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The shell correction method is revisited. Contrary to the traditional Strutinsky method, the shell energy is
evaluated by an averaging over the number of particles and not over the single-particle energies, which is more
consistent with the definition of the macroscopic energy. In addition, the smooth background is subtracted
before averaging the sum of single-particle energies, which significantly improves the plateau condition and
allows one to apply the method also for nuclei close to the proton or neutron drip lines. A significant difference
between the shell correction energy obtained with the traditional and the new method is found in particular for
highly degenerated single-particle spectra(as, e.g., in magic nuclei) while for deformed nuclei(where the
degeneracy is lifted to a large extent) both estimates are close, except in the region of super or hyper-deformed
states.
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I. INTRODUCTION

The macroscopic-microscopic method of evaluating the
potential energy surfaces and binding energies of nuclei was
proposed in the papers of Strutinsky[1] and Myers and
Świątecki [2]. Despite the tremendous progress of self-
consistent models to nuclear structure the macroscopic-
microscopic method remains one of the most important tools.
In such an approach the microscopic energy corrections are
added to the macroscopic part of the nuclear binding energy
described by the liquid drop model or other macroscopic
methods. The microscopic part consists of shell and pairing
energies. The prescription for the evaluation of the shell en-
ergy by smoothing the single-particle energy spectra was first
given in Ref. [1] and then improved in Refs.[3,4]. This
Strutinsky method of averaging over single-particle energies
is still widely used up to now, in spite of its known problems
which appear for mean-field potentials of finite depth as well
as for nuclei close to the proton or neutron drip lines.

In the 1970s(see Refs.[5–10] and related papers) Strutin-
sky and Ivanyuk made an attempt to replace the original
Strutinsky method of evaluating the smooth energy compo-
nent by an averaging in the space of particle numbers
(N-space) that should be more consistent with the macro-
scopic part of the binding energy which is usually evaluated
in a liquid-drop type approach. The parameters of such mac-
roscopic models are usually obtained by a least-square fit to
nuclear masses which corresponds to an averaging in the
N-space(e.g. in Ref.[11]). In Refs.[5,7] the smooth com-
ponent of the total single-particle energy was approximated
by a polynomial inN-space with coefficients that were de-
termined by a least-square fit. It was shown in Refs.[8,10]
that the shell correction energies obtained by these two types
of averaging procedures are not the same. Significant differ-
ences appear for highly degenerated single-particle spectra,
as, e.g., in spherical nuclei. The method by Ivanyuk and
Strutinsky of finding the smooth energy developed in Refs.
[5,7,8,10] has reached sufficient accuracy to be used in prac-
tical calculations. It was, however, never widely used, prob-
ably because of its complexity.

Another way of separating out the smooth part of the sum
of single-particle energies can be found in Ref.[12], where

the liquid-drop type asymptotic expansion of the total single-
particle energy in powersA1/3 was used. Unfortunately this
method of evaluating the average energy was not precise
enough to be used in practice.

In the present paper a different method of evaluating the
shell energy is proposed. The smooth component of the total
single-particle energy is obtained by folding the sum of
single-particle energies in theN-space with a modified
Gauss function as described in the Appendix. In addition, an
average energy background as obtained by the harmonic os-
cillator energy sum rule(see Sec. II A below) is subtracted
before performing the folding, which significantly increases
the precision of the method. Our new prescription for the
shell correction energy gives results close to those obtained
in the Ivanyuk and Strutinsky approach of Refs.[8,10] and is
extremely simple to use.

One should also mention that the shell energy evaluated
with the present model conserves exactly the given number
of particles, and not only on the average, as was the case in
the traditional Strutinsky method.

II. THEORETICAL MODEL

In the macroscopic-microscopic method of evaluating po-
tential energy one decomposes the nuclear binding energy
into three parts

EsZ,A;defd = EmacsZ,A;defd + EshellsZ,A;defd

+ EpairsZ,A;defd, s1d

where Z and A are the charge and mass numbers, respec-
tively. The macroscopic part,Emac, depends on the deforma-
tion of nucleus and is usually evaluated in the liquid drop or
some other more sophisticated model. The microscopic part
of the energy consists of the shell and the pairing energies.
The pairing energyEpair is usually evaluated in the(projected
or not) BCS formalism(see, e.g.,[3] or [4]), while the shell
energyEshell is the sum of the proton and neutron contribu-
tions
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EshellsZ,A;defd = Eshell
p sZ;defd + Eshell

n sA − Z;defd. s2d

The shell correction energy of one kind of particles is equal
to the difference

Eshell= o
i=1

N
ei − ẼsNd, s3d

whereN is the number of particle in the system andẼ is the
smooth part of the total single-particle energy, wheresmooth
means slowly varying with the particle numberN. In the
following two different methods of evaluating of this smooth
part will be presented.

A. Harmonic oscillator energy sum rule

The eigenenergies of the spherical harmonic oscillator

en = sn + 3
2d"v0 s4d

are strongly degenerated

degn = 1
2sn + 1dsn + 2d 3 2. s5d

Heren=0,1,2, . . . is themain quantum number andv0 is the
harmonic oscillator frequency. The factor 2 in the above
equation is due to the two possible orientations of the spin.

According to Ref.[13] the degeneracy of the main har-
monic oscillator shell can be approximated by

degn < Sn +
3

2
D2

= S en

"v0
D2

. s6d

The total number of particlesN occupying all shells up to
n=N is

NsNd = o
n=0

N

degn =
1

3
sN + 1dsN + 2dsN + 3d. s7d

It is easy to show[13] that for largeN values the following
approximation holds:

NsNd <
1

3
SN +

3

2
D3

=
1

3
S eN

"v0
D3

. s8d

The last equation can serve as the average relation between
the single-particle energye and the number of particles
which occupy the levels with energy smaller or equal toe,

Nsed =
1

3
S e

"v0
D3

, s9d

or

esNd = s3Nd1/3"v0. s10d

Equation(9) leads to the known expression for the average
density of the harmonic oscillator single-particle levels

g =
] N
] e

=
e2

s"v0d3 =
s3Nd2/3

"v0
. s11d

The sumE of single-particle energies of all occupied levels
is

E = o
n=0

N

endegn = "v0o
n=0

N Sn +
3

2
Dsn + 1dsn + 2d s12d

and can be approximated by the integral

Ē =E
0

N
esN8ddN8. s13d

Inserting here Eq.(10) one obtains the following energy sum
rule:

Ē ; So
i=1

N
eiD =

1

4
s3Nd4/3"v0. s14d

The sum of energies of nucleons which occupy the harmonic
oscillator levels is thus proportional to the4/3 power of the
total number of particles in the system.

A more accurate estimate than the above one was made in
Ref. [13]:

Ē = f 1
4s3N d4/3 + 1

8s3N d2/3g"v0. s15d

The term proportional toN 2/3 is important in the light sys-
tems but in the heavier nuclei it can be neglected as much
smaller than the leadingN 4/3 term.

In the top l.h.s. part of Fig. 1 the sumE of single-particle

energies(solid line) and its approximationĒ (dashed line) by
Eq. (14) are shown as function of the number of particlesN.
The deviationDE between both lines is hardly visible on this
scale, so we present it separately in the top r.h.s. part of Fig.
1. The coefficient in front of the termN 4/3 was obtained by
a least square fit and turns out to be very close to the value of
the approximate expression(14) which is exact in the limit
N→`. A strong shell structure corresponding to the har-
monic oscillator magic numbers:Nn=2, 8, 20, 40, 70, 112,
168, 240, 330, 440,… is observed. Using Eq.(9) one can
obtain the approximate distance between the harmonic oscil-
lator major shells as function of the particle number

N n+1
1/3 − N n

1/3 =
1

31/3

en+1 − en

"v0
= 3−1/3. s16d

The deviationDE of the energy sum from its approximate
behavior as function ofN1/3 is presented in the bottom l.h.s.
part of Fig. 1. It is seen that the distance between closed
shells is nearly constant and roughly equal toDsN 1/3d
<0.7 which is the estimate, Eq.(16). It is worth noticing that
the same data plotted as function of the single-particle ener-
giese shows a structure(bottom r.h.s. of Fig. 1) which seems
hard to interpret at first sight. Obviously the shell structure of
the harmonic oscillator is more visible when one plotsDE as
function of N 1/3.

The relation(14) was obtained assuming that the single-
particle energies are measured with respect to energy zero.
Assuming that the minimum of the harmonic oscillator po-
tential corresponds toV0 (i.e., ei →ei +V0) one can get the
more general relation
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Ē = So
i=1

N
eiD = aN 4/3 + V0N. s17d

We have verified(numerically) that the above harmonic
oscillator energy sum rule is universal and not only fulfilled
by the spectra of the modified harmonic oscillator(Nilsson
potential) or other finite depth model mean-field potentials
(e.g., Saxon-Woods) but also by the single-particle spectra
obtained self-consistently for the Hamiltonians associated
with the Gogny or Skyrme effective forces.

A typical deviation of the sum of the single-particle ener-
gies (with respect to the bottom of the effective mean-field
potential) from the estimate(17) is of the order of a few
promilles for heavier nuclei. In Fig. 2 the sum of the single-
particle energies(l.h.s. column) and its deviationsDEd (r.h.s.
column) from the average trend, Eq.(17), is plotted as func-
tion of Z4/3 for protons (top row) and N 4/3 for neutrons
(bottom row). The single particle energies of spherical208Pb
were obtained self-consistently using the Hartree-Fock ap-
proximation to the Gogny Hamiltonian with the D1S force
[14]. The parametersa andV0 of Eq. (17) given in Fig. 2 are
obtained by a least square fit. The arrows point to the Fermi-
level positions and the dotted vertical lines mark the end of
the bound state spectrum. A very pronounced shell structure
of the proton and neutron spectra is visible in the r.h.s. plots.

B. Average of the sum of single-particle energies

Let us define a discrete sample of data,Sn, as the differ-
ence between the sum of the lowest available single-particle

energies of then fermion system and the corresponding

background energy,Ēsnd, obtained using the harmonic oscil-
lator sum rule, Eq.(17),

Sn ; o
i=1

n

ei − Ēsnd = o
i=1

n

ei − an4/3 − V0n. s18d

The parametersa andV0 are determined by minimizing the
square deviation between the single-particle energy sum and

Ē,

o
n=1

Nmax

Sn
2 = min, s19d

whereNmax can be chosen as the maximal number of nucle-
ons which can be put on the given single-particle energy
spectrum.

Using the Gauss-Hermite folding procedure described in
detail in the Appendix one can evaluate the average value of
Sn corresponding toN nucleons,

S̃N =
1

gÎp
o

n=2,4

N max 2

3n2/3SnexpH− SN 1/3 − n1/3

g
D2J

3 f6SN 1/3 − n1/3

g
D , s20d

where f6 is the sixth order polynomial given by Eq.(A26).
The folding is performed not directly in the particle number
n but in its cubic root since the distance between the major

FIG. 1. Sum of the single-particle energies(E, solid line) and its approximationĒ, dashed line) by Eq.(14) (top l.h.s. plot) as well as their

differencesDE=E−Ēd in function of the number of particlesN (top r.h.s. plot) N1/3 (bottom l.h.s. plot) and the single particle energiesseid
(bottom r.h.s. plot).
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harmonic oscillator shells is constant inn1/3 and approxi-
mately equal 0.7 as we have shown above. The factor 3n2/3

in the denominator of Eq.(20) is the direct consequence of
the transformationn→n1/3, while the factor 2 in the numera-
tor is due to the spin degeneracy of the single-particle levels.

The smoothed energy of an even or oddN system is then

ẼsNd = S̃N + aN 4/3 + V0N, s21d

where we have restored the background energyĒsNd, Eq.
(17), which has been subtracted from the single-particle en-

ergy sum in Eq.(18). SubtractingĒsnd in (18) increases sig-

nificantly the accuracy of evaluating the smoothed partẼ of

the energy since the deviationsSn is two to three orders of

magnitude smaller than the value ofĒsNd. The smoothed
energy obtained in this way is less sensitive to the energy
cut-off of the single-particle spectrum, which is important for
evaluating the shell energy of nuclei close to the proton or
neutron drip lines.

In Fig. 3 the sum of the single-particle energies(solid
line) is compared with the new particle-number smoothed
energy(dashed line) and the old Strutinsky energy(dotted
line). The single particle spectrum is the one evaluated for
the spherical Saxon-Woods mean-field potential for the208Pb
nucleus with the parameters taken from Ref.[15]. The back-

ground energyĒ is subtracted from all three energies pre-

FIG. 2. Sum of the single-particle energies(E, solid line) obtained self-consistently with the Gogny D1S force for208Pb and its

approximation(Ē, dashed line) by Eq.(17) as well as the deviation from this average trend(r.h.s. plots) as function of the number of protons
(top) or neutrons(bottom). Arrows indicate the position of the Fermi energy and the vertical lines mark the end of the bound spectrum.

FIG. 3. Sum of the single-particle energiesE (solid lines) obtained for the Saxon-Woods potential of208Pb and its smooth part obtained
with Eq. (21) (fat dashed lines) as well as within the traditional Strutinsky method(thin dotted lines). From all the curves is subtracted the
background energy evaluated as in Eq.(17). The data for protons and for neutrons are presented in the left and right parts, respectively.
Arrows indicate the positions of the Fermi energies and the vertical dotted lines indicate the end of the bound spectra.
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sented separately for protons(l.h.s. plot) and neutrons(r.h.s.
plot). One notices that the Strutinsky energy is always
smaller than the present estimate of the smoothed energy
[16]. The difference between both estimates grows with the
number of particles and for208Pb (arrows in Fig. 3) is of the
order of a few MeV. This result is similar to the one obtained
with the Ivanyuk and Strutinsky method[8,10], where the
smoothed part of the sum of single-particle energies was ap-
proximated by a local polynomial in theN-space.

C. Strutinsky smoothed energy

It is worthwhile to recall here the original Strutinsky
method of evaluating of the smooth energy[1,3,4] in order to
better understand the difference between both approaches.
Strutinsky’s way of evaluating the smooth energy consists of
two steps. First one finds the smoothed single-particle level
densityg̃sed and determines the corresponding average posi-
tion l of the Fermi level, assuming the average particle num-
ber conservation. Then in the next step one evaluates the
smoothed energy by integrating the product of the single-
particle energy and smooth level density. It means that in this
method the number of particles is conserved only on the
average and the Strutinsky smoothed energy does not corre-
spond exactly to the averaged sum of the occupied single-
particle energies.

In the Strutinsky shell correction method one evaluates
the smooth single-particle level densityg̃sed by folding the
discrete spectrum of eigenstatesei,

gsed = o
i

dse− eid, s22d

with a smoothing functionjnse,e8d of thenth order which is
given by Eq.(A11). The smooth single-particle level density
g̃sed is then given by

g̃sed = o
i

jnSe− ei

gS
D . s23d

Taking the sixth-order(so-called “curvature correction” )
polynomial into account(see Eq.(A26)) the smoothing func-
tion has the following form:

j6sud =
1

gS
Îp

e−u2S35

16
−

35

8
u2 +

7

4
u4 −

1

6
u6D . s24d

The smearing parametergS in Eqs.(23) and(24) is the width
of the Gauss folding function and should be of the order of
the energy distance between major shells(i.e., "v0) in order
to wash out the shell structure.

According to Strutinsky[1] the average of the sum of the
energies of the occupied single particle levelssEStrd is given
by the integral

EStr =E
−`

l

2eg̃sedde, s25d

where l is the position of the Fermi energy in the system
with the washed out shell structure and is fixed by the par-
ticle number condition

N =E
−`

l

2g̃sedde. s26d

Here the average number of particlesN=Z for protons or
N=N for neutrons. The factor 2 in the above two equations
is due to the spin degeneracy of the single particle levels.
One solves Eq.(26) for l by iterations.

The Strutinsky energyEStr (25) is not equal to the average

of the sum of single-particles energiesẼ, Eq. (21), but cor-
responds to the energy of a system which conserves the num-
ber of particles only on the average(and not exactly as in Eq.
(21)). A comparison of the resulting smoothed energies ob-
tained in both methods will be presented below.

III. COMPARISON OF BOTH ESTIMATES OF THE
SMOOTHED ENERGY

A significant difference between the new estimate of the

smooth energyẼ given by Eq.(21) and the Strutinsky en-
ergy,EStr, Eq. (25), is demonstrated in Fig. 3. It can be easily
explained as follows:

The sum of single-particle energies can be roughly ap-
proximated by Eq.(14) as shown in Sec. II A,

So
i=1

N
eiD = aN 4/3 + bN, s27d

where the parametera is proportional to the distance"v0
between major shells andb to the effective depth of the
mean-field potential. Let us assume, just as a matter of dis-
cussing our method, that this average trend represents the
true energy sum and that we are dealing with the degenerate
spectrum. Also letNk be the number of particles which can
be placed on the single-particle levels which are below the
kth degenerate level. Note that the numbersNk (with k
=1,2, . . .) are simply the magic numbers in case of spherical
nuclei.

The Strutinsky prescription for the smoothed energy cor-
responding to

N = 1
2sNk+1 + Nkd s28d

particles(i.e., half filled shell) can be written as

EStr = aN4/3 + bN, s29d

while the average over the intervalfNk,Nk+1g of the energy,
Eq. (27), is given by the integral

Ẽ =
1

D
E

N−D/2

N+D/2

san4/3 + bnddn, s30d

whereD=Nk+1−Nk is the degeneracy of the corresponding
single-particle level. In the approximation(27) the difference
between the average of the single-particle energy sum and
the Strutinsky energy is

DE = Ẽ − EStr <
1

54
a

D2

N 2/3, s31d

wherea<34/3/4"v0. This approximate expression indicates
that the difference between the new and the old Strutinsky
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energy is negligible(of the order of 0.01 MeV for heavier
nuclei) when the degeneracy isD=2 which is the case for
deformed nuclei, while it grows significantly(up to a couple
of MeV) when the degeneracy is important, as, e.g., in
spherical nuclei.

In Fig. 4 we show the shell energyEshell for the spherical
harmonic oscillator single-particle levels in function of the
nucleon numbersNd. The solid line corresponds to the new
approach described in Sec. II B while the dashed one to the

old Strutinsky method(see Sec. II C). The difference be-
tween both estimates and its approximation with Eq.(31) are
shown by the dotted line and the closed circles, respectively.

The proton and neutron shell energiesEshell for the nuclei
208Pb and232Th obtained with a deformed Saxon-Woods po-
tential are plotted in Fig. 5 as function of the elongation
parameterc of Ref. [4]. The solid line corresponds to the
new approach described in Sec. II B while the dashed one to
the old Strutinsky method(see Sec. II C). The difference
between both estimates is shown by the dotted line. The
parameters of the Saxon-Woods potential are taken from Ref.
[15]. It is seen that the difference between the shell energies
evaluated with the new particle number conserving method
and the traditional Strutinsky approach becomes negligible
with growing nuclear deformation, i.e., when the degeneracy
of single particle levels is lifted, a result which is in line with
the prediction of the approximate expression(31).

In both (new and old) Strutinsky shell correction methods
it is very important to choose the appropriate value of the
smearing parameter(g or gS). This is usually done by fixing
its value such that the obtained shell energy is, over a certain
range of that parameter independent of its specific value, a
constraint known as the “plateau condition” of the Strutinsky
method. Typical examples of such plateaus are shown in Fig.
6, where the shell energies for208Pb at a deformation ofc
=1.2 obtained with the appropriately chosen Saxon-Woods
potential [15] are drawn. It is seen in Fig. 6 that our new
approach leads to a much more pronounced plateau as com-
pared to the old method. Note the different values of the
smoothing parameter(g<0.78 for both kinds of particles
versusgS<1.20"v0 for protons andgS<1.05"v0 for neu-
trons).

FIG. 4. Strutinsky shell energies for a spherically symmetric
harmonic oscillator potential obtained with the new(Eq. (21), solid
line) and the old(Eq. (25), dashed line) method(see the text) as
well as the difference between them(dotted line) as function of
number of particlesN. The estimates for the differencesDE, given
by Eq. (31), are marked as the closed circles.

FIG. 5. Protron(left) and neutrons(right) Strutinsky shell energies for the Saxon-Woods single-particle levels of208Pb (top) 232Th
(bottom) obtained with the new(Eq. (21), solid line) and the old(Eq. (25), dashed-line) methods as well as their difference(dotted line) as
functions of the elongation parameterc [4].
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Looking at Fig. 5 one could have the impression that a
significant difference between the shell energies obtained by
the averaging in the particle-number or single-particle energy
spaces appears around spherical shapes and vanishes with
growing deformation. On the other hand, Eq.(31) predicts
that a significant difference between both types of averaging
procedures should appear whenever a large degeneracy of
the single-particle levels is present. A good example of the
spectrum which becomes strongly degenerate at some defor-
mation points is the eigenenergies of the anisotropic har-
monic oscillator. The degeneracy clearly appears at those
ellipsoidal deformation(«, [3]) points where the ratio of the
axes is equal to the ratio of small integers as can be seen in
the left part of Fig. 7, where such a spectrum is plotted. The
harmonic oscillator single-particle levels presented there
were used to evaluate the shell energy of a system composed
of N=100 particles. The difference between the new and the

old estimates(Ẽ andEStr) is plotted as function of the quad-
rupole deformation parameter« [3]. A large difference be-
tween both approaches appears where the degeneracy of lev-
els grows. A similar effect was already observed in Ref.[8].
This result clearly shows that using the new approach one
can expect some modifications in the potential energy sur-
face not only around spherical shapes but also at deforma-
tions which correspond to the super- or hyper-deformed iso-
mers.

IV. SUMMARY AND CONCLUSIONS

A new method of evaluating the smooth part of the total
single-particle energy is proposed. The folding of the sums
of single-particle energies is performed in the particle-
number space rather than in the one of single-particle ener-
gies as done in the old Strutinsky method. The averaging in
the N-space is consistent with the definition of the macro-
scopic energy component which represents the average be-
havior in Z andA of the nuclear binding energy.

One has also to notice that the integral overN of the shell
energy evaluated with the new prescription is close to zero
for sufficiently large number of particles, while this is not the
case for the traditional Strutinsky shell correction which
grows systematically withN. This indicates that the original
Strutinsky prescription generates shell energy which does not
fluctuate around zero when the number of particles is in-
creased which modifies systematically the macroscopic part
of the energy. In addition this modification depends on the
shape of nucleus, so that this deficiency of the traditional
approach cannot be corrected by an adjustment of the param-
eters of the macroscopic energy.

The global particle-number dependence of the energy
given by the harmonic oscillator sum-rule(14) is subtracted
from the sum of the single-particle energies when its average
in the N-space is evaluated. The effect of this renormaliza-

FIG. 6. Dependence of proton(solid line) and neutron(dashed line) Strutinsky shell energies as function of the smearing parameterg (or
gS) obtained with the new(Eq. (21), left) and the old(Eq. (25), right) estimates for the smooth energy for a nucleus208Pb described by an
appropriate Saxon-Woods potential at a deformation ofc=1.2.

FIG. 7. The eigenfunction of the deformed harmonic oscillator potential(l.h.s. plot) and the difference between the new(Ẽ, Eq.(21)) and
the old (EStr, Eq. (25)) estimates of the smooth energy as function of the axial quadrupole deformation« [3].
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tion (18)–(21) on the value of the shell energies is almost
neligible for theb-stable nuclei but it becomes more impor-
tant in case of nuclei close to the proton or neutron drip-line.
It is due to the fact that the renormalized sum of the single-
particle energies(Sn, Eq.(18)) is of the order of a few tens of
MeV only, not thousands of MeV as it was in the traditional
Strutinsky method. It means that the energy cut-off of the
single-particle spectrum produces much smaller inaccuracy
in evaluating of the shell-energy. The same is true when one
discusses the effect of the continuum, which gives hope that
the newN-averaging method will give reliable shell energies
in a broad range of isotopes and isotones. In forthcoming
papers we are going to compare the estimates obtained with
the present method with the results given by the semiclassi-
cal Wigner-Kirkwood expansion[17] or by the method based
on the Green’s function[18] especially developed for nuclei
close to the drip-lines.

The new estimate differs significantly from the Strutinsky
smoothed energy when a large degeneracy of the single-
particle levels is present as this is the case in spherical and
nearly-spherical nuclei or in some shape isomers. In such
nuclei the shell energy is shifted down by a few MeV with
respect the old predictions while its amplitude is almost un-
changed as function of the particle number. This means that
the macroscopic-microscopic method with the new estimate
of the shell energy will,when leaving the parameters of the
macroscopic and microscopic parts untouched, predict the
magic and quasi-magic nuclei as well as some shape isomers
more bound than this were predicted by the calculations done
with the old Strutinsky method. Also the deformation ener-
gies of non-magic nuclei will be smaller and one could ob-
tain different equilibrium shapes(i.e., ground state quadru-
pole moments). The fission barrier for spherical nuclei will
also be significantly increased and, as a consequence, the
spontaneous fission of such nuclei(e.g., some super-heavy
isotopes) will be less probable. In addition theQ-value for an
a-decay will be modified when it occurs between deformed
and spherical isotopes(or vice versa). This means that the
consequences of the naive use of the new method could be
dramatic. One must also not forget that taking into account
the particle-phonon coupling can significantly decrease the
magnitude of the shell energy for spherical nuclei and its
dependence on deformation as was shown in Ref.[16]. This
effect, of the order 5 MeV for double-magic nuclei, was
omitted in the majority macroscopic-microscopic calcula-
tions with the traditional Strutinsky shell correction.

I would therefore like to end with the following warning:
Do not use the new prescription for the shell energy (Eqs.

(18)–(21)) in practical calculations without an appropriate
readjusting of the parameters of the mean-field potentials
(e.g., Saxon-Woods, Nilsson, Yukawa-folded), macroscopic
models (e.g. liquid drop, finite range droplet or Thomas-
Fermi), and the pairing force.
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APPENDIX: FOLDING OF DISCRETE DATA

1. General formulas

Our aim is to approximate a sample ofN ordered points
hxi ,yij by a continuous smooth functionỹsxd. We would like
to solve this problem using the Gauss-Hermite folding
method which was an idea originally proposed by V.M.
Strutinsky [1] and later on generalized in Ref.[3]. Having
the width of the folding function comparable with the aver-
age distance between pointsxi one can obtain the folded
function which is very close to the data points but increasing
this width one can also wash out the fine structure stored in
the data. Usually the Strutinsky method was used to realize
the second scope. The parameter of the folding procedure
will be determined by the requirement that the integral of the
folded function should be the same as the integral evaluated
with the sample ofhxi ,yij pairs using the trapezium rule.

Let jnsx,x8d be a symmetric function of its arguments
(i.e., jnsx,x8d= jnsx8 ,xd) having the following properties:

E
−`

+`

jnsx,x8ddx= 1 sA1d

for eachx8P s−` , +`d and

Pksxd =E
−`

+`

Pksx8d jnsx,x8ddx8, sA2d

wherekøn are even natural numbers andPksxd is an arbi-
trary polynomial of orderk. In the following, the function
jnsx,x8d will be called the folding function of thenth order.
The last equation, frequently called theStrutinsky condition,
ensures that the folding does not change the average behav-
ior of the functionYsxd which is represented by the ensemble
of hxi ,yij points. An example of such a folding function can
be a combination of the Gauss function and the Hermite
polynomials of the argument proportional toux−x8u, fre-
quently used in the Strutinsky shell correction method[1,3].
More detailed description of such a folding function will be
given in the next section.

With each discrete pointsxi ,yid one can associate the
function ỹisxd defined by

ỹisxd =E
−`

+`

yidsx8 − xid jnsx,x8ddx8, sA3d

wheredsxd is the Diracd-function. A straightforward calcu-
lation gives

ỹisxd = yi jnsx,xid. sA4d

Using Eq. (A1) it is easy to verify that the integral of the
function ỹisxd is
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E
−`

+`

ỹisxddx= yi . sA5d

Let us construct the functionỹsxd by summing up, with
weight wi all functionsỹisxd,

ỹsxd = o
i=1

N

wiỹisxd. sA6d

The functionỹsxd is an approximation ofysxd if the weights
wi are determined from the assumption that the integrals of
the unfolded and folded function are(nearly) equal:

o
i=1

N

ysxidDxi =E
−`

+`

ỹsxddx= o
i=1

N

wiyi , sA7d

whereDxi is set to

Dxi = 1
2sxi+1 − xi−1d. sA8d

Equation(A7) implies that a reasonable choice of the weight
is

wi = Dxi . sA9d

Thus the folded functionỹsxd is given by

ỹsxd = o
i=1

N

yiDxi jnsx,xid. sA10d

2. Gauss-Hermite folding function

Let the folding functionjnsx,x8d be defined with the help
of the Gauss function as

jnsx,x8d =
1

gÎp
expF− Sx − x8

g
D2G fnSx − x8

g
D , sA11d

where g is a parameter andfnssx−x8d /gd is the so-called
corrective polynomial ofnth order, determined by the
Strutinsky condition(A2). In the following we would like to
evaluate the coefficients of the corrective polynomial using
some properties of the Hermite polynomials which are or-
thogonal with the weight equal to the Gauss function.

Let us introduce a variableu=sx−x8d /g defined in the
interval s−` , +`d. The smearing functionjnsx,x8d and the
polynomialPnsxd in (A2) can now be written as

jnsx,x8d =
e−u2

gÎp
fnsud, sA12d

Pnsx8d = Pnsx − gud ; Pn8sud, sA13d

and

Pnsxd = Pnsx + g0d ; Pn8s0d. sA14d

The so far arbitrary polynomialPn8sud can be written down as
a series of the Hermite polynomials of orderi,

Pn8sud = o
i=1

n

aiHisud. sA15d

Now the condition(A2) can be written as

Pn8s0d =
1

Îp
E

−`

+`

Pn8sude−u2
fnsuddu sA16d

and inserting relation(A15) into (A16) one obtains

o
i=1

p

aiH 1
Îp
E

−`

+`

e−u2
Hisudfnsuddu− His0dJ = 0.

sA17d

On the other hand, the last equation should be fullfiled for
arbitrary values ofai Þ0, which leads to the following set of
equations:

1
Îp
E

−`

+`

e−u2
Hisudfnsuddu= His0d, sA18d

wherei =0,2, . . . ,n. From the other side the corrective func-
tion fnsud can also be decomposed in terms of the Hermite
polynomials

fnsud = o
k=1

n

CkHksud. sA19d

Inserting the above relation into Eq.(A18) gives

His0d = o
k=1

r

Ck
1

Îp
E

−`

+`

e−u2
HisudHksuddu. sA20d

Then using the orthogonality properties of the Hermite poly-
nomials

1
Îp
E

−`

+`

e−u2
HisudHksuddu= 2ii ! dik, sA21d

one obtains the coefficients of the corrective polynomial
(A19),

Ci =
1

2ii!
His0d. sA22d

The values of the Hermite polynomials at zero are
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His0d = 52n

1 for i = 0

s− 1dns2n − 1d ! ! for i = 2n

0 for i = 2n + 1,

sA23d

so that

Ci =5
1 for i = 0

s− 1dns2n − 1d ! !

2ns2nd!
for i = 2n . 0

0 for i = 2n + 1.

sA24d

The first few coefficientsCi and the corresponding Her-
mite polynomials are:

C0 = 1, H0sud = 1,

C2 = − 1
4, H2sud = 4u2 − 2,

sA25d
C4 = + 1

32, H4sud = 16u4 − 48u2 + 12,

C6 = −
1

384
, H6sud = 64u6 − 480u4 + 720u2 − 120,

and the resulting corrective polynomials have the following
form:

f0sud = 1,

f2sud = 3
2 − u2,

sA26d
f4sud = 15

8 − 5
2u2 + 1

2u4,

f6sud = 35
16 − 35

8 u2 + 7
4u4 − 1

6u6.

Finally the function ỹsxd approximated using the Gauss-
Hermite folding reads:

ỹsxd =
1

gÎp
o
i=1

N

yiDxiexpF− Sx − xi

g
D2G fnSx − xi

g
D .

sA27d

In principle the smearing parameterg is arbitrary and it can
be different at each pointxi. But it should be related to the
distanceDxi between subsequent points if one would like to
approximate the function stored in the mesh ofhxi ,yij points.
Similarly one has to chooseg of the order of the period-
length of the fine structure(e.g., shell effects) in case where
one would like to wash out this structure from the function
ysxd.
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