and radii. A
complete new mass table, HFB-8, is constructed and com-
pared with the earlier HFB-6 mass table in Sec. V. Conclu-
sions are drawn in Sec. VI.

II. SUMMARY OF THE MODEL

For convenience we recall some of the essential features
of these HFB models. They are based on conventional
Skyrme forces of the form

vi j
ph = t0s1 + x0Psddsr i jd + t1s1 + x1Psd

1

2"2hpij
2dsr i jd + H.c.j

+ t2s1 + x2Psd
1

"2pi j . dsr i jdpi j +
1

6
t3s1 + x3Psdrgdsr i jd

+
i

"2W0ssi + s jd . pi j 3 dsr i jdpi j s1d

in the particle-holesphd channel, and in the particle-particle
sppd channel ad-function pairing force acting between like
nucleons treated in the full Bogoliubov framework

vi j
pp = VpqF1 − hS ṙ

r0
DaGdsr i jd, s2d

wherer;rsr d is the local density, andr0 is its equilibrium
value in symmetric infinite nuclear matter(INM ). Actually, it
was only with models HFB-3[3], HFB-5 [4], and HFB-7[4]
that the possibility of a density dependence in the pairing
force was admitted; in all our other HFB models, HFB-1[1],
HFB-2 [2], HFB-4 [4], and HFB-6[4] we hadh=0, as will
be the case in the present paper.*Electronic address: msamyn@astro.ulb.ac.be
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An important aspect relating tod-function pairing forces
concerns the cutoff to be applied to the space of single-
particle (s.p.) states over which the force is allowed to act:
both BCS and Bogoliubov calculations diverge if this space
is not truncated[6,7]. However, making such a cutoff is not
simply a computational device but is rather a vital part of the
physics, pairing being essentially a finite-range phenomenon.
To represent such an interaction by ad-function force is thus
legitimate only to the extent that all high-lying excitations
are suppressed, although how exactly the truncation of the
pairing space should be made will depend on the precise
nature of the real, finite-range pairing force. It was precisely
our ignorance on this latter point that allowed us in Ref.[2]
to exploit the cutoff as a new degree of freedom: we found
there an optimal mass fit with the spectrum of s.p. states«i
confined to lie in the range

EF − «L ø «i ø EF + «L, s3d

whereEF is the Fermi energy of the nucleus in question, and
«L is a free parameter. We shall adopt the same parametriza-
tion in the present paper.

The mean-field states for even and odd particle number
have different structure. While they are HFB states for even
particle number, they are one-quasiparticle excitations for
odd particle number

uMFl = uHFBl even particle number, s4d

uMFl = âb
†uHFBl odd particle number. s5d

Throughout this paper, we use the canonical basis to repre-
sent the HFB states. The blocking of the unpaired particle is
not calculated completely self-consistently. Doing so re-
quires breaking the time-reversal and axial symmetries, and
adding extra fields to the Hamiltonian. This is still too costly
for a large-scale mass fit as performed here. Therefore we
use an approximation, where the pairing correlations in odd
nuclei are determined by removing the last nucleon[1]. The
occupation probability of the last occupied level is later cor-
rected by adding the occupation contribution of the unpaired
nucleon. The last nucleon therefore does not contribute to the
pairing (it does through the pairing tensor in the spherical
configuration), and the corresponding level should be treated
accordingly. For the unprojected mean-field states, the occu-
pation probability of the last occupied levelk is

wk
2 =

„dskd − 2…vk
2 + 1

dskd
, s6d

where the degeneracydskd equals 2 for deformed nuclei and
2j +1 for spherical ones(j being the angular momentum
quantum number); vk

2 is the occupation probability obtained
from the HFB equations for the levelk without the blocked
nucleon. To compensate for the approximations done for odd
particle number, we incorporate what is missing into the ef-
fective interaction and shall allow the pairing-strength pa-
rameterVpq to be different for an odd particle numbersVpq

− d
than for an even particle numbersVpq

+ d. For example, the
pairing force between neutrons depends on whetherN is
even or odd. We also allow the pairing-strengthVpq to be

different for protons and neutrons, as in all our previous
mass models. Another feature of the HFB-2 model[2] that
we retain here is to add to the energy calculated by the HFB
model a phenomenological Wigner term of the form

EW = VW expH− lSN − Z

A
D2J + VW8 uN − ZuexpH− S A

A0
D2J .

s7d

The method used to solve the HFB equations for Skyrme
interactions has been presented earlier in Ref.[1].

III. RESTORATION OF THE PARTICLE-NUMBER
SYMMETRY

Mean-field approaches, such as the HFB used here, estab-
lish an intrinsic frame of the nucleus and consequently break
several symmetries of the Hamiltonian and the wave func-
tion in the laboratory frame[8,9]. In particular, finite nuclei
break translational invariance, deformed nuclei rotational in-
variance, reflection asymmetric shapes the parity symmetry,
and the HFB framework the particle-number symmetry.
These symmetry breakings are required to include the de-
sired correlations to the modeling(as multiparticle-multihole
states), but at the same time give rise to an admixture of
excited states to the calculated ground state. The broken
symmetries can be restored rigorously by projecting the
wave function on the exact quantum numbers. A simpler pro-
cedure aims at estimating the contribution to the binding
energy in a suitable approximation, and to add the resulting
correction to the binding energy. We adopted such a proce-
dure in some of our previous mass formulas, in particular to
estimate the center-of-mass(cm) correction from the recoil
energy, and the rotational correction within the cranking
model [10]. As far as the cm correction is concerned, the
approximate prescription of Butleret al. [11] was replaced in
[4] by a more fundamental calculation of the recoil energy.
However, so far no attempt to restore the particle-number
symmetry has been undertaken in any of our HFB calcula-
tions related to global mass fit. The present paper is devoted
to the projection of the wave function on the exact number of
particles after a variation that includes the approximate
Lipkin-Nogami projection before variation(referred to as
PLN), and its impact on the mass fit.

The pair correlations included in the mean-field HFB
wave functionuMFl are known to break the particle-number
symmetry, as an HFB state is not an eigenstate of the
particle-number operator. While the expectation value of the

particle numberkMFuN̂uMFl is constrained to have the de-
sired numberN of nucleons on the average via a Lagrange
multiplier (the chemical potential), its dispersion

kMFusDN̂d2uMFl = kMFuN̂2uMFl − kMFuN̂uMFl2 = 2o
k+0

uk
2vk

2,

s8d

never vanishes in the presence of pairing. We use the stan-
dard notation, wherevk

2=1−uk
2 is the occupation probability

of the levelk.
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The particle-number symmetry is restored by applying a

particle-number projection operatorP̂N on the mean-field
state[8,12–14]

uFl =
P̂NuMFl

kMFuP̂NuMFl1/2
s9d

which eliminates all components of the HFB state with a
particle number different fromN. uFl is a normalized eigen-
state of the particle-number operator. The particle-number
projector is given by

P̂N =
1

2p
E

0

2p

dfeifsN̂−Nd. s10d

The integration interval of the gauge anglef can be reduced
to f0,pg for intrinsic wave functions with a well-defined
“number parity” quantum number, i.e., for even-even sys-
tems as well as odd systems if treated in the blocking ap-
proximation(see below). For practical applications, the inte-
gral over the gauge angle in the particle-number projection
operator has to be discretized,

PnsMgd =
1

Mg
o
m=1

Mg

eifmsN̂−nd. s11d

We use the Fomenko prescription[15], where fm=psm
−1d /Mg andMg is the number of angles in the intervalf0,pg
used in the calculation. It can be shown that this particular
choice of the projector removes all unwanted contaminations
of the states up ton±2Mg [8]. In order to avoid certain
numerical problems that arise atf=p /2 whenvk

2 has acci-
dentally the value 0.5[13] we restrict ourselves to odd values
of Mg, choosing finallyMg=11 for both protons and neu-
trons in all calculations. The particle number dispersion is
subsequently checked to verify that the projection actually
worked.

The particle-number symmetry restoration is performed in
two steps. First, an approximate projection before variation
is performed within the Lipkin-Nogami prescription
[13,16–19], where we take only the pairing part of the inter-
action into account when calculatingl2. In a second step, the
converged HFB states are then exactly projected as described
by Eq.(10). As usually done, we constrain the HFB states to
the same particle number that we project out exactly after-
wards. In such a projection after variation approach, the main
task for the Lipkin-Nogami scheme is to enforce the pres-
ence of pair correlations in the HFB states for allN and Z
and all deformations to avoid the breakdown of pairing for
small level densities. This two-step approach was shown to
be an excellent approximation to the exact self-consistent
particle-number projectionbeforevariation [14].

The nuclear mass and all other observables are calculated
from the projected state applying a generalized Wick’s theo-
rem. The basic contractions needed for that are given by[13]

rkk8sfd ;
kMFuak

†ak8e
ifN̂uMFl

kMFuMFsfd
=

vk
2e2if

uk
2 + vk

2e2ifdkk8 = rk̄k̄8sfd,

s12d

kkk̄8sfd ;
kMFuak

†a
k̄8

†
eifN̂uMFl

kMFuMFsfd
=

− ukvk

uk
2 + vk

2e2ifdkk8 = − kk̄k8sfd,

s13d

k̃kk̄8sfd ;
kMFuakak̄8e

ifN̂uMFl

kMFuMFsfd
=

ukvke
2if

uk
2 + vk

2e2ifdkk8 = − k̃k̄k8sfd,

s14d

where we introduced the shorthand notationuMFsfdl
;eifN̂uMFl for a MF state rotated in gauge space. We em-
ploy the phase conventionsuk̄,vk̄d=suk,−vkd, where k de-
notes single-particle states with positive angular momentum

projection on the symmetry axis, andk̄ the corresponding
time-reversed states with negative angular momentum pro-
jection on the symmetry axis. For the blocked orbital in a
mean-field state with odd particle number, the contractions of
the levelk are determined by removing the blocked nucleon,
since it should not enter the particle number projection. Of
course, the contribution of this unpaired nucleon is added to
Eq. (12) afterwards[see, for instance, Eq.(23)]. In order to
express the expectation value of observables in the projected
state, it is useful to introduce normalizedf-dependent over-
laps

Osf,nd ;
kMFuMFsfdle−inf

om=1
Mg kMFuMFsfmdle−infm

. s15d

Based on Eq.(12), the number of particles of the projected
state can then be written as

kFuN̂uFl = o
m=1

Mg

Osfm,ndTrfrsfmdg, s16d

which reduces to the familiarkN̂l=2ok.0vk
2 if Mg=1.

The particle-number projected energy depends on the
f-dependent generalized densities and is calculated by an
integration over the spatial coordinatesr and the summation
over the two sets of gauge anglesfm

q sq=n,pd. The total
mean-field energy can therefore be expressed as

Emf = o
mn=1

Mg

o
mp=1

Mg

Osfmn

n ,ndOsfmp

p ,pd E drEmfsr ,fmn

n ,fmp

p d,

s17d

whereEmf is the Skyrme energy density functional(obtained
with Eq. (3a) of [10] and thef-dependent densities). The
pairing energy is calculated similarly:

Epair,q = o
mn=1

Mg

o
mp=1

Mg

Osfmn

n ,ndOsfmp

p ,pd

3E drEpair,qsr ,fmn

n ,fmp

p d, s18d

where
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Epair,qsr ,fmq

q ,fmq

q d = Vpq TrfksfqdgTrfk̃sfqdg

3 S1 − hF „rsr ,fmn

n ,fmp

p
…

r0
GaD .

s19d

For the density-dependence inEmf and Epair we choose the
mixed density obtained from Eq.(12), as done in most ap-
plications involving the mixing of different mean-field states.
This choice, however, is not unique, see the discussion in
Refs.[13,20] and references given therein.

Decomposition of mean-field states:The weight of the
n8-nucleon wave function in the decomposition of the un-
projectedn-particle HFB stateuMFnl is given by the overlap

On8 = kMFnuP̂n8uMFnl. s20d

This quantity can be used to illustrate the particle number
dispersion of the HFB states.

An example is given in Fig. 1 for240Pu, where we com-
pare the spherical configuration with the deformed equilib-
rium one, which has a quadrupole moment ofQ=2782 fm2.
The decomposition is significantly different. In lowest order,
the distribution of the weights has a Gaussian shape[19]

On8 .
2

Î2ps2
expS−

skMFuN̂uMFl − n8d2

2s2 D , s21d

where the width of the Gaussians2=kMFusDN̂d2uMFl is de-
termined by the particle-number dispersion of the un-
projected state, Eq.(8). In the specific case of240Pu, the
Gaussian is more spread for the spherical shape, where pair-
ing is stronger due to the larger level density around the
Fermi surface.

The different blocking prescription in spherical and de-
formed configurations leads to significant variations in the
weight of neighboring nuclei in the wave function, as seen in
Fig. 2 for the spherical99In and 100In isotopes: the blocked
nucleon in the spherical case is not removed from a doubly-
degenerate level(to leave it empty) but removed from the

g9/2 level, which is equivalent to the removal of 20% of a
nucleon on the last five doubly-degenerate levels of a de-
formed configuration. The weight of the wave functions of
adjacent nuclei is therefore higher(in the Z=49 orN=51 In
isotopes) if the spherical code is used. It is also observed that
the deviation between Eq.(21) and Eq.(20) is more pro-
nounced, due to a shell closure effect.

For consistency, the cm correction should be calculated
from the particle-number projected state. Written concisely,
the gauge angle-dependent cm energy of the particle-number
projected state reads

Ecmsfd = −
"2

2MF2o
k.0

rkkDkk + 2 o
k,l.0

srkkrll + kkk̄k̃ll̄d

3s=kl · =kl
* + =kl̄ · =

kl̄

* dG . s22d

For odd nuclei,srkkrll +kkk̄k̃ll̄d becomes

F „dskd − 2dbskd…rkk + dbskd
dskd

„dsld − 2dbsld…rll + dbsld
dsld

+ kkk̄k̃ll̄G , s23d

with dbskd=1 if the blocked nucleon is on the levelk (0
otherwise). The cm energy(for one nucleon speciesq) is
then

FIG. 1. Proton(left) and neutron(right) overlaps between the
unprojected HFB wave function of240Pu and its state projected on
n8 (N or Z) nucleons; diamonds refer to spherical overlaps, crosses
to deformed ones; the full line corresponds to a Gaussian centered
on n=94 (protons) or 146 (neutrons) and of standard deviations2

equal to the particle-number dispersion.

FIG. 2. Same as Fig. 1 for the spherical99In and100In isotopes.
The Gaussian approximation, Eq.(21) (thin line with dots or dashes
obtained from the spherical or deformed code) cannot describe the
pronounced shell closure. ForZ=49 orN=51, the overlaps obtained
with the deformed code differ significantly from the overlaps cal-
culated assuming spherical symmetry, due to a different implemen-
tation of the blocking approximation.
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Ecm,q = o
m=1

Mg

Osfm,qdEcm,qsr ,fmd. s24d

Finally, note that as far as the rotational correction is con-
cerned, we will restrict ourselves to the simplified cranking
formula, although ideally the rotational symmetry should
also be restored with projection techniques. So far, in all our
global mass fits, we adopted the rotational correction calcu-
lated from the HFB states

Erot =
kMFuĴ2uMFl

2I , s25d

whereĴ is the total angular momentum operator in the intrin-
sic frame andI the moment of inertia. The cranking model
[21–23] gives this latter quantity as

Icr = 2 o
k,k8.0

ukkuJxuk8lu2

Ek + Ek8
sukvk8 − uk8vkd2, s26d

where the summation runs over quasiparticle s.p. states, the
Ek are the corresponding quasiparticle energies, the matrix
elements are calculated in the canonical basis, andvk

2=1
−uk

2 are the corresponding occupation probabilities.
While the cranking model is in general quite satisfactory,

a major problem in our mass-model applications arises from
the fact thata priori we do not know which nuclei will be
spherical(or quasispherical), for which nuclei a numerical
problem arises from the 0/0 indeterminacy in Eq.(25); Erot
must vanish, of course, for spherical nuclei. A way around
this problem, introduced in Ref.[24], is to take for theI the
linear combination

Imix = aIcr + s1 − adIrig, s27d

whereIrig is the rigid-body moment of inertia

Irig =
M

3
S2R2A +

1

2
QD , s28d

in which R is the rms matter radius of the nucleus,M the
nucleon mass, andQ the quadrupole moment. The value ofa
was originally taken to be 0.8, but was reduced to 0.75 in
Ref. [25] and kept unchanged in all subsequent mass formu-
las (HFB-1–HFB-7). However, we see from Table I that with
this prescription the deformation energiesDEiso of highly
deformed shape isomers, i.e., their energy relative to the
ground state of the nucleus in question, are badly underesti-
mated, and can even be negative. For this reason we adopt
for the rotational energy the phenomenological prescription

Erot = bErot
cranktanhscub2ud, s29d

or equivalently introduce a new prescription based on the
cranking value of the moment of inertia modified as follows:

Icrth =
1

b
Icr cothscub2ud. s30d

Here, the dimensionless quadrupole momentb2 is defined as
a function of the quadrupole momentQ2 and the reduced
radiusR0 by b2=Î5pQ2/ s3AR0

2d. Experimental information

on the mass of well deformed nuclei, but also the energy of
the shape isomers in the actinide region is used to determine
the free parameterssb,cd. Values of sb,cd range from
(0.6,5.5) to (0.7,3.5). For HFB-8, we adoptb=0.65 andc
=4.5. We find that this prescription not only is equivalent to
the “mixed” prescription(27) for ground states, i.e., for
masses, and likewise avoids any problems in the spherical
limit, but also leads to considerable improvements in the
estimates for the shape isomers, as can be seen from the
penultimate column of Table I.

TABLE I. Comparison between experimental[26–29] and the-
oretical (reflection symmetric assumed) energies of shape isomers
obtained with the HFB+PLN(BSk8) model using three different
rotational correction prescriptions: Eq.(30) (modified cranking),
Eq. (27) (mix with a=0.87), and Eq.(28) (rigid). The last two lines
show the rms and mean deviations, respectively, compared to ex-
periment. All quantities in MeV.

Z N A exp crth mix rig

90 140 230 2.25 2.6 1.6 2.2

141 231 2.3 2.4 1.3 2.1

143 233 2.3 2.5 1.5 2.3

92 143 235 2.5 2.3 1.2 1.9

144 236 2.3 2.3 1.2 1.8

145 237 2.2 2.2 0.9 1.9

146 238 2.6 2.4 1.4 2.0

147 239 1.9 1.9 0.6 1.5

93 144 237 2.7 1.7 0.7 1.3

145 238 2.3 1.6 0.6 1.4

94 141 235 2.6 1.5 0.4 1.1

143 237 2.3 1.9 0.8 1.4

144 238 2.4 1.8 0.7 1.3

145 239 2.2 1.8 0.6 1.3

146 240 2.25 1.9 0.8 1.5

147 241 1.9 1.3 0.1 0.9

149 243 1.7 2.0 0.8 1.6

150 244 2.0 2.2 1.0 1.7

95 144 239 2.4 1.4 0.4 1.0

145 240 2.6 1.4 0.4 1.1

146 241 2.2 1.7 0.6 1.3

147 242 2.3 1.0 −0.2 0.6

148 243 2.0 1.7 0.6 1.3

149 244 1.6 1.6 0.5 1.3

96 145 241 2.0 1.1 0.0 0.7

146 242 1.8 1.3 0.2 0.8

147 243 1.5 1.1 −0.2 0.6

148 244 1.04 1.5 0.3 1.0

149 245 1.7 1.3 0.0 0.9

97 147 244 2.0 0.6 −1.0 0.1

s 0.64 1.62 0.95

e 0.40 1.54 0.80
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The rotational correction should be accompanied by cor-
rections for vibrational zero-point motion. To the best of our
knowledge, there exists no strategy to estimate them properly
and at the same time include them in a global mass fit as ours
with current computing resources. Common strategies are to
calculate RPA correlations[30,31], usually restricted to
spherical nuclei, or to use the generator coordinate method
[32]. More research in this direction is necessary in the fu-
ture.

IV. THE MASS FIT

To study the impact of the PLN framework, we start from
the BSk6 force[4], keeping some of its characteristics: an
isoscalar effective massMs

* /M constrained to 0.8, the sym-
metry energyJ to 28 MeV, theg exponent in thet3 term of
Eq. (1) to 1/4, and a density-independent pairing interaction
(i.e., h=0). The results of the HFB-8 mass fit of the new
HFB+PLN model are presented in Table II, where for com-
parison we also show the results of the HFB-6 model. Since
the latter was fitted to the 2135 nuclei withZ,Nù8 whose
masses had been measured and compiled in the unpublished

2001 Atomic Mass Evaluation(AME) of Audi and Wapstra
[33] we show results for both this data set and the 2149
measured masses of the updated AME that was released and
published at the end of 2003[34]. Experimental and calcu-
lated mass excesses are compared in Fig. 3.

The parameters of the force BSk6 and BSk8 are compared
in Table III, while the macroscopic parameters, i.e., the pa-
rameters relating to(semi-) infinite nuclear matter calculated
for these forces, are shown in Table IV. These include, in

TABLE III. Skyrme-force and pairing-force parameters of BSk6
and BSk8.

BSk6 BSk8

t0 fMeV fm3g −2043.317 −2035.525

t1 fMeV fm5g 382.127 398.8208

t2 fMeV fm5g −173.879 −196.0032

t3 fMeV fm3+3gg 12511.7 12433.36

x0 0.735859 0.773828

x1 −0.799153 −0.822006

x2 −0.358983 −0.389640

x3 1.234779 1.309331

W0 fMeV fm5g 142.4 147.8

g 1/4 1/4

Vn
+ fMeV fm3g −321.2 −314.0

Vn
− fMeV fm3g −337.9 −329.8

Vp
+ fMeV fm3g −324.5 −293.0

Vp
− fMeV fm3g −342.4 −309.9

h 0 0

a 0 0

«L [MeV] 17 17

VW [MeV] 1.76 1.85

l 700 780

VW8 [MeV] 0.58 0.66

A0 28 26

a [Eq. (27)] 0.75

b,c [Eq. (29)] 0.65, 4.5

TABLE IV. Macroscopic parameters of the forces BSk6 and
BSk8.

BSk6 BSk8

av [MeV] −15.749 −15.824

r0 ffm−3g 0.1575 0.1589

J [MeV] 28.0 28.0

Ms
* /M 0.80 0.80

Mv
* /M 0.86 0.87

Kv [MeV] 229 230

G0 0.066 0.042

G08 0.312 0.261

rfrmg/r0 1.82 1.70

asf [MeV] 17.18 17.64

Q [MeV] 53.4 53.9

FIG. 3. Differences between experimental and calculated mass
excesses as a function of the neutron numberN for the HFB-8 mass
tables.

TABLE II. Rms ssd and meansēd errors(in MeV) in the pre-
dictions of massesM obtained with the BSk6 and BSk8 forces with
respect to the 2135 nuclei in the 2001 AME[33] and the 2149
nuclei in the 2003 AME[34]. The last two lines correspond to the
rms and mean errors(in fm) in the predictions of the 523 measured
charge radiisrcd.

BSk6 BSk8

ssMd (2135 nuclei) 0.684 0.659

ēsMd (2135 nuclei) 0.021 0.005

ssMd (2149 nuclei) 0.666 0.635

ēsMd (2149 nuclei) 0.014 0.009

ssrcd (523 nuc) 0.0262 0.0250

ēsrcd (523 nuc) −0.0028 0.0047
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addition to the previously defined parameters,av, the energy
per nucleon at equilibrium in symmetric infinite nuclear mat-
ter,Mv

* /M the ratio of the isovector effective nucleon mass at
densityr0 to the real nucleon massM, Kv, the incompress-
ibility, G0 andG08 the Landau parameters as defined in Ref.
[35], rfrmg, the density at which neutron matter flips over into
a ferromagnetic state that has no energy minimum and would
collapse indefinitely[36], asf, the surface coefficient, andQ,
the surface-stiffness coefficient[37] (the meaning ofG0, G08,
andrfrmg is critically discussed in[9,38]).

The Skyrme parameters have changed little from the
original BSk6 Skyrme force; the pairing strengths have in-
stead decreased significantly, by 2% forVpn and 11% for
Vpp. For the first time we obtainVpp,Vpn, which is what
one expects when the zero-range pairing force with different
coupling constants for protons and neutrons, Eq.(2), shall
simulate an attractive isospin-invariant isovector pairing
force and a repulsive isospin symmetry-breaking pairing
force originating from the Coulomb interaction. The new
Skyrme parametrization globally improves the prediction of

experimental masses, as shown in Table II. The comparison
between the HFB-6 and HFB-8 mass tables, in particular
towards the neutron drip line is further discussed in Sec. V.

Table II also shows the rms and mean deviations between
theoretical and experimental charge radii for the 523 nuclei
listed in the 1994 compilation[39] (for more details on the
HFB derivation of the charge radii, see[41]). The compari-
son is given in Fig. 4. The overall agreement with experi-
ment is seen to be excellent, although some fine structure
related to local anomalies is not reproduced in all details.
Similarly, the radial charge density distribution of spherical
nuclei as obtained from the charge form factor is found to be
well reproduced even down to the center of the nucleus, see
the examples of32S and208Pb given in Fig. 5. Such a good
agreement between theoretical and experimental densities
and radii is strongly related to the adopted value of the satu-
ration densityr0 (Table III) or equivalently the Fermi mo-
mentumkF=1.33 fm−1 given by s3p2r0/2d1/3. However, in
the case of densities, the excellent agreement with experi-
ment both in the surface and inside the nucleus must be
regarded as fortuitous, being completely beyond our control
in mass fits of the kind described here.

V. EXTRAPOLATIONS

With the BSk8 Skyrme force determined as described we
constructed a complete mass table, labeled HFB-8, for the
same nuclei as were included in the HFB-6 tables, i.e., all the
nuclei lying between the two drip lines over the range ofZ
andNù8 andZø120.

The HFB-8 masses are compared in Figs. 6 and 7 with the
HFB-6 masses.

Differences seldom exceed some 2 MeV, even close to
the neutron drip line; the largest deviations are found for
open shell nuclei. Shell effects far away from stability are
found to be very similar for the two mass tables. Moreover,
the HFB-8 shell gaps are very similar to the shell gaps ob-
tained with the HFB-6 mass formula so that they are not

FIG. 4. Comparison of the theoretical and experimental charge
radii for the 523 nuclei listed in the 1994 compilation of[39].

FIG. 5. Comparison of the theoretical(full line) and experimen-
tal (crosses with error bars) charge densities for32S and 208Pb.
Experimental data are from[40].

FIG. 6. Differences between the HFB-8 and the HFB-6 masses
as a function of the neutron numberN for all nuclei with 8øZ
ø120 lying between the two drip lines.
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shown here. These results once again confirm the relative
stability of the HFB mass predictions with respect to differ-
ent parametrizations or frameworks, as already emphasized
in [4].

VI. CONCLUSIONS

The pairing correlations included in the HFB wave func-
tion are known to break the particle-number symmetry. The

restoration of the exact particle number is done on the basis
of the projection technique, i.e., by projecting the wave func-
tion on the exact number of particles after a variation that
includes the approximate LN projection before variation.
Doing so, we have constructed a new Skyrme force, labeled
BSk8, the parameters of which reproduce the 2149 measured
masses with an rms error of 0.635 MeV. The final table,
referred to as HFB-8, includes all the 9200 nuclei lying be-
tween the two drip lines over the range ofZ andNù8 and
Zø120. The extrapolations of this new mass formula out to
the drip lines do not differ significantly from the previous
HFB-6 mass formula obtained without the restoration of the
particle-number symmetry.
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