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The propagation of aL hyperon in nuclear matter is studied within the Green’s function formalism. The
probability density for adding aL hyperon with momentumk to the correlated nuclear matter ground state is
obtained from the complete energy dependence of the real and imaginary parts of theL self-energy. This
self-energy incorporates the effects of short-range correlations induced by the hyperon-nucleon interaction and
the strong coupling betweenLN andSN states which is known to be crucial for a correct determination of the
L binding energy. The calculated spectral functions and quasi-particle parameters for theL are found to be
qualitatively similar to corresponding results for correlated nucleons. In general, theL is less strongly corre-
lated with the nuclear matter environment atkF=1.36 fm−1 than a nucleon, in agreement with empirical
information from finite nuclei.
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I. INTRODUCTION

Hypernuclei, especially those with oneL hyperon, have
been studied for a long time[1,2]. When aL hyperon is
placed in a nucleus or nuclear matter it will interact with the
nucleons in its environment. As a result of these strong in-
teractions, theL becomes correlated with nucleons in the
medium. The study of the properties of theL hyperon in an
environment of nucleons aims to answer a number of funda-
mental questions related to the properties of strange particles
in the nuclear medium. Considerable attention has been
given to the potential energy theL experiences in the
nucleus and the corresponding single-particle(sp) energies.
Experimental access to these sp energies is gleaned from
associated production reactions of thesp+,K+d type, strange-
ness exchange reactions involvingsK−,p−d, and photopro-
duction (real or virtual) on a proton in the nucleus[3–5].
From this experimental work it becomes clear that theL
hyperon is less strongly bound to nucleons than either a pro-
ton or a neutron. Such sp properties have been studied theo-
retically for finite nuclei by several groups[6–9]. The gen-
eral conclusion from the experimental work is that theL
hyperon experiences a potential well in the nucleus that has
the familiar Woods-Saxon shape with a depth of about
30 MeV for a wide range of heavier nuclei. Additional infor-
mation about the properties ofL binding in the nucleus has
been obtained from the study of theL self-energy for several
nuclei [10,11].

Global sp properties of theL hyperon can be studied in
nuclear matter. Results of such calculations have also been
reported by several groups[12–18]. Important astrophysical
information can be obtained from this type of work since it
can be used to study the onset of hyperon formation in neu-
tron stars[16,17,19] and the equation of state including hy-

perons[20–24]. The question of the stability of strange mat-
ter is of great interest and has been discussed for example in
Refs. [25,26]. The relevance of strangeness for calculations
of the properties of a neutron star has been discussed in Refs.
[27,28].

The correlations of theL hyperon in nuclear matter have
typically been studied at the level of its average binding or sp
energy. The full propagator of theL including its complex
self-energy has not been reported so far. The complex self-
energy was studied in Ref.[10]. In view of the relevance of
the properties of a strange particle in a nuclear system, it
seems timely to elucidate the properties of aL hyperon when
it is embedded in such a nuclear system. As in the case of
nucleon-nucleon(NN) interactions, typical hyperon-nucleon
(YN) interactions[29–34] incorporate substantial repulsion at
short distance. The consequences of this strong interaction
can be accounted for in the framework of the Green’s func-
tion formalism by including the proper treatment of these
short-range correlations(SRC) in the form of ladder-diagram
summation for the hyperon-nucleon interaction in the me-
dium (G matrix). The effects on the dynamical single-
particle properties of theL can then be explored by evaluat-
ing the complex self-energy of theL in nuclear matter. The
solution of the Dyson equation for theL then again yields
information on the net binding of theL in nuclear matter, but
also determines the distribution of spectral strength for its
addition to the nuclear-matter ground state as a result of
SRC. Such calculations of theL spectral strength distribu-
tion will be reported for the first time in the present work.

Similar calculations of spectral functions have been per-
formed for nucleons in nuclear matter(NM) for some time
[35–39]. The addition of a strange test particle opens the
door for quantitative comparisons with spectral functions ob-
tained for nucleons and this avenue will be pursued in the
present work. The weakerYN potential is expected to result
in similar but less extreme modifications to the spectral dis-
tribution. However, the presence of theL hyperon also re-
quires consideration of its heavier sibling, the isospin oneS
hyperon. The two hyperons have a small enough mass dif-
ference that a coupled channel problem must be solved. This
is a change from the situation in pure nuclear matter, where
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the explicit effect of theD isobar on nucleon propagation at
low energy is normally ignored(see however Ref.[40]). As a
result of this channel coupling, new structure arises in theL
spectral function which will be discussed in the present
work.

A more detailed knowledge of the properties of aL hy-
peron in nuclear matter may also be helpful in further eluci-
dating the properties of the strangeness producing reactions
on nuclei. Indeed, knowledge of the addition probability of a
L with a given momentum to the nuclear ground state is
required for a more detailed microscopic description of the
production of aL in such reactions. The subsequent weak
decay[41–44] of the L after its production is another pro-
cess where the information obtained in this work may be
useful. Indeed, the nonmesonic weak decay of theL requires
another nucleon with which it will be strongly correlated.
The consequences of the consistent inclusion of SRC on this
weak decay will be reported elsewhere[45].

The paper starts with the introduction of the relevant for-
malism for the determination of theL propagator in nuclear
matter in Sec. II. After presenting some general formalism
relevant for the description of aL in nuclear matter, this
section contains a detailed discussion in Sec. II A of the
approximations made to theL self-energy. The ingredients
of the calculations are reviewed in Sec. II B. One important
ingredient for these calculations is theYN interaction. In the
present work, the soft-core version of Ref.[32] was chosen.
The calculation of the effectiveYN interaction(G matrix) is
presented in Sec. II C. Section III contains a presentation of
the results with special emphasis on the underlying physics
associated with the properties of aL hyperon propagating in
nuclear matter. Finally, conclusions are drawn in Sec. IV.

II. FORMALISM

The results gathered in this section mainly pertain to the
calculation of theL propagator in the nuclear medium. Al-
though no new results for nucleons are reported in this work,
it is helpful to present some selected results related to the
propagator of a nucleon in the nuclear medium. This facili-
tates the comparison between results obtained for theL and
the nucleon. We consider NM at a density corresponding to
kF=1.36 fm−1. The nucleon propagator, also called the
Green’s function, characterizes the excitation spectrum of a
particle (or hole) created on top of the many-body ground
state. The propagator formalism possesses features which
make it especially useful for treating many-body systems
consistently at various levels of approximation. Average
single-particle observables as well as two-particle correla-
tions can be extracted via the propagator formalism without
the need to directly compute a many-body wave function.
The appropriate choice for the sp basis in NM includes mo-
mentum, spin, isospin, and strangeness. We will employ the
explicit notation L or S for the relevant hyperons in the
present discussion and use the generic notation Y to denote
either one.

Of particular relevance is the Lehmann representation of
the sp propagator. For a nucleon in NM one obtains

gNsk;vd =E
«F

`

dv8
Spsk;v8d

v − v8 + ih
+E

−`

«F

dv8
Shsk;v8d

v − v8 − ih
.

s1d

The Fermi energy,«F, has been introduced in Eq.(1) as the
lowest energy above the ground state at which a particle may
be added or the highest energy from which a particle can be
removed. The spectral functions have the following form

Spsk;v8d ; ukcn
N+1uak

†uc0
Nlu2

dn

dv8
, s2d

Shsk;v8d ; ukcm
N−1uakuc0

Nlu2
dm

dv8
s3d

for particles and holes, respectively. The factorsdn/dv8 and
dm/dv8 weight each term according to the density of states
at an excitation energy ofv8. We note that spin and isospin
indices have been suppressed and in the following only the
magnitude of the momentum vector will be used thereby
taking into account the symmetries of NM. The particle spec-
tral function, Eq.(2), denotes the probability density that a
particle can be added to the NM ground state,uc0

Nl, in a sp
statek, at an excitation energyv8 of the N+1 particle sys-
tem. Likewise, Eq.(3) describes the corresponding situation
where a hole is added. As a probability density, the spectral
function is real and positive. A particle(hole) occupation
number may be defined for a statek as the integrated strength
above(below) the Fermi energy,

npskd =E
«F

`

dv8Spsk;v8d, s4d

nhskd =E
−`

«F

dv8Shsk;v8d. s5d

The total spectral strength,S=Sp+Sh is normalized in such a
way that

E
−`

`

dv8Ssk;v8d = npskd + nhskd = 1. s6d

From Eq.(1) one obtains that the spectral functions are re-
lated to the imaginary part of the propagator by

Spsk;vd = −
1

p
Im gsk;vd, v . «F s7d

for the particle addition probability density and

Shsk;vd =
1

p
Im gsk;vd, v , «F s8d

for the removal probability.
In the case of theL propagator some qualitative changes

occur in comparison with the case of the nucleon propagator.
The result corresponding to Eq.(1) now becomes
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gLsk;vd =E
«T

L

`

dv8
SLsk;v8d

v − v8 + ih
. s9d

Since no Fermi surface forL hyperons is considered in this
work, it is not possible to remove aL from the NM ground
state. As a result, the propagator only contains the probability
amplitude for adding aL particle with momentumk at an
energyv8. This particle spectral function for theL is given
by

SLsk;v8d ; ukcn,L
N+1uak,L

† uc0
Nlu2

dn

dv8
. s10d

The energy threshold at which it becomes possible to add a
L to the NM ground state is denoted by«T

L. One expects this
energy to be accessible only for aL at restsk=0d. If the L
were added to a free Fermi gas NM ground state and would
not be correlated otherwise, this threshold energy would
simple be the kinetic energy of aL with zero momentum and
would therefore correspond to zero energy. Based on previ-
ous work by other groups[14,16] one expects the actual
value of the threshold energy at normal NM density to be
around −30 MeV indicating the substantial attraction aL
experiences in NM. Since theL can only propagate as a
particle, the spectral strength above the threshold energy
must integrate to 1. This condition on theL spectral function
is given by

E
«T

L

`

dv8SLsk;v8d = np,Lskd = 1. s11d

This result is quite different from the corresponding nuclear
one given by Eq.(6) where a split between the occupied and
unoccupied strength occurs. As in the case of nucleons one
can obtain the spectral function from the imaginary part of
the propagator,

SLsk;vd = −
1

p
Im gLsk;vd, v . «T

L. s12d

It is practical to list the corresponding results for nonin-
teracting propagators. The noninteracting propagator for the
nucleon is given by

gN
s0dsk;vd =

usk − kFd
v − «Nskd + ih

+
uskF − kd

v − «Nskd − ih
. s13d

This result demonstrates thatgN
s0dsk;vd contains only a

simple pole at an excitation energy corresponding to the en-
ergy of the sp state. The spectral functions[Eqs.(7) and(8)]
for the noninteracting case are

Sp
s0dsk;vd = usk − kFdd„v − «Nskd…, s14d

Sh
s0dsk;vd = uskF − kdd„v − «Nskd…. s15d

Equations(14) and (15) indicate that a nucleon may be
added to, fork.kF, or removed from the medium, fork,kF,
in a sp statek, with unit strength, at an energy corresponding
to «skd, and not at any other energy. The propagator for a
noninteractingL hyperon is given by

gL
s0dsk;vd =

1

v − «Lskd + ih
. s16d

The result for the corresponding spectral function then reads

SL
s0dsk;vd = d„v − «Lskd…. s17d

The actual choice of the single-particle spectrum contained
in «Lskd or [«Nskd for the nucleon] usually only contains the
kinetic energy contribution[tLskd=k2/2mL in the case of the
L]. The addition of strong interactions amongst the particles,
which induce correlations, changes this picture. The dressed
propagator will have a more complex analytic structure as a
function of energy, which gives rise to a correspondingly rich
structure in the spectral function as indicated in Eqs.(1) and
(9). The relation between the dressed and noninteracting
propagators is provided by the Dyson equation which is dis-
cussed in standard textbooks[46,47]. For both a nucleon and
a L in the medium the Dyson equation takes the form

gsk;vd = gs0dsk;vd + gs0dsk;vdSsk;vdgsk;vd, s18d

where terms in the propagator expansion have been arranged
in such a way that the self-energy,S, is irreducible. The
Dyson equation may be solved algebraically to yield

gsk;vd =
1

v − «skd − Ssk;vd
. s19d

This formal solution should be compared with Eqs.(13) and
(16) for the noninteracting propagator of a nucleon and aL,
respectively. The essential difference lies in the presence of
the self-energy which acts as an effective potential for the
nucleon or theL. A truncation of the self-energy expansion
at some finite order in the interaction is not a viable option
for the strong interactions commonly used in nuclear phys-
ics. The individual terms may even be divergent if interac-
tions with hard-cores are used. Instead, approximations are
required which involve summing an infinite number of terms
taken from those classes of diagrams deemed most important
for a given calculation. The relevant set of terms needed to
obtain sensible results at the two-body level has since long
been identified as the set of diagrams involving repeated in-
teractions between the particles to all orders as in the
T-matrix in free space. The inclusion of these terms in the
self-energy is expected to give the most important correction
to the Hartree-Fock contribution to the self-energy since it
correctly treats the effect of SRC on the sp properties. The
essential ingredients to be considered for this approximation
are gathered in the next subsection.

A. Approximation to the L self-energy

The Hartree-Fock(HF) contribution to the self-energy of
a L in nuclear matter is given by
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SL
HFskd = o

k8
E

«F

` dv8

2pi
eiv8hkkk8uVukk8lgNsk8;v8d,

= o
k8
E

«F

`

dv8kkk8uVukk8lShsk8;v8d

= o
k8

kkk8uVukk8lnhsk8d, s20d

which may be simply interpreted as an average over the in-
teractions between theL and the nucleons in the ground state
characterized by the momentum distributionnh. Here and in
the following the first member of a two-body state refers to a
hyperon and the second to a nucleon. To simplify notation
only the magnitude of the momentum quantum number is
indicated. In addition to the direction of the momentum this
quantum number therefore also implicitly refers to spin and
isospin in the case of nucleons. In the case of a hyperon also
the specific hyperon under consideration is implicated(L or
S hyperon). More explicit results are formulated in the next
subsection where details of the actual calculation are dis-
cussed. The convergence factor in the first equality in Eq.
(20) ensures that only the contribution of particles that are
present in the medium are considered. A requirement of the
bareYN interaction is that it provides a realistic description
of free-particle scattering at low energies(typically up to
pion production threshold). Such an interaction will be real,
strongly repulsive at short range and moderately attractive at
longer range. Matrix elements, taken in the uncorrelatedYN
basis, are on average repulsive. As a result, the HF self-
energy will be real and positive, acting as a repulsive mean-
field potential which shifts theL spectrum to

«L
HFskd = tLskd + SL

HFskd. s21d

This is not a realistic approximation in two respects. De-
spite the strong repulsive core in realistic nuclear and hyper-
nuclear potentials, there is a net attraction, as evidenced by
the existence of bound nuclei and hypernuclei. The HF ap-
proximation yields a real self-energy, which implies an Inde-
pendent Particle Model(IPM). Particles occupy sp states
with infinite lifetimes. Despite its limitations, the HF ap-
proximation provides an intuitive method for generating a
mean-field from a two-body interaction and is the simplest
non-trivial approximation which allows a self-consistent
treatment of the many-body problem.

The deficiencies alluded to above can be overcome by
replacing the bare two-body interaction,V, with an effective
interaction which is both complex and has a real part which
is on average attractive. An effective interaction which pos-
sesses the necessary traits to include SRC may be derived
from the bare interaction by summing all the ladder diagrams
depicted graphically in Fig. 1(a). In the limit of zero density
(the interaction of two free particles) this effective interac-
tion is just theT matrix of scattering theory. When a medium
is present, restrictions on particle propagation exist related to
the presence of the(possibly correlated) Fermi sea. If the
intermediate particles correspond to mean-field particles and
are not dressed, then the effective, in-medium interaction is
called the BruecknerG-matrix. If the intermediate propaga-

tors are dressed, this generalized version of theG matrix will
be called theG matrix [48]. The series of ladder diagrams
may be resummed in two ways as illustrated in Fig. 1. Figure
1(a) depicts the integral equation for theG matrix in terms of
V and the uncorrelated but possibly dressed two-particle
propagator indicated by the parallel double lines. These par-
ticles in the intermediate state may be separately dressed by
interactions with the medium, but are not correlated with
each other. After suitable approximations are made this form
of the G matrix equation has been used in the calculation of
the L self-energy and will be discussed in more detail in the
next subsection. An alternative, but entirely equivalent, re-
summation leads to Fig. 1(b). Here theG matrix is expressed
in terms ofV and the correlatedLN two-particle propagator.
This version of the ladder equation is useful for elucidating
an important analytic property of theG matrix. The diagram-
matic expression of Fig. 1(b) is represented by

kkk8uGsVdukk8l = kkk8uVukk8l + o
k1k2k18k28

kkk8uVuk1k2l

3 gYN
II sk1k2,k18k28;Vdkk18k28uVukk8l.

s22d

The energy dependence is entirely contained in the correlated
YN propagator. It should be observed that this propagator
contains both diagonal(LN andSN) as well as nondiagonal
contributions in the hyperon quantum numbers(LN-SN or
SN-LN). In direct analogy with the sp propagator one can
obtain a Lehmann representation for this propagator in the
following form

gYN
II sk1k2,k18k28;Vd =E

Vmin

`

dV8
SYNsk1k2,k18k28;V8d

V − V8 + ih
. s23d

The two-particle spectral density function,

SYNsk1k2,k18k28;V8d ; kc0
Nuak1

ak2
ucn

N+2lkcn
N+2uak18

† ak28
† uc0

Nl
dn

dV8

s24d

has been introduced, much like the sp spectral function of
Eq. (2). The threshold energy forYN propagation is the low-
est energy for which aL and a nucleon can be added to the
ground state of nuclear matter and is therefore given by

FIG. 1. Ladder equation for the effective interaction,G, in terms
of a) uncorrelated(but in principle dressed) two-particle propagator
and b) correlated two-particle propagator.
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Vmin = «F + «T
L. s25d

The analytic structure of the correlatedYN propagator mir-
rors that of the sp propagator in its simplicity. In particular,
one can obtain the following dispersion relation

gYN
II sk1k2,k18k28;Vd = −

1

p
E

Vmin

`

dV8
Im gYN

II sk1k2,k18k28;V8d
V − V8 + ih

.

s26d

Insertion of this expression forgYN
II into Eq. (22) for the G

matrix yields

kkk8uGsVdukk8l = kkk8uVukk8l

−
1

p
E

Vmin

`

dV8
Im kkk8uGsV8dukk8l

V − V8 + ih

s27d

as a dispersion relation for theG matrix. This result illus-
trates that it is possible to obtain the real part of theG matrix
as a dispersion integral over the imaginary part which is
required for all energies aboveVmin. Since both the real and
imaginary part ofG are calculated at a given energy, one may
use Eq.(27) as a consistency check on the numerical calcu-
lation of theG-matrix.

The L self-energy in the ladder approximation(LA ) may
be compactly represented as in Fig. 2. In part(a) of this
figure the Dyson equation is shown. Part(b) illustrates the
self-energy when the effective interaction is represented by
the ladder-summed effective interaction shown in Fig. 1(a).
This result may be compared to the HF approximation. In
that caseG is replaced by the bare interaction indicated by
the dashed line in Fig. 1. The self-energy may still be thought
of as an effective potential for theL as generated by its
average interaction with the nucleons. The difference is that
the bare interaction is now replaced by theG matrix effective
interaction. TheG matrix is complex and energy dependent,
satisfying the list of desirable qualities mentioned previously

for an effective two-particle interaction. In addition, it has
the distinction of being derived directly in terms of the bare
interaction.

The simplicity of the diagram[Fig. 2(b)] expressing the
self-energy in terms of theG matrix reflects a simple math-
ematical relationship between the two functions:

SLsk;vd = o
k8
E dv8

2pi
eiv8hkkk8uGsv + v8dukk8lgNsk8;v8d

= o
k8
E

−`

«F

dv8kkk8uGsv + v8dukk8lShsk8;v8d. s28d

The spectral representation of the nucleon hole propagator
[Eq. (1)] was used to obtain the final expression of Eq.(28).
Similar to the HF case[Eq. (20)] which is contained in Eq.
(28), the self-energy in the LA is just a convolution of the
effective interaction with the spectral density of occupied
nucleon states, although in the present case it also requires
knowledge of the energy dependence of the nucleon hole
strength. Just as theG matrix satisfies a dispersion relation,
so too does the self-energy. Inserting Eq.(27) into Eq. (28)
yields

SLsk;vd = o
k8

kkk8uVukk8lnhsk8d +E
Vmin

`

dv8
Im SLsk;v8d
v − v8 + ih

= SL
HFskd + SL

Dsk;vd. s29d

B. Ingredients of the calculation

Having chosen the LA as a physically suitable approxima-
tion to Dyson’s equation(Fig. 2), the framework is set for the
calculation of theL propagator. Now it is necessary to con-
sider the ingredients that are required to explicitly implement
this scheme in a tractable manner. A major ingredient is the
two-body interaction which describes the scattering of hyper-
ons and nucleons. We have chosen a Nijmegen Soft Core
(NSC89) meson exchange potential[32]. This potential is the
Fourier transformable, soft-core descendant of the hard-core
Nijmegen D and F models[29–31]. In the microscopic spirit
of this work, it is based on the exchange of mesons. Though
fit to availableYN scattering data, the scarcity of such data
demands a heavy reliance on SU(3) symmetries to relate
poorly determinedYN coupling constants to their better
known NN relatives. As with all potentials of this type, the
NSC89 is fit to low-energy data and its core structure is not
well determined. Results which depend on the short-range
behavior of the potential will reflect this deficiency but are
consequently of interest as well. The more recent versions of
this potential as presented in Ref.[34] have been shown to
overbind single hypernuclei[24] and were not considered for
the present calculation at this time.

The NN interaction appears implicitly in the nucleon
propagators with which theL interacts. Results for these
nucleon propagators are based on calculations[39] involving
the Reid Soft Core(RSC) potential [49]. The nucleon hole
and particle propagators appear in the self-energy equation
[Fig. 2(b)] and theG-matrix equation[Fig. 1(a)] as external

FIG. 2. Diagrammatic representation of Dyson’s equation in the
ladder approximation. Part(a) shows the Dyson equation. The self-
energy has been provided with superscriptL to emphasize that this
represents the approximation shown in part b) which includes the
effective interaction shown in Fig. 1.
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parameters. This illustrates the obvious statement that one
does not have to recalculate nucleon properties after intro-
ducing a singleL hyperon in the medium. In principle, the
dressed nucleon propagator should be determined from a
coupled system of equations similiar to those depicted in
Figs. 1 and 2. In this work, we will approximate the dressed
propagator by only including the self-consistent sp spectrum
as obtained in Ref.[39]. As a result the nucleon propagator
retains the form of the noninteracting propagator[see Eq.
(13)] but has a sp spectrum that is determined by the real part
of the self-energy of the nucleon. TheS hyperon has been
introduced as part of a possibleYN intermediate state in the
G matrix equation[Fig. 1(a)]. Its inclusion is necessitated by
the relatively small mass difference of about 77 MeV be-
tween theL and S. This results in a significant coupling
betweenLN and SN intermediate states which cannot be
ignored. It is probably correct to conclude that the experi-
mental and theoretical analysis ofS bound states suggest
little if any binding for this hyperon in nuclei[50]. Com-
pared with sp potential well depths of approximately
30 MeV for theL and 75 MeV for the nucleon in NM, theS
interacts relatively weakly with the nuclear medium even
though about 15 MeV binding is obtained in NM in our cal-
culation confirming the result obtained in Ref.[17]. It is
therefore a reasonable approximation to treat theS as a par-
ticle which only has a modified sp energy in the medium as
is done in this work. The resulting propagator is then of the
form of Eq. (16). The modification of the sp energy is ob-
tained in the same way as described for theL below.

At this point it is useful to note that although theL propa-
gator has a formal solution in terms of the self-energy, the
self-energy depends internally on the dressed propagator.
This means that Figs. 1 and 2 depict a coupled system of
equations for the dressedL propagator. The natural starting
point is to make the zeroth order approximation

gLsk;vd → gL
s0dsk;vd. s30d

Given this choice of initialL propagator, theG-matrix, self-
energy, and next generation propagator may be calculated in
turn. Ideally, one would now like to use this new propagator,
gL

s1dsk;vd, as input to theG-matrix equation and iterate until
a self-consistent solution is obtained. Examination of Eq.
(19) reveals that the energy dependence of the dressed propa-
gator is much more complicated than that of the free propa-
gator, Eq.(16). In fact, this is also true forgL

s1dsk;vd, which
has an analytic structure similar to that of the fully self-
consistent propagator, even after only one interation. A sim-
plified iteration scheme is therefore used instead.

Breaking up the self-energy into its real and imaginary
parts, Eq.(19) for the dressed propagator can be rewritten as:

gLsk;vd =
1

fv − tLskd − ReSLsk;vdg − ifIm SLsk;vdg
.

s31d

Comparing this to the form of the free propagator, Eq.(16),
it can be seen that the real part of the self-energy plays the
role of an energy-dependent potential. This observation mo-
tivates the definition of a new energy spectrum:

«L
s1dskd = tLskd + ReSLsk;«L

s1dskdd. s32d

This new spectrum, which will later be identified as the
quasi-particle(qp) energy spectrum, is inserted in place of
the kinetic energy spectrum in Eq.(16), to define a new
propagator

gL
s1dsk;vd → g̃s1d

L sk;vd ;
1

v − «L
s1dskd + ih

. s33d

In this way, the same simple analytic structure is always used
for the L propagator in theG matrix equation, and only the
spectrum changes from iteration to iteration. The iteration
procedure is continued until a self-consistent Lambda spec-
trum is obtained:

«L
sn+1dskd = «L

sndskd. s34d

As will be discussed later, it is important to calculate such a
consistent spectrum in order to ensure that the final spectral
function is a continuous function of energy. It should be
noted here that this approximation in obtaining theLN ef-
fective interaction is equivalent to the usualG matrix proce-
dure. For this reason, we will adapt this notation for this
interaction from now on.

After obtaining self-consistency according to Eq.(34), the
spectral function is calculated from the imaginary part of the
dressed propagator, Eq.(31) using the expression of Eq.(12).

SLsk;vd =
1

p

uIm SL
ssdsk;vdu

fv − tLskd − ReSL
ssdsk;vdg2 − ifIm SL

ssdsk;vdg2 .

s35d

The self-energy bears an “s” superscript to denote the fact
that it is calculated using a self-consistentL spectrum. It
should be emphasized that the spectral function of Eq.(35) is
not truly self-consistent due to the simplifying approximation
of Eq. (33). A qp energy can now be defined as in Eq.(32),

«L
qpskd = tLskd + ReSL

ssdsk;«L
qpskdd. s36d

If the self-energy is only weakly energy dependent in the
neighborhood of the qp energy, then it is evident from Eq.
(35) that the spectral function will have a peak near«L

qpskd.
Expanding the self-energy about«L

qpskd as

ReSL
qpsk;vd ; ReSL

ssdsk;«L
qpskdd

+
] ReSL

ssdsk;«L
qpskdd

] v
sv − «L

qpskdd, s37d

Im SL
qpskd ; Im SL

ssdsk;«L
qpskdd, s38d

yields the qp approximation to the spectral function. We de-
fine the following two functions

zskd ; 1 −F ] ReSL
ssdsk;vd

] v
G−1

, s39d

gskd ; zskduIm SL
qpskdu, s40d

and make use of Eq.(36) to cast the qp approximation(QPA)
of the spectral function explicitly in the form of a Lorentzian
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SL
qpsk;vd =

1

p

zskdgskd
fv − «L

qpskdg2 + fgskdg2 . s41d

C. Calculation of the G matrix

The calculation of theG matrix and the subsequent con-
struction of the resulting self-energy will summarized in this

subsection. A convenient basis for the determination of theG
matrix is given by two-particle states with good total mo-
mentum, magnitude of the relative momentum, orbital angu-
lar momentum, total spin, and total angular momentum.
Starting with states which have good momentum for the in-
dividual particles(and spin, etc.) theG matrix can be written
as

kk3k4;Y3N4uGsVduk1k2;Y1N2l = kk3k4;Y3N4uVuk1k2;Y1N2l − o
Y5

E dv5

2pi
E dk5

s2pd3 E dk6

s2pd3kk3k4;Y3N4uVuk5k6;Y5N6l

3gY5

s0dsk5;v5dgN
s0dsk6;V − v5dkk5k6;Y5N6uGsVduk1k2;Y1N2l. s42d

Each particle label corresponds to a momentum(spin and
isopin) eigenstate with the convention that the leftmost states
correspond to hyperons. The conserved total energy,V
;v1+v2, has been introduced in Eq.(42), and spin and
isospin labels have been supressed for clarity. This equation
may be simplified by performing the integral overv5 for the
propagator for the intermediateYN state:

gY5N
II sk5,k6;Vd ; −E dv5

2pi
gY5

0 sk5;v5dgN6

0 sk6;V − v5d

=
usuk6u − kFd

V − «Ysk5d − «Nsk6d + ih
. s43d

Conservation of total momentum allows a change to total
momentum,

Q ; k1 + k2 = k3 + k4 = k5 + k6, s44d

and relative momentum,

qi ; SmY

mY
Dk3 − SmY

mN
Dk4, s45d

qf ; SmY

mY
Dk1 − SmY

mN
Dk2, s46d

q8 ; SmY

mY
Dk5 − SmY

mN
Dk6. s47d

The reduced mass for theYN system has been introduced as

mY ;
mYmN

mY + mN
. s48d

The G matrix integral equation now has the form

kqf ;Y3N4uGsQ;Vduqi ;Y1N2l = kqf ;Y3N4uVuqi ;Y1N2l + o
Y5

E dq8

s2pd3

3kqf ;Y3N4uVuq8;Y5N6lgY5N
II sq8,Q;Vdkq8;Y5N6uGsQ;Vduqi ;Y1N2l. s49d

In order to perform a partial-wave decomposition of the rela-
tive motion it is first necessary to eliminate the angular de-
pendence in Eq.(43) since it couples different angular mo-
mentum states. This is accomplished by an angle-averaging
procedure. The straightforward approach to angle-averaging
leads to

ḡYN
II sq8,Q;Vd ;

1

4p
E dVq̂8gYN

II sq8,Q;Vd, s50d

for the angle-averaged propagator. This definition suffers
from two problems. First, the integral in Eq.(50) cannot in
general be performed analytically. More of a problem, how-
ever, is the fact that Eq.(50) no longer shares the simple

analytic structure of the original propagator, Eq.(43). The
prescription of Eq.(50) “smears” the simple pole, which cre-
ates problems later in the calculation of theG matrix. For
this reason, angle-averaging is implemented in a different
way. Instead of averaging the entire propagator at once, the
numerator and denominator of Eq.(43) are angle-averaged
separately. This leads to the new definition

ḡYN
II sq8,Q;Vd ;

ūsq8,Q;kFd
V − «̄YNsq8,Q;kFd + ih

s51d

which makes use of a shorthand notation for the two-particle
energy,
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«YNsq8,Qd = «Ysq8,Qd + «Nsq8,Qd. s52d

An additional simplification of

«̄BskBd ; «Bsk̄Bd, s53d

is made, where the sp momentum is angle-averaged instead
of the energy. The sp momentakY and kN can of course be
obtained fromq8 andQ. A dependence onkF arises because
the Pauli restriction on allowed angles is taken into account
even though the two parts of the propagator are angle-
averaged separately. In practice, only a few terms in the
partial-wave expansion make up the bulk of the contribution
and the sum may be truncated to good approximation.

The NSC89 interaction possesses a strong tensor force
which can couple states of different orbital angular momen-
tum, L. The tensor force is primarily the result of pion ex-
change and is strongest for theLN-SN channel. Pion ex-
change is nominally forbidden for theLN-LN channel
because isospin cannot be conserved at theLLp vertex for a
L with zero isospin. Charge symmetry breaking voids this
restriction to some extent, but the tensor force in this channel
remains relatively weak. The strong interaction does not vio-
late parity, so theL-values can only change by 0 or 2 units,
since the total angular momentum is conserved and the total
spin is restricted to 0 or 1. Under these conditions, it is pos-
sible to consider eigenstates of total angular momentum,J
=L+S. In this basis, theG matrix is given by

kkfJsLfSfTd;Y3N4uGsQ;VdukiJsLiSiTd;Y1N2l

= kkfJsLfSfTd;Y3N4uVukiJsLiSiTd;Y1N2l

+ o
Y5L8S8

E dq8q82kkfJsLfSfTd;Y3N4uVuqJsL8S8Td;Y5N6l

3 ḡII
Y8Nsq,Q;VdkqJsL8S8Td;Y5N6uGsQ;Vd

3ukiJsLiSiTd;Y1N2l, s54d

where a label for the total isospin,T, has been included for
completeness. The operators which define the potential ma-
trix elements are all scalars inJ andT. This means that the
matrix elements defined by Eq.(54) are independent ofMJ
andMT.

The integral equation for theG matrix is now in its final
form for numerical solution. A standard method for solving
such a one-dimensional integral equation is to discretize the
integral and invert the resulting matrix equation[51]. The
discrete momentum mesh must be chosen with some care,
taking into consideration theq8-dependence of both the po-
tential matrix elements and the angle-averaged two-particle
propagator. The potential matrix elements are quite smooth
functions of the relative momentum in all important partial
wave channels. The strong short-range part of theYN inter-
action couples low momentum states to intermediate states
with very high momentum. As a result, it is necessary to
choose aq8-mesh which adequately covers the highq8 re-
gion. Theq8-dependence of the propagator arises from two
sources. The Pauliu-function in the numerator serves mainly
to cut off q8 below a minimum,qmin8 sQd, defined by

qmin8 sQd ; 5kF − SmY

mY
DQ SmY

mY
DQ , kF

0 otherwise.

s55d

For V above a certain threshhold,VminsQd, there will be a
pole in the angle-averaged propagator(Eq. (51)). This pole
occurs for a value,q08, of the relative momentum defined by

V = «̄YNsq08,Q;kFd. s56d

The pole location,q08, as well as the cutoff value,qmin8 , are
different for the twoYN channels. This means that separate
q8-meshes must be constructed for each channel.

The L self-energy is obtained from theG matrix in the
following way

SLskL;vd = o
J

s2J + 1d E dQ Q2E djQ

2

3 kqJsLSdT;LNuGsQ;v + «NskNdd

3uqJsLSdT;LNluskF − kNd, s57d

where the nucleon mean-field propagator was used. The rela-
tive momentum,q, and the nucleon momentum,kN, are func-
tions of theL momentum,kL, and the integration variables.
The self-energy allows a newL-spectrum to be defined using
Eq. (32). The new spectrum is used to define a new
L-propagator according to Eq.(33) for input into Eq.(54)
for the G matrix. An essentially self-consistent spectrum is
achieved after only a few iterations as discussed in the next
section. With a consistentL-spectrum, the spectral function
may be calculated as in Eq.(35). It should be noted that the
spectral function is only defined forv.vminskLd, and a
meaningful spectral function can only be calculated forkL

such that«L
qpskLd.vminskLd. In practice,vminskLd depends

on kL, but in principle,vminskLd=«L
qps0d for all kL.

III. RESULTS

The presentation in this section starts with a discussion of
some of the qualitative features related to the spectral func-
tion and the self-energy. After this general discussion results
will be presented for the spectral functions, the location of
their peak, the magnitude of their width, and the strength
contained in the peak. Comparisons with results for nucleon
spectral functions will be made throughout. Of specific inter-
est is the influence of the coupling to theSN states on theL
self-energy and spectral function. This effect will be illus-
trated by comparing with results where this coupling has
been eliminated.

A. Qualitative features of the L spectral function
and self-energy

From the definition of the spectral function in Eq.(10),
the expression

ak
†uCsE0dl s58d

has a physical interpretation as the state resulting from addi-
tion of a L with quantum numbers,k, to the NM ground
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state. By definition, this represents a product state of aL sp
state and the correlated NM ground state. This will not be an
eigenstate as long as there areLN interactions present in the
Hamiltonian. The actual energy eigenstates of the composite
system of aL in NM may be denoted by

uLCsEdl. s59d

The sp spectral function(see for example Fig. 3) involves the
overlap between the simple physical state of Eq.(58) and the
complicated eigenstate of Eq.(59) which includes all inter-
actions between theL and the nuclear medium. The extent to
which there is overlap illustrates how well theL sp state
survives intact in the medium. For the case of no interactions
between theL and the nucleons, the overlap is perfect, since
the state of Eq.(58) is an eigenstate in this situation. This is
evidenced by thed function spectral distribution appropriate
for a free particle, as indicated by a dashed line at the kinetic
energy in Fig. 3. Interactions between theL and nucleons are
responsible for the transition from the simpled function
structure to the more complex distribution of sp strength re-
alized in NM. The mechanism behind the spreading of sp
strength can be understood as the mixing of a sp state at a
given energy with two-particle one-holes2p-1hd states
which span a continuum of energies. This is graphically il-
lustrated in Fig. 4 where part a) identifies the noninteracting
L and part b) shows the interaction that couples this state to
the available 2p-1h states. Although the sp state is no longer
an eigenstate of the many-body Hamiltonian, its quantum
numbers are still conserved by the interaction. The total
strength associated with the original sp state, though frag-
mented, is fixed. This is reflected in the sum rule of Eq.(11).
Details of the strength distribution are determined by the
density of 2p-1h states which increases with energy and the
strength with which the interaction couples these states to the
unperturbed sp state. This information is summarized in the
imaginary part of the self-energy, shown for example in Fig.
5. Note that the decomposition in partial wave contributions
emphasizes the dominance of the3S1 channel.

From Eq.(28), the imaginary part of the self-energy may
be written as

Im SLsk,vd ~ o
k8,kF

Imkkk8uGsv + «Nsk8dukk8l, s60d

where the nucleon hole spectral function has been replaced
by the corresponding mean-field form given by Eq.(8). It

FIG. 3. Spectral function for aL with k=100 MeV/c. The ver-
tical dashed line indicates the position of a delta-function spectral
distribution for the limiting case of a free particle. Because of the
30 MeV binding for aL in nuclear matter, it is convenient to shift
the horizontal axis by 40 MeV for plotting on a log scale.

FIG. 4. In part(a) a freeL occupies a sp state at a fixed energy.
Part (b) displays theLN interaction which permits coupling to in-
termediate 2p-1h states which span a range of energies, the density
of states increasing with energy as schematically shown.

FIG. 5. Imaginary part of theL self-energy fork=100 MeV/c.
The broken curves represent contributions to the overall self-energy
from the3S1 (dash) and1S0 (dot) partial wave channels.

CORRELATION EFFECTS ONL PROPAGATION IN… PHYSICAL REVIEW C 70, 044301(2004)

044301-9



can be shown[52] in turn that the imaginary part of theG
matrix may be expressed in terms of the uncorrelated two-
particle propagator as

Im kkk8uGsVdukk8l ~ o
k1k2

ukkk8uGsVduk1k2lu2

3 Im gunc
II sk1k2;Vd. s61d

The imaginary part of the uncorrelatedLN propagator is
proportional to the diagonal spectral density[see Eq.(24)]

Im gunc
II sk1k2;Vd ~ Sunc

II sk1k2;Vd. s62d

If particles in the intermediate state are not dressed by inter-
actions with the medium(as they would be in a fully self-
consistent calculation), but rather are treated as mean-field
particles, then

Sunc
II sk1k2;Vd → d„V − «2psk1k2d…usk2 − kFd s63d

and the two-particle spectral function reduces to a delta-
function which picks out states with total energy,V. In this
simplified case, Eq.(60) becomes

Im SLsk,vd ~ o
k8,kF

o
k1

o
k2.kF

ukk1k2uGsVdukk8lu2

3dsv − «2p1hddk,k1+k2−k8, s64d

where

«2p1h ; «Ysk1d + «Nsk2d − «Nsk8d, s65d

and momentum conservation is indicated by the Kronecker
symbol. Equation(64) reveals the direct connection between
Im SLsk,vd and the phase-space for 2p-1h states with mo-
mentum,k, and energy,v. Aside from the weighting pro-
vided by theG matrix elements, the imaginary part of the
self-energy is directly proportional to the available 2p-1h
phase-space. The correlations present between particles in
the intermediate state will make the spectral function more
complicated than Eq.(63) for the uncorrelated case and typi-
cally leads to a diminished density of states at low energy
[53]. However, this does not substantially alter the physical
interpretation of ImSL as expressed in Eq.(64). The imagi-
nary part of the self-energy is still proportional to a weighted
2p-1h phase space but the intermediate particles are better
thought of as quasiparticles carrying reduced strength.

Coupling 1p to 2p-1h states

The d-functions in Eq.(64) permit the integrals over in-
termediate state variables to be performed explicitly. Taken
together with Eq.(60), an expression is readily derived for
Im G where phase-space factors are conveniently decoupled
from the weighting matrix elements,

s66d

Here p, Q andV are the relative momentum, total momen-
tum and total energy for theLN state obtained by averaging
over the nucleon hole momentum. The on-shell relative mo-
mentum,q0, is defined by the two-particle energy through

V ; «YNsQ,q0d, s67d

and varies depending on which hyperon(L or S) is present
in the intermediate state. In the following we will study the
contributions to Eq.(66) which in turn through Eq.(60) de-
termine theL self-energy.

As indicated in Eq.(66), there are two sources of energy
dependence for diagonal matrix-elements of ImG. There is a
phase-space factor which, aside from Pauli effects and devia-
tions from free spectra for the intermediate particles, contrib-
utes a simple, structureless energy dependence for eachYN
channel. The twoYN channels do possess different energy
thresholds and this does lead to an expectation of structure at
the SN threshold(region near 70 MeV in Fig. 6) purely on
the basis of phase-space considerations. However, most
structure found in the energy dependence of ImG can be
attributed to the half-on-shell matrix elements ofG which
effectively couple the 1p and 2p-1h states.

Taking the example of an initialLN 3S1 state, Eq.(66) is
plotted in Fig. 6. Contributions from each of four possible
intermediate states, characterized by different YL combina-
tions, are plotted together with their sum. All terms contrib-
ute significantly except for theLN 3D1 intermediate state
which couples relatively weakly to the initial state.

Though the form of Eq.(66) is useful for isolating purely
phase-space influences on the energy dependence of ImG, a
complex, non-linear tangling of states remains concealed
within the half-on-shellG matrix elements. These tangled
intermediate states can be further unscrambled by consider-
ing a dissection of the pertinentG matrix elements into a pair
of complementary approximations. One may define a “di-
rect” approximation to a particular matrix element,kauGubl,
by eliminating all matrix elementskguVudl from the defini-
tion of the G matrix equationexceptthose wherea=g and
b=d. The quantum numbersa ,b ,g and d here refer to the

FIG. 6. (Color online) The components of ImG as defined by
Eq. (66). One curve is associated with eachYN intermediate state
accessible from the initialLN 3S1 state. The full curve is the sum of
the four components.
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appropriate channels, for exampleLN 3S1, etc. The comple-
mentary “indirect” approximation toG is defined by elimi-
nating only those matrix elements ofV wherea=g and b
=d. Note that complementary sets of approximateG matrices
are defined for each choice of initial and intermediate state.

As an example, consider the situation where only transi-
tions to an intermediateLN 3S1 state are allowed. This can
be accomplished by generating a newG matrix where all
matrix elements ofV are set to zero, except those which
connect the intial state to theLN 3S1 intermediate state. In
this case there is only a single term in the sum of Eq.(66),
corresponding to the lone available intermediate state. This
version of ImG, where only the direct route to theLN 3S1
intermediate state is available, is compared with the corre-
spondingLN 3S1 term from the result for the fully correlated
G-matrix in Fig. 7. The shapes are very similar except in the
energy range near theSN threshold and below. This similar-
ity indicates that the effective couplings to theLN 3S1 inter-
mediate state are only modestly influenced by the presence
of the other intermediates, except in the vicinity of theSN
threshhold.

The LN 3S1–SN 3D1 effective interaction is likewise
dominated by direct coupling as shown in Fig. 8. This clearly
shows that an energy region can be identified with states that
are reached primarily via a tensor interaction(the few hun-
dred MeV range). Contrast this with Fig. 7 where the
LN 3S1–LN 3S1 term has no tensor interaction and peaks
above 1 GeV. Indirect contributions therefore factor in only
marginally.

For some channels, a direct approximation is not feasible.
In these cases, turning off the directLN 3S1–LN 3S1 transi-
tion causes the numerical determination of the coupled chan-
nelG matrix to become unstable. It still turns out to be useful
to define and utilize a semi-direct approximation in these
cases. In this approximation, theLN 3S1–LN 3S1 potential is
retained, along with the matrix elements for the direct tran-
sition. Inclusion of these matrix elements serves to stablize
the numerics while only interfering minimally(at higher or-
der). A semi-direct approximation toLN 3S1–SN 3S1 chan-

nel involves turning off all tensor interactions and leaving
only the two central transitions. Figure 9 confirms that this
approximation primarily cuts in the “tensor” region identified
from Fig. 8 and this is where the indirect approximation
gives its largest contribution.

B. The quasi-particle peak

As indicated by the spectral function peak in Fig. 3, an
energy region with a substantial amount of sp strength sur-
vives the mixing with the 2p-1h states. However, this qp
peak is shifted in energy, broadened and has lost some frac-
tion of strength compared to the delta-function distribution
appropriate for a non-interacting particle.

1. Location

The location of the peak is given by the qp energy as
defined in Eq.(36). The real part of the self-energy, playing
the role of a sp potential, shifts the peak from its unperturbed
location at the kinetic energy. The self-energy can be split
into two pieces,

SLsk;vd = SV
Lskd + SD

Lsk;vd, s68d

each corresponding to a different type of physical process as
indicated in Fig. 10. Treating the self-energy at lowest order
in the LN interaction (the HF approximation) only elastic

FIG. 7. (Color online) Dashed curve is the direct approximation
to Im G for the LN 3S1 intermediate state. The full curve is the
Im G component attributed to this same intermediate state when all
couplings are intact. Note that there is no indirect contribution for
this channel because the directLN 3S1→LN 3S1 transition turns
out to be crucial for the numerical determination of theG-matrix.

FIG. 8. (Color online) Direct (dotted) and indirect(dashed) ap-
proximations to ImG for the SN 3D1 intermediate state.

FIG. 9. (Color online) Semi-direct(dotted) and indirect(dashed)
approximations to ImG for the SN 3S1 intermediate state. Semi-
direct because theLN 3S1–LN 3S1 couplings must still be included
in order to obtain reasonable results.
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scattering between the lambda and nucleons below the Fermi
energy is considered as illustrated in Fig. 10(a). This leads to
a real, energy-independent contribution to the self-energy,
SV

Lskd. This term is relatively large and positive, on the order
of 50 MeV, reflecting the repulsive character of the bare in-
teraction.

The coupling to 2p-1h intermediate states is represented
by the diagram of Fig. 10(b). Such processes induce a com-
plex, energy-dependent component to the self-energy,
SD

Lsk;vd. This self-energy piece obeys a dispersion relation
[see Eq.(29)],

Re SD
Lsk;vd =

− P

p
E

«T
L

`

dv8
Im SLsk;v8d

v − v8
. s69d

This means that the real part of the self-energy in the neigh-
borhood of some particular energy, such as«L

qp, requires
knowledge of ImSLsk;vd at all energies. The imaginary
part of the self-energy is dominated by a broad, smooth peak
at high energy, as seen in Fig. 5. In contrast, the qp peak
resides at a much lower energy,«L

qpskd; far removed from the
bulk of the strength in ImSLsk;vd, which is centered at
some energy,v0, in the GeV range. If the only appreciable
contribution to Eq.(69) evaluated atv=«L

qpskd comes from
v8 nearv0, then the denominator in the integrand may be
approximated as a constant:«L

qpskd−v0. This leaves

Re SD
Lsk;«L

qpskdd .
− 1

p

1

«L
qpskd − v0

E
«T

L

`

dv8Im SLsk;v8d

=
− 1

p

I0

«L
qpskd − v0

, s70d

whereI0 is just the integrated strength in ImSLsk;vd. In this
approximation ReSD

Lsk;«L
qpskdd depends on only two param-

eters which together characterize the gross properties of
Im SLsk;vd; the integrated strength,I0, and the centroid of
the high-energy peak,v0. Though nominallyk dependent,
the parametersI0 and v0 should vary only slowly withk
since they characterize the gross structure of ImSLsk;vd at
high energy; structure which is far removed from the low-
energy realm of the qp peak. These two parameters define a
model for a simple low-energy approximation to ReSD

L,

Re SD
L,modelsk;«L

qpskdd ;
− 1

p

I0

«L
qpskd − v0

. s71d

The full structure of the self-energy is shown in Fig. 11 with
the two-parameter model for comparison.

Decreasing the density of 2p-1h states and/or the strength
of coupling to these states is analogous to a decrease in the
parameterI0. This simply scales down the real part of the
self-energy for all energies, thereby reducing the binding
contribution to«L

qp. Alternatively, moving the 2p-1h states to
higher energy can be mimicked by an increase in the param-
eterv0, which likewise results in a reduction in the real part
of the self-energy at«L

qp and a consequent decrease in qp
binding.

The success of this simple model, limited as it is, indi-
cates that«L

qp is dominantly determined by high-energy
2p-1h states, but at the same time is relatively insensitive to
details of the coupling to these states. To quantify the insen-
sitivity of «L

qp to low-lying excited states, one can isolate the
low-energy tail of ImSLsk;vd in Eq. (69), and examine its
effect on«L

qp. The first 100 MeV of ImSLsk;vd above the
lambda threshold only contributes to«L

qp at the level of a few
percent. The disparity of about 10 MeV between the model
and the full result can be attributed to the finite width of the
peak, and especially the low-energy shoulder in the range of
a few 100 MeV where coupling to theSN channel is most
important. It should be noted that these results are contingent
on Im SLsk;vd being of a form similar to that depicted in
Fig. 5. The imaginary part of the self-energy is dominated by
its structure at high energy precisely when SRC dominate the
LN effective interaction from which it is derived. This de-
pends in part on the short-range behavior of the bare inter-
action, but also on the approximation method selected when
defining the effective interaction. The ladder approximation
adopted in this work is specifically chosen because it incor-
porates the essential features of SRC while de-emphasizing
LR behavior and more collective states which naturally oc-
cur at low excitation energy. A realistic calculation for a
finite hypernucleus, utilizing the same bare interaction, but
going beyond the ladder approximation might well show
greater sensitivity to low-lying states[10,14,16].

SinceI0,0, the real part of the self-energy will be nega-
tive for any energy belowv0, including the “on-shell” region
near the qp peak. This means that the self-energy term which
represents the coupling to high-energy 2p-1h states[Fig.
10(b)] will always lower the energy of the qp state. This
result is familiar from perturbation theory, where a second-
order correction to the energy always serves to lower the

FIG. 10. In part a) the HF part of the self-energy is shown. Part
b) includes the coupling to intermediate 2p-1h states. This contri-
bution corresponds to the second term in Fig. 1(b) for the ladder
equation.

FIG. 11. Real and imaginary parts of the exact self-energy are
plotted with the solid lines and the real part from the model is
plotted as a dashed curve for comparison.
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energy of the ground state. This binding more than offsets
the HF contribution to«L

qp and leads to a monotonically in-
creasing qp spectrum. A sp potential,ULskd, defined by

«L
qpskd ; tLskd + ULskd, s72d

is plotted in Fig. 12 together with the sp potential employed
for the nucleons.

The net binding of 30 MeV for a lambda at rest in NM is
consistent with other calculations[4] as well as an extrapo-
lation from experimentally measureds-shell binding energies
for hypernuclei[54]. Only theS-waves(including the tensor-
coupled channels) are considered in this work. Higher partial
waves yield corrections to«L

qp on the order of no more than
10% and even at this level tend to cancel each other out[17].

2. Width

In contrast to the position of the qp peak, which is essen-
tially determined by the structure of the imaginary part of the
self-energy at very high energies, the width of the peak is
directly proportional to the local value of ImSL at the qp
energy[Eq. (40)]. To the extent that coupling to these low-
lying 2p-1h states is only weakly momentum dependent(for
low values ofk), the width is directly proportional to the
local density of 2p-1h states. Phase space restrictions near
the 2p-1h threshold determine the low-energy structure of
the imaginary part of the self-energy[55] according to

Im SLsk;vd . cskdfv − «T
Lg2, v → «T

L. s73d

For values ofk such that«L
qpskd is low enough to fall in the

energy range where Eq.(73) is valid, the qp width can be
simply expressed as a function of the peak position,

gskd . c8skdf«L
qpskd − «T

Lg2. s74d

This approximation is shown together with the calculated
width as a function of momentum in Fig. 13, where the fac-
tor c8skd has been approximated as a constant, independent
of k. Although this model for the qp width is not precisely
accurate except very neark=0, it does suggest the origin of
the growth ofgskd with increasingk. For comparison, the
corresponding results for nucleons are also included in Fig.
13 as the dotted curve plotted as a function ofk−kF, using

the results of Ref.[39]. Especially at small momenta above
the particle thresholds, the nucleon width is several orders of
magnitude larger than theL one, suggesting that theNN
interaction generates a much stronger coupling to the low-
lying 2p-1h states than theYN one. At higher momenta, this
difference is reduced to about a factor of 3.

If the qp part of the spectral function is interpreted as a
distinct sp-like state, thengqpskd is the width induced by
coupling to a population of nearby states. Overlaying the
QPA to the spectral function on top of the full spectral func-
tion, Fig. 14, demonstrates the utility of the QPA for lowk. A
sharp rise in ImSLsk;vd occurs in the vicinity of v
.200 MeV as can be seen in Fig. 5. When«L

qpskd reaches
this energy range, the QPA is no longer a reasonable approxi-
mation. This occurs for aL with momentum in the neigh-
borhood ofk.600 MeV/c and is a sign that another energy
threshold has been crossed. This threshold is discussed in
Sec. III C.

3. Strength

According to Eq.(39), the amount of spectral strength
concentrated in the qp peak is given by the derivative of
Re SD

Lsk;vd with respect tov locally at «L
qp. In terms of the

dispersion relation for ReSD
Lsk;vd, Eq. (39) becomes

FIG. 12. Potentials of Wood-Saxon form are fitted to calculated
data for theL and the nucleon, identified by diamonds and circles,
respectively. The analytic approximation is useful when the deriva-
tive of a particle spectrum is required.

FIG. 13. The curve marked by diamonds represents the qp width
as a function ofk. The curve with circles represents an approxima-
tion to the width based on the local density of 2p-1h states. The
dotted curve represents the corresponding widths for nucleons as a
function of k−kF.

FIG. 14. Solid curve is the full spectral function fork
=110 MeV/c. The dashed curve is the QPA.
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zskd = F1 −
P

p
E

«F

`

dv8
Im SLsk;v8d
s«L

qpskd − v8d2G−1

. s75d

Comparing to Eq.(29), the strength in the qp peak,zskd, is
seen to exhibit a greater sensitivity to the structure of
Im SLsk;vd than does the peak position,«L

qp. The z-factor
(Fig. 15) is most accurate as a measure of strength in the
peak of the spectral function for low values ofk.

A nuclear matter calculation for nucleons similar to this
one[37] yields a particle spectral function shown in Fig. 16,
for a momentum just abovekF. The z-factor obtained from
this calculation iszNskFd=0.72, which is substantially re-
duced compared tozLs0d=0.87 for a similarL qp state.
These two momentum values are compared because each qp
sits at the lowest possible excitation energy for a qp in the
respective systems. In Ref.[37], the depletion of the qp
strength is explained in terms of couplings to 2h-1p states,
which moves approximately 10% of the sp strength to ener-
gies below«F, and coupling to 2p-1h states, which distrib-
utes another 18% to higher energies in the particle domain.
The corresponding fraction of sp strength in the particle do-
main is 13% for the lambda, compared to 18% for nucleons.
A more detailed look at the distribution of strength as a func-
tion of energy is given in Fig. 17. This figure displays for
four different momenta the fraction of the sp strength that is
recovered as a function of energy by intergating this strength
up to that energy. This figure shows that most of the strength
is accounted for at energies corresponding to 2 GeV. In the
case of nucleons interacting by means of the Reid interaction
the strength has to be gathered up to energies of 10 GeV[37]
illustrating the harder core of this interaction.

The relative effects of tensor and short-range correlations
can be untangled to some extent. Turning off the3S1−3D1
tensor coupling in the Reid potential for nucleons indicates
that this interaction is responsible for depleting the qp
strength by about 6.5%, almost all within 1000 MeV of«F
[37]. Similarly, turning off the LN-SN coupling in the
NSC89 potential reveals that tensor effects are responsible
for almost half of the reduction in theL qp strength. A value
of zLs0d=0.94 is obtained when coupling toSN states is cut
off.

C. The SN Threshold

The effects associated with the inclusion of theSN chan-
nel are illustrated in Figs. 18 and 19. In NM theSN thresh-

old opens at an energy about 90 MeV above the self-
consistently determinedLN threshold. The mass difference
is mS−mL=77 MeV, but theL is bound in NM by about
30 MeV whereas theS binding is about half as much. Again,
the imaginary part of the self-energy provides a picture of
how theSNN−1 2p-1h states influenceL sp properties. The
imaginary part of the self-energy is plotted in Fig. 18 for the
case where coupling to theSN states is turned off.

Turning off theSN coupling leads to a recovery of 7% of
the strength in the qp peak as thez-factor increases from 0.86
to 0.93. A reduction in spectral strength is observed at all
energies, but is particularly apparent at, and just above, the
SN threshold. There are two reasonsSNN−1 2p-1h states are
most influential in this energy region. First, a “threshold ef-
fect” is responsible for the sharp cusp in ImSL near
100 MeV. This behavior may be understood physically in the
same way as the cusp observed in theSN elastic scattering
cross-section[56]. In scattering theory, the elastic cross-
section may be calculated from the bare two-body interaction
via the on-shell elements of theT-matrix. In NM, an effec-
tive interaction, such as theG-Matrix is a generalization of
the free-spaceT matrix. Structure arises in theLN G matrix
as a consequence of the strong coupling to the nearbySN
channel[57]. From Eq.(28), the imaginary part of the self-
energy shares the same structure as the imaginary part of the
G matrix.

Second, isospin conservation in the strongLN interaction
forbids excitation of nuclear ph states viap-exchange. How-

FIG. 16. Nucleon particle spectral function(solid) for k
=316 MeV/c with lambda spectral function(dashed) at k
=60 MeV/c for comparison.

FIG. 17. Single-particle strength integrated from«T
L to «max as a

function of «max for different momenta.k=10 MeV (solid), k
=110 MeV (dot), k=210 MeV (dash), k=310 MeV (dot-dash).

FIG. 15. Quasi-particle strength as a function ofk.
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ever, this is a strongly allowed process for theSN interac-
tion, preferentially excitingSNN−1 2p-1h states in the en-
ergy range of a few hundred MeV. Turning off the
p-exchange component of the bare interaction(Fig. 18) dem-
onstrates that it is partly responsible for theSN channel’s
influence on theL, but apparently the non-tensor part of the
LN-SN coupling plays just as significant a role, even in the
“tensor” region. The nucleon spectral function manifests a
similar feature in the energy range dominated by the tensor
interaction [39]. For nucleons the influence of the tensor
force on the distribution of the sp strength corresponds to
moving a similar amount of strength away from the peak as
the amount corresponding to the effect of SRC[37].

The effect on the spectral function is to induce additional
structure in the vicinity of the threshold energy(Fig. 19). The
spectral signature of this new channel is a reduction of
strength just below threshold followed by an enhancement
immediately above threshold which slowly dies out at in-
creasing energy. The location of theSN threshold is depen-
dent on the total momentum of theLN pair. The self-energy
involves an average over all values ofQ that can be realized
for a L with a given momentum,k, and a nucleon hole which
can have a range of momentum according to the nuclear

density. This averaging smears out the location of the “cusp”
structure in the self-energy and in the spectral function.

D. The high-energy region

Away from the qp peak, at high-energy, the size and struc-
ture of the spectral function is primarily determined by two
factors. The density of 2p-1h states increases likev1/2 at
high energy. This growth in spectral strength with energy is
moderated by the strength of the coupling to these high en-
ergy states. A lambda with a reasonably low momentum
couples to a nucleon hole state only with a low relative mo-
mentum. The high-energyLN two-particle states couple
most strongly to high relative momentum and the strength of
the potential matrix elements between these two states de-
pends on the short-range characteristics of the two-body in-
teraction. A harder core allows a stronger coupling between
states and correspondingly more spectral strength at high en-
ergy (see the following paragraph). The fact that structure in
the high-energy region of the spectral function is primarily
determined by the short-range behavior of the two-body in-
teraction should be tempered by the knowledge that the
short-range part of baryon-baryon interactions are poorly
known. Typical potentials are designed, within whatever
model, to fit only low-energy experimental data which does
little to constrain the details of the repulsive core. This situ-
ation can be taken in two ways. On the one hand, the high-
energy tail of the spectral function is just as uncertain in
detail as the core of the interaction from which it is derived.
On the other hand, it is also just as experimentally inacces-
sible and any observable which can be related to the detail of
the tail in the spectral strength distribution could be used to
gain insight into the behavior of the bare two-body interac-
tion at short-range. In Fig. 20 the similarities of the tail of the
spectral strength for different momenta is illustrated.

Sum rule. There exists a sum rule relating the energy-
weighted integral of the spectral function to the matrix ele-
ments ofV in a very direct manner[58]. Writing the result
from Ref. [58] for the case of aL in NM,

E
«F

`

dv vSp
Lsk;vd =

k2

2mL

+
1

s2pd3 E d3k8nhsk8dkkWk8W uVukWk8W l,

s76d

wherenhskd is the occupation probability of the sp nucleon
state with momentumk,

FIG. 18. (Color online) Im SL for the case whereLN-SN cou-
pling is included(solid curve), without coupling(dashed) and when
p-exchange is turned off inV (dotted). Plotting with respect to
self-consistently determinedL threshold energy ensures that theSN
threshold is in the same location for each curve. The value of the
momentum in this plot corresponds tok=10 MeV/c.

FIG. 19. Spectral function in the vicinity of theSN threshold
with LN-SN coupling(solid) and without(dashed). Note that theL
threshold differs by about 30 MeV between the two cases. The
momentum value in this example corresponds tok<100 MeV/c.

FIG. 20. (Color online) Spectral function for three values ofkL

show thek-independence of the high energy tail fork=10 MeV/c
(solid curve), 110 MeV/c (dashed), and 210 MeV/c (dash-dot).
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nhskd =E
−`

«F

dvSh
Nsk,vd. s77d

Note that the two terms comprising the right-hand side of Eq.
(76) are just the kinetic energy,tLskd, and the energy inde-
pendent part of the self-energy,SV

Lskd, respectively. The left-
hand side of Eq.(76) may be formally divided into two
pieces,

E dv vSp
Lsk;vd ; E dv vSqp

L sk;vd +E dv vStail
L sk;vd,

s78d

the first corresponding to the qp peak and the second a “tail”
primarily composed of strength at energies above«L

qp. Spe-
cializing to the case ofk=0 for simplicity, Eq.(76) becomes

zs0d«L
qps0d + I tails0d = SV

Ls0d, s79d

where

E dv vStail
L sk;vd ; I tailskd, s80d

and

E dv vSqp
L sk;vd = zskd«L

qpskd. s81d

Furthermore

Sqp
L sk;vd = zskddsv − «L

qpskdd s82d

has been used to obtain the contribution from the qp peak
explicitly. The qp energy may be divided into two parts as in
Eq. (68),

«L
qps0d = SV

Ls0d + S2p1h
L s0d. s83d

Now Eq. (79) may be rewritten as

zs0dSV
Ls0d + fzs0dS2p1h

L s0d + I tails0dg = SV
Ls0d. s84d

For theL, zs0d=0.87, which is close enough to unity that Eq.
(84) implies

zs0dS2p1h
L s0d < − I tails0d. s85d

This may be interpreted to mean that the coupling to
2p-1h states at high energy shifts the qp peak from its HF
value to lower energy. It may further be observed that for a
strongly repulsive potential,SV

Ls0d will be large and positive,

as pointed out in Ref.[58]. For the NSC89 potential used in
this work, the value is approximately 50 MeV. If theL is to
be bound at the experimentally observed level of approxi-
mately 30 MeV, then the largerSV

Ls0d is, the largerS2p1h
L s0d

must be to compensate. This in turn requires a larger value of
I tails0d to satisfy the sum rule. This constitutes an indirect
association between the strength of the repulsive bare inter-
action and the required distribution of strength at high en-
ergy.

IV. CONCLUSIONS

The spectral function for aL hyperon in nuclear matter is
calculated for the first time in this work. The structure of the
spectral function is very similar to what is found for a
nucleon. The chief qualitative difference lies in the coupled
channel element which gives rise to threshold effects in the
L self-energy and spectral function. This behavior can be
understood more fully by forging an analytic connection to
established results for coupled channels in scattering theory.
Consistent with the weaker binding of theL to the medium
as compared to nucleons, we also obtain a more
quasiparticle-like spectral distribution of the sp strength.
Nevertheless, a substantial reduction of 13% for the addition
probability for adding a zero-momentumL is obtained as
compared to the free case. As for nucleons, a substantial
portion of this removed strength is associated with the action
of the tensor force, mediated by pions. In the present case,
this effect occurs through the coupling to the intermediate
SN states in the effective interaction. The remaining portion
of the removed strength is associated with the action of SRC
which generate a momentum-independent high-energy tail in
the spectral functions. The details of these spectral distribu-
tion of aL can have modest consequences for the analysis of
hypernuclear production probabilities and the mesonic decay
width in a nuclear medium. The mesonic width, while Pauli
suppressed in a nuclear environment despite strong correla-
tions, may well show sensitivity to details of the lambda
strength distribution. Finally, this work prepares the way for
an examination of the weak decay properties of theL in a
nuclear environment with the influences of short-range cor-
relations considered in consistent detail.
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