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The propagation of & hyperon in nuclear matter is studied within the Green’s function formalism. The
probability density for adding & hyperon with momenturk to the correlated nuclear matter ground state is
obtained from the complete energy dependence of the real and imaginary parts /ofsgleenergy. This
self-energy incorporates the effects of short-range correlations induced by the hyperon-nucleon interaction and
the strong coupling betweekN andXN states which is known to be crucial for a correct determination of the
A binding energy. The calculated spectral functions and quasi-particle parameters forateefound to be
qualitatively similar to corresponding results for correlated nucleons. In general, ihiéess strongly corre-
lated with the nuclear matter environment lgt=1.36 fn! than a nucleon, in agreement with empirical
information from finite nuclei.
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[. INTRODUCTION perons[20-24. The question of the stability of strange mat-

. . . ter is of great interest and has been discussed for example in
Hypemuclei, especially those with onle hyperon, have  pets 125 2g. The relevance of strangeness for calculations
been studied for a long timgl,2]. When aA hyperon is  of the properties of a neutron star has been discussed in Refs.

placed in a nucleus or nuclear matter it will interact with the27 og.

nucleons in its environment. As a result of these Strong in- The Corre|ati0ns of tha hyperon in nuc'ear matter have
teractions, theA becomes correlated with nucleons in the typ|ca||y been studied at the level of its average b|nd|ng or sp
medium. The study of the properties of thehyperon in an  energy. The full propagator of th& including its complex
environment of nucleons aims to answer a number of fundaself-energy has not been reported so far. The complex self-
mental questions related to the properties of strange particlesnergy was studied in Reff10]. In view of the relevance of

in the nuclear medium. Considerable attention has beethe properties of a strange particle in a nuclear system, it
given to the potential energy thd experiences in the seems timely to elucidate the properties df ayperon when
nucleus and the corresponding single-partisle energies. it is embedded in such a nuclear system. As in the case of
Experimental access to these sp energies is gleaned frofticleon-nucleorfNN) interactions, typical hyperon-nucleon
associated production reactions of the,K*) type, strange- (Y N) interactiong29-34 incorporate substantial repulsion at
ness exchange reactions involviti§~, "), and photopro- Short distance. The consequences of this strong interaction
duction (real or virtua) on a proton in the nucleut8-5|. can be accounted for in the framework of the Green'’s func-

From this experimental work it becomes clear that the tion formalism by including the proper treatment of these

hyperon is less strongly bound to nucleons than either a pros_hort—rar_lge correlationSRQ in the form of Iad_der-_chagram
, X summation for the hyperon-nucleon interaction in the me-
ton or a neutron. Such sp properties have been studied theg-

. - . dium (G matrix). The effects on the dynamical single-
retically for ﬂmte nuclel by sevgral group[§—9].. The gen- particle properties of thé can then be explored by evaluat-
eral conclusion from the experimental work is that the

. . i ing the complex self-energy of the in nuclear matter. The
hyperon experiences a potential well in the nucleus that ha§olution of the Dyson equation for the then again yields

t?)hoel\;a\r?:cllar WQO(I)dS-Saxor:c hshape W'tr} ?A%%%t.h Or . 6:cbominformation on the net binding of th& in nuclear matter, but

i e t())r im € ranget_o gfat\)/_lecri_nuc_el’.[h ||o|na |rr1]or- also determines the distribution of spectral strength for its
mation about n€ properties INding in th€ NUCIEUS Nas 5 4qition to the nuclear-matter ground state as a result of
been_obtalned from the study of theseli-energy for several SRC. Such calculations of th& spectral strength distribu-
nuclei[10,11. tion will be reported for the first time in the present work.

Global sp properties of tha hyperon can be studied in Similar calculations of spectral functions have been per-
nuclear matter. Results of such calculations have also beq r

) Brmed for nucleons in nuclear mattédM) for some time
reported by several grouf§$2-18. Important astrophysical [35-39. The addition of a strange test particle opens the
information can be obtained from this type of work since it

S door for quantitative comparisons with spectral functions ob-
can be used to study the onset of hyperon formation in ne

. . . Yained for nucleons and this avenue will be pursued in the
tron stars{16,17,19 and the equation of state including hy- present work. The weakeéfN potential is expected to result

in similar but less extreme modifications to the spectral dis-
tribution. However, the presence of the hyperon also re-

*Electronic address: njr@hbar.wustl.edu; quires consideration of its heavier sibling, the isospin Bne
http://www.artsci.wustl.edufnjrobert hyperon. The two hyperons have a small enough mass dif-

"Electronic address: wimd@wuphys.wustl.edu; ference that a coupled channel problem must be solved. This
http://www.physics.wustl.edw/wimd is a change from the situation in pure nuclear matter, where
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the explicit effect of theA isobar on nucleon propagation at o (K;w') eF S(k;w')
low energy is normally ignoretsee however Ref40]). As a ank;w) = f dw'—sp— + f do'————
eE -0

. X ) ) - +i -0 iy
result of this channel coupling, new structure arises inthe @-e T e-e -
spectral function which will be discussed in the present (D
work.

A more detailed knowledge of the properties ofahy- ~ 1ne Fermi energyge, has been introduced in E(l) as the
peron in nuclear matter may also be helpful in further eluci-OWest energy above the ground state at which a particle may
dating the properties of the strangeness producing reactio¢ @dded or the highest energy from which a particle can be
on nuclei. Indeed, knowledge of the addition probability of afémoved. The spectral functions have the following form
A with a given momentum to the nuclear ground state is
required for a more detailed microscopic description of the Sik; ') = [ Y al| )2 -,
production of aA in such reactions. The subsequent weak dw
decay[41-44 of the A after its production is another pro-
cess where the information obtained in this work may be dm
useful. Indeed, the nonmesonic weak decay ofAhrequires Skiw') = |<¢§1_1|ak|¢g>|2F 3
another nucleon with which it will be strongly correlated. @

The consequences of the consistent inclusion of SRC on thig), particles and holes, respectively. The factdnédw’ and
weak decay will be reported elsewhe¥s). dm/de’ weight each term according to the density of states
The paper starts with the introduction of the relevant for-g¢ an excitation energy ab’. We note that spin and isospin
malism for the determination of th& propagator in nuclear jngices have been suppressed and in the following only the
matter in Sec. II. After presenting some general formalismyagnitude of the momentum vector will be used thereby
relevant for the description of & in nuclear matter, this taking into account the symmetries of NM. The particle spec-
section contains a detailed discussion in Seq. Il A_of tharal function, Eq.(2), denotes the probability density that a

approximations made to th& self-energy. The ingredients particle can be added to the NM ground statg), in a sp

of the calculations are reviewed in Sec. Il B. One importantstatek' at an excitation energy’ of the N+1 particle sys-
ingredient for these calculations_is tN&interaction. Inthe e Likewise, Eq(3) describes the corresponding situation
present work, the soft-core version of RE32] was chosen. \yhere a hole is added. As a probability density, the spectral
The calculation of the effectivi¥ N interaction(G matrix) is  fynction is real and positive. A particlghole) occupation

presented in Sec. Il C. Section Il contains a presentation of mber may be defined for a st&tas the integrated strength
the results with special emphasis on the underlying phySicﬁbove(below) the Fermi energy,

associated with the properties of\ahyperon propagating in

dn

(2)

nuclear matter. Finally, conclusions are drawn in Sec. IV. *
Np(K) =f do'Sy(k;0), 4)
eF
IIl. FORMALISM
€F
The results gathered in this section mainly pertain to the Mh(k) = J_m do’Sylk; o). ®)

calculation of theA propagator in the nuclear medium. Al-

though no new results for nucleons are reported in this workThe total spectral strengtB=S,+S, is normalized in such a
it is helpful to present some selected results related to thevay that

propagator of a nucleon in the nuclear medium. This facili-

tates the comparison between results obtained fortlaad o,

the nucleon. We consider NM at a density corresponding to f do’Sk; ') =np(K) +ny(k) = 1. (6)
ke=1.36 fnil. The nucleon propagator, also called the -

Green's function, characterizes the excitation spectrum of &rom Eq.(1) one obtains that the spectral functions are re-

particle (or hole) created on top of the many-body ground |ated to the imaginary part of the propagator by
state. The propagator formalism possesses features which

make it especially useful for treating many-body systems 1

consistently at various levels of approximation. Average Sp(k?‘“):‘;'m IKw), o>ef (7)
single-particle observables as well as two-particle correla-

tions can be extracted via the propagator formalism withoufor the particle addition probability density and

the need to directly compute a many-body wave function.

The appropriate choice for the sp basis in NM includes mo- N ]

mentum, spin, isospin, and strangeness. We will employ the Silkiw) = ;'m 9kw), w<er (8)
explicit notation A or X for the relevant hyperons in the

present discussion and use the generic notation Y to denofer the removal probability.

either one. In the case of thé\ propagator some qualitative changes
Of particular relevance is the Lehmann representation obccur in comparison with the case of the nucleon propagator.
the sp propagator. For a nucleon in NM one obtains The result corresponding to E(L) now becomes
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1

Sy(k;w")
w—ep(k) +ing

O (- ) =
et © o} (k) (16

o) = J do’
T
Since no Fermi surface fok hyperons is considered in this
work, it is not possible to remove & from the NM ground
state. As a result, the propagator only contains the probability
amplitude for adding a\ particle with momenturk at an SY(k; ) = 8w — &,(K)). (17)
energyw’. This particle spectral function for th& is given

The result for the corresponding spectral function then reads

by The actual choice of the single-particle spectrum contained
, NeLt g AN in e,(k) or [en(k) for the nucleoih usually only contains the
Sa(k; ') =[x g Al )] Ao (100 kinetic energy contributiofit (k) =k2/2m, in the case of the
A]. The addition of strong interactions amongst the particles,
The energy threshold at which it becomes possible to add @hich induce correlations, changes this picture. The dressed
A to the NM ground state is denoted by. One expects this propagator will have a more complex analytic structure as a
energy to be accessible only forAaat rest(k=0). If the A function of energy, which gives rise to a correspondingly rich
were added to a free Fermi gas NM ground state and wouldtructure in the spectral function as indicated in Edsand
not be correlated otherwise, this threshold energy would9). The relation between the dressed and noninteracting
simple be the kinetic energy ofawith zero momentum and propagators is provided by the Dyson equation which is dis-
would therefore correspond to zero energy. Based on previeussed in standard textbool6,47. For both a nucleon and
ous work by other group$l4,14 one expects the actual a A in the medium the Dyson equation takes the form
value of the threshold energy at normal NM density to be
around —-30 MeV indicating the substantial attractioma
experiences in NM. Since thA can only propagate as a
particle, the spectral strength above the threshold energy
must integrate to 1. This condition on thespectral function ~Where terms in the propagator expansion have been arranged
is given by in such a way that the self-energy;, is irreducible. The
Dyson equation may be solved algebraically to yield

gk;w) =g9k; ) + g9k )3 (k; 0)g(k; @), (18)

f do'S,(K0) =N, \(K) = 1. (1)
eT 1

(k;w) = . (19
This result is quite different from the corresponding nuclear J o -k -2k w)

one given by Eq(6) where a split between the occupied and

unoccupi_ed strength occurs. _As in the case of _nucleons ONfhis formal solution should be compared with E¢E3) and
can obtain the spectral function from the imaginary part of(lﬁ) for the noninteracting propagator of a nucleon ant,a

the propagator, respectively. The essential difference lies in the presence of
1 the self-energy which acts as an effective potential for the
Si(kiw)==-—Im gy(kjw), o> s?. (12 nucleon or theA. A truncation of the self-energy expansion
v

at some finite order in the interaction is not a viable option

It is practical to list the corresponding results for nonin-for the strong interactions commonly used in nuclear phys-
teracting propagators. The noninteracting propagator for thi€s. The individual terms may even be divergent if interac-

nucleon is given by tions with hard-cores are used. Instead, approximations are
required which involve summing an infinite number of terms
0 O(k: ) = Ok-ke) _ Oke—K) (13  taken from those classes of diagrams deemed most important
N w-enK) +ip w-eyk) -ig for a given calculation. The relevant set of terms needed to

_ 0. _ obtain sensible results at the two-body level has since long
This result demonstrates thal'(k;w) contains only a peen identified as the set of diagrams involving repeated in-
simple pole at an excitation energy corresponding to the engractions between the particles to all orders as in the
ergy of the sp state. The spectral functigisis.(7) and(8)]  T-matrix in free space. The inclusion of these terms in the
for the noninteracting case are self-energy is expected to give the most important correction

0/, N to the Hartree-Fock contribution to the self-energy since it
%)(k,w) = 0k~ ke) 8 = en(k)), (14) correctly treats the effect of SRC on the sp properties. The

0 essential ingredients to be considered for this approximation
SV (k; ) = 0ke = K) 8w = en(K)). (15 are gathered in the next subsection.

Equations(14) and (15) indicate that a nucleon may be
added to, fok> kg, or removed from the medium, fér<Kke,

in a sp staté, with unit strength, at an energy corresponding
to e(k), and not at any other energy. The propagator for a The Hartree-FockHF) contribution to the self-energy of
noninteractingA hyperon is given by a A in nuclear matter is given by

A. Approximation to the A self-energy
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*do'
SHF =S | 226 kK [VIKK )gu(K o),
’ 2mi = escesess +
kK Y eg r
=> | do'(kK|VIKKYS(K ;") a)
k" 7 ep
= > (kK [VIKK Yny(K'), (20)

K

which may be simply interpreted as an average over the in-
teractions between the and the nucleons in the ground state b)
characterized by the momentum distributign Here and in . . o
the following the first member of a two-body state refers to a_ F'C: 1. Ladder equation for the effective interacti@h,in terms
. . . _of @) uncorrelatedbut in principle dressedwo-particle propagator
hyperon and the second to a nucleon. To simplify notation .
. .and b correlated two-particle propagator.
only the magnitude of the momentum quantum number is

indicated. In addition to the direction of the momentum this . ) ) .
quantum number therefore also implicitly refers to spin and©rs are dressed, this generalized version ofGhmaatrix will

isospin in the case of nucleons. In the case of a hyperon alde® called thel” matrix [48]. The series of ladder diagrams
the specific hyperon under consideration is implicagecor ~ May be resummed in two ways as illustrated in Fig. 1. Figure
S, hyperon). More explicit results are formulated in the next 1@ depicts the integral equation for tiiematrix in terms of
subsection where details of the actual calculation are disY @nd the uncorrelated but possibly dressed two-particle
cussed. The convergence factor in the first equality in EqPropagator |_nd|cated _by the parallel double lines. These par-
(20) ensures that only the contribution of particles that arelicles in the intermediate state may be separately dressed by
present in the medium are considered. A requirement of théteractions with the medium, but are not correlated with
bare YN interaction is that it provides a realistic description €ach other. After suitable approximations are made this form
of free-particle scattering at low energiéypically up to of the I" matrix equation has bgen usediln the calculgt]on of
pion production thresho)d Such an interaction will be real, theA self-energy and will be discussed in more detail in the
strongly repulsive at short range and moderately attractive dt€Xt subsection. An alternative, but entirely equivalent, re-
longer range. Matrix elements, taken in the uncorrelathd ~Summation leads to Fig(). Here thel” matrix is expressed
basis, are on average repulsive. As a result, the HF selfD terms ofV and the correlatedN two-particle propagator.
energy will be real and positive, acting as a repulsive mean‘_l'm_s version of the.ladder equation is ugeful for glumdatmg
field potential which shifts the\. spectrum to an important analytic property of tHématrix. The diagram-
i e matic expression of Fig.(b) is represented by
ey (K =ty(k) +Z7 (k). (21)

- - o (KK [T(Q)[KK') = (kK [VIKK) + X (KK [V]kiko)
This is not a realistic approximation in two respects. De-

Kqkoki k)
spite the strong repulsive core in realistic nuclear and hyper- | v
nuclear potentials, there is a net attraction, as evidenced by X gyn(kaka, kiks; Q)(kikj|VIKK').
the existence of bound nuclei and hypernuclei. The HF ap- (22)

proximation yields a real self-energy, which implies an Inde-

pendent Particle Mode{IPM). Particles occupy sp states The energy dependence is entirely contained in the correlated
with infinite lifetimes. Despite its limitations, the HF ap- YN propagator. It should be observed that this propagator
proximation provides an intuitive method for generating acontains both diagon@AN andXN) as well as nondiagonal
mean-field from a two-body interaction and is the simplestcontributions in the hyperon quantum numbeAN-3N or
non-trivial approximation which allows a self-consistent *N-AN). In direct analogy with the sp propagator one can
treatment of the many-body problem. obtain a Lehmann representation for this propagator in the

The deficiencies alluded to above can be overcome bjollowing form

replacing the bare two-body interactiow, with an effective % Syn(Kiko, KIKh: Q')
interaction which is both complex and has a real part which gl (Kiko, Kjky; Q) = f do/ =22 (03
is on average attractive. An effective interaction which pos- Qmin Q-Q'+iy

sesses the necessary traits to include SRC may be derivgg,o two-particle spectral density function,

from the bare interaction by summing all the ladder diagrams q
depicted graphically in Fig.(&). In the limit of zero density O = N+2y s N+2 Tty AN
(the interaction of two free particlpshis effective interac- Sundkaka kiko1 ') = (plaa] V™)X ik |akiaké l’//°>dQ’

tion is just theT matrix of scattering theory. When a medium (24)

is present, restrictions on particle propagation exist related to

the presence of thépossibly correlatedFermi sea. If the has been introduced, much like the sp spectral function of
intermediate particles correspond to mean-field particles anlg. (2). The threshold energy fof N propagation is the low-
are not dressed, then the effective, in-medium interaction isst energy for which & and a nucleon can be added to the
called the BrueckneG-matrix. If the intermediate propaga- ground state of nuclear matter and is therefore given by
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for an effective two-particle interaction. In addition, it has
the distinction of being derived directly in terms of the bare
interaction.

The simplicity of the diagranjFig. 2(b)] expressing the
self-energy in terms of th&€ matrix reflects a simple math-
ematical relationship between the two functions:

do' .
SaKw) = 2—“’|e KK [T (0 + o' )|KK g (K ;o)
K ™

do'(kK'[T(w+ o")|KK)S\(K';0'). (28)

—00

=

The spectral representation of the nucleon hole propagator

FIG. 2. Dia_grar_nmatic representation of Dyson’s (_equation in the[Eq. (1)] was used to obtain the final expression of E2).
ladder approximation. Paf&) shows the Dyson equation. The self- gjmilar to the HF cas¢Eq. (20)] which is contained in Eq.

energy has been provided with supersctigb emphasize that this
represents the approximation shown in partwhich includes the
effective interaction shown in Fig. 1.

Qnin=eg + 8-/|-\. (25)
The analytic structure of the correlat&@N propagator mir-
rors that of the sp propagator in its simplicity. In particular,
one can obtain the following dispersion relation

! 1
glﬁ}N(klkZ kikp; Q) == —

j%
m Qmin

,Im gl\l(N(klkaiké;Q,)

do
Q-Q' +iy

(26)

Insertion of this expression fcg',}N into Eq. (22) for the T’
matrix yields

(KK [T ()|KK') = (KK’ [V|KK')
1

— f dQ
Qmin

Im (kK [T'(Q)|kK')
QO-Q"+inp

w
(27)

as a dispersion relation for thé matrix. This result illus-
trates that it is possible to obtain the real part of fheatrix

(28), the self-energy in the LA is just a convolution of the
effective interaction with the spectral density of occupied
nucleon states, although in the present case it also requires
knowledge of the energy dependence of the nucleon hole
strength. Just as thé matrix satisfies a dispersion relation,
so too does the self-energy. Inserting E2j7) into Eq. (28)
yields

S (ki) = 3 (kK VKK Ony(K) + f dor T 200D
K Qmin - i Y

B. Ingredients of the calculation

Having chosen the LA as a physically suitable approxima-
tion to Dyson’s equatiolFig. 2), the framework is set for the
calculation of theA propagator. Now it is necessary to con-
sider the ingredients that are required to explicitly implement
this scheme in a tractable manner. A major ingredient is the
two-body interaction which describes the scattering of hyper-
ons and nucleons. We have chosen a Nijmegen Soft Core
(NSC89 meson exchange potent{@?]. This potential is the
Fourier transformable, soft-core descendant of the hard-core
Nijmegen D and F modelgR9-31. In the microscopic spirit

as a dispersion integral over the imaginary part which isof this work, it is based on the exchange of mesons. Though

required for all energies abov®,,,. Since both the real and

fit to availableY N scattering data, the scarcity of such data

imaginary part of” are calculated at a given energy, one maydemands a heavy reliance on @Y symmetries to relate
use Eq.(27) as a consistency check on the numerical calcupoorly determinedYN coupling constants to their better

lation of thel-matrix.

The A self-energy in the ladder approximatigbA) may
be compactly represented as in Fig. 2. In pat of this
figure the Dyson equation is shown. Pdmj illustrates the

known NN relatives. As with all potentials of this type, the
NSC89 is fit to low-energy data and its core structure is not
well determined. Results which depend on the short-range
behavior of the potential will reflect this deficiency but are

self-energy when the effective interaction is represented bgonsequently of interest as well. The more recent versions of

the ladder-summed effective interaction shown in Fi@).1

this potential as presented in R§B4] have been shown to

This result may be compared to the HF approximation. Inoverbind single hypernucl¢24] and were not considered for
that casd’ is replaced by the bare interaction indicated bythe present calculation at this time.
the dashed line in Fig. 1. The self-energy may still be thought The NN interaction appears implicitly in the nucleon

of as an effective potential for thA as generated by its

propagators with which the\ interacts. Results for these

average interaction with the nucleons. The difference is thatucleon propagators are based on calculatj@gkinvolving

the bare interaction is now replaced by thenatrix effective

interaction. Thd™ matrix is complex and energy dependent,

the Reid Soft CordRSO potential[49]. The nucleon hole
and particle propagators appear in the self-energy equation

satisfying the list of desirable qualities mentioned previously[Fig. 2(b)] and thel'-matrix equationFig. 1(a)] as external
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parameters. This illustrates the obvious statement that one 8(A1)(k):tA(k) + ReEA(k;s(Al)(k)). (32
does not have to recalculate nucleon properties after intro- . ) ) .

ducing a singleA hyperon in the medium. In principle, the This ‘new spectrum, which will Iate.r pe |dent|f_|ed as the
dressed nucleon propagator should be determined from @uasi-particle(qp) energy spectrum, is inserted in place of
coupled system of equations similiar to those depicted ifh€ kinetic energy spectrum in Eql6), to define a new
Figs. 1 and 2. In this work, we will approximate the dressedPropagator

propagator by only including the self-consistent sp spectrum 1

as obtained in Ref.39]. As a result the nucleon propagator g(Al)(k;w) H"Q(Al)(k;w) =
retains the form of the noninteracting propagatsee Eq.

(13)] but has a sp spectrum that is determined by the real pafh this way, the same simple analytic structure is always used
of the self-energy of the nucleon. TRe hyperon has been for the A propagator in thd” matrix equation, and only the
introduced as part of a possib¥eN intermediate state in the gpectrum changes from iteration to iteration. The iteration

I' matrix equatior{Fig. 1(a)]. Its inclusion is necessitated by procedure is continued until a self-consistent Lambda spec-
the relatively small mass difference of about 77 MeV be-trum is obtained:

tween theA and 2. This results in a significant coupling () ™
betweenAN and SN intermediate states which cannot be en (K =gy (K. (34)
ignored. It is probably correct to conclude that the experi
mental and theoretical analysis &f bound states suggest
little if any binding for this hyperon in nuclei50]. Com-

pared with sp potential well depths of approximately , :oq here that this a R . ]
. pproximation in obtaining ths ef
30 MeV for theA and 75 MeV for the nucleon in NM, thE o yive interaction is equivalent to the usi@imatrix proce-

interacts relatively wea_kly_wit_h the nucle_ar me_dium €VeNyure. For this reason, we will adapt this notation for this
though about 15 MeV binding is obtained in NM in our cal- interaction from now on

culation confirming the result obtained in R¢f7]. It is After obtaining self-consistency according to E84), the

therefore a reasonable approximation to treattes a par-  goectral function is calculated from the imaginary part of the

ticle which only has a modified sp energy in the medium agy d t 1) using th ; fEHL2
is done in this work. The resulting propagator is then of the ressed propagator, E@1) using the expression of EGL2).
1 lIm 3P(k; )|
Si(k;w) =—

form of Eqg. (16). The modification of the sp energy is ob-
tained in the same way as described for théelow. 7w -ty (K) - ReE(AS)(k'w)]Z— i[Im E(AS)(k'w)]Z'
(39

At this point it is useful to note that although thepropa-
gator has a formal solution in terms of the self-energy, the

self-energy depends internally on the dressed propagatofhe self-energy bears ars™superscript to denote the fact
This means that Figs. 1 and 2 depict a coupled system ghat it is calculated using a self-consistehtspectrum. It
equations for the dressetl propagator. The natural starting should be emphasized that the spectral function of( &8).is
point is to make the zeroth order approximation nottruly self-consistent due to the simplifying approximation

ga (K @) — gﬁ{))(k;w). (30) of EqQ. (33). A gp energy can now be defined as in E8R),

— S .
Given this choice of initialA propagator, thd'-matrix, self- X (k) =ty (k) + ReEﬁ\)(k,s‘,{p(k)). (36)
energy, and next generation propagator may be calculated in the self-energy is only weakly energy dependent in the
turn. Ideally, one would now like to use this new propagator,neighborhood of the gp energy, then it is evident from Eq.
g(Al)(k;w), as input to thd'-matrix equation and iterate until (35) that the spectral function will have a peak nedf(k).
a self-consistent solution is obtained. Examination of EqExpanding the self-energy abotf’(k) as
(19) reveals that the energy dependence of the dressed propa-

T (33)

"As will be discussed later, it is important to calculate such a
consistent spectrum in order to ensure that the final spectral
function is a continuous function of energy. It should be

gator is much more complicated than that of the free propa- Re2{P(k; ) = ReSP(k;eP(K)

gator, Eq.(16). In fact, this is also true fogﬁxl)(k; ), which IRe3 ¥ (k;eIP(K)) o

has an analytic structure similar to that of the fully self- + o (0—e3"(k), (37)
consistent propagator, even after only one interation. A sim-

plified iteration scheme is therefore used instead. Im SP(k) = Im E(AS)(k;sj‘\p(k)), 39)

Breaking up the self-energy into its real and imaginary
parts, Eq(19) for the dressed propagator can be rewritten asyields the qp approximation to the spectral function. We de-

1 fine the following two functions
k: = i _
) 0~ Rem (k)] - 1[I 3 5(Kiw)] _ | IRexkio) |7
zk=1-|—F"1| , (39
(31 Jw
Comparing this to the form of the free propagator, Eif), y(k) = z(k)|[Im 2P(K)], (40

it can be seen that the real part of the self-energy plays the
role of an energy-dependent potential. This observation moand make use of E¢36) to cast the gp approximatid@PA)
tivates the definition of a new energy spectrum: of the spectral function explicitly in the form of a Lorentzian
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2(k) (k) subsection. A convenient basis for the determination of3he
Stk w) = > 3 (41)  matrix is given by two-particle states with good total mo-
7T[w eX(K)]°+ [v(K)] , . :
mentum, magnitude of the relative momentum, orbital angu-
lar momentum, total spin, and total angular momentum.
Starting with states which have good momentum for the in-
The calculation of th&s matrix and the subsequent con- dividual particlegand spin, etg.the G matrix can be written
struction of the resulting self-energy will summarized in thisas

C. Calculation of the G matrix

d(,()5 dk5 dk6

(kaka; YaNG| GOl kakz; YiNg) = (kaka; YaNalVIKika; YiND) - 2 omi | @mi ) @my

(k3ka; YaNg|VIkskg; Y5Ne)

X gy )(k5, w5)g (k61 Q- CU5)<k5k6, YsNg|G(Q)[k1ko; Y1No). (42

Each particle label corresponds to a momentispin and Q =k, +ky=kg+k,=kg+Kg, (44)
isopin) eigenstate with the convention that the leftmost states |
correspond to hyperons. The conserved total enefyy, 2nd refative momentum,

= w;+w,, has been introduced in E@42), and spin and [ my My
isospin labels have been supressed for clarity. This equation Gi = R Ks = _N Ka, (45)
may be simplified by performing the integral owet for the
propagator for the intermedia¥N state: Ly Ly
ar = <—)k1- (-)kz, (46)
My My
9V n(Ks,kg: ) = = f 995090 (ks s)f, (k12— wg) " o
: 2mi =T ° q = (—Y)ks—<—Y)k6. 47
ksl ~ ko) (43 The reduced mass f T:eN tmNh been introduced
= —. e reduced mass for system has been introduced as
Q - ey(ks) —en(ke) +inm y
m
oy = m:ﬁ”} : (48)
Conservation of total momentum allows a change to total My + My
momentum, The G matrix integral equation now has the form
(ar; Y3N4/G(Q; Q)[qi; Y1Ny) = <Qf,Y3N4|V|q“Y1N2>+E f(Z 2
X{d; YaNg| VI’ §Y5Ne>9y5N(Q’aQ;Q)<Q’ 1 YsNg|G(Q; Q2)|gi; YaN,). (49

In order to perform a partial-wave decomposition of the rela-analytic structure of the original propagator, E¢3). The

tive motion it is first necessary to eliminate the angular de-prescription of Eq(50) “smears” the simple pole, which cre-

pendence in Eq43) since it couples different angular mo- ates problems later in the calculation of tBematrix. For

mentum states. This is accomplished by an angle-averagirthis reason, angle-averaging is implemented in a different

procedure. The straightforward approach to angle-averagingay. Instead of averaging the entire propagator at once, the

leads to numerator and denominator of E@3) are angle-averaged
separately. This leads to the new definition

1
EJN(q’,Q:Q)E—fdﬂqrgﬁN(q’.Q;Q), (50) _
am 6(a’,Qike)
E:I(N(q’vaQ) = — < F
for the angle-averaged propagator. This definition suffers Q-eyNq,Q;kp) +inm
from two problems. First, the integral in E¢O) cannot in
general be performed analytically. More of a problem, how-which makes use of a shorthand notation for the two-particle
ever, is the fact that Eq50) no longer shares the simple energy,

(51)
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eyn(@,Q) = &v(0,Q) + &n(0', Q). (52) _@)Q <ﬂ>Q<k
, _JKF F
An additional simplification of Gmin(Q) = My My (55)
o 0 otherwise.
eg(ke) = &g(ks), (53) For Q) above a certain threshhol€l,;(Q), there will be a

is made, where the sp momentum is angle-averaged inste®§!€ in the angle-averaged propagatfg. (51)). This pole

of the energy. The sp momenka and ky can of course be ©OCCUrs for a valuegy, of the relative momentum defined by

obtalned. frorrq gndQ. A dependence o_hF arises because Q =5y, Q:Ke). (56)

the Pauli restriction on allowed angles is taken into account

even though the two parts of the propagator are angleThe pole locationgg, as well as the cutoff valuegy;,, are

averaged separately. In practice, only a few terms in thélifferent for the twoYN channels. This means that separate

partial-wave expansion make up the bulk of the contributiong’-meshes must be constructed for each channel.

and the sum may be truncated to good approximation. The A self-energy is obtained from th& matrix in the
The NSC89 interaction possesses a strong tensor fordellowing way

which can couple states of different orbital angular momen- d

tum, L. The tensor force is primarily the result of pion ex- Sakyw) =D (2+1) f dQ sz déq

change and is strongest for theN-%N channel. Pion ex- J 2

change is nominally forbidden for thé&N-AN channel ) )

because isospin cannot be conserved at\ther vertex for a X (QILST;ANIG(Qs @ + en(kn)

A with zero isospin. Charge symmetry breaking voids this X|qILST;AN) O(ke = ky), (57

restriction to some extent, but the tensor force in this channel ,

remains relatively weak. The strong interaction does not vioYVNere the nucleon mean-field propagator was used. The rela-

late parity, so thé.-values can only change by 0 or 2 units, V€ momentumg, and the nucleon momentuiky, are func-

since the total angular momentum is conserved and the tot4PNS Of theA momentumk,, and the integration variables.

spin is restricted to 0 or 1. Under these conditions, it is pos- N€ Self-energy allows a new-spectrum to be defined using

sible to consider eigenstates of total angular momentum, Ed- (32. The new spectrum is used to define a new
=L+S. In this basis, th&s matrix is given by A-propagator gccordlng to 'Eq33) for input into Eq.(54)
for the G matrix. An essentially self-consistent spectrum is
(ked(LsSIT); YaN4 G(Q; Q) |k I(L;ST); YaN,) achieved after only a few iterations as discussed in the next
section. With a consistent-spectrum, the spectral function
may be calculated as in E¢35). It should be noted that the
spectral function is only defined fow > wmi(ky), and a
+ 2| dg g K I(LST); YaNg VIGI(L'S'T); YsNe) meaningful spectral function can only be calculated Kgr
YsL'S' such thateP(k,) > wmin(ky). In practice,wmin(ky) depends

’ I 1 1 . = 4P
xﬁﬁ N9, Q: QNQIL'ST): YeNg/G(Q: Q) on ky, but in principle, wmi(ky) =€37(0) for all ky.
X[kJ(LiST); Y1Np), (54) IIl. RESULTS

where a label for the total isospif, has been included for ~ The presentation in this section starts with a discussion of
completeness. The operators which define the potential maome of the qualitative features related to the spectral func-
trix elements are all scalars thand T. This means that the tion and the self-energy. After this general discussion results
matrix elements defined by E¢p4) are independent dfl;  will be presented for the spectral functions, the location of
and M. their peak, the magnitude of their width, and the strength
The integral equation for th& matrix is now in its final  contained in the peak. Comparisons with results for nucleon
form for numerical solution. A standard method for solving spectral functions will be made throughout. Of specific inter-
such a one-dimensional integral equation is to discretize thest is the influence of the coupling to tA& states on the\
integral and invert the resulting matrix equatifil]. The  self-energy and spectral function. This effect will be illus-
discrete momentum mesh must be chosen with some cargated by comparing with results where this coupling has
taking into consideration the’-dependence of both the po- been eliminated.
tential matrix elements and the angle-averaged two-particle
propagator. The potential matrix elements are quite smooth
functions of the relative momentum in all important partial
wave channels. The strong short-range part oftheinter- o .
action couples low momentum states to intermediate states From the definition of the spectral function in EQ.0),
with very high momentum. As a result, it is necessary tothe expression
choose ag’-mesh which adequately covers the highre- a,‘:|\If(E ) (59)
gion. Theq’-dependence of the propagator arises from two 0
sources. The Paubl-function in the numerator serves mainly has a physical interpretation as the state resulting from addi-
to cut off g’ below a minimumg,(Q), defined by tion of a A with quantum numbersk, to the NM ground

= (kd(LsST); YaNg VIKI(LiST); YINy)

A. Qualitative features of the A spectral function
and self-energy
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FIG. 3. Spectral function for & with k=100 MeV/c. The ver-
tical dashed line indicates the position of a delta-function spectral
distribution for the limiting case of a free particle. Because of the
30 MeV binding for aA in nuclear matter, it is convenient to shift
the horizontal axis by 40 MeV for plotting on a log scale.

state. By definition, this represents a product state &fsp
state and the correlated NM ground state. This will not be an
eigenstate as long as there &M interactions present in the
Hamiltonian. The actual energy eigenstates of the composite
system of aA in NM may be denoted by

AP (E)). (59

The sp spectral functiofsee for example Fig.)3nvolves the
overlap between the simple physical state of &8) and the
complicated eigenstate of E¢p9) which includes all inter-
actions between th& and the nuclear medium. The extent to a) b)

which there is overlap illustrates how well the sp state

survives intact in the medium. For the case of no interactions FIG. 4. In part(a) a freeA occupies a sp state at a fixed energy.
between the\ and the nucleons, the overlap is perfect, sincePart(b) displays theAN interaction which permits coupling to in-
the state of Eq(58) is an eigenstate in this situation. This is termediate p-1h states which span a range of energies, the density
evidenced by the function spectral distribution appropriate ©f states increasing with energy as schematically shown.

for a free particle, as indicated by a dashed line at the kinetic

energy in Fig. 3. Interactio_n_s between mfand nucleons are Im 3, (ko) = > IM(KK'|G(w + en(K)|KK'Y,  (60)
responsible for the transition from the simpée function
structure to the more complex distribution of sp strength re-
alized in NM. The mechanism behind the spreading of spvhere the nucleon hole spectral function has been replaced
strength can be understood as the mixing of a sp state athy the corresponding mean-field form given by E8). It
given energy with two-particle one-hol€p-1h) states

which span a continuum of energies. This is graphically il- 0
lustrated in Fig. 4 where pari &entifies the noninteracting

A and part b shows the interaction that couples this state to
the available p-1h states. Although the sp state is no longer
an eigenstate of the many-body Hamiltonian, its quantum
numbers are still conserved by the interaction. The total
strength associated with the original sp state, though frag-
mented, is fixed. This is reflected in the sum rule of @&d).
Details of the strength distribution are determined by the

k' <kg

n
o

Im Z,(0) (MeV)
A
o

density of 2-1h states which increases with energy and the e

strength with which the interaction couples these states to the

unperturbed sp state. This information is summarized in the o L N i o .

imaginary part of the self-energy, shown for example in Fig. 10 10 m+43)°(MeV) 10 10

5. Note that the decomposition in partial wave contributions

emphasizes the dominance of tt& channel. FIG. 5. Imaginary part of thé\ self-energy folk=100 MeV/c.
From Eq.(28), the imaginary part of the self-energy may The broken curves represent contributions to the overall self-energy

be written as from the®S, (dash and'S, (dot) partial wave channels.
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can be showrj52] in turn that the imaginary part of th& 0
matrix may be expressed in terms of the uncorrelated two-
particle propagator as .
|% =T
Im (KK’ |G(Q)[KK') o > [(kk'|G(€2)[kyky)[? 7
kqk S
1K2 | Z, Sl
X Im g ndkiks; Q). (61) 3
[¢]
The imaginary part of the uncorrelatetiN propagator is g:
proportional to the diagonal spectral dengitge Eq(24)] 4 =8
Im gl ((kiko; Q) = S (Kiko; Q). (62)
_4 1 l2 's 4
If particles in the intermediate state are not dressed by inter- 10 10 10 10

actions with the mediungas they would be in a fully self- it

consistent calculation but rather are treated as mean-field FIG. 6. (Color online The components of InG as defined by
particles, then Eq. (66). One curve is associated with ea¥N intermediate state
accessible from the initiakN S, state. The full curve is the sum of
S.:nc(klkZ;Q) - 5(‘0' - 82p(k1k2))0(k2 - kF) (63) the four components.
and the two-particle spectral function reduces to a delta-
function which picks out states with total enerdy, In this  Herep, Q and() are the relative momentum, total momen-

simplified case, E¢(60) becomes tum and total energy for thAN state obtained by averaging
X over the nucleon hole momentum. The on-shell relative mo-
M3 (ko) e 2 > D [(Kikg| GQ)[KK)] mentum,q, is defined by the two-particle energy through
K <kg K ko>ke
X 8@ = &2p1h) Ok +k, k' » (64) 2= enQ.), (67

and varies depending on which hypergh or X)) is present
in the intermediate state. In the following we will study the
&opih = &y(Ky) + en(Ko) — en(K'), (65) contributions to Eq(66) which in turn through Eq(60) de-

S termine theA self-energy.
and momentum conservation is indicated by the Kronecker As indicated in Eq(66), there are two sources of energy

symbol. Equatior{64) reveals the direct connection between dependence for diagonal matrix-elements of@xThere is a

Im 2,(k, ) and the phase-space fop-2h states with mo- phase-space factor which, aside from Pauli effects and devia-
”.‘e”t“m"" and energyw. Aside from_ the _we|ght|ng PrO” tions from free spectra for the intermediate particles, contrib-
vided by tth matrix element_s, the Imaginary part of the utes a simple, structureless energy dependence for¢kich
self-energy is directly proportlonal to the avallablp—JZh channel. The twoYN channels do possess different energy
phase-space. The correlations present between particles thresholds and this does lead to an expectation of structure at

. T¢he SN threshold(region near 70 MeV in Fig. 6purely on
complicated than Eq63) for the uncorrelated case and typi- the basis of phase-space considerations. However, most

cally leads to a diminished density of states at low energ tructure found in the energy dependence ofGntan be

[53]. However, this does not substantially alter the thSicaattributed to the half-on-shell matrix elements Gfwhich

interpretation of ImX, as ex_pres_sed in E¢GH. The ima_gl- effectively couple the f and D-1h states.
nary part of the self-energy is still proportional to a weighted Taking the example of an initiakN 3S, state, Eq(66) is

2p-1h phase space bUt. the intermediate particles are bett‘f)rlotted in Fig. 6. Contributions from each of four possible
thought of as quasiparticles carrying reduced strength. intermediate states, characterized by different YL combina-
tions, are plotted together with their sum. All terms contrib-
ute significantly except for the\N 3D, intermediate state
The s-functions in Eq.(64) permit the integrals over in- which couples relatively weakly to the initial state.

termediate state variables to be performed explicitly. Taken Though the form of Eq(66) is useful for isolating purely
together with Eq(60), an expression is readily derived for phase-space influences on the energy dependence @f &m

Im G where phase-space factors are conveniently decouplesbmplex, non-linear tangling of states remains concealed

where

Coupling 1p to 2plh states

from the weighting matrix elements, within the half-on-shellG matrix elements. These tangled
2 intermediate states can be further unscrambled by consider-
Im (plG(Q.D)lp) =~ 77% (pIG(Q. Dol ing a dissection of the pertine@® matrix elements into a pair
] . of complementary approximations. One may define a “di-
X Qyw(0.90)43 J&yn rect” approximation to a particular matrix elemet#|G|g),
99 | 44, by eliminating all matrix element$y|V|&) from the defini-
b — g tion of the G matrix equationexceptthose wherex=+y and
==g, (66)  B=4. The quantum numberag, B,y and & here refer to the
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FIG. 8. (Color onling Direct (dotted and indirect(dashedl ap-

FIG. 7. (Color onling Dashed curve is the direct approximation . - ) .
( 9 PP proximations to ImG for the XN 3D, intermediate state.

to Im G for the AN 3S; intermediate state. The full curve is the

Im G component attributed to this same intermediate state when all

couplings are intact. Note that there is no indirect contribution fornel involves turning off all tensor interactions and leaving

this channel because the diretN 3S;,— AN 3S; transition turns  only the two central transitions. Figure 9 confirms that this

out to be crucial for the numerical determination of Bematrix. approximation primarily cuts in the “tensor” region identified
from Fig. 8 and this is where the indirect approximation

appropriate channels, for exampld 3S,, etc. The comple-  gives its largest contribution.

mentary “indirect” approximation t& is defined by elimi-

nating only those matrix elements of where a=vy and 8 B. The quasi-particle peak

= 4. Note that complementary sets of approxim@teatrices As indicated by the spectral function peak in Fig. 3, an
are defined for each chqlce of |n|t_|al a_nd intermediate state_energy region with a substantial amount of sp strength sur-
_ As an ex_ample, c_onS|der the situation where only transiyiyes the mixing with the B-1h states. However, this qp
tions to an intermediatdN 3S; state are allowed. This can peak is shifted in energy, broadened and has lost some frac-

be accomplished by generating a né&vmatrix where all yion of strength compared to the delta-function distribution
matrix elements ofV are set to zero, except those which appropriate for a non-interacting particle.

connect the intial state to th&N 3S; intermediate state. In
this case there is only a single term in the sum of &), 1. Location

corresponding to the lone available intermediate state. This ) .
The location of the peak is given by the qp energy as

version of ImG, where only the direct route to theN 3S; X ) )
intermediate state is available, is compared with the corred€fined in Eq(36). The real part of the self-energy, playing

spondingAN 38, term from the result for the fully correlated the r(_)Ie ofasp pptential, shifts the peak from its unperturbeq

G-matrix in Fig. 7. The shapes are very similar except in thd2cation at the kinetic energy. The self-energy can be split

energy range near tHEN threshold and below. This similar- Nt0 tWo pieces,

ity indicates that the effective couplings to thé\ 3S, inter- S (K w) = 3A(K) + 3K w) (68)

mediate state are only modestly influenced by the presence AT v AR

of the other intermediates, except in the vicinity of Bl each corresponding to a different type of physical process as

threshhold. indicated in Fig. 10. Treating the self-energy at lowest order
The AN 3S,—3N 3D, effective interaction is likewise in the AN interaction(the HF approximationonly elastic

dominated by direct coupling as shown in Fig. 8. This clearly

shows that an energy region can be identified with states that 0.0

are reached primarily via a tensor interactithne few hun-

dred MeV rangg Contrast this with Fig. 7 where the C

AN 3S,—AN 3S; term has no tensor interaction and peaks &

above 1 GeV. Indirect contributions therefore factor in only 2

marginally. £ s
For some channels, a direct approximation is not feasible. S

In these cases, turning off the diretN 3S,—AN 3S; transi- g

tion causes the numerical determination of the coupled chan- E a2t

nel G matrix to become unstable. It still turns out to be useful

to define and utilize a semi-direct approximation in these 10’ w 10° o'

cases. In this approximation, tieN 3S,—AN 3S, potential is e

retained, along with the matrix elements for the direct tran-  F|G. 9. (Color onling Semi-directdotted and indirectdashed
sition. Inclusion of these matrix elements serves to stabliz@pproximations to InG for the SN 3S; intermediate state. Semi-
the numerics while only interfering minimallgat higher or-  direct because th&N 3S,—AN 3S; couplings must still be included
den. A semi-direct approximation taN 3S,—3N 3S, chan- in order to obtain reasonable results.
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40
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FIG. 10. In part athe HF part of the self-energy is shown. Part % j//

b) includes the coupling to intermediat@-ah states. This contri- ~ ©  [seeeee . A

bution corresponds to the second term in Figo) for the ladder -8 / :

equation. .
-120 5 5 N - 5
scattering between the lambda and nucleons below the Fermi " " m(ﬁev) " "

energy is considered as illustrated in Fig(d0This leads to

a real, energy-independent contribution to the self-energy, FIG. 11. Real and imaginary parts of the exact self-energy are
Ee(k) This term is relatively large and positive, on the orderplotted with the solid lines and the real part from the model is
of 50 MeV, reflecting the repulsive character of the bare in-Plotted as a dashed curve for comparison.

teraction. _ _ _ Decreasing the density of21h states and/or the strength

The coupling to P-1h intermediate states is representedy coypling to these states is analogous to a decrease in the
by the diagram of Fig. 1®). Such processes induce a com- paramete,. This simply scales down the real part of the
plex, - energy-dependent component to the self-energyseif-energy for all energies, thereby reducing the binding
3, (k;w). This self-energy piece obeys a dispersion relatiorcontribution toe{°. Alternatively, moving the @-1h states to

[see Eq(29)], higher energy can be mimicked by an increase in the param-
_p(* Im S, (ko) eter wg, which likewise results in a reduction in the real part
Re3A(k;w) = _J do/ =A@ ) (69)  of the self-energy at}" and a consequent decrease in gp
o w-o binding.

. . . The success of this simple model, limited as it is, indi-
This means that the real part of the self-energy in the_ ne'ghéates thated is dominantly determined by high-energy
tk)orholog of S;‘OII’TrfE pakr.t|culatr e|r|1ergy, ;uch_ﬁ;ﬁ, requires 2p-1h states, but at the same time is relatively insensitive to

nowledge o A ’_“’) at all energies. The imaginary qyetails of the coupling to these states. To quantify the insen-
part of the self-energy is dominated by a broad, smooth pe itivity of £J” to low-lying excited states, one can isolate the
at high energy, as seen in Fig. 5. In contrast, the qp pea

) w-energy tail of ImX,(k; w) in Eq. (69), and examine its
resides at a much lower energy’(k); far removed from the . i
' ff P The first 100 MeV of Im2,(k th
bulk of the strength in In®,(k;w), which is centered at effect one; e first 100 MeV' o alk;w) above the

in the GeV If th | bl lambda threshold only contributes 4§ at the level of a few
some'ben'ergyguo, n the el ranoglje. _t q% En y apprima € percent. The disparity of about 10 MeV between the model
contribution to Eq/(69) evaluated a=g{"(k) comes from 54 e fyll result can be attributed to the finite width of the
' near wg, then the denominator in the integrand may be

peak, and especially the low-energy shoulder in the range of

approximated as a constasf{’(k) - wo. This leaves a few 100 MeV where coupling to thEN channel is most
-1 1 o important. It should be noted that these results are contingent
Re 3A(k; (k) = _QP—J do'Im 3, (k; ') on Im 3, (k; w) being of a form similar to that depicted in
7 ey (K) = wo) 5 Fig. 5. The imaginary part of the self-energy is dominated by
-1 lo its structure at high energy precisely when SRC dominate the

(70) AN effective interaction from which it is derived. This de-

pends in part on the short-range behavior of the bare inter-
wherel, is just the integrated strength in 1By (k; w). In this ~ &ction, but also on the approximation method selected when
approximation Réﬁ(k'sj{p(k)) depends on only two param- defining the effective interaction. The ladder approximation
eters which together characterize the gross properties GdoPted in this work is specifically chosen because it incor-
Im S, (k: ); the integrated strengthy, and the centroid of porates the essential features of SRC while de-emphasizing
the high-energy peaky,. Though nominallyk dependent LR behavior and more collective states which naturally oc-
the parameters, and wo' should vary only slowly withk, cur at low excitation energy. A realistic calculation for a
since they chargcterizeothe gross structure oBlk: ) at finite hypernucleus, utilizing the same bare'interaction, but
high energy; structure which is far removed from the low-9°'"9 beyon_d_ Fhe ladder approximation might well show
energy realm of the gp peak. These two parameters deﬁneg({eater sensitivity to low-lying stat40,14,1§.

. i Lo Sincely< 0, the real part of the self-energy will be nega-
model for a simple low-energy approximation to Ré’ tive for any energy below,, including the “on-shell” region

Amodety. apriny — T lo near the gp peak. This means that the self-energy term which
Re 33 ™%(k; s{P(k)) = oK) — (71 represents the coupling to high-energp-2h states[Fig.
A 0 10(b)] will always lower the energy of the gp state. This
The full structure of the self-energy is shown in Fig. 11 with result is familiar from perturbation theory, where a second-
the two-parameter model for comparison. order correction to the energy always serves to lower the

T o7 ePK) - wp
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FIG. 12. Potentials of Wood-Saxon form are fitted to calculated FIG. 13. The curve marked by diamonds represents the qp width
data for theA and the nucleon, identified by diamonds and circles,as a function ok. The curve with circles represents an approxima-
r_espectively. _The analytic a_pproximation is useful when the deriva'tion to the width based on the local density gi-2h states. The
tive of a particle spectrum is required. dotted curve represents the corresponding widths for nucleons as a

function of k—ke.
energy of the ground state. This binding more than offsets

the HF contribution tos3” and leads to a monotonically in- e resyits of Ref[39]. Especially at small momenta above
creasing qp spectrum. A sp potential, (k), defined by the particle thresholds, the nucleon width is several orders of
£9P(K) = t,(K) + U,(K), (72) _magnitqde larger than thd one, suggesting _that theN
interaction generates a much stronger coupling to the low-
is plotted in Fig. 12 together with the sp potential employedlying 2p-1h states than th& N one. At higher momenta, this

for the nucleons.

The net binding of 30 MeV for a lambda at rest in NM is
consistent with other calculatiorjd] as well as an extrapo-
lation from experimentally measuraeshell binding energies
for hypernuclei54]. Only theS-waves(including the tensor-
coupled channejsare considered in this work. Higher partial
waves yield corrections te}” on the order of no more than
10% and even at this level tend to cancel each otheflaft

2. Width

difference is reduced to about a factor of 3.

If the gp part of the spectral function is interpreted as a
distinct sp-like state, theny,(k) is the width induced by
coupling to a population of nearby states. Overlaying the
QPA to the spectral function on top of the full spectral func-
tion, Fig. 14, demonstrates the utility of the QPA for l&wA
sharp rise in ImX,(k;w) occurs in the vicinity of
=200 MeV as can be seen in Fig. 5. Whe{f(k) reaches
this energy range, the QPA is no longer a reasonable approxi-
mation. This occurs for &\ with momentum in the neigh-

In contrast to the position of the qp peak, which is essenborhood ofk=600 MeVk and is a sign that another energy
tially determined by the structure of the imaginary part of thethreshold has been crossed. This threshold is discussed in
self-energy at very high energies, the width of the peak isSec. Il C.

directly proportional to the local value of 1B, at the qp
energy[Eqg. (40)]. To the extent that coupling to these low-
lying 2p-1h states is only weakly momentum dependgat
low values ofk), the width is directly proportional to the

3. Strength

According to Eq.(39), the amount of spectral strength

local density of »-1h states. Phase space restrictions neatoncentrated in the gp peak is given by the derivative of
the 2-1h threshold determine the low-energy structure OfReEQ(k;w) with respect taw locally ate%. In terms of the

the imaginary part of the self-ener§5] according to
Im 3, (k;w) = cK)[w - 8777, (73)

For values ofk such thats3(k) is low enough to fall in the
energy range where E@73) is valid, the gp width can be
simply expressed as a function of the peak position,

y(k) = ¢’ (K[ePK) - 7. (74)

w—>s/T\.

This approximation is shown together with the calculated
width as a function of momentum in Fig. 13, where the fac-
tor ¢’(k) has been approximated as a constant, independent

of k. Although this model for the gp width is not precisely
accurate except very neke0, it does suggest the origin of
the growth of (k) with increasingk. For comparison, the

dispersion relation for R&A(k; ), Eq.(39) becomes

S,(kw) (MeV™)
3

10°
o + 40 (MeV)

corresponding results for nucleons are also included in Fig. FIG. 14. Solid curve is the full spectral function fdk

13 as the dotted curve plotted as a functiorkekg, using

=110 MeV/c. The dashed curve is the QPA.
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0.92 | 107
*
0.90 —.; 10°
@
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0.88 310°
b x * s
0.86 * x * * . 107
* * *
0.84 : : : M
0 200 400 600 800 TS 10° 10°
k (MeV/c) ® + 40 (MeV)
FIG. 15. Quasi-particle strength as a functionkof FIG. 16. Nucleon particle spectral functiotsolid) for k

N =316 MeV/c with lambda spectral function(dashey at k
P(~ Im 3, (kjo') |~ =60 MeV/c for comparison.
z(k) :l f dw’#} (75) par

1__
ap, _ o n\2
e (k) 0) old opens at an energy about 90 MeV above the self-

Comparing to Eq(29), the strength in the qp peak(k), is  consistently determinedN threshold. The mass difference
seen to exhibit a greater sensitivity to the structure ofS Ms—My=77 MeV, but theA is bound in NM by about
Im 3,(k; w) than does the peak positiond. The z-factor 30 MeV v_vhereas th& binding is about half as much._Agaln,
(Fig. 15 is most accurate as a measure of strength in thd® imaginary part of the self-energy provides a picture of
peak of the spectral function for low values lof how theXNN"" 2p-1h states influencés sp properties. The

A nuclear matter calculation for nucleons similar to this 'Maginary part of the self-energy is plotted in Fig. 18 for the

one[37] yields a particle spectral function shown in Fig. 16, €2S€ Where coupling to tHeN states is turned off.

for a momentum just abovk:. The z-factor obtained from Turning Off the=N coupling leads to a recovery of 7% of
this calculation iszy(kg)=0.72, which is substantially re- the strength in the qp peak as théactor increases from 0.86

duced compared ta,(0)=0.87 for a similarA gp state. to 0.93. A reduction in spectral strength is observed at all

These two momentum values are compared because each etrﬁ::'hgllg ?h%?gt'gfiwo?ggz;%g@& ;n_dlrjlusst;{aego;fé the
sits at the lowest possible excitation energy for a qp in th : P

respective systems. In Ref37], the depletion of the qp MOStinfluential i this energy region. First, a ‘threshold ef-

) . . . fect” is responsible for the sharp cusp in BEn near
strength is explained in terms of couplings th-2p states, . . X ;
which moves approximately 10% of the sp strength to ener-loo MeV. This behavior may be understood physically in the

gies belows,, and coupling to p-1h states, which distrib- S2Me Way as the cusp observed in XM elastic scattering

utes another 18% to higher energies in the particle domainqros_s—sectlon[SG]. In scattering theory, the elast[c Cross-
The corresponding fraction of sp strength in the particle do—seci'r? " mayhbeilcallculat?d fr;)tmh_éhe ?are Ith(zl_l\t;IOdy mtfef:ractlon
main is 13% for the lambda, compared to 18% for nucleons;{'a ne on-shell € errr:en Si% M matrix. in ' ?n e ec-f
A more detailed look at the distribution of strength as a func-, Ive Interaction, such as thie-Matrix Is a generalization o

tion of energy is given in Fig. 17. This figure displays for the free-spac& matrix. Structure arises in th&eN G matrix

. . . as a consequence of the strong coupling to the neaiy
four different momenta the fraction of the sp strength that is hannel[57]. From Eq.(28), the imaginary part of the seif-

recovered as a function of energy by intergating this strengt nerav shares the same structure as the imaginary part of the
up to that energy. This figure shows that most of the strengtg mgt);ix gnary p

is accounted for at energies corresponding to 2 GeV. In th Second, isospin conservation in the stroiy interaction

case of nucleons interacting by means of the Reid interaCtiOPorb'ds excitation of nuclear oh states viaexchanae. How-
the strength has to be gathered up to energies of 10 [GéV ' xcitatl u P X ge. now

illustrating the harder core of this interaction. 1.000
The relative effects of tensor and short-range correlations
can be untangled to some extent. Turning off f8g->D, 0950 |

tensor coupling in the Reid potential for nucleons indicates
that this interaction is responsible for depleting the qp
strength by about 6.5%, almost all within 1000 MeV &f
[37]. Similarly, turning off the AN-SN coupling in the

= 0.900

NSC89 potential reveals that tensor effects are responsible 0.850

for almost half of the reduction in th& gp strength. A value

of z,(0)=0.94 is obtained when coupling XN states is cut 0.800 U \
10 10

off. £, + 40 (MeV)

C. The 2N Threshold FIG. 17. Single-particle strength integrated fr@ﬁlto €max @S a
The effects associated with the inclusion of Tl chan-  function of gy, for different momenta.k=10 MeV (solid), k
nel are illustrated in Figs. 18 and 19. In NM tB& thresh- =110 MeV (dot), k=210 MeV (dash, k=310 MeV (dot-dash.
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0
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20 i
~ i
- > 107 i
2 40 2 i
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< @104
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= &
_80 10°
, L . _7 L
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FIG. 18. (Color onling Im X, for the case wherdN-=N cou- FIG. 20. (Color onling Spectral function for three values kf

pling is included(solid curve, without coupling(dashegland when  show thek-independence of the high energy tail for 10 MeV/c
m-exchange is turned off itv (dotted. Plotting with respect to  (solid curve, 110 MeV/c (dashegl and 210 MeV¢ (dash-dox
self-consistently determinetl threshold energy ensures that i
threshold is in the same location for each curve. The value of th
momentum in this plot corresponds ke 10 MeV/c.

density. This averaging smears out the location of the “cusp”
structure in the self-energy and in the spectral function.

D. The high-energy region

ever, this is a'strongly' gllowed_Frocess for thB_I interac- Away from the gp peak, at high-energy, the size and struc-
tion, preferentially excitingtNN™ 2p-1h states in the en- tyre of the spectral function is primarily determined by two
ergy range of a few hundred MeV. Turning off the factors. The density of [21h states increases like'? at
m-exchange component of the bare interactiig. 18 dem-  high energy. This growth in spectral strength with energy is
onstrates that it is partly responsible for tA&l channel's moderated by the strength of the coupling to these high en-
influence on the\, but apparently the non-tensor part of the ergy states. A lambda with a reasonably low momentum
AN-ZN coupling plays just as significant a role, even in thecouples to a nucleon hole state only with a low relative mo-
“tensor” region. The nucleon spectral function manifests anentum. The high-energ AN two-particle states couple
similar feature in the energy range dominated by the tensamost strongly to high relative momentum and the strength of
interaction [39]. For nucleons the influence of the tensorthe potential matrix elements between these two states de-
force on the distribution of the sp strength corresponds t@ends on the short-range characteristics of the two-body in-
moving a similar amount of strength away from the peak ageraction. A harder core allows a stronger coupling between
the amount corresponding to the effect of SRZ]. states and correspondingly more spectral strength at high en-
The effect on the spectral function is to induce additional€rdy (see the following paragraphThe fact that structure in
structure in the vicinity of the threshold ener@sig. 19. The ~ the high-energy region of the spectral function is primarily

spectral signature of this new channel is a reduction ofi®ermined by the short-range behavior of the two-body in-

strength just below threshold followed by an enhancemen&eracnon should be tempered by the knowledge that the

immediately above threshold which slowly dies out at in_short-range part of baryon-baryon interactions are poorly

) : . known. Typical potentials are designed, within whatever
(cjrezismgthen(tar?yl. The Ioctatlon f{&m threﬂ:old 'ﬁ; depen- model, to fit only low-energy experimental data which does
dent on the total momentum o pair. 1he SEIFenergy - jiie to constrain the details of the repulsive core. This situ-
involves an average over all values@fthat can be realized

: ; . ation can be taken in two ways. On the one hand, the high-
for a A with a given momenturrk, and a nucleon hole which - gnergy tail of the spectral function is just as uncertain in

can have a range of momentum according to the nuclegfeiail as the core of the interaction from which it is derived.
On the other hand, it is also just as experimentally inacces-
10° sible and any observable which can be related to the detail of
the tail in the spectral strength distribution could be used to
gain insight into the behavior of the bare two-body interac-
tion at short-range. In Fig. 20 the similarities of the tail of the
spectral strength for different momenta is illustrated.

Sum rule There exists a sum rule relating the energy-
weighted integral of the spectral function to the matrix ele-
ments ofV in a very direct mannef58]. Writing the result
from Ref.[58] for the case of a\ in NM,

S, (k;0) (MeV™)
=

10° o 2
10’ 10° 10° k ST T
d Kiw)=——+ d3k’ N (k") (KK’ [VIKK'),
® (MeV) J;:F w wSﬁ( w) 2mA (271_)3 f h( )< | | >
FIG. 19. Spectral function in the vicinity of thEN threshold (76)

with AN-2N coupling(solid) and without(dashegl Note that the\ ) ) -
threshold differs by about 30 MeV between the two cases. Thavhereny(k) is the occupation probability of the sp nucleon
momentum value in this example correspond&4e100 MeV/c. state with momenturk,
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eF as pointed out in Ref58]. For the NSC89 potential used in
Ny(K) =J doS\(k o). (77 this work, the value is approximately 50 MeV. If tieis to
w be bound at the experimentally observed level of approxi-
Note that the two terms comprising the right-hand side of Eqmately 30 MeV, then the largéiy(0) is, the largei35,(0)
(76) are just the kinetic energy, (k), and the energy inde- must be to compensate. This in turn requires a larger value of
pendent part of the self-enerdy.(k), respectively. The left- 1i(0) to satisfy the sum rule. This constitutes an indirect
hand side of Eq(76) may be formally divided into two @association between the strength of the repulsive bare inter-

pieces, action and the required distribution of strength at high en-
ergy.
fdw wSQ(k;w) = f dow wﬁp(k;w)+f do wSh(k; ), V. CONCLUSIONS
(78 The spectral function for A hyperon in nuclear matter is

I(,;alculated for the first time in this work. The structure of the
spectral function is very similar to what is found for a
nucleon. The chief qualitative difference lies in the coupled
channel element which gives rise to threshold effects in the
2(0)e%P(0) + 114 (0) :2@(0), (79 A self-energy and spectral function. This behavior can be
understood more fully by forging an analytic connection to
where established results for coupled channels in scattering theory.
Consistent with the weaker binding of tileto the medium
fdw Sy (K; ®) = i (K), (800 as compared to nucleons, we also obtain a more
quasiparticle-like spectral distribution of the sp strength.
and Nevertheless, a substantial reduction of 13% for the addition
probability for adding a zero-momenturh is obtained as

the first corresponding to the qp peak and the second a “tai
primarily composed of strength at energies abe§ Spe-
cializing to the case dt=0 for simplicity, Eq.(76) becomes

R ap compared to the free case. As for nucleons, a substantial
f do 0Spk; ) = 2(K)e (k). (8D portion of this removed strength is associated with the action
of the tensor force, mediated by pions. In the present case,
Furthermore this effect occurs through the coupling to the intermediate
Sgp(k;w) = 2(K) 8w — £37(K)) (82) 3N states in the effective interaction. The remaining portion

_ o of the removed strength is associated with the action of SRC
has been used to obtain the contribution from the gp peaighich generate a momentum-independent high-energy tail in
explicitly. The gp energy may be divided into two parts as inthe spectral functions. The details of these spectral distribu-

Eq. (68), tion of aA can have modest consequences for the analysis of
ap() = S A A hypernuclear production probabilities and the mesonic decay

#(0) = 2y(0) + 25011(0). (83 width in a nuclear medium. The mesonic width, while Pauli
Now Eq.(79) may be rewritten as suppressed in a nuclear environment despite strong correla-

tions, may well show sensitivity to details of the lambda
A A —vA

20)2y(0) + [2(0)2251n(0) + hai (0] =2y(0).  (84) strength distribution. Finally, this work prepares the way for
For theA, 2(0)=0.87, which is close enough to unity that Eq. @h examination of the weak decay properties of thén a
(84) implies nuclear environment with the influences of short-range cor-

N relations considered in consistent detail.
2(0)25p1n(0) = = 114 (0). (85)

This may be interpreted to mean that the coupling to

2p-1h states at high energy shifts the gp peak from its HF This work is supported by the U.S. National Science
value to lower energy. It may further be observed that for a~oundation under Grant Nos. PHY-9900713 and PHY-
strongly repulsive potentiaEC(O) will be large and positive, 0140316.
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