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The shell correction method is revisited. Contrary to the traditional Strutinsky method, the shell energy is
evaluated by an averaging over the number of particles and not over the single-particle energies, which is more
consistent with the definition of the macroscopic energy. In addition, the smooth background is subtracted
before averaging the sum of single-particle energies, which significantly improves the plateau condition and
allows one to apply the method also for nuclei close to the proton or neutron drip lines. A significant difference
between the shell correction energy obtained with the traditional and the new method is found in particular for
highly degenerated single-particle speatas, e.g., in magic nuclewhile for deformed nucle{where the
degeneracy is lifted to a large extghbth estimates are close, except in the region of super or hyper-deformed
states.
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I. INTRODUCTION the liquid-drop type asymptotic expansion of the total single-

The macroscopic-microscopic method of evaluating theéP@rticle energy in PowerAlla was used. Unfortunately this
potential energy surfaces and binding energies of nuclei wadethod of evaluating the average energy was not precise
proposed in the papers of Strutinskg] and Myers and €nough to be used in practice. _
Swiatecki [2]. Despite the tremendous progress of self- In the present paper a different method of evaluating the
consistent models to nuclear structure the macroscopichell energy is proposed. The smooth component of the total
microscopic method remains one of the most important toolsSingle-particle energy is obtained by folding the sum of
In such an approach the microscopic energy corrections argngle-particle energies in thé/-space with a modified
added to the macroscopic part of the nuclear binding energgauss function as described in the Appendix. In addition, an
described by the liquid drop model or other macroscopicaverage energy background as obtained by the harmonic os-
methods. The microscopic part consists of shell and pairingillator energy sum rulgsee Sec. Il A beloyis subtracted
energies. The prescription for the evaluation of the shell enbefore performing the folding, which significantly increases
ergy by smoothing the single-particle energy spectra was firghe precision of the method. Our new prescription for the
given in Ref.[1] and then improved in Refd3,4]. This  shell correction energy gives results close to those obtained
Strutinsky method of averaging over single-particle energieg, ihe Ivanyuk and Strutinsky approach of RéB;,10] and is
is still widely used up to now, in spite of its known problems extremely simple to use.
which appear for mean-field potentials of finite depth as well ' L6 should also mention that the shell energy evaluated

as Ifrtlaréhnu_cltlg;é:lose tg t?esprftonn%r rntlauttrgn drip g;(rest'in with the present model conserves exactly the given number
sk ang lvan iuslfemaileS[a; gttaém tet?) ere plgggytheuori_ inal f particles, and not only on the average, as was the case in
y y P P 9N e traditional Strutinsky method.

Strutinsky method of evaluating the smooth energy compo-
nent by an averaging in the space of particle numbers
(N-spacg that should be more consistent with the macro- Il. THEORETICAL MODEL

scopic part of the binding energy which is usually evaluated

in a liquid-drop type approach. The parameters of such mac- In the macroscopic-microscopic method of evaluating po-
roscopic models are usually obtained by a least-square fit t@ntial energy one decomposes the nuclear binding energy
nuclear masses which corresponds to an averaging in theto three parts

N-space(e.g. in Ref.[11]). In Refs.[5,7] the smooth com-

ponent of the total single-particle energy was approximated . - . + .
by a polynomial inN-space with coefficients that were de- B(Z,A;def) = EmadZ,A;deh + Bene2,A;def
termined by a least-square fit. It was shown in Rg8s10Q] +EpaiZ,A; def), (1)

that the shell correction energies obtained by these two types
of averaging procedures are not the same. Significant diffemwhereZ and A are the charge and mass numbers, respec-
ences appear for highly degenerated single-particle spectriyely. The macroscopic park,,,, depends on the deforma-
as, e.g., in spherical nuclei. The method by Ivanyuk andion of nucleus and is usually evaluated in the liquid drop or
Strutinsky of finding the smooth energy developed in Refssome other more sophisticated model. The microscopic part
[5,7,8,1Q has reached sufficient accuracy to be used in pracef the energy consists of the shell and the pairing energies.
tical calculations. It was, however, never widely used, prob-The pairing energ¥,,; is usually evaluated in thgrojected
ably because of its complexity. or not) BCS formalism(see, e.g.[3] or [4]), while the shell
Another way of separating out the smooth part of the sunenergyEgy, is the sum of the proton and neutron contribu-
of single-particle energies can be found in Ré@f2], where tions
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shel(Z A, deﬁ E hell(Z def) +E heII(A Z; def) (2) .

3
E= deg,=7iw (n+ >n+1 n+2 12
The shell correction energy of one kind of particles is equal E e = OE ( ) ) 12

to the difference
I and can be approximated by the integral

Eshen= E e -E(N), (3 N
i=1 E:f eN")dN'. (13
whereN is the number of particle in the system aBds the 0

smooth part of the total single-particle energy, whemeoth  |hserting here Eq(10) one obtains the following energy sum
means slowly varying with the particle numbgf. In the o
following two different methods of evaluating of this smooth
part will be presented. TN N 1
= (2 e.) =~ (B *"*fiawo. (14
A. Harmonic oscillator energy sum rule i=1 4
The eigenenergies of the spherical harmonic oscillator The sum of energies of nucleons which occupy the harmonic
oscillator levels is thus proportional to th&/ 3 power of the

_ 3
€= (” + E)ﬁwo (4 total number of particles in the system
are strongly degenerated A more accurate estimate than the above one was made in
Ref. [13]:
deg,=3(n+1)(n+2) X 2. (5)
=2 43, 1 2/3
Heren=0,1,2,... is thenain quantum number and}, is the E= [4(3N) +5EN) ]ﬁwo' (19

harmonic oscnlator frequency. The factor 2 in the above
equation is due to the two possible orientations of the spin.

According to Ref.[13] the degeneracy of the main har-
monic oscillator shell can be approximated by

The term proportional taV'?? is important in the light sys-
‘tems but in the heavier nuclei it can be neglected as much
smaller than the leading*/ term.

In the top |.h.s. part of Fig. 1 the suof single-particle
deg, ~ (n . §)2 _ ( €n )2 (6) energiegsolid line) and its approximatioik (dashed lingby

2 oy Eg. (14) are shown as function of the number of particlés

The deviatiomAE between both lines is hardly visible on this
scale, so we present it separately in the top r.h.s. part of Fig.

The total number of particled/ occupying all shells up to

n=Nis 1. The coefficient in front of the ter!V'# was obtained by
N a least square fit and turns out to be very close to the value of
N(N) = >, deg, = —(N +1D(N+2)(N+3). (7)  the approximate expressigfh4) which is exact in the limit
n=0 N—oo. A strong shell structure corresponding to the har-

monic oscillator magic numbersV,,=2, 8, 20, 40, 70, 112,
168, 240, 330, 440,. is observed. Using Eq9) one can
obtain the approximate distance between the harmonic oscil-
1(N . 3)3 1( en )3 ® lator major shells as function of the particle number

N) = — -] ==
NN 3 2 3
1 en+1_en:3_1/3

i - NV - N3 (16)
The last equation can serve as the average relation between n+1 33 4 o :
the single-particle energg and the number of particles

which occupy the levels with energy smaller or equaéto  The deviationAE of the energy sum from its approximate

It is easy to show13] that for largeN values the following
approximation holds:

hwo

1/ e \3 behavior as function o'® is presented in the bottom l.h.s.
MNe) = ( ) (9)  part of Fig. 1. It is seen that the distance between closed
3\ shells is nearly constant and roughly equal AQN Y/3)
or ~0.7 which is the estimate, E¢L6). It is worth noticing that
the same data plotted as function of the single-particle ener-
e(N) = (BM) ¥y (10)  giese shows a structurébottom r.h.s. of Fig. Lwhich seems

hard to interpret at first sight. Obviously the shell structure of
the harmonic oscillator is more visible when one plats as
function of V13,

IN €2 (3N)?R The relation(14) was obtained assuming that the single-

g= e = (o) = o (11 particle energies are measured with respect to energy zero.
0 0 Assuming that the minimum of the harmonic oscillator po-

The sumE of single-particle energies of all occupied levels tential corresponds t&, (i.e., e —¢&+Vy) one can get the
is more general relation

Equation(9) leads to the known expression for the average
density of the harmonic oscillator single-particle levels
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FIG. 1. Sum of ’@e single-particle energi&s solid line) and its approximatioE, dashed lingby Eq.(14) (top |.h.s. ploy as well as their

difference(AE=E-E) in function of the number of particle§ (top r.h.s. plof A3 (bottom I.h.s. plotand the single particle energiés)
(bottom r.h.s. plot

N energies of then fermion system and the corresponding
E= (E el) =aN 43+ VN, (17 background energ¥(n), obtained using the harmonic oscil-
i=1 lator sum rule, Eq(17),

We have verifiednumerically that the above harmonic n n
oscillator energy sum rule is universal and not only fulfilled S=>e —E(n)=> e —an*3-Vn. (18)
by the spectra of the modified harmonic oscillathlilsson i=1 i=1
potentia) or other finite depth model mean-field potentials
(e.g., Saxon-Woodsbut also by the single-particle spectra
obtained self-consistently for the Hamiltonians associate

The parametera andV, are determined by minimizing the
§quare deviation between the single-particle energy sum and

with the Gogny or Skyrme effective forces. E,

A typical deviation of the sum of the single-particle ener- Nonax
gies (with respect to the bottom of the effective mean-field > Sﬁz min, (19)
potentia) from the estimatg17) is of the order of a few n=1

promilles for heavier nuclei. In Fig. 2 the sum of the single- )

particle energiegl.h.s. column and its deviatior(AE) (r.h.s. whereNa, can be chosen as the maximal number of nucle-
column) from the average trend, E@L7), is plotted as func- ©ONS which can be put on the given single-particle energy
tion of Z*3 for protons (top row) and A'43 for neutrons ~SPEctrum. , _ o
(bottom row. The single particle energies of spherié¥Pb U_S|_ng the GaussTHermne folding procedure described in
were obtained self-consistently using the Hartree-Fock apd€tail in the Appendix one can evaluate the average value of

proximation to the Gogny Hamiltonian with the D1S force Sh corresponding to\" nucleons,

[14]. The parametera andV, of Eq.(17) given in Fig. 2 are _ 1 N max 5 A3 13\ 2
obtained by a least square fit. The arrows point to the Fermi- Sy=——= >, —aSexp| - <—)

level positions and the dotted vertical lines mark the end of W n=2,4 3N Y

the bound state spectrum. A very pronounced shell structure N3 i3

of the proton and neutron spectra is visible in the r.h.s. plots. X f6< ) (20)

B. Average of the sum of single-particle energies wherefy is the sixth order polynomial given by E¢A26).

Let us define a discrete sample of de$g, as the differ- The folding is performed not directly in the particle number
ence between the sum of the lowest available single-particle but in its cubic root since the distance between the major
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FIG. 2. Sum of the single-particle energiég, solid line) obtained self-consistently with the Gogny D1S force f8fPb and its

approximatior(E, dashed lingby Eq.(17) as well as the deviation from this average tr¢nl.s. plot$ as function of the number of protons
(top) or neutrongbottom). Arrows indicate the position of the Fermi energy and the vertical lines mark the end of the bound spectrum.

harmonic oscillator shells is constant i’ and approxi-

the energy since the deviatio8s is two to three orders of
mately equal 0.7 as we have shown above. The faatf 3 magnitude smaller than the value BfA). The smoothed

in the denominator of 5353(-20), is the direct consequence of gnergy obtained in this way is less sensitive to the energy
the transformatiom— n™", while the factor 2 in the numera- ¢-off of the single-particle spectrum, which is important for
tor is due to the spin degeneracy of the single-particle |evel%valuating the shell energy of nuclei close to the proton or

The smoothed energy of an even or ddéystem is then

E(./\/) :§N+ aN 3+ VoV,

(21)

where we have restored the background eHGE(W’), Eq.

nificantly the accuracy of evaluating the smoothed Eaaf

neutron drip lines.
In Fig. 3 the sum of the single-particle energie®lid
line) is compared with the new particle-number smoothed
energy(dashed ling and the old Strutinsky energigdotted
: g - line). The single particle spectrum is the one evaluated for
(17), which has been subtracted from the single-particle enge spherical Saxon-Woods mean-field potential forffieb
ergy sum in Eq(18). Subtractinge(n) in (18) increases sig- nucleus with the parameters taken from Ré&B]. The back-

ground energyE is subtracted from all three energies pre-
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FIG. 3. Sum of the single-particle energiggsolid lineg obtained for the Saxon-Woods potential’8#Pb and its smooth part obtained
with Eq. (21) (fat dashed lingsas well as within the traditional Strutinsky meth@din dotted lines From all the curves is subtracted the
background energy evaluated as in ELj7). The data for protons and for neutrons are presented in the left and right parts, respectively.
Arrows indicate the positions of the Fermi energies and the vertical dotted lines indicate the end of the bound spectra.
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sented separately for protofish.s. plo) and neutrongr.h.s. A
plot). One notices that the Strutinsky energy is always N=f Zg(e)de. (26)
smaller than the present estimate of the smoothed energy —
[16]. The difference between both estimates grows with thq—|ere the average number of particlﬁgz for protons or

number of particles and fd**Pb (arrows in Fig. 3is of the  A’=N for neutrons. The factor 2 in the above two equations
order of a few MeV. This result is similar to the one obtainedjs due to the spin degeneracy of the single particle levels.

with the Ivanyuk and Strutinsky methd®,10], where the  One solves Eq(26) for \ by iterations.
smoothed part of the sum of single-particle energies was ap- The Strutinsky energfs, (25) is not equal to the average

proximated by a local polynomial in thé-space. of the sum of single-particles energiﬁs Eq. (21), but cor-
responds to the energy of a system which conserves the num-
C. Strutinsky smoothed energy ber of particles only on the averagend not exactly as in Eq.
(21)). A comparison of the resulting smoothed energies ob-

It is worthwhile to recall here the original Strutinsk ; . -
1S worthwhl 'g! UHnNSKy tained in both methods will be presented below.

method of evaluating of the smooth enefdy3,4] in order to
better understand the difference between both approaches. ||| coMPARISON OF BOTH ESTIMATES OF THE
Strutinsky’s way of evaluating the smooth energy consists of SMOOTHED ENERGY
two steps. First one finds the smoothed single-particle level o ) )
densityg(e) and determines the corresponding average posi- A Slgnlflcanidlﬁerence between the new estimate of the
tion \ of the Fermi level, assuming the average particle numsmooth energye given by Eq.(21) and the Strutinsky en-
ber conservation. Then in the next step one evaluates thergy, Esy, EQ.(25), is demonstrated in Fig. 3. It can be easily
smoothed energy by integrating the product of the singleexplained as follows:
particle energy and smooth level density. It means that in this The sum of single-particle energies can be roughly ap-
method the number of particles is conserved only on theroximated by Eq(14) as shown in Sec. Il A,
average and the Strutinsky smoothed energy does not corre- TN
spond exactly to the averaged sum of the occupied single- a3
particle energies. (;l e') =aN™+bN,

In the Strutinsky shell correction method one evaluates
the smooth single-particle level densfiye) by folding the  where the paramete is proportional to the distancko,

(27)

discrete spectrum of eigensta&@s between major shells and to the effective depth of the
mean-field potential. Let us assume, just as a matter of dis-

g(e) :E Se-e), (22) cussing our method, that this average trend represents the
i true energy sum and that we are dealing with the degenerate
spectrum. Also letV be the number of particles which can
be placed on the single-particle levels which are below the
kth degenerate level. Note that the numbgfs (with k
=1,2,..) are simply the magic numbers in case of spherical

with a smoothing function,(e,e’) of the nth order which is
given by Eqg.(A1l). The smooth single-particle level density
g(e) is then given by

~ . [e—g nuclei.
ge) = E I\ =) (23) The Strutinsky prescription for the smoothed energy cor-
' S responding to
Taking the sixth-order(so-called turvature correctioh) _1
polynomial into accountsee Eq(A26)) the smoothing func- N=2Wiea + N (28)
tion has the following form: particles(i.e., half filled shelj can be written as
1 35 35, 7, 1 Esy=aN*3+hbN, 29
jG(u):—’,_e_u2<——— 2+_ 4——u6), (24) Str aj\/A N ( )
Ys\m 16 8 4 6 while the average over the intenfaV/, Vi.1] of the energy,
The smearing parametes in Egs.(23) and(24) is the width ~ Ed. (27), is given by the integral
of the Gauss folding function and should be of the order of 1 (M2
the energy distance between major shélks., iwg) in order E= ZJ (an*®+ bn)dn, (30
to wash out the shell structure. N-AP2

According to Strutinsky1] the average of the sum of the |, hare = Ny

X . ; . . - N is the degeneracy of the correspondin
energies of the occupied single particle levds,,) is given K d 4 P g

single-particle level. In the approximati@®7) the difference

by the integral between the average of the single-particle energy sum and
Y the Strutinsky energy is
Esy= f 2eg(e)de, (25) _ A2
- AE=E - Eg, =~ EYRIVED (31)

where\ is the position of the Fermi energy in the system
with the washed out shell structure and is fixed by the parwherea=3*3/4%w,. This approximate expression indicates
ticle number condition that the difference between the new and the old Strutinsky

044306-5



K. POMORSKI

Echen o]

Harmonic oscillator

0 20 40 60

80 100 120 140 160 180
v

PHYSICAL REVIEW C 70, 044306(2004)

old Strutinsky methodsee Sec. Il ¢ The difference be-
tween both estimates and its approximation with B4) are
shown by the dotted line and the closed circles, respectively.
The proton and neutron shell energiege, for the nuclei
208 and?*2Th obtained with a deformed Saxon-Woods po-
tential are plotted in Fig. 5 as function of the elongation
parameterc of Ref. [4]. The solid line corresponds to the
new approach described in Sec. Il B while the dashed one to
the old Strutinsky methodsee Sec. Il @ The difference
between both estimates is shown by the dotted line. The
parameters of the Saxon-Woods potential are taken from Ref.
[15]. It is seen that the difference between the shell energies
evaluated with the new particle number conserving method
and the traditional Strutinsky approach becomes negligible
with growing nuclear deformation, i.e., when the degeneracy
of single particle levels is lifted, a result which is in line with

FIG. 4. Strutinsky shell energies for a spherically symmetricthe prediction of the approximate express(@d).

harmonic oscillator potential obtained with the ne&q. (21), solid
line) and the old(Eq. (25), dashed ling method(see the textas
well as the difference between thegdotted ling as function of
number of particlesV. The estimates for the differencAg, given

by Eq.(31), are marked as the closed circles.

energy is negligiblgof the order of 0.01 MeV for heavier
nuclej when the degeneracy i5=2 which is the case for
deformed nuclei, while it grows significant{yp to a couple

In both (new and olgl Strutinsky shell correction methods
it is very important to choose the appropriate value of the
smearing parametgly or ys). This is usually done by fixing
its value such that the obtained shell energy is, over a certain
range of that parameter independent of its specific value, a
constraint known as theptateau conditioh of the Strutinsky
method. Typical examples of such plateaus are shown in Fig.
6, where the shell energies f6¥Pb at a deformation of
=1.2 obtained with the appropriately chosen Saxon-Woods

of MeV) when the degeneracy is important, as, e.g., inpotential[15] are drawn. It is seen in Fig. 6 that our new

spherical nuclei.

In Fig. 4 we show the shell enerdsg,q for the spherical

approach leads to a much more pronounced plateau as com-
pared to the old method. Note the different values of the

harmonic oscillator single-particle levels in function of the smoothing parametefy=0.78 for both kinds of particles
nucleon numbefN). The solid line corresponds to the new versusys=1.20hw, for protons andys=~1.0%w, for neu-
approach described in Sec. Il B while the dashed one to th&ons).
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FIG. 5. Protron(left) and neutrongright) Strutinsky shell energies for the Saxon-Woods single-particle levef®3b (top) 2%2Th

(bottom) obtained with the newEq. (21), solid line) and the old[Eq. (25), dashed-lingmethods as well as their differengaotted ling as
functions of the elongation parametf4].
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FIG. 6. Dependence of protgeolid line) and neutror{dashed ling Strutinsky shell energies as function of the smearing paramsiar
<) obtained with the newEq. (21), left) and the old(Eq. (25), right) estimates for the smooth energy for a nuclé¥®b described by an
appropriate Saxon-Woods potential at a deformation=of.2.

Looking at Fig. 5 one could have the impression that a IV. SUMMARY AND CONCLUSIONS
significant difference between the shell energies obtained by
the averaging in the particle-number or single-particle energy A new method of evaluating the smooth part of the total
spaces appears around spherical shapes and vanishes wdthgle-particle energy is proposed. The folding of the sums
growing deformation. On the other hand, E§1) predicts of single-particle energies is performed in the particle-
that a significant difference between both types of averagingumber space rather than in the one of single-particle ener-
procedures should appear whenever a large degeneracy @is as done in the old Strutinsky method. The averaging in
the single-particle levels is present. A good example of thehe A-space is consistent with the definition of the macro-
spectrum which becomes strongly degenerate at some defafcopic energy component which represents the average be-
mation points is the eigenenergies of the anisotropic harhavior in Z and A of the nuclear binding energy.
monic oscillator. The degeneracy clearly appears at those Qne has also to notice that the integral axéof the shell
ellipsoidal deformatiorie, [3]) points where the ratio of the energy evaluated with the new prescription is close to zero
axes is equal to the ratio of small integers as can be seen fgr sufficiently large number of particles, while this is not the
the left part of Fig. 7, where such a spectrum is plotted. Thease for the traditional Strutinsky shell correction which
harmonic oscillator single-particle levels presented thergyrows systematically witt\. This indicates that the original
were used to evaluate the shell energy of a system composegirutinsky prescription generates shell energy which does not
of A’=100 particles. The difference between the new and th@yctuate around zero when the number of particles is in-
old estimategE andEg,,) is plotted as function of the quad- creased which modifies systematically the macroscopic part
rupole deformation parameter[3]. A large difference be- of the energy. In addition this modification depends on the
tween both approaches appears where the degeneracy of lshape of nucleus, so that this deficiency of the traditional
els grows. A similar effect was already observed in R8f.  approach cannot be corrected by an adjustment of the param-
This result clearly shows that using the new approach oneters of the macroscopic energy.
can expect some modifications in the potential energy sur- The global particle-number dependence of the energy
face not only around spherical shapes but also at deformagiven by the harmonic oscillator sum-rul@4) is subtracted
tions which correspond to the super- or hyper-deformed isofrom the sum of the single-particle energies when its average
mers. in the N-space is evaluated. The effect of this renormaliza-
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FIG. 7. The eigenfunction of the deformed harmonic oscillator pote¢itias. ploy and the difference between the név Eqg.(21)) and
the old (Esy, EQ. (25)) estimates of the smooth energy as function of the axial quadrupole deformeat8in
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tion (18)«21) on the value of the shell energies is almostbourg where part of this work was done. Discussions with

neligible for theB-stable nuclei but it becomes more impor- Professor Jerzy Dudek who w&piritus Movenf this re-

tant in case of nuclei close to the proton or neutron drip-linesearch and Professor Johann Bartel from IReS as well as

It is due to the fact that the renormalized sum of the singleProfessor Fedor Ivanyuk of the Institute of Nuclear Physics

particle energiesS,, Eq.(18)) is of the order of a few tens of in Kiev and Professor Klaus Dietrich from TU-Munich were

MeV only, not thousands of MeV as it was in the traditional also very helpful.

Strutinsky method. It means that the energy cut-off of the

single-particle spectrum produces much smaller inaccuracy APPENDIX: FOLDING OF DISCRETE DATA

in evaluating of the shell-energy. The same is true when one

discusses the effect of the continuum, which gives hope that 1. General formulas

the newN-averaging method will give reliable shell energies o aim is to approximate a sample lsfordered points

in a broad range of isotopes and isotones. In forthcomin x;,yi} by a continuous smooth functigrix). We would like

papers we are going to compare the estimates obtained wiE solve this problem using the Gauss-Hermite folding

the pr_esent method with the.results given by the semiclassi,athod which was an idea originally proposed by V.M.

cal Wigner-Kirkwood expansiofi.7] or by the method based - gy \tinsky[1] and later on generalized in ReB]. Having

on the Green's functiofil8] especially developed for nuclei ¢ yigth of the folding function comparable with the aver-

close to the dnp—llnes._ - . age distance between poirnts one can obtain the folded
The new estimate differs significantly from the Strutinsky ¢, ction which is very close to the data points but increasing

smoothed energy when a large degeneracy of the singlggis width one can also wash out the fine structure stored in

particle levels is present as this is the case in spherical angle yata. Usually the Strutinsky method was used to realize
nearly-sphencal nuclei orin some shape isomers. In SUCthe second scope. The parameter of the folding procedure
nuclei the shell energy is shifted down by a few MeV with iy he determined by the requirement that the integral of the

respect the old predictions while its amplitude is almost untq4eq function should be the same as the integral evaluated
changed as fur)ct|on of the pamcle num.ber. This means thatith the sample ofx;,y;} pairs using the trapezium rule.
the macroscopic-microscopic method with the new estimate Let j(x,x') be a symmetric function of its arguments

n 1

of the shell energy willwhen leaving the parameters of the . . Nt (ot - : - .
macroscopic and microscopic parts untouchededict the (€., Jn6,X) =]n(x", X)) having the following properties:
magic and quasi-magic nuclei as well as some shape isomers +e
more bound than this were predicted by the calculations done f
with the old Strutinsky method. Also the deformation ener-
gies of non-magic nuclei will be smaller and one could ob-for eachx’ e (-, +=) and
tain different equilibrium shape@.e., ground state quadru-
pole moments The fission barrier for spherical nuclei will (T e R
also be significantly increased and, as a consequence, the Pk(x)_J_w P(x)jn(x,x")dx,
spontaneous fission of such nucleig., some super-heavy
isotopes will be less probable. In addition th@-value foran  wherek=<n are even natural numbers af{(x) is an arbi-
a-decay will be modified when it occurs between deformedtrary polynomial of ordeik. In the following, the function
and spherical isotope®r vice versa This means that the j,(x,x’) will be called the folding function of theth order.
consequences of the naive use of the new method could behe last equation, frequently called tBérutinsky condition
dramatic. One must also not forget that taking into accoungnsures that the folding does not change the average behav-
the particle-phonon coupling can significantly decrease théor of the functionY(x) which is represented by the ensemble
magnitude of the shell energy for spherical nuclei and itsof {x;,y;} points. An example of such a folding function can
dependence on deformation as was shown in Rél. This  be a combination of the Gauss function and the Hermite
effect, of the order 5 MeV for double-magic nuclei, was polynomials of the argument proportional te—x’|, fre-
omitted in the majority macroscopic-microscopic calcula-quently used in the Strutinsky shell correction mettibg).
tions with the traditional Strutinsky shell correction. More detailed description of such a folding function will be

I would therefore like to end with the following warning: given in the next section.

Do not use the new prescription for the shell energy (Egs. Wwith each discrete pointx;,y;) one can associate the
(18)—(21)) in practical calculations without an appropriate functiony;(x) defined by
readjusting of the parameters of the mean-field potentials .
(e.g., Saxon-Woods, Nilsson, Yukawa-folded), macroscopic I , . N
models (e.g. liquid drop, finite range droplet or Thomas- yi(x)-f_m Yid(X" = %) jn(x,x")dX’, (A3)
Fermi), and the pairing force

in(,x")dx=1 (A1)

—00

(A2)

where §(x) is the Diracés-function. A straightforward calcu-
lation gives
ACKNOWLEDGMENTS
The author wishes to express his thanks for the warm Yi(X) = Yijn(X,X). (A4)
hospitality extended to him by the Institute for SubatomicUsing Eq.(Al) it is easy to verify that the integral of the
ResearchIReS and the Louis Pasteur University of Stras- functionVi(x) is
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e The so far arbitrary polynomid?; (u) can be written down as
) yi()dx=y;. (A5)  a series of the Hermite polynomials of order
Let us construct the functiofy(x) by summing up, with , n
weightw, all functionsy;(x), Pi(u) = > aiHi(u). (A15)
i=1
N
Y = 2 W¥i(x). (A6)  Now the condition(A2) can be written as
i=1

The functiony(x) is an approximation of(x) if the weights 0) = i_fw 100 a2
w; are determined from the assumption that the integrals of Pn(0) Vird e Po(u)e™ fo(u)du (AL6)
the unfolded and folded function a¢eearly) equal:

N oo N and inserting relatiofA15) into (A16) one obtains

> Y)Ax; = f Jxdx= 2 wy;, (A7)

i=1 - i=1 p 1 (™ 2

N = e " H;(uf,(uwdu-H;) ¢ =0.
whereAx; is set to z""‘{ \’Wf_w (W ( )}
8% = 3 (X1 = ). (A8) (AL7)
Equation(A7) implies that a reasonable choice of the weightOn the other hand, the last equation should be fullfiled for
is arbitrary values o, # 0, which leads to the following set of
equations:
Wi = AXi . (Ag)
+o0
Thus the folded functioiy(x) is given by i_f e‘“zHi(u)fn(u)du: H,(0), (A18)
N Vi J -

V(x) = AX ). Al . . .

Y gly' XIn0%) (A10) wherei=0,2, ... n. From the other side the corrective func-
tion f,(u) can also be decomposed in terms of the Hermite
polynomials

2. Gauss-Hermite folding function
Let the folding functionj,(x,x’) be defined with the help "
of the Gauss function as fo(u) = ECKHK(“)- (A19)
j(xx’)—iexp[—<x_xr>2]f (X'X/) (A11) i ion i -
nlX, o Y ) Inserting the above relation into EGA18) gives
where y is a parameter and,((x—x")/y) is the so-called r 1 (™,
corrective polynomial ofnth order, determined by the Hi(0)= > Ck/__f e Hi(WH(udu.  (A20)
Strutinsky conditior{A2). In the following we would like to k=l N7

evaluate the coefficients of the corrective polynomial using
some properties of the Hermite polynomials which are or-Then using the orthogonality properties of the Hermite poly-

thogonal with the weight equal to the Gauss function. nomials
Let us introduce a variable=(x-x")/y defined in the
interval (-, +%). The smearing function,(x,x’) and the 1 ([ .
polynomial P(x) in (A2) can now be written as - e " Hi(uWH (uwdu=2'i"! &, (A21)
\7T —00
e
Jn6X") = —=fn(u), (A12)  one obtains the coefficients of the corrective polynomial
wm
(A19),
Pn(X") = Pa(x = yu) = Py(u), (A13) 1
Ci==—H;(0). A22
and = i i(0) (A22)
Pn(X) = Pa(x + 90) = P;(0). (A14)  The values of the Hermite polynomials at zero are
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1 fori=0
H;(0)=12"(-1)"2n-1)!! for i=2n (A23)
0 fori=2n+1,
so that
1 fori=0
2n-1)!"! .
C=y(-D)"——— fori=2n>0 A24
=10 S (A24)
0 fori=2n+1.

The first few coefficient<C, and the corresponding Her-
mite polynomials are:

Co=1, H(u)=1,
Co=-7%, Hyu)=4u?-2,
(A25)
Cy= +35, Ha(u)=16u*-4802+12,

Ce=- Heg(u) = 64u° — 48Qu* + 72007 - 120,

1
384’

PHYSICAL REVIEW C 70, 044306(2004
fou) =1,

fa(u) = % -,

(A26)
15
B

_5p2414
QU+ oU,

f4(u)

35, 2

29 6
g U

_ 35 7 1
fe(u)—ﬁ— +ZU4—gu .

Finally the functiony(x) approximated using the Gauss-
Hermite folding reads:

2

o)

N
> YiAXieXp[_ (ﬂ
i=1 Y
In principle the smearing parametgiis arbitrary and it can
be different at each point. But it should be related to the
distanceAx; between subsequent points if one would like to
approximate the function stored in the mesHfy;} points.
Similarly one has to choosg of the order of the period-
length of the fine structurée.g., shell effectsin case where

1

/
/

yNTT

X=X
Y

yx) =

(A27)

and the resulting corrective polynomials have the followingone would like to wash out this structure from the function

form:

y(X).
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