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We investigate parity-violating observables in thenp system, including the longitudinal asymmetry and
neutron-spin rotation innWp elastic scattering, the photon asymmetry innWp radiative capture, and the asymme-
tries in deuteron photodisintegrationdsgW ,ndp in the threshold region and electrodisintegrationdseW ,e8dnp in
quasielastic kinematics. To have an estimate of the model dependence for the various predictions, a number of
different, latest-generation strong-interaction potentials—Argonnev18, Bonn 2000, and Nijmegen I—are used
in combination with a weak-interaction potential consisting ofp-, r-, and v-meson exchanges—the
Desplanques-Donoghue-Holstein(DDH) model. The complete bound and scattering problems in the presence
of parity-conserving, including electromagnetic, and parity-violating potentials are solved in both configuration
and momentum space. The issue of electromagnetic current conservation is examined carefully. We find large
cancellations between the asymmetries induced by the parity-violating interactions and those arising from the
associated pion-exchange currents. In thenWp capture, the model dependence is nevertheless quite small,
because of constraints arising through the Siegert evaluation of the relevantE1 matrix elements. In quasielastic
electron scattering these processes are found to be insignificant compared to the asymmetry produced by
g-Z interference on individual nucleons. These two experiments, then, provide clean probes of different aspects
of weak-interaction physics associated with parity violation in thenp system. Finally, we find that the neutron-
spin rotation innWp elastic scattering and asymmetry in deuteron disintegration by circularly polarized photons
exhibit significant sensitivity both to the values used for the weak vector-meson couplings in the DDH model
and to the input strong-interaction potential adopted in the calculation. This reinforces the conclusion that these
short-ranged meson couplings are not in themselves physical observables; rather, the parity-violating mixings
are the physically relevant parameters.
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I. INTRODUCTION

A new generation of experiments have recently been com-
pleted, or are presently under way or in their planning phase,
to study the effects of parity-violating(PV) interactions inpp
elastic scattering[1], np radiative capture[2], and deuteron
electrodisintegration[3] at low energies. There is also con-
siderable interest in determining the extent to which hadronic
weak interactions can affect the longitudinal asymmetry
measured by the SAMPLE Collaboration in quasielastic scat-
tering of polarized electrons off the deuteron[4], and there-
fore influence the extraction from these data(and those on
the proton[5]) of the nucleon’s strange magnetic and axial-
vector form factors at four-momentum transfers squared of
0.04 and 0.09sGeV/cd2.

The present is the third in a series of papers dealing with
the theoretical investigation of PV interaction effects in two-
nucleon systems. The first[6] was devoted topWp elastic scat-
tering, and presented a calculation of the longitudinal asym-
metry induced by PV interactions in the lab-energy range
0–350 MeV. The second[7] provided a rather cursory ac-
count of a study of the PV asymmetries innWp radiative cap-
ture at thermal neutron energies and in deuteron electrodis-
integration at quasielastic kinematics. This work further
extends that of Ref.[7] by investigating the neutron-spin

rotation at zero energy and the longitudinal asymmetry innWp
elastic scattering at lab energies between 0 and 350 MeV,
and the photon-helicity dependence of thedsgW ,ndp cross sec-
tion from threshold up to energies of 20 MeV. It also pro-
vides a thorough analysis of the results already presented in
Ref. [7].

We adopt the PV potential developed by Desplanques,
Donoghue, and Holstein[8] over 20 years ago, the so-called
DDH model. In then p sector, it is conveniently param-
etrized in terms ofp-, r-, andv-meson exchanges. In Ref.
[8] the pion and vector-meson weak-coupling constants were
estimated within a quark model approach incorporating sym-
metry techniques like SUs6dW and current algebra require-
ments. Due to limitations inherent to such an analysis, how-
ever, the coupling constants so determined had rather wide
ranges of allowed values.

Our prime motivations are to develop a systematic and
consistent framework for studying PV observables in the
few-nucleon systems, where accurate microscopic calcula-
tions are feasible, and to use available and forthcoming ex-
perimental data on these observables to constrain the
strengths of the short- and long-range parts of the two-
nucleon weak interaction. Indeed, in Ref.[6] we showed, for
the case of the longitudinal asymmetry measured inpWp elas-
tic scattering, how available experimental data provide
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strong constraints on allowable combinations ofr- and
v-meson weak-coupling constants.

The remainder of the present paper is organized as fol-
lows. In Sec. II the PV potential as well as the parity-
conserving strong-interaction potentials used in this work are
briefly discussed, while in Sec. III the model for the nuclear
electroweak currents is described, including the electromag-
netic two-body terms induced by the presence of PV interac-
tions. In Sec. IV a self-consistent treatment of thenp bound-
and scattering-state problems in both configuration and mo-
mentum spaces is provided, patterned after that of Ref.[6],
and in Sec. V explicit expressions are derived for the longi-
tudinal asymmetry and spin rotation innWp elastic scattering,
the photon asymmetry innWp radiative capture, and the asym-
metries in deuteron photo- and electrodisintegration. In Sec.
VI the techniques used to calculate the PV observables are
briefly reviewed, while in Sec. VII a fairly detailed analysis
of the results is offered. Finally, Sec. VIII contains some
concluding remarks.

II. PARITY-CONSERVING AND PARITY-VIOLATING
POTENTIALS

The parity-conserving(PC), strong-interaction potentials
used in the present work are the Argonnev18 (AV18) [9],
Nijmegen I(NIJM-I) [10], and CD-Bonn(BONN) [11] mod-
els. They were discussed in Ref.[6] in connection with the
calculation of the longitudinal asymmetry inpWp elastic scat-
tering. Here, we briefly summarize a few salient points.

These realistic potentials consist of a long-range part due
to one-pion exchange and a short-range part modeled by one-
boson exchange in the Bonn and Nijmegen, or parametrized
in terms of functions of two-pion range or shorter in the
AV18. They differ, however, in the treatment of the nonlo-
calities; the AV18 is local while the BONN and Nijmegen I
have strong nonlocalities; these nonlocalities are of pion
range in the case of the CD-Bonn.

The AV18 and NIJM-I potentials were fitted to the
Nijmegen database of 1992[12,13], consisting of 1787pp
and 2514np scattering data, and both producedx2 per datum
close to 1. The latest version of the charge-dependent Bonn
potential, however, has been fitted to the 1999 database, con-
sisting of 2932pp and 3058np data, for which it givesx2

per datum of 1.01 and 1.02, respectively[11]. The substantial
increase in the number ofpp data is due to the development
of novel experimental techniques—internally polarized gas
targets and stored, cooled beams. Indeed, using this technol-
ogy, IUCF has produced a large number ofpp spin-
correlation parameters of very high precision; see, for ex-
ample, Ref.[14]. It is worth noting that the AV18 potential,
as an example, fits the post-1992 and both pre- and post-
1992 ppsnpd data withx2’s of 1.74 (1.02) and 1.35(1.07),
respectively[11]. Therefore, while the quality of their fits(to
the pp data) has deteriorated somewhat in regard to the ex-
tended 1999 database, the AV18 and NIJM-I models can still
be considered “realistic.”

As already mentioned in Sec. I, the form of the
parity-violating weak-interaction potential was derived in
Ref. [8]—the DDH model. In the isospin space of thenp pair
it is expressed as

vT8,T
PV = kT8,MT8 = 0uvPVuT,MT = 0l, s2.1d

whereT, T8=0 or 1. The diagonal and off-diagonal terms are
then obtained as

vT,T
PV = o

a=r,v
−

ga ha
np

4p

ma

m
smas1 + kadY8smardss1 3 s2d · r̂

+ ss1 − s2d · fp,Ysmardg+d, s2.2d

v1,0
PV = − i

gphp

4pÎ2

mp
2

m
Y8smprdss1 + s2d · r̂ −

gvhv
1 − grhr

1

4p

mr

m

3ss1 + s2d · fp,Ysmrrdg+, s2.3d

and v0,1
PV=v1,0

PV†. In the equations above the relative position
and momentum are defined asr =r 1−r 2 and p=sp1−p2d /2,
respectively,f. . . , . . .g+ denotes the anticommutator, andm,
mp, mr, andmv are the proton, pion,r-meson, andv-meson
masses, respectively. The Yukawa functionYsxad, suitably
modified by the inclusion of monopole form factors, is given
by

Ysxad =
1

xa
He−xa − e−sLa/madxaF1 +

1

2

La

ma
S1 −

ma
2

La
2DxaGJ ,

s2.4d

wherexa;mar. Note thatY8sxd denotesdYsxd /dx, and that
the terms proportional toY8sxd in Eqs. (2.2) and (2.3) are
usually written in the form of a commutator, since

ifp,Ysmardg− = maY8smardr̂ . s2.5d

Finally, the values for the strong-interactionp-meson pseu-
doscalar coupling constantgp, and r- and v-meson vector
and tensor coupling constantsga and ka, as well as for the
cutoff parametersLa, are taken from the BONN model[11],
and are listed in Table I. The weak-interaction vector-meson
coupling constantshr

np and hv
np correspond to the following

combinations of DDH parameters:

hr
np = s4T − 3dhr

0 −
2 T
Î6

hr
2, s2.6d

hv
np = hv

0 , s2.7d

whereT=0,1. Thevalues for these and forhp, hr
1, andhv

1 are
listed in Table I. Note that we have taken the linear combi-
nation of r- and v-meson weak-coupling constants corre-
sponding topWp elastic scattering from the earlier analysis[6]

TABLE I. Values used for the strong- and weak-interaction cou-
pling constants and short-range cutoff parameters of thep, r, andv
meson to the nucleon in the DDH-adj potential.

ga
2 /4p ka 1073ha

0 1073ha
1 1073ha

2 LasGeV/cd

p 13.9 4.56 1.72

r 0.84 6.1 −16.4 −2.77 −13.7 1.31

v 20 0 3.23 1.94 1.50
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of these experiments. We denote the model with these values
for the coupling constants as DDH-adj. The remaining cou-
plings are the “best value” estimates, suggested in Ref.[8].

In order to study the sensitivity of the calculated PV ob-
servables to variations in the weak-coupling constants, we
also consider in the present work avPV corresponding to the
original “best value” estimates for these from Ref.[8]; see
Table II. Calculations with these sets of couplings are simply
denoted by DDH.

III. ELECTROMAGNETIC AND NEUTRAL
WEAK-CURRENT OPERATORS

The electromagnetic current and charge operators, respec-
tively j andr, are expanded into a sum of one- and two-body
terms,

j sqd = o
i

j isqd + o
i, j

j i jsqd, s3.1d

and similarly forrsqd. The one-body terms have the standard
expressions obtained from a nonrelativistic reduction of the
covariant single-nucleon current[15]. The two-body charge
operators are those derived in Ref.[16]; they only enter in
the calculation of the asymmetry in the deuteron electrodis-
integration at quasielastic kinematics, and will not be dis-
cussed further here.

The two-body currents have terms associated with the
parity-conserving and parity-violating components of the in-
teraction, respectively,j i j

PC and j i j
PV. The operatorsj i j

PC were
derived explicitly in Ref.[17], and a complete listing of
those relative to the Argonnev18 interaction [9] has been
given most recently in Ref.[15]. Only the two-body currents
associated withp andr exchange are retained in the case of
the Bonn[11] and Nijmegen-I[10] interactions.

In addition to these, the purely transverse two-body cur-
rents associated with the excitation ofD isobars and therpg
andvpg mechanisms are included in all calculations. Again
explicit expressions for these operators can be found in Ref.
[15]. Note, however, that theD-isobar degrees of freedom
are treated in perturbation theory rather than with the
transition-correlation-operator method[18], and that only ef-
fects due to single-D excitation are considered, according to
Eqs.(2.15) and (3.4) in Ref. [15].

Before moving on to a discussion of the PV currents, we
briefly review, for later reference, the question of conserva-
tion of the electromagnetic current for the case of the AV18.
As pointed out in Ref.[15], the currents from itsv6 part

(specifically, its isospin-dependent central, spin-spin, and
tensor components) are strictly conserved. In a one-boson-
exchange model, which the AV18 is not, these interaction
components arise fromp andr exchange.

The currents from the AV18 momentum-dependent
(p-dependent) components—the spin-orbit, L 2, and
quadratic-spin-orbit terms—are also included. In Ref.[19]
and later papers, the currents from the spin-orbit term were
derived by generalizing the procedure used to obtain thev6
currents. It was assumed that the isospin-independent
(isospin-dependent) central and spin-orbit interactions were
due tos andv exchanges(r exchange), and the associated
two-body currents were constructed by considering corre-

sponding N̄N-pair diagrams involving these meson ex-
changes. The currents from theL 2 and quadratic-spin-orbit
interactions were obtained, instead, by minimal substitution
[15,17].

The currents from thep-dependent interactions are strictly
not conserved, as one can easily surmise by considering their
commutator with the charge density operator. For example,
in the case of the isospin-dependentL 2 and sL ·Sd2 interac-
tions, this commutator requires the presence of currents with
the isospin structuresti 3t jdz, which cannot be generated by
minimal substitution[17].

We will return to this issue in Sec. VII B. Here, we only
want to emphasize that the currents from thep-dependent
terms in the AV18 are short ranged. Their contributions to
isovector observables, such as, for example, the magnetic
form factors of the trinucleons[20], are found to be numeri-
cally much smaller than those due to the leadingv6 currents.
These currents also lead to small, although non-negligible,
corrections to isoscalar observables, such as the deuteron
magnetic moment andBsqd structure function[21]. How-
ever, in the case of the PV asymmetry in thenWp radiative
capture at thermal energies under consideration in the present
study, they will turn out to play an important role(see Sec.
VII B ).

A. Parity-violating currents

The DDH PV interaction[8] is parametrized in terms of
p-, r-, and v-meson exchanges. The meson-nucleon phe-
nomenological Lagrangian densities have been given most
recently in Ref.[22]. We adopt here the notation and con-
ventions of that work, except that we use pseudovector cou-
pling for thepNN interaction Lagrangian, i.e.,

LpNN
PC = −

fp

mp

N̄g5gmtN · ]mp, s3.2d

with fp /mp=gp / s2md. The resulting gpNN coupling is
given by

LgpNN
PC = − e

fp

mp

N̄g5gmst 3 pdzNAm, s3.3d

and thegpNN current is then obtained from the Feynman
amplitude in Fig. 1(a). The complete PVp-exchange current
is derived from a nonrelativistic reduction of both amplitudes
in Fig. 1, and to leading order reads

TABLE II. Values used for the strong- and weak-interaction
coupling constants and short-range cutoff parameters of thep, r,
and v meson to the nucleon in the DDH “best values” potential,
labeled “DDH,” from Ref.[8].

ga
2 /4p ka 1073ha

0 1073ha
1 1073ha

2 LasGeV/cd

p 13.9 4.56 2.4

r 0.84 3.7 −11.4 −0.19 −9.5 2.4

v 20 0 −1.90 −1.14 2.4
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j p,i j
PV sk i,k jd = −

fp hp

Î2 mp

sti · t j − tz,itz,jdSvpskjdsi + vpskids j

−
k i − k j

ki
2 − kj

2fvpskjd − vpskidgssi ·k i − s j ·k jdD ,

s3.4d

wherevpskd is defined as

vpskd = SLp
2 − mp

2

k2 + Lp
2 D2 1

k2 + mp
2 , s3.5d

k i =pi8−pi is the fractional momentum delivered to nucleoni
(with these definitionsq=k i +k j), and Lp is a short-range
cutoff. In the limit of pointlike couplings, the current above
is identical to that listed in Eqs.(A7a) and (A9a) of Ref.

[22]. NN̄-pair terms arising from the photon coupling to the
nucleon line containing a PVpNN vertex do not contribute
to leading order. Lastly, we note thatj p

PV satisfies current
conservation with the PVp-exchange interaction, given in
momentum space by

vp
PVsk i,k jd = − i

fp hp

Î2 mp

sti 3 t jdzvpskjdsi ·k j + i
 j ,

s3.6d

since

fvp
PVsk i − q,k jd,Pig + fvp

PVsk i,k j − qd,Pjg

=−
fp hp

Î2 mp

sti · t j − tz,itz,jdfvpskidssi + s jd ·k i + i
 jg,

s3.7d

which is easily seen to be the same assk i +k jd ·j p
PVsk i ,k jd.

HerePi denotes the isospin projection operator

Pi ;
1 + tz,i

2
. s3.8d

In the present work, the PV currents induced byr- and
v-meson exchanges have been neglected, since, due their
short-range character, the associated contributions are ex-
pected to be tiny. We note, however, that in Eq.(A5) of Ref.
[22] a grNN contact term, originating from gauging the
rNN tensor coupling, has been ignored, although it is in-
cluded in a later paper[23] by one of the authors of Ref.
[22]. This term is given by

LgrNN = e
gr kr

2 m
N̄smnst 3 rmdzN An, s3.9d

and leads, in leading order, to an additional term in Eq.(A7c)
of Ref. [22] of the form

−
gr kr

2 m
Shr

0 −
hr

2

2Î6
Dsti 3 t jdzvrskjd

3Fsi 3 s j +
s j ·k j

mr
2 si 3 k jG + i
 j , s3.10d

with vrskd defined similarly as in Eq.(3.5). The term above,
when combined with that having the same structure in the
second line of Eq.(A7c) of Ref. [22], generates a contribu-
tion proportional to 1+kr which, in view of the large value
of therNN tensor coupling constantskr=6.6d, is expected to
be dominant in the PVr-exchange current. The delicate issue
of current conservation when vector-meson exchanges are
included is not discussed in the present work.

Finally, there is a PV one-body current originating from
the nucleon’s anapole moment. It can be derived, for ex-
ample, by considering pion-loop diagrams where one of the
vertices involves a PVpNN coupling; it has the structure, to
leading order, given by

j i
PVsqd = −

qm
2

2 m2faSsqm
2d + aVsqm

2dtz,igsie
iq·r i , s3.11d

whereqm
2 is the four-momentum transfer,qm

2 =v2−q2, and the
isoscalar and isovector anapole form factors are normalized
as

aS,Vs0d =
gphp

4Î2p2
aS,V, s3.12d

with aS=1.6 andaV=0.4 from a calculation of pion-loop
contributions[24]. More recent estimates of the nucleon ana-
pole form factors predict[25–27] somewhat different values
for aS,V. A complete treatment would require estimates of
short-distance contributions[28] and electroweak radiative
corrections. Thus, in view of the uncertainties in the quanti-
tative estimate of these effects, we will continue to use the
values above in the present study(see also Sec. VII D). Note
that j i

PV vanishes for real-photon transitions.

B. Neutral weak currents

In the standard model the vector part of the neutral weak
current, j0,s, is related to the isoscalarsSd and isovectorsVd
components of the electromagnetic current, denoted, respec-
tively, as jS

g,s and jV
g,s, via

j0,s = − 2 sin2uW jS
g,s + s1 – 2 sin2uWd jV

g,s, s3.13d

whereuW is the Weinberg angle, and therefore the associated
one- and two-body weak charge and current operators are
easily obtained from those given in Sec. III. The axial charge
and current operators too have one- and two-body terms.
Only the axial current

FIG. 1. Feynman diagram representation of the two-body cur-
rents associated with pion exchange: solid lines, nucleons; dashed
lines, pions; wavy lines, photons. Note that one interaction vertex is
parity conserving, while the other is parity violating(PV).

R. SCHIAVILLA, J. CARLSON, AND M. PARIS PHYSICAL REVIEW C70, 044007(2004)

044007-4



j 5sqd = o
i

j i
5sqd + o

i, j

j i j
5sqd s3.14d

is needed in the present work. The one- and two-body opera-
tors are essentially those listed in Ref.[29], except for obvi-
ous changes in the isospin structure having to do with the
fact that we are dealing here with neutral rather than charge-
raising/lowering weak currents, and for the inclusion of
nucleon andND axial form factors—the parametrization
adopted for these is given in Ref.[30]. Note that in Ref.[32]
the relativistic corrections inj i

5 and two-body axial currents
were neglected, in line with the expectation, confirmed in the
present study, that the associated contributions were small.

Finally, the neutral weak currents given above are at tree
level; electroweak radiative corrections as well as strange-
quark contributions to the vector and axial-vector currents
[31] have been ignored. These effects have been taken into
account in recent calculations of the longitudinal asymmetry
in dseW ,e8dpn at quasielastic kinematics[33]; however, they
will not be discussed further here.

IV. FORMALISM

In this section we discuss thenp scattering- and bound-
state problems in the presence of a potentialv given by

v = vPC+ vPV, s4.1d

wherevPC andvPV denote the parity-conserving and parity-
violating components induced by the strong(including elec-
tromagnetic) and weak interactions, respectively. The for-
malism and notation are similar to those developed in Ref.
[6].

A. Partial-wave expansions of scattering state andT
and S matrices

The Lippmann-Schwinger equation for theNN scattering
stateup ,SMS,Tls±d, wherep is the relative momentum, andS,
MS, T, andMT=0 specify the pair spin, spin-projection, iso-
spin, and isospin-projection states(note that the labelMT
=0 is unnecessary, sincev is diagonal inMT), can be written
as [34]

up,SMS,Tls±d = up,SMS,Tl0 +
1

E − H0 ± ie
vup,SMS,Tls±d,

s4.2d

whereH0 is the free Hamiltonian, andu . . .l0 are the eigen-
states ofH0, namely, plane waves,

fp,SMS,Tsr d = kr up,SMS,Tl0

=
1
Î2

feip·r − s− dS+Te−ip·rgxMS

S hMT=0
T

=4pÎ2o
JMJL

iL eLST jLsprdfZLSMS

JMJ sp̂dg*YLSJ
MJ sr̂ dh0

T.

s4.3d

Here jLsprd denotes the regular spherical Bessel function,

and the following definitions have been introduced:

ZLSMS

JMJ sp̂d ; o
ML

kLML,SMSuJMJlYLML
sp̂d, s4.4d

eLST;
1

2
f1 − s− 1dL+S+Tg. s4.5d

The factoreLST ensures that the plane waves are properly
antisymmetrized.

The T matrix corresponding to the potentialv is defined
as [34]

Tsp8,S8MS8,T8;p,SMS,Td=0kp8,S8MS8,T8uvup,SMS,Tls+d.

s4.6d

Insertion of the plane wave statesup ,SMS,Tl0 into the right-
hand side of the Lippmann-Schwinger equation leads to

up,SMS,Tls+d = up,SMS,Tl0+ o
S8MS8T8

E dp8

s2pd3

1

2

3up8,S8MS8,T8l0
Tsp8,S8MS8,T8;p,SMS,Td

E − p82/s2md + ie
,

s4.7d

from which the partial-wave expansion of the scattering state
is easily obtained by first noting that the potential, and hence
the T matrix, can be expanded as

0kp8,S8MS8,T8uvup,SMS,Tl0

= 2s4pd2o
JMJ

o
LL8

eL8S8T8 eLST ZL8S8MS8
JMJ sp̂8d

3fZLSMS

JMJ sp̂dg* vL8S8T8,LST
J sp8;pd, s4.8d

with

vL8S8T8,LST
J sp8;pd = iL−L8E dr jL8sp8rdYL8S8J

MJ† h0
T8†

3vsr dh0
TYLSJ

MJ jLsprd. s4.9d

After insertion of the corresponding expansion for theT ma-
trix into Eq. (4.7) and a number of standard manipulations,
the scattering-state wave function can be written as

cp,SMS,T
s+d sr d = 4pÎ2o

JMJ

o
LL8S8T8

iL8eL8S8T8eLSTfZLSMS

JMJ sp̂dg*

3
wL8S8T8,LST

J sr ;pd

r
YL8S8J

MJ sr̂ dh0
T8, s4.10d

with

wa8,a
j sr ;pd

r
= da8,a jL8sprd +

2

p
E

0

`

dp8p82jL8sp8rd

3
1

E − p82/s2md + ie
Ta8,a

J sp8;pd, s4.11d

where the labelasa8d stands for the set of quantum numbers
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LSTsL8S8T8d. The (complex) radial wave functionwsrd be-
haves in the asymptotic regionr →` as

wa8,a
J sr ;pd

r
.

1

2
fda8,ahL8

s2dsprd + hL8
s1dsprdSa8,a

J spdg,

s4.12d

where the on-shellsp8=pd S matrix has been introduced,

Sa8,a
J spd = da8,a − 4i mp Ta8,a

J sp;pd, s4.13d

and the functionshs1,2dsprd are defined in terms of the regular
and irregularsnLd spherical Bessel functions as

hL
s1,2dsprd = jLsprd ± i nLsprd. s4.14d

B. Schrödinger equation, phase shifts, mixing angles,
and the scattering amplitude

The coupled-channel Schrödinger equations for the radial
wave functionswsrd read

S−
d2

dr2 +
L8sL8 + 1d

r2 − p2Dwa8,a
J sr ;pd

+ o
b

r va8,b
J srd

1

r
wb,a

J sr ;pd = 0, s4.15d

with

va8,a
J srd = iL−L8 2mE dV Ya8J

MJ† h0
T8† vsr dh0

T YaJ
MJ,

s4.16d

where, because of time-reversal invariance, the matrixva8,a
J

can be shown to be real and symmetric[this is the reason for
the somewhat unconventional phase factor in Eq.(4.16); in
order to maintain symmetry for both thevPC andvPV matri-
ces, and hence theS matrix, the states used here differ by a
factor iL from those usually used in nucleon-nucleon scatter-
ing analyses]. The asymptotic behavior of thewsrd’s is given
in Eq. (4.12), while explicit expressions for the radial func-
tionsva8,a

J,PVsrd can be found in Ref.[6]—those associated with
vPC are well known.

There are two coupled channels forJ=0, and four
coupled channels forJù1. The situation is summarized in
Table III. Again because of the invariance under time-

inversion transformations ofvPC+vPV, the S matrix is sym-
metric (apart from also being unitary), and can therefore be
written as[34]

SJ = UT SD
J U, s4.17d

whereU is a real orthogonal matrix, andSD
J is a diagonal

matrix of the form

SD;a8,a
J = da8,ae2ida

J
. s4.18d

Here da
J is the (real) phase shift in channela, which is a

function of the energyE with p=Î2m E. The mixing matrix
U can be written as

U = Us12d, J = 0, s4.19d

= p
1øi, jø4

Usi j d, J ù 1, s4.20d

whereUsi j d is the 232 or 434 orthogonal matrix that in-
cludes the coupling between channelsi and j only, for ex-
ample,

Us13d = 3
cose13

J 0 sin e13
J 0

0 1 0 0

− sin e13
J 0 cose13

J 0

0 0 0 1
4

. 1 + e13
J 3

0 0 1 0

0 0 0 0

− 1 0 0 0

0 0 0 0
4 .

Note that no coupling is allowed between channels 3 and 4 in
the notation of Table III, and henceUs34d=1. Thus, forJ=0
there are two phase shifts and a mixing angle, while forJ
ù1 there are four phase shifts and five mixing angles. Of
course, sinceuvPVu! uvPCu, the mixing anglesei j

J induced by
vPV are !1, a fact already exploited in the last expression
above forU. Given the channel ordering in Table III, Table
IV specifies which of the channel mixings are induced byvPC

and which byvPV.
The reality of the potential matrix elementsva8,a

J srd
makes it possible to construct real solutions of the
Schrödinger equation(4.15). The problem is reduced to de-
termining the relation between these solutions and the com-

TABLE III. Labeling of channels.

a

J 1 2 3 4

0 1S0
3P0

1 3S1
3D1

1P1
3P1

2 3P2
3F2

1D2
3D2

3 3D3
3G3

1F3
3F3

A A A A A

TABLE IV. Classification of channel mixings for a givenJ: PC
or PV if induced byvPC or vPV, respectively. Note that no coupling
is allowed between channels 3 and 4.

Coupling

J 12 13 14 23 24

0 PV

1 PC PV PV PV PV

2 PC PV PV PV PV

. . . PC PV PV PV PV
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plex wsrd’s functions. Using Eq.(4.17) and UTU=1, the
wsrd’s can be expressed in the asymptotic region as

wa8,a
J

r
. o

b

sUTda8beidb
J ha8

s2de−idb
J

+ ha8
s1deidb

J

2
Uba

=o
b

sUTda8b eidb
J sinspr − L8 p/2 + db

Jd
pr

Uba.

s4.21d

The expression above is real apart from the expsidb
Jd. To

eliminate this factor, the following linear combinations of the
wsrd’s are introduced:

ua8,a
J

r
; e−ida

Jo
b

wa8,b
J

r
sUTdba

.sUTda8afcosda
J jL8sprd − sin da

J nL8sprdg,

s4.22d

and theusrd’s are then the sought real solutions of Eq.(4.15).
The asymptotic behavior of theusrd’s can now be read off

from Eq. (4.22) once theU matrices above have been con-
structed. The latter can be written, up to linear terms in the
“small” mixing angles induced byvPV, as

U = F 1 e12
0

− e12
0 1

G, J = 0,

U =3
cose12

J sine12
J e13

J cose12
J + e23

J sine12
J e14

J cose12
J + e24

J sine12
J

− sine12
J cose12

J − e13
J sine12

J + e23
J cose12

J − e14
J sine12

J + e24
J cose12

J

− e13
J − e23

J 1 0

− e14
J − e24

J 0 1
4, J ù 1.

Inverting the first line of Eq.(4.22),

wa8,a
J

r
= o

b

eidb
J ua8,b

J

r
Uba, s4.23d

and inserting the resulting expressions into Eq.(4.15) leads
to the Schrödinger equations satisfied by the(real) functions
usrd. They are identical to those of Eq.(4.15), but for the
wsrd’s being replaced by theusrd’s. These equations are then
solved by standard numerical techniques. Note that(i) va,a

J

=va,a
J,PC, since the diagonal matrix elements ofvPV vanish be-

cause of parity selection rules;(ii ) terms of the type
r va8,b

J,PVsrdub,a
J srd / r involving the product of a PV potential

matrix element with avPV-induced wave function are ne-
glected.

Finally, the physical amplitude fornp elastic scattering
from an initial state with spin projectionsmn, mp to a final
state with spin projectionsmn8, mp8 is given by

kmn8mp8uMumnmpl =
1

2 o
S8MS8T8,SMST

s− dT+T8k 1
2mn8,

1
2mp8uS8MS8l

3k 1
2mn,

1
2mpuSMSlMS8MS8T8,SMSTsE,ud,

s4.24d

where the amplitudeM is related to theT matrix defined in
Eq. (4.6) via

MS8MS8T8,SMSTsE,ud = −
m

2p
Tsp8,S8MS8,T8;pẑ,SMS,Td,

s4.25d

and the factors−1dT+T8 /2 comes from the Clebsch-Gordan
coefficients combining the neutron and proton states to total
initial (final) isospin TsT8d. Note that the direction of the
initial momentump has been taken to define the spin quan-
tization axis(thez axis), u is the angle betweenp̂ andp̂8, the
direction of the final momentum, and the energyE
=p2/ s2mdf=p82/ s2mdg. Using the expansion of theT matrix,
Eq. (4.8) with vL8S8T8,LST

J replaced byTL8S8T8,LST
J , and the re-

lation between theS and T matrices, Eq.(4.13), the ampli-
tude induced byvPC+vPV can be expressed as

MS8MS8T8,SMSTsE,ud = Î4po
JLL8

Î2L + 1 ea8

3ea kL8sMS− MS8d,S8MS8uJMSl

3kL0,SMSuJMSlYL8sMS−MS8dsud

3
Sa,a

J spd − da8,a

ip
, s4.26d

where againasa8d=LSTsL8S8T8d.

C. Momentum-space formulation

In order to consider the PC momentum space Bonn[11]
and Nijmegen[10] potentials, it is useful to formulate thenp
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scattering problem inp space. One way to accomplish this is
to solve for theK matrix [34]

Ka8,a
J sp8;pd = va8,a

J sp8;pd+
4m

p
E

0

`

dk k2o
b

va8,b
J sp8;kd

3
P

p2 − k2Kb,a
J sk;pd, s4.27d

where P denotes a principal-value integration, and the
p-space matrix elements of the potential are defined in Eq.
(4.9). The integral equations(4.27) are discretized, and the
resulting systems of linear equations are solved by direct
numerical inversion. The principal-value integration is elimi-
nated by a standard subtraction technique[35]. Once theK
matrices in the various channels have been determined, the
corresponding(on-shell) S matrices are obtained from

SJspd = f1 + 2i mp KJsp;pdg−1f1 – 2i mp KJsp;pdg,

s4.28d

and from these the amplitudesMS8MS8T8,SMSTsE,ud, Eq.(4.26),
are constructed.

Some of the studies of PV effects in thenp system of
interest here, specifically those relative to thenWp radiative
capture, dsgW ,ndp photodisintegration at threshold, and
dseW ,e8dnp electrodisintegration in quasielastic kinematics,
are more conveniently carried out inr space, and therefore
requirer-space wave functions. To this end, one first rewrites
Eq. (4.11) in a compact notation as

wJsr ;pd
r

= jsprd − 2i mp jsprdTJsp;pd

+
4m

p
E

0

`

dk k2jskrd
P

p2 − k2TJsk;pd,

s4.29d

where the matrices fwJsr ;pdga8,a;wa8,a
J sr ;pd and

f jsprdga8,a;da8,a jL8sprd have been introduced for ease of
presentation. Then, by making use of the following relation
between the off-shellT andK matrices:

TJsp8;pd = KJsp8;pd − 2i mp KJsp8;pdTJsp;pd,

s4.30d

which on shell leads to

TJsp;pd = f1 + 2i mp KJsp;pdg−1KJsp;pd, s4.31d

one can simply express thewJsr ;pd matrix of solutions in
terms of the previously determinedK matrix as

wJsr ;pd
r

= S jsprd +
4m

p
E

0

`

dk k2 jskrd
P

p2 − k2KJsk;pdD
3f1 + 2i mp KJsp;pdg−1. s4.32d

The Bessel transforms above are carried out numerically by
Gaussian integration over a uniformp grid extending up to
momenta.125 fm−1. The computer programs have been
successfully tested by comparing, for the PC Argonnev18 [9]

and PV DDH[8] potentials,r space wave functions as ob-
tained from Eq. (4.32) and by direct solution of the
Schrödinger equations, Eq.(4.15).

D. The deuteron wave function

The deuteron state hasJ=1 and its normalized wave func-
tion is written in r space as

cd,md
sr d = o

LST

iL eLST uLSTsrdYLS,J=1
md sr̂ dh0

T. s4.33d

It has PC components withLST=010 and 210, the standard
3S1 and3D1 waves(however, note again the unconventional
phase factoriL, which makes the sign of theD wave opposite
to that of theS wave), and PV components withLST=100
and 111, the1P1 and 3P1 waves(which are real functions
because of the phase choice above). The radial functions are
determined by solving the Schrödinger equation(4.15) in the
J=1 channel with the boundary conditionsuLSTsrd~ rL in the
limit r →0 and

u010srd ~
e−kr

r
, s4.34d

u210srd ~
e−kr

r
S1 +

3

kr
+

3

skrd2D , s4.35d

u100srd ~
e−kr

r
S1 +

1

kr
D s4.36d

in the asymptotic region. The asymptotic behavior ofu111srd
is identical to that ofu100srd above, and the constantk de-
notes the combinationÎ2muEdu, where uEdu is the deuteron
binding energys2.225 MeVd.

In p space the deuteron wave function is obtained from
solutions of the homogeneous integral equations

ūLSTspd =
1

Ed − p2/s2md
2

p
E

0

`

dk k2 o
L8S8T8

vLST,L8S8T8
J=1 sp;kd

3ūL8S8T8skd, s4.37d

and from these

uLSTsrd =
2

p
E

0

`

dp p2 jLsprdūLSTspd. s4.38d

Figure 2 displays the functionsuLSTsrd obtained with the
PC AV18 [9] (BONN [11]) and PV DDH-adj[8] potentials
(the values for the coupling constants and cutoff parameters
in the DDH potential are those listed in Table I). The PC3S1
and 3D1 components are not very sensitive to the input PC
potential. For example, most of the difference between the
AV18 and BONN3D1 waves is due to nonlocalities present
in the one-pion-exchange(OPE) part of the BONN potential.
In fact, it has been known for over two decades[36], and
recently reemphasized by Amghar and Desplanques[37] and
Forest[38], that the local and nonlocal OPE interactions are
related to each other by a unitary transformation. Therefore
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the differences between local and nonlocal OPE cannot be of
any consequence for the prediction of observables, such as
binding energies and electromagnetic form factors, provided,
of course, that three-body interactions and/or two-body cur-
rents generated by the unitary transformation are also
included—see Ref.[39] for a recent demonstration of this
fact within the context of a calculation of the deuteron struc-
ture functionAsqd and tensor observableT20sqd based on the
local AV18 and nonlocal BONN potentials and associated
(unitarily consistent) electromagnetic currents. This point
was also stressed in Ref.[6].

The PV3P1 component is, in magnitude, much larger than
the 1P1. This is easily understood, since the long-range
p-exchange term in the DDH potential is nonvanishing only
for transitions in whichuT−T8u=1, and therefore does not
contribute in the1P1 channel. In this channel, however, the
DDH r- and v-exchange terms play a role. Note that, be-
cause of the short-range character of the associated dynam-
ics, the AV18 and BONN1P1 waves show considerably more
model-dependence than the corresponding3P1 waves.

Finally, in Fig. 2 the PV3P1 wave obtained with the AV18
and a truncated DDH potential, retaining only the short-
ranger and v exchanges, is also shown. The comparison
between the3P1 waves corresponding to the full and trun-
cated DDH potentials demonstrates that this channel is in-
deed dominated by thep-exchange term in the DDH.

V. PARITY-VIOLATING OBSERVABLES

In this section we give explicit expressions for parity-
violating observables in thenp system, including the longi-
tudinal asymmetry and spin rotation innWp elastic scattering,
the photon asymmetry innWp radiative capture, and the asym-
metries in deuteron photodisintegrationdsgW ,ndp in the
threshold region and electrodisintegrationdseW ,e8dnp in
quasielastic kinematics.

A. Longitudinal asymmetry and spin rotation in n¢p elastic
scattering

The differential cross section for scattering of a neutron
with initial polarizationmn is given by

smn
sE,ud =

1

2o
mp

o
mn8mp8

ukmn8mp8uMumnmplu2, s5.1d

and the longitudinal asymmetry is defined as

AsE,ud =
s+sE,ud − s−sE,ud
s+sE,ud + s−sE,ud

, s5.2d

where ± denote the initial polarizations ±1/2. The total
asymmetryAsEd, integrated over the solid angle, then reads

AsEd =
E dV ssE,udAsE,ud

E dV ssE,ud
, s5.3d

wheres=ss++s−d /2 is the spin-averaged differential cross
section. The optical theorem allowsAsEd to be simply ex-
pressed as

AsEd = Imo
T T8

Sfs− dT+T8 − 1gM11T8,11TsE,0d +
s− dT+T8

2

3o
S S8

f1 − s− dS+S8gMS80T8,S0TsE,0dD
3

1

Im o
SMST

MSMST,SMSTsE,0d
, s5.4d

where in the equation above use has been made of the sym-
metry property

MS8,MS8,T8;S,MS,TsE,ud

= s− dT+T8s− dMS−MS8MS8,−MS8,T8;S,−MS,TsE,ud. s5.5d

It is clear that the numerator ofAsEd would vanish in the
absence of PV interactions, sincevPC, in contrast tovPV,
cannot change the total spinS or isospinT of thenp pair. In
particular, the long-range part ofvPV due to pion exchange
can only contribute to the first term in the numerator of Eq.
(5.4), since it is diagonal inS, but nonvanishing for transi-
tions uT−T8u=1.

The transmission of a low-energy neutron beam through
matter is described in terms of an index of refraction. A
heuristic argument, outlined in Ref.[40], and the more
rigorous—although less transparent—derivation presented in
Ref. [34] show that a neutron with spin projectionumnl, after
traversing a slab of widthd of matter, is described by an
asymptotic wave function given by

eipsz−dd eip d nmnumnl, s5.6d

where p=pn/2 is the initial relative momentum(assumed
along thez axis), and the index of refractionnmn

is related to

FIG. 2. (Color online) The deuteron PC3S1 and3D1 and PV1P1
and 3P1 radial wave functions obtained with the(PC) AV18 or
BONN and(PV) DDH-adj potentials. Also shown is the3P1 wave
obtained with the AV18 and a truncated DDH potential(labeled “no
p in DDH” ), including only r- and v-meson exchange contribu-
tions. For the phase convention, see text.
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the densityr of scattering centers in matter and the forward
scattering amplitude. For the specific case under consider-
ation here—neutron scattering from hydrogen—this relation
reads

nmn
− 1 =

2pr

p2

1

2o
mp

ukmnmpuMumnmpluu=0. s5.7d

Thus a neutron, initially polarized in thex direction,

eipzsu + l + u− ld/Î2, s5.8d

having traversed a slab of matter, is described in the
asymptotic region by a wave function given by

eipsz−ddeip dsn++n−d/2seip dsn+−n−d/2u + l + e−ip dsn+−n−d/2u− ld/Î2.

s5.9d

In the absence ofvPV, the differencen+−n− vanishes, since it
is proportional to the sum overT,T8 in the numerator of Eq.
(5.4), while

Imsn+ + n−d
2

=
r

2 p
s, s5.10d

wheres is the spin-averaged cross section introduced above,
and hence there will be an attenuation in the beam flux pro-
portional to exps−r d sd. The real part ofsn++n−d /2 instead
generates an unobservable phase factor.

However, if PV interactions are present, then the real part
of the (now nonvanishing) differencen+−n− leads to a rota-
tion of the neutron polarization by an anglef explicitly
given by [41–43]

f = −
2p r d

p

1

2o
mp

Refk+ ,mpuMu + ,mpl

− k− ,mpuMu − ,mplgu=0. s5.11d

B. Photon asymmetry inn¢p radiative capture

In the center-of-mass(c.m.) frame, the radiative transition
amplitude between an initial continuum state with neutron
and proton in spin-projection statesmn andmp, respectively,
and in relative momentump, and a final deuteron state in
spin-projection statemd, recoiling with momentum −q, is
given by

jlmd,mnmp

s+d spẑ,qd = k− q;mduêl
* sqd · j †sqdupẑ,mnmpls+d,

s5.12d

whereq is the momentum of the emitted photon andêlsqd,
l= ±1, are the spherical components of its polarization vec-
tor, andj sqd is the nuclear electromagnetic current operator.
Note that p̂ has been taken along thez axis, the spin-
quantization axis.

The initial np continuum state, satisfying outgoing-wave
boundary conditions, is related to that constructed in Sec.
IV A via

upẑ,mnmpls+d =
1
Î2

o
ST

s− dT+1k 1
2mn,

1
2mpuSMSlupẑ,SMS,Tls+d

=Î4po
Ja

ēa
Î2L + 1k 1

2mn,
1
2mpuSMSl

3kL0,SMSuJMSluJMS,als+d, s5.13d

where in the first equality the factors−dT+1/Î2 is from a
Clebsch-Gordan coefficient combining the neutron and pro-
ton states to total isospinT, and in the second equalityēa

;−s−dTea and the statesuJMJ,als+d have wave functions

kr uJMJ,als+d = o
a8

iL8ea8

wa8,a
J sr ;pd

r
YL8S8J

MJ sr̂ dh0
T8,

s5.14d

with a=LST and similarly fora8. The quantum numbersa
and a8 characterize the incoming and outgoing waves, re-
spectively.

The c.m. differential cross section for capture of a neutron
with spin projectionmn is then written as

smn

g sud =
s0

2 o
mp,l,md

u jlmd,mnmp

s+d spẑ,qdu2, s5.15d

whereu is the angle betweenẑ and q̂ and

s0 =
a

2p v

q

1 + q/md
. s5.16d

Here a is the fine-structure constant,md is the deuteron
mass,v is the relative velocity,v=p/m, and the photon en-
ergy q is given by

q = mdF− 1 +Î1 +
2

md
SuEdu +

p2

2m
DG . uEdu +

p2

2m
.

s5.17d

The photon asymmetryAgsud is defined as in Eq.(5.2)
with smn

sud replaced bysmn

g sud. By expanding the matrix
elements of the current operator in terms of reduced matrix
elements(RMEs) of electric sEld and magneticsMld multi-
pole operators as[29]

k− q;mduêl
* sqd · j †sqduJMJ,als+d

= − Î2po
ll z

s− idlÎ2l + 1

3
kJMJ,ll zu1mdl dlz,−l

l s− ud

3fElsJ,ad + lMlsJ,adg, s5.18d

with

XlsJ,ad ; kd,J = 1iXliJ,als+d s5.19d

and Xl =El or Ml, one finds, by retaining the1S0 and 3S1
channels in the sum overa in Eq. (5.13), the only relevant
incoming waves in the energy regime of interest here(frac-
tions of eV),

Agsud = ag cosu, s5.20d

whereag is given by
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ag =
− Î2 RefM1

*s1S0dE1s3S1d + E1
*s1S0dM1s3S1dg + Re fE1

*s3S1dM1s3S1dg
uM1s1S0du2 + uE1s1S0du2 + uM1s3S1du2 + uE1s3S1du2

, s5.21d

and in Eq.(5.18) thedlz,lz8
l are standard rotation matrices[44].

The ElsJ,ad and MlsJ,ad RMEs should carry a superscript
s+d; it has been dropped for ease of presentation.

Several comments are now in order. First, the photon
asymmetry has the expected dependence on cosu, since
Agsud~sn·q̂. Note that the contributions of higher-order
multipole operators withl =2 have been ignored in the equa-
tion above.

Second, because of the definition of the states in Eq.
(5.14), a generic RMEXlsJad is expressed as

XlsJad = o
a8

XlsJa8,ad, s5.22d

namely, as a sum over the contributions of outgoing channels
a8 corresponding to an incoming channela; for example,

M1s1S0d = M1s1S0,
1S0d + M1s3P0,

1S0d . s5.23d

Third, in the absence of parity-violating interactions, the
only surviving RMEs are theM1s1S0,1S0d, M1s3S1,3S1d, and
M1s3D1,3S1d, and therefore the parameterag vanishes. Fur-
thermore, theM1s3S1,3S1d RME also vanishes due to or-
thogonality of the initial and final states(in the limit in which
isoscalar two-body currents are neglected), while the

M1s3D1,3S1d RME is suppressed in the energy regime of
interest here. Thus, the standard result for the spin-averaged
radiative capture cross section, integrated over the solid
angle, follows:

sg = s4pd2 s0 uM1s1S0,
1S0du2. s5.24d

Lastly, when PV interactions are present, the analysis is
more delicate, since then, in addition to admixing small
opposite-parity components into the wave functions corre-
sponding tovPC, these interactions also induce two-body
terms in the electromagnetic current operator, as discussed in
Sec. III. Thus,j = j PC+ j PV, wherej PC includes the convection
and spin-magnetization currents of single nucleons as well as
the two-body currents associated withvPC, while j PV includes
those terms generated byvPV. The multipole operators can
then be written asXll z

=Xll z
PC+Xll z

PV, and those constructed from
j PV have unnatural parities, namely,s−dl for Mll z

PV and s−dl+1

for Ell z
PV. Therefore, for example, the RMEsM1

PCs1S0,1S0d and
M1

PVs1S0,1S0d connect the PC1S0 state to, respectively, the
PC and PV components of the deuteron. A straightforward
analysis then shows that, up to linear terms in effects induced
by vPV in either the wave functions or currents, the parameter
ag is given by

ag =
− Î2 RehM1

*s1S0,
1S0dfE1s3S1,

3S1d + E1s3D1,
3S1d + E1s3P1,

3S1dgj
uM1s1S0,

1S0du2
, s5.25d

where again terms containing the RMEsM1s3S1,3S1d and
M1s3D1,3S1d have been neglected. In the expression above,
the RME E1s1P1,3S1d has also been neglected, since transi-
tions induced by the isoscalar electric dipole operator are
strongly suppressed[45,46]. Thus, the only relevant transi-
tions are those connecting the3P1 PV np state to the PC
deuteron component and the3S1 and3D1 PCnp states to the
3P1 PV deuteron component.

C. Helicity-dependent asymmetry ind„g¢ ,n…p
photodisintegration

The relevant matrix element in the photodisintegration of
a deuteron initially at rest in the laboratory is

jmnmp,lmd

s−d sp,qd=s−dkq;p,mnmpuêlsqd · j sqdumdl s5.26d

in the notation of Sec. V B above. Hereuq ;p ,mnmpls−d rep-
resents annp scattering state with total momentumq and

relative momentump, satisfying incoming-wave boundary
conditions. Its(internal) wave function has the same partial-
wave expansion given in Eq.(4.10), except for the replace-
mentwa8,a

J srd→ fwa8,a
J srdg* .

The cross section for absorption of a photon of helicityl,
summed over the final states and averaged over the initial
spin projections of the deuteron, reads

sl
g =o

i
o

f

2p dsq + Ed − Efd
2p a

q
u jmnmp,lmd

s−d sp,qdu2

=
8p2 a

3
m po

Ja
o
lù1

eaul Ml
s−dsJ,ad + El

s−dsJ,adu2,

s5.27d

whereEf is the energy of the final state,
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Ef =
q2

2smn + mpd
+

p2

2 m
, s5.28d

and

o
i
o

f

;
1

3o
md

o
mnmp

E dp

s2pd3

1

2
. s5.29d

Note that the factor 1/2 above is introduced to avoid double-
counting the final states, and that the dependence upon the
boundary condition of the continuum wave functions, the
superscripts−d, has been reinserted in the RMEs of the elec-
tric and magnetic multipoles, namely,

Xl
s−dsJ,ad;s−dkJ,aiXlid,J = 1l s5.30d

andXl =El or Ml.
The resulting PV asymmetry, defined asPg=ss+

g

−s−
gd / ss+

g+s−
gd, is expressed as[68]

Pg =

o
Ja

o
lù1

eaf Ml
s−dsJ,adEl

s−d*sJ,ad + c.c.g

o
Ja

o
lù1

ea fuMl
s−dsJ,adu2 + uEl

s−dsJ,adu2g
s5.31d

and therefore vanishes unless(i) the initial and/or final states
do not have definite parity(as is the case here because of the
presence of PVNN interactions) and/or(ii ) the electric and
magnetic multipole operators have unnatural paritiess−dl+1

and s−dl, respectively, because of two-body PV electromag-
netic currents associated with PVNN interactions[7].

It is easily shown that in the inverse processpsn,gW dd the
expression for the photon circular polarization parameter is
identical to that given above, but for the RMEsEl

s−d andMl
s−d

being replaced by the correspondingEl
s+d andMl

s+d, defined in
the previous section. Indeed, by making use of the transfor-
mation properties of the states and electric and magnetic
multipole operators under time reversalT,

Tud,mdl = s− dmd−1ud,− mdl, s5.32d

TuJ,MJ;als+d = s− dMJ−JuJ,− MJ;als−d, s5.33d

T Xl,lz
T † = s− dlzXl,−lz

, s5.34d

one finds the following relation for the RMEs:

El
s+dsJ,ad = s− dJ+lEl

s−dsJ,ad, s5.35d

and similarly for theMl’s. Hence, the circular polarizations
measured in the direct and inverse processes are the same.

D. Longitudinal asymmetry in d„e¢ ,e8…np
electrodisintegration

The longitudinal asymmetry in the inclusive scattering of
polarized electrons off a nuclear target results from the inter-
ference of amplitudes associated with photon andZ0 ex-
changes as well as from the presence of parity-violating
components in the nucleon-nucleon interaction. For com-
pleteness, we summarize below the relevant formulas. The

initial and final electron(nucleus) four-momenta are labeled
by km and k8m (Pm and P8m), respectively, while the four-
momentum transferqm is defined asqm;km−k8m;sv ,qd.
The amplitudes for theg- andZ-exchange processes are then
given by [47]

M = −
4pa

qm
2 sMg + MZd, s5.36d

Mg = ū8gsu js,f i
g , s5.37d

MZ =
1

4pÎ2

Gmqm
2

a
ū8gssgV

sed + gA
sedg5du js,f i

Z , s5.38d

where Gm is the Fermi constant for muon decay,gV
sed=−1

+4 sin2uW andgA
sed=1 are the standard model values for the

neutral-current couplings to the electron given in terms of the
Weinberg angleuW, u andu8 are the initial and final electron
spinors, andj f i

g,s and j f i
Z,s denote matrix elements of the elec-

tromagnetic and weak neutral currents, i.e.,

j f i
g,s ; kf u jg,ss0duil ; „r f i

g sqd,j f i
g sqd…, s5.39d

and similarly for j f i
Z,s. Here uil and ufl represent the initial

deuteron state and finalnp scattering state with incoming-
wave boundary conditions[the s−d solution], respectively.
Note that in the amplitudeMZ the qm

2 dependence of theZ0

propagator has been ignored, sinceuqm
2 u!mZ

2.
The parity-violating asymmetryA is given by the ratio of

the difference over the sum of the inclusive cross sections
dsh/dV dv for incident electrons with helicitiesh= ±1. It
depends on the three-momentum and energy transfersq and
v and scattering angleue of the electron and is conveniently
expressed as

A = Agg + AgZ. s5.40d

Standard manipulations then lead to the following expression
for the asymmetry in the extreme relativistic limit for the
electron[32,47]:

Agg =
vT8RT8

g,g

vLRL
g,g + vTRT

g,g , s5.41d

AgZ =
1

2Î2 p

GmQ2

a

gA
sedvLRL

g,0 + gA
sedvTRT

g,0 + gV
sedvT8RT8

g,5

vLRL
g,g + vTRT

g,g ,

s5.42d

where thev’s are defined in terms of electron kinematical
variables,

vL =
qm

4

q4 , s5.43d

vT = tan2sue/2d +
uqm

2 u
2 q2 , s5.44d
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vT8 = tansue/2dÎtan2sue/2d +
uqm

2 u
q2 . s5.45d

The R’s are the nuclear electroweak response functions,
which depend onq andv, to be defined below. To this end,
it is first convenient to separate the weak currentjZ,s into its
vector j0,s and axial-vectorj5,s components, and to write
correspondingly

j f i
Z,s = j f i

0,s + j f i
5,s ; „r f i

0 sqd,j f i
0 sqd… + „r f i

5 sqd,j f i
5 sqd….

s5.46d

The response functions can then be expressed as

RL
g,asq,vd =o

i
o

f

dsv + Ed − EfdRefr f i
g sqdr f i

a*sqdg,

s5.47d

RT
g,asq,vd =o

i
o

f

dsv + Ed − EfdRefj T,f i
g sqd · j T,f i

a* sqdg,

s5.48d

RT8
g,bsq,vd =o

i
o

f

dsv + Ed − EfdImfj f i
g sqd 3 j f i

b*sqdgz,

s5.49d

where Ed is the ground-state energy of the deuteron(as-
sumed at rest in the laboratory), Ef is the energy of the final
scattering state, and in Eqs.(5.47) and(5.48) [Eq. (5.49)] the
superscript a(b) is eitherg or 0 (g or 5). Note that there is a
sum over the final states and an average over the initial spin
projections of the deuteron. In the expressions above for the
R’s, it has been assumed that the three-momentum transferq
is along thez axis, which defines the spin quantization axis
for the nuclear states.

The asymmetry induced by hadronic weak interactions,
Agg, is easily seen to be proportional to the interference of
electric and magnetic multipole contributions as in Eq.
(5.31); indeed

s2pd2a

q
RT8

g,g = s+
g − s−

g, s5.50d

namely,RT8
g,g is related, of course forv=q, to the difference

of helicity-dependent photodisintegration cross sections.
Similar considerations to those in Sec. V C allow one to
conclude that this response would vanish in the absence of
PV NN interactions(note, however, that in the present case
there is, in addition to two-body PV currents, also a one-
body PV term originating from radiative electroweak correc-
tions, the anapole current[24]).

VI. CALCULATION

In this section we briefly review the techniques used to
calculate the PV observables in thenp system—these are
similar to those discussed most recently in Ref.[32].

The deuteron wave function in Eq.(4.33) is written, for
each spatial configurationr , as a vector in the spin-isospin
space of the two nucleons,

cd,md
sr d = o

n=1

8

cd,md

snd sr dunl, s6.1d

where unl=sp↑ d1sn↑ d2,sn↑ d1sp↑ d2, . . . ,sn↓ d1sp↓ d2 and
cd,md

snd are the components ofcd,md
in this basis. The scattering

wave function in Eq.(4.10) is first approximated by retaining
PC and PV interaction effects in all channels up to a certain
preselectedJmax and by using spherical Bessel function for
channels withJ.Jmax, and is then expanded, for any given
r , in the same basishunlj defined above. The radial functions
wa8,a are obtained with the methods discussed in Sec. IV C.

Matrix elements of the electromagnetic(and neutral
weak) current operators are written schematically as

kc fuOucil =E dro
m,n

c f
smd*sr dOm,nsr dci

sndsr d. s6.2d

The spin-isospin algebra is performed exactly with tech-
niques similar to those developed in Ref.[17], while the r
space integrations are carried out efficiently by Gaussian
quadratures. Note that no multipole expansion of the transi-
tion operators is required.

Extensive and independent tests of the computer pro-
grams have been completed successfully.

VII. RESULTS AND DISCUSSION

In this section we present results for the longitudinal
asymmetry and spin rotation innWp elastic scattering, the pho-
ton asymmetry in thenWp radiative capture at thermal ener-
gies, and the asymmetries in the threshold photodisintegra-
tion and quasielastic electrodisintegration of the deuteron. To
provide an estimate for the model dependence of these re-
sults, we consider several different high-quality interactions
fit to strong-interaction data, the Argonnev18 [9], Bonn[11],
and Nijmegen-I[10] interactions. We adopt the standard
DDH [8] one-boson-exchange model of the parity-violating
interaction, and solve the Schrödinger equation for the scat-
tering state and deuteron bound state with the methods dis-
cussed in Sec. IV. The values for the meson-nucleon cou-
pling constants and cutoff parameters in the DDH-adj model
are those listed in Table I. Note that we have rescaled ther-
andv-meson weak couplings occurring in theT=1 channel
so as to reproduce thepWp longitudinal asymmetry[6]. Only
one linear combination is significantly constrained by the fit
to thepWp experiment in the DDH-adj. As in the earlier analy-
sis of scattering, the cutoff values in the meson-exchange
interaction are taken from the BONN potential.

It is also useful to introduce here some of the notation
adopted in the following subsections to denote variations on
the DDH model defined above. The PV interaction denoted
as DDH corresponds to a DDH model withp, r, and v
weak-coupling constants as specified by the “best value” set
of Ref. [8], while the PV interaction denoted as DDHp in-
cludes only thep-exchange term in the DDH model with the
“best value” for the weakpNN coupling constant; see Table
II.

Finally, while the short-range contributions to the PV in-
teraction should not be viewed as resulting solely from the
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exchange of single mesons, the six parameters of the DDH
model are still useful in characterizing all the low-energy PV
mixings. For example, two-pion exchange could play a role
[48]; however, we assume that its effects can be included, at
least at low energy, through the present combination of pion
and short-range terms.

A. Longitudinal asymmetry and neutron spin rotation

In this section we present results for the longitudinal
asymmetry and neutron spin rotation innWp elastic scattering.

Figures 3–7 show the mixing parameterselm
J induced by

the AV18 model in combination with the DDH-adj, DDH,
and DDHp interactions. Only thoseelm

J induced by the PV
interaction are displayed, namely, forJ=0 e12

0 and forJù1

elm
J with l =1,2 andm=3,4 in thenotation of Tables III and

IV.
The definitions adopted for the phase shifts and mixing

parameters are those introduced in Sec. IV B. Up to linear
terms invPV, theda

J ande12
Jù1 values are not affected by weak

interactions, and are determined solely by the strong interac-
tion. They are identical to those listed in Ref.[9], but for two
differences. First, the Blatt-Biedenharn parametrization is
used here for theS matrix [49] rather than the bar-phase
parametrization of it[50] employed in Ref.[9]. Second, be-
cause of the phase choice in the potential components[see
Eq. (4.16) and comment below it], the mixing parameters
e12

Jù1 have opposite signs relative to those listed in Ref.[9].
The coupling between channels with the same pair isospin

T is induced by the short-range part of the DDH interaction,
associated with vector-meson exchanges; its long-range com-
ponent, due to pion exchange, vanishes in this case. As a

FIG. 3. The1S0-
3P0 mixing parameter obtained with the AV18

model in combination with either of two variations of the DDH
model, labeled DDH-adj and DDH(“best values”); see text.

FIG. 4. (Color online) The 3S1-
3P1 and3D1-

3P1 mixing param-
eters obtained with the AV18 model in combination with either of
three variations of the DDH model, labeled DDH-adj, DDH, and
DDHp; see text.

FIG. 5. (Color online) The 3S1-
1P1 and3D1-

1P1 mixing param-
eters obtained with the AV18 model in combination with either of
two variations of the DDH model, labeled DDH-adj and DDH; see
text.

FIG. 6. (Color online) Same as in Fig. 4, but for the mixing
parameters3P2-

3D2 and3F2-
3D2.
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result, the mixing parameters in Figs. 3, 5, and 7, calculated
with the DDH-adj and DDH models, are rather different,
reflecting the large differences in the values for the some of
the strong- and weak-coupling constants and short-range cut-
offs between these two models; see Tables I and II.

The mixing parameters between channels withuDTu=1,
Figs. 4 and 6, in which the pion-exchange term is present,
are still rather sensitive to the short-range behavior of the PV
interaction, as reflected again by the differences in the DDH-
adj and DDH predictions. However, this sensitivity is much
reduced for the more peripheral waves, such as the
3P2-

3D2 and3F2-
3D2 channels.

Figures 8–10 are meant to illustrate the sentitivity of the
mixing angles to the input strong-interaction potential, which
can be quite large, particularly in channels such as the
3D1-

3P1 and3D1-
1P1.

The total longitudinal asymmetry, defined in Eq.(5.3), is
shown in Fig. 11 for a number of combinations of strong-
and weak-interaction potentials. The asymmetries were cal-

culated by retaining in the partial-wave expansion for the
amplitude, Eq.(4.26), all channels withJ up to Jmax=6.
There is very little sensitivity to the input strong-interaction
potential. As also remarked in Ref.[6], this reduced sensitiv-
ity is undoubtably a consequence of the fact that present
potentials are fitted to extendedpp and pn databases with
high accuracy.

Figure 12 shows that the total asymmetries obtained by
including only theJ=0 and 1 channels(1S0-

3P0,
3S1-

3P1,
3D1-

3P1,
3S1-

1P1, and 3D1-
1P1) and, in addition, theJ=2

channels, and finally allJ channels up toJmax=6. In the
energy range 0–200 MeV the asymmetry is dominated by
the J=0–2 contributions.

For completeness, we present in Figs. 13 and 14 results
for the angular distributions of the(PC) spin-averaged differ-
ential cross section and(PV) longitudinal asymmetry at
center-of-mass energies of 20 MeV and 100 MeV. The
asymmetryAsE,ud is defined in Eq.(5.2).

FIG. 7. (Color online) Same as in Fig. 5, but for the mixing
parameters3P2-

1D2 and3F2-
1D2.

FIG. 8. The1S0-
3P0 mixing parameter obtained with the DDH-

adj model in combination with either the AV18 or BONN model.

FIG. 9. (Color online) The 3S1-
3P1 and3D1-

3P1 mixing param-
eters obtained with the DDH-adj model in combination with either
the AV18 or BONN model.

FIG. 10. (Color online) Same as in Fig. 9 but for the3S1-
1P1 and

3D1-
1P1 mixing parameters.
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The predictions for the neutron spin rotation per unit
length, df /dd with f defined in Eq.(5.11), are listed in
Table V in the limit of vanishing incident neutron energy.
The density of liquid hydrogen is taken asr=0.431023

=atoms cm−3.
While results corresponding to different input strong in-

teractions are withinø10% of each other, the calculated val-
ues show significant sensitivity to the short-range structure
of the PV interaction, columns labeled DDH-adj and DDH. It
is worth reemphasizing that the longitudinal asymmetry in
pWp elastic scattering predicted by the DDH model is at vari-
ance with that observed experimentally[6]. The short-range
cutoff parameters and combinations ofr- and v-meson PV
coupling constants inTTz=11, respectivelyhr

0+hr
1+hr

2/Î6
andhv

0 +hv
1, were constrained, in the DDH-adj model, to re-

produce this(measured) asymmetry[6]. An additional differ-
ence between the DDH-adj and DDH models is in the values
adopted for the(PC) r-meson tensor coupling to the nucleon,
6.1 in the DDH-adj(from the BONN interaction) and 3.7 in
the DDH (consistent with estimates from vector-meson
dominance). Comparison between the DDH-adj and DDHp
predictions, however, indicates that the neutron-spin rotation
is sensitive to the long-range part ofvPV, and therefore a
measurement of this observable would be useful in con-
straining the PVpNN coupling constant.

Finally, there is a sign difference between the present re-
sults and those reported in Ref.[43]. It is not due to the
different strong-interaction potential used in that calculation.
Indeed, with the Paris potential[51] in combination with the
DDH model we obtaindf /dd= +8.88310−9 rad cm−1, the
same magnitude as but opposite sign from that given in Ref.
[43].

In order to understand this discrepancy, we have carried
out a calculation of the neutron-spin rotation, which ignores

FIG. 14. Angular distributions for the neutron asymmetry at
center-of-mass energies of 20 MeV and 100 MeV. The AV18
+DDH-adj potential combination is used; dark solid line in Fig. 11.

FIG. 11. (Color online) The neutron asymmetry obtained with
various combinations of strong- and weak-interaction potentials, as
function of the center-of-mass energy.

FIG. 12. Contributions to the neutron asymmetry obtained by
including only theJ=0 andJ=1 channels, and by adding theJ=2
channels, and finally allJ channels up toJmax=6. The AV18
+DDH-adj potential combination is used; black solid line in Fig.
11.

FIG. 13. Angular distributions for the spin-averagednp (strong-
interaction) cross section at center-of-mass energies of 20 MeV and
100 MeV, corresponding to the AV18 potential.
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strong-interaction effects. It is equivalent to a first-order(in
vPV) perturbative estimate of this observable, and the corre-
sponding results, listed in the last row of Table V(row la-
beled “plane waves”), demonstrate that strong-interaction
distortion effects are crucial, in fact they are responsible for
flipping the sign off. This is in contradiction with the state-
ment reported in the first paragraph after Eq.(6) of Ref. [43]:
Avishai and Grange claim that the “plane-wave” prediction
with the DDH model is −6.0310−9 rad cm−1, namely, it has
the same sign as in their full calculation.

The sign difference between the predictions obtained by
either including or neglecting strong-interaction distortion
effects can easily be understood. For simplicity, consider the
DDHp model, in which case the relevant matrix element
contributing to f is k3P1uvPVsDDHpdu3S1l, connecting the
continuumT=03S1 andT=13P1 channels. The essential dif-
ference between the undistorted and distorted3S1 wave func-
tions is the presence of a node in the latter, thus ensuring its
orthogonality to the deuteron3S1 component. It is this node
that causes the sign flip.

B. Photon asymmetry inn¢p radiative capture at low energies

The PV asymmetryag in the 1HsnW ,gd2H reaction at ther-
mal neutron energies is calculated for the AV18, BONN, and
NIJM-I interactions. The asymmetry is expected to be con-
stant for low-energy neutrons up to energies well beyond the
1–15 meV averaged in the experiment currently running at
the LANSCE facility[52]. Each strong interaction model has
associated two-body currents. For the AV18 we consider the
currents from the momentum-independent terms—thep- and
r-exchange currents from itsv6 part—as well as from the
momentum-dependent terms, as reviewed in Sec. III. Further
discussion of the AV18 currents is given below. For the
BONN and NIJM-I interactions, we retain only thep- and
r-exchange currents with cutoff parameters taken from the
BONN model(Lp=1.72 GeV andLr=1.31 GeV), while we
neglect contributions from other meson exchanges. In all cal-
culations, however, the currents associated with theD exci-
tation andvpg transition have been included.

The total cross sectionsg is due to the well-knownM1
transition connecting the PC1S0 np state to the PC deuteron
state. The calculated values for each model are given in
Table VI, both for one-body(impulse) currents alone and for
the one- and two-body currents. In each case the largest two-

body contribution, approximately two-thirds of the total,
comes from the currents associated with pion exchange. The
total cross section is in good agreement with experimental
results, which are variously quoted as 334.2s0.5d mb [53] or
332.6s0.7d mb [54]. It would be possible to adjust, for ex-
ample, the transition magnetic momentmgND of the
D-excitation current to precisely fit one of these values, here
we simply choose amgND of 3mN, which is consistent with an
analysis ofg-N data at resonance.

As discussed in Sec. V B, the PV asymmetry arises from
an interference between theM1 term above and theE1 tran-
sition, connecting the3P1 PV np state to the PC deuteron
state and the3S1 PC np state to the3P1 PV deuteron state.
TheE1 transitions proceeding through the PV1P1 np or deu-
teron states are suppressed, because of an isospin selection
rule forbidding isoscalar electric-dipole transitions and also
because of spin-state orthogonality. In principle, there is a
relativistic correction to the electric dipole operator, associ-
ated with the definition of the center of energy[46]. How-
ever, its contribution in transitions proceeding through the
1P1 channel vanishes too, since the associated operator is
diagonal in the pair spin.

The calculated asymmetries are listed in Table VI. The
results are consistent with earlier[55,56] and more recent
[57,58] estimates, and are in agreement with each other at the
few percent level, which is also the magnitude of the contri-
butions from the short-range terms. In particular, they show
that this observable is very sensitive to the weak PVpNN
coupling constant, while it is essentially unaffected by short-
range contributions(in this context, see also Fig. 2). TheE1
transition has been calculated in the long-wavelength ap-
proximation(LWA ) with the Siegert form of theE1 operator
[see, for example, Eq.(4.5) of Ref. [45]], thus eliminating
many of the model dependencies and leaving only simple
(long-range) matrix elements. In the notation of Sec. V B,
the associated reduced matrix elements are explicitly given
by

E1s3S1,
3S1d + E1s3D1,

3S1d

= i
q

2Î6p
E

0

`

dr r2Fusr ;3P1dSwsr ;3S1d −
1
Î2

wsr ;3D1dD
− wsr ;3P1dSusr ;3S1d −

1
Î2

usr ;3D1dDG , s7.1d

TABLE V. Neutron spin-rotation angle per unit length, in units
of 10−9 rad cm−1, in the limit of vanishing incident neutron energy.
Various combinations of strong- and weak-interaction potentials are
used. Also listed are the results obtained by ignoring strong-
interaction effects, row labeled “plane waves.”

DDH-adj DDHp DDH

AV18 5.09 5.21 7.19

NIJM-I 4.94 5.35 7.64

BONN 4.63 5.18 7.35

Plane waves −5.67 −6.87 −5.85

TABLE VI. Total cross sectionsg and parity-violating asymme-
try ag in the nWp radiative capture at thermal neutron energies, ob-
tained in various models. The asymmetry is reported for pion-
exchange onlysDDHpd and full DDH (DDH-adj) interactions.

sgsmbd ag3108

Interaction Impulse current Full current DDHp DDH-adj

AV18 304.6 334.2 −4.98 −4.92

NIJM-I 305.4 332.5 −5.11 −5.02

BONN 306.5 331.6 −4.97 −4.89
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where thew’s andu’s denote thenp continuum and deuteron
radial wave functions defined, respectively, as in Secs. IV A
and IV D (only the outgoing-channel quantum numbers are
displayed for thew’s). Corrections beyond the LWA terms in
E1 transitions have been found to be quite small. For com-
pleteness, we also give the well-known expression for theM1
RME, as calculated to leading order inq and in the limit in
which only one-body currents are retained,

M1s1S0,
1S0d = i

q

2Î2pm
smp − mndE

0

`

dr rusr ;3S1dwsr ;1S0d,

s7.2d

where the combinationmp−mn=4.706mN is the nucleon is-
ovector magnetic moment.

We have also calculated theE1 contributions with the full
current density operatorj sxd, namely, by evaluating matrix
elements of

E1l =
1

q
E dx j sxd · ¹ 3 j1sqxdY1l

11sx̂d, s7.3d

whereY1l
11 are standard vector spherical harmonics. To the

extent that retardation corrections beyond the LWA of theE1
operator are negligible[45], this should produce identical
resultsprovidedthe current is exactly conserved. In order to
satisfy current conservation, currents from both the strong
(PC) and weak(PV) interactions are required, as discussed in
Sec. III. In the following we keep only thep-exchange term
in the DDH interaction(with their “best guess” for the weak
pNN coupling constant), and use the AV18 strong-interaction
model.

As reviewed in Sec. III, the PC two-body currents con-
structed from thev6 part of the AV18 interaction(thep- and
r-exchange currents) exactly satisfy current conservation
with it. The same holds true for the PVp-exchange currents
derived from the DDH interaction in Sec. III A. However,
the PC two-body currents originating from the isospin- and
momentum-dependent terms of the AV18 are strictly not con-
served(see below). The associated contributions, while gen-
erally quite small, play here a crucial role because of the
large cancellation between the(PC) v6 currents from the
AV18 and the(PV) p currents from the DDH. This point is
illustrated in Table VII. Note that the PC currents fromD
excitation andvpg transition are transverse and therefore do
not affect theE1 matrix element. However, they slightly re-
duce the PV asymmetry, since their contributions increase

theM1 matrix element by.1%. They are not listed in Table
VII.

The asymmetry is given by the sum of the two columns in
Table VII, namely, +0.17310−8 (last row). This value should
be compared to −5.02310−8, obtained with the Siegert form
of theE1 operator for the same interactions(and currents for
the M1 matrix element). As already mentioned, we have ex-
plicitly verified that retardation corrections in theE1 operator
are too small to account for the difference. Thus the latter is
to be ascribed to the lack of current conservation, originating
from the isospin- and momentum-dependent terms of the
AV18.

To substantiate this claim, we have carried out a calcula-
tion based on av8 reduction[59] of the AV18 (denoted as
AV8), constrained to reproduce the binding energy of the
deuteron and the isoscalar combinations of theS- and
P-wave phase shifts(note, however, that we do include in
the AV8 the electromagnetic terms from the AV18, omitted in
Ref. [59]). For the AV8 model, thep- and r-exchange cur-
rents from the isospin-dependent central, spin-spin, and ten-
sor interaction components are constructed as for the AV18,
and therefore are exactly conserved. However, the currents
from the isospin-independent interactionvbsr ijdL ·S are de-
rived by minimal substitution,

pi → pi − ePiAsr id, s7.4d

wheree and A are the electric charge and vector potential,
respectively, andPi is the proton projection operator. The
linear terms inA are written as −edx j sxd ·Asxd, and the
resulting spin-orbit current density—or, rather, its Fourier
transform—reads

j b,i j
PCsqd =

vbsr ijd
2

seiq·r iPi − eiq·r jPjdS3 r i j . s7.5d

In the case of the isospin-dependent terms, after symme-
trizing vbtsrdfL ·S,ti ·t jg+/2, one obtains

j bt,i j
PC sqd =

vbtsr ijd
2

seiq·r iQj − eiq·r jQidS3 r i j , s7.6d

where

Qi ;
ti · t j + tz,i

2
. s7.7d

While minimal substitution ensures that the current is indeed
conserved for the isospin-independent interaction, i.e.,

q · j b,i j
PCsqd = fvbsr ijdL ·S,risqd + r jsqdg, s7.8d

this prescription does not lead to a conserved current for the
isospin-dependent one, since the commutator above gener-
ates an isovector term of the type

isti 3 t jdz
vbtsr ijd

2
fL ·S,eiq·r i − eiq·r jg+. s7.9d

Physically, this corresponds to the fact that isospin-
dependent interactions are associated with the exchange of
charged particles, which an electromagnetic field can couple
to. One can enforce current conservation by introducing an

TABLE VII. Cumulative contributions(in units of 10−8) to the
PV asymmetryag in the nWp radiative capture at thermal neutron
energies for the AV18 interaction and pion-exchange-only DDHp
interaction. See text for explanation.

AV18 (PC) currents DDHp (PV) currents

Impulse −15.3

+p −48.3 44.2

+r −40.4 44.0

+p dependent −43.8 44.0

R. SCHIAVILLA, J. CARLSON, AND M. PARIS PHYSICAL REVIEW C70, 044007(2004)

044007-18



additional term[60], which in the case ofj bt,i j
PC is taken as

isti 3 t jdz
vbtsr ijd

2
FL ·S,r i j

eiq·r i − eiq·r j

q · r i j
G

+
. s7.10d

The results obtained for the total cross section and PV
asymmetry with the AV8 and pion-only DDH interactions
and associated(exactly conserved) currents are listed in
Table VIII. A few comments are in order. First, theM1 cross
section in impulse approximation is.30% smaller than pre-
dicted with the AV18 interaction. This is due to the fact that
the np singlet scattering length obtained with the AV8(trun-
cated) model is −19.74 fm, and so is about 15% smaller in
magnitude than its physical value, −23.75 fm, reproduced by
the AV18 within less than 0.1%[9].

Second, the enhancement of theM1 cross section in the
impulse approximation due to(PC) two-body currents, 9.3%,
is essentially consistent with that predicted with the AV18.

Lastly, the PV asymmetry obtained with the full currents
is close to that calculated with the Siegert form of theE1
operator. The remaning.1% difference is due to numerical
inaccuracies as well as additional corrections from retarda-
tion terms and higher-order multipoles. Both of these effects
are included in the full-current calculation. Note the crucial
role played by the spin-orbit currents constructed above.

C. Deuteron threshold disintegration with circularly
polarized photons

The photodisintegration cross sections calculated with the
AV18 and BONN models from threshold to 20 MeV photon
energies are in excellent agreement with data[61–67]; see
Fig. 15. The model dependence between the AV18 and
BONN results is negligible. In the calculations the finalnp
states include interaction effects in all channels up toJ=5
and spherical Bessel functions forJ.5, as discussed in the
next section.

In the energy regime of interest here, the(total) cross
section is dominated by the contributions ofE1 transitions
connecting the deuteron to thenp triplet P waves. The Sieg-
ert form is used for theE1 operator. Because of the way the

calculations are carried out(see Sec. VI), it is conveniently
implemented by making use of the following identity for the
current density operatorj sxd, or rather its Fourier transform
j sqd:

j sqd = j sqd − j sq = 0d −E dx x ¹ · j sxd

= j sqd − j sq = 0d + iFH,E dx xrsxdG , s7.11d

where in the first line the volume integral ofj sxd has been
reexpressed in terms of the divergence of the current, ignor-
ing vanishing surface contributions, and in the second line
use has been made of the continuity equation. Herersxd is
the charge density operator. In evaluating the matrix ele-
ments in Eq.(5.26) the commutator term reduces to

i E dx xfH,rsxdg → iqE dx xrsxd . iqo
i

Pir i ,

s7.12d

wherePi is the proton projection operator introduced earlier,
and relativistic corrections torsxd, such as those associated
with spin-orbit and pion-exchange contributions[45,46],
have been neglected.

We have also calculated the photodisintegration cross sec-
tion by using the expression given in Eq.(7.3) for the E1
operator, or equivalently by calculating matrix elements of
the current j sqd without resorting to the identity in Eq.
(7.11). The results obtained by including only the one-body
terms and both the one- and two-body terms inj sqd are com-
pared with those obtained in the Siegert-based calculation(as
well as with data) in Fig. 16. The same conclusions as in the
previous section remain valid here. Had the current been
exactly conserved, then the Siegert-based and fullj sqd cal-
culations would have produced identical results. The small
differences in the case of the AV18 model, as an example, are
to be ascribed to missing isovector currents associated with

TABLE VIII. Cumulative contributions to the total cross section
sg and PV asymmetryag in the nWp radiative capture at thermal
neutron energies for the AV8 and pion-exchange-only DDHp inter-
actions. Also listed is the asymmetry obtained with the Siegert form
of the E1 operator. See text for explanation.

sgsmbd ag3108

AV8 (PC)
currents

DDHp
(PV) currents

Total

Impulse 226.4 −17.7 −17.7

+p 239.2 −57.9 51.3 −6.60

+r 241.7 −50.3 51.1 +0.790

+SO 241.7 −57.0 51.1 −5.89

+D+vpg 247.4 −56.3 50.5 −5.82

SiegertE1 −5.76
FIG. 15. The deuteron photodisintegration cross sections, calcu-

lated with the AV18 and BONN interactions, are compared to data.
Note that the AV18 and BONN results are indistinguishable.
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its momentum-dependent interaction components(see previ-
ous section).

The PV photon polarization parameterPg, obtained with
various combinations of PC and PV interactions, is displayed
in Fig. 17, while its value at a photon energy.1.3 keV
above breakup threshold is listed in Table IX. All results
presented below use the current operator in the form given
on the right-hand side of Eq.(7.11). Note that, as discussed
in Sec. V C, the parametersPg for the directdsgW ,ndp and
inversepsn,gW dd processes are the same. In the threshold re-
gion, a few keV above breakup, the expression forPg re-
duces to

Pg =
2 RefM1s1S0dE1

*s1S0dg
uM1s1S0du2

, s7.13d

where, in the notation of the previous section, theM1s1S0d
RME is defined as in Eq.(5.23) and similarly forE1s1S0d. In
this energy region, the only relevant channel in the finalnp
state hasJ=0; see the discussion at the end of Sec. V B. Note
that the combination of RMEs occurring inPg is different
from that in ag, the photon angular asymmetry parameter
measured innWp radiative capture. Indeed, in contrast toag,
the photon polarization parameter is almost entirely deter-
mined by the short-range part of the DDH interaction, medi-
ated by vector-meson exchanges(and having isoscalar and
isotensor character[68]); see Table IX and Fig. 17. This is
easily understood, since in the1S0-

3P0 channel the pion-
exchange component of the DDH interaction vanishes. Fur-
thermore, theE1 transition connecting the1S0 np continuum
state to the PV3P1 component of the deuteron, which is
predominantly induced by the pion-exchange interaction, is
strongly suppressed, to leading order, by spin-state orthogo-
nality. Higher-order corrections, associated with retardation
effects and relativistic contributions to the electric dipole op-
erator, were estimated in Ref.[69] and were found to be of
the order of a few percent of the leading result arising from
vector-meson exchanges. Some of these corrections are re-
tained in the present study.

The predictions in Table IX and in Fig. 17 display great
sensitivity both to the strengths of the PV vector-meson cou-
plings to the nucleon and to differences in the short-range
structure of the strong-interaction potentials, thus reinforcing
the conclusion that these short-ranged meson couplings are
not in themselves physical observables; rather, the parity-
violating mixings are the physically relevant parameters
[70].

Note that the.5% decrease inPg values between the
rows labeled “impulse” and “full” is due to the correspond-
ing 5% enhancement of theM1 transition connecting the PC
1S0 and deuteron states, due to two-body terms in the elec-
tromagnetic current included in the “full” calculation.

The results in Table IX are consistent in both sign and
order of magnitude with those of earlier studies[71–74];
remaining numerical differences are to be ascribed to differ-
ent strong- and weak-interaction potentials adopted in these
earlier works. Indeed, we have explicitely verified that by
using the PC AV18 potential and the Cabibbo model for the

FIG. 16. (Color online) The deuteron photodisintegration cross
sections, calculated with the AV18 and BONN interactions, are
compared to data. Results obtained by including only one-body
terms and both one- and two-body terms in the electromagnetic
current are shown along with those calculated by using the right-
hand side of Eq.(7.11). The latter are the same as in Fig. 15.

FIG. 17. (Color online) The photon helicity-dependent asymme-
tries obtained with various combinations of strong- and weak-
interaction potentials. Note that the predictions corresponding to the
AV18+DDHp potential combination are suppressed by roughly
one order of magnitude relative to those corresponding to the
AV18+DDH-adj and AV18+DDH models. All results are obtained
by using the right-hand side of Eq.(7.11).

TABLE IX. Photon helicity-dependent asymmetries(in units of
10−8) calculated with various combinations of strong- and weak-
interaction potentials at an incident photon energy of 2.2259 MeV,
about 1.3 keV above threshold. Predictions are listed obtained by
including only one-body terms(impulse) and both one- and two-
body terms(full ) in the electromagnetic current, right-hand side of
Eq. (7.11).

AV18sBONNd+DDH-adj AV18+DDHp AV18+DDH

Impulse 5.44(9.41) −0.035 2.49

Full 5.19 (9.05) −0.037 2.38
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PV potential[75] we obtainPg values close to those reported
in Refs.[73,74]. However, our results seem to be at variance
with those of Ref.[76] at photon energies a few MeV above
the breakup threshold. In particular, Table II in that paper
suggests that at 10 and 20 MeV the dominant contribution to
Pg is from the PV pion-exchange interaction and thatPg has
the values −2.66310−8 and −4.54310−8, respectively. This
is in contrast to what reported in Fig. 17 of the present work,
curves labeled AV18+DDH and AV18+DDHp. There is a
two orders of magnitude difference between the values re-
ferred to above and those obtained here. These differences
have been discussed in several recent publications[77–79].
Some of them might be due to the use, in Oka’s work(Ref.
[76]), of the “old” Hamada-Johnston potential[80] to gener-
ate the PC wave functions, and also to his omission of a
contribution associated with a transition connecting the PV
admixture to the3P1 state and the deuteron, as pointed out by
the authors of Ref.[79].

The results in Table IX are consistent with the latest ex-
perimental determination,Pg=s1.8±1.8d310−7 [81], but
about two orders of magnitude smaller than an earlier mea-
surement[82].

Figure 18 shows the photon-polarization parameter ob-
tained by including PV admixtures in thenp continuum
wave functions of all channels withJøJmax and Jmax
=0,1,2, and 5. In theenergy range explored so far,Pg is
essentially given by the contributions of theJ=0 and 1 chan-
nels.

Finally, Fig. 19 illustrates the effects of two-body terms in
the electromagnetic current, written as in the right-hand side
of Eq. (7.11). The associated contributions are of the order of
a few percent relative to those from one-body terms.

D. Deuteron electrodisintegration at quasielastic kinematics

In this section we present results for the asymmetriesAgg

and AgZ obtained by including one- and two-body terms in

the electromagnetic and neutral weak currents. Note, how-
ever, that only the PV two-body terms associated withp
exchange in the DDH interaction are considered in the
present calculations(in addition, of course, to the PC terms
discussed in Sec. III). The PV currents fromr and v ex-
change have been neglected, since they are expected to play
a minor role due to their short-range character. One should
also observe that at the higher momentum transfers of inter-
est here, 100–300 MeV/c, relevant for the SAMPLE experi-
ments[4,83], it is not possible to include the contributions of
electric multipole operators through the Siegert theorem;
these must be calculated explicitly from the full current.

The AgZ contribution was recently studied in Ref.[32],
where it was shown that two-body terms in the nuclear elec-
tromagnetic and weak neutral currents only produces1–2d%
corrections to the asymmetry due to the corresponding
single-nucleon currents. The present study—a short account
of which has been published in Ref.[7]—investigates the
asymmetry originating from hadronic weak interactions. It
updates and sharpens earlier predictions obtained in Refs.
[84,85]—for example, these calculations did not include the
effects of two-body currents induced by PV interactions.

The present calculation proceeds as discussed in Sec. VI.
We have used the AV18 or BONN model(and associated
currents) in combination with the full DDH interaction(with
coupling and cutoff values as given in Table I). The final
state, labeled by the relative momentump, pair spin andz
projectionSMS, and pair isospinT sMT=0d, is expanded in
partial waves; PC and PV interaction effects are retained in
all partial waves withJø5, while spherical Bessel functions
are employed forJ.5. In the quasielastic regime of interest
here, it has been found that interaction effects are negligible
for J.5.

In Figs. 20 and 21 we show, respectively, the inclusive
cross section and the asymmetriesAgZ and Agg, obtained
with the AV18 and DDH-adj interactions, for one of the two
SAMPLE kinematics, corresponding to a three-momentum

FIG. 18. Contributions to the photon helicity-dependent asym-
metry obtained by including PV admixtures in the wave functions
of all channels up toJmax, with Jmax=0, 1, 2, and 5. The AV18
+DDH-adj potential combination is used; black solid line in Fig.
17. Note that the curves labeledJ=2 andJ=5 are indistinguishable.

FIG. 19. (Color online) The photon helicity-dependent asymme-
tries obtained with the AV18+DDH-adj and BONN+DDH-adj po-
tential combinations by including only one-body terms and both
one- and two-body terms in the right-hand side of Eq.(7.11).
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transfer range between 176 MeV and 206 MeV at the low
and high ends of the spectrum in the scattered electron en-
ergy E8; the four-momentum transferuqm

2 u at the top of the
quasielastic peak is.0.039 GeV2. The rise in the cross sec-
tion at the high end of theE8 spectrum—the threshold
region—is due to theM1 transition connecting the deuteron
to the (quasibound) np 1S0 state. Note that, because of the
well-known destructive interference between the one-body
current contributions originating from the deuteronS- and
D-wave components, two-body current contributions are
relatively large in this threshold region. However, they only

amount to a.5% correction in the quasielastic peak region.
In Fig. 21 the asymmetryAgZ labeleds1+2d-body—AgZ is

defined in Eq.(5.42)—includes, in addition to one-body,
two-body terms in the electromagnetic and neutral weak cur-
rents(in both the vector and axial-vector components of the
latter). These two-body contributions are negligible over the
whole E8 spectrum. However, the(PC and PV) two-body
electromagnetic currents play a relatively more significant
role in the asymmetryAgg, Eq. (5.41).

In Fig. 22 we display separately, for the asymmetryAgg,
the contributions originating from(i) the presence in the
wave functions of opposite-parity components induced by
the DDH-adj interaction(solid curve) and (ii ) the anapole
current and the PV two-body current associated withp ex-
change(dashed curve). The latter are positive and fairly con-
stant as function ofE8, while the former exhibit a pro-
nounced dependence uponE8. Note that, up to linear terms
in the effects induced by PV interactions, the asymmetryAgg

is obtained as the sum of these two contributions.
The BONN model leads to predictions for the inclusive

cross section and asymmetries that are very close to those
obtained with the AV18, as shown forAgZ andAgg in Fig. 23.
Thus the strong-interaction model dependence is negligible
for these observables.

In Fig. 24 we present results for the asymmetries corre-
sponding to a four-momentum transferuqm

2 u at the top of the
quasielastic peak of about 0.094 GeV2; the three-momentum
transfer values span the ranges266–327d MeV over theE8
spectrum shown. The calculations are based on the AV18
model and include one- and two-body currents. The asym-
metry fromg-Z interference scales withqm

2 and therefore is,
in magnitude, about a factor of 2 larger than calculated in

FIG. 20. Thedse,e8dnp inclusive cross section calculated, as
function of the scattered electron energyE8, with the AV18 interac-
tion model. The electron incident energy is 117 MeV and its scat-
tering angleue is 138.4°. Predictions are shown obtained with one-
body terms alone and both one- and two-body terms in the
electromagnetic current.

FIG. 21. The asymmetriesAgg andAgZ calculated, as function of
the scattered electron energyE8, with the (PC) AV18 and (PV)
DDH-adj interaction models. The other electron kinematical vari-
ables are as in Fig. 20. Predictions are shown obtained with one-
body terms alone and both one- and two-body terms in the electro-
magnetic and neutral weak currents.

FIG. 22. Contributions to the asymmetryAgg calculated, as
function of the scattered electron energyE8, with the (PC) AV18
and(PV) DDH-adj interaction models. The other electron kinemati-
cal variables are as in Fig. 20. The solid line represents the results
corresponding to the presence in the wave functions of opposite-
parity components induced by the DDH interaction, while the
dashed line represents the results due to the anapole current and the
PV two-body current associated withp exchange. The total asym-
metryAgg shown by the solid line in Fig. 21 is obtained as the sum
of these two contributions.
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Fig. 21 whereuqm
2 u.0.039 GeV2. The contributions toAgg

exhibit, as functions ofE8, a behavior qualitatively similar to
that obtained at the loweruqm

2 u value; see Fig. 22.
In Fig. 25 we compare results for the contribution toAgg

due to the presence in the wave function of opposite-parity
components induced by the full DDH-adj and a truncated
version of it, including only the pion-exchange term. Note
that, up to linear terms in the effects produced by PV inter-
actions, the other contribution toAgg, namely, that originat-

ing from (PV) one- and two-body currents, remains the same
as in Fig. 22, since—as mentioned earlier—only the(PV)
two-body currents associated with pion exchange are consid-
ered in the present work. Figure 25 shows that the asymme-
try Agg is dominated by the long-range pion-exchange con-
tribution. Hence,Agg will scale essentially linearly with the
PV pNN coupling constant.

Finally, Fig. 26 is meant to illustrate the sensitivity of the
asymmetryAgg to those PC two-body currents derived from
the momentum-dependent interaction components of the
AV18 model(i.e., the spin-orbit,L 2, and quadratic-spin-orbit
terms); see Secs. III and VII B. While these currents play a
crucial role in the photon asymmetry in thenWp radiative cap-
ture at thermal neutron energy, they give negligible contribu-
tions to the present observable at quasielastic kinematics.

These results demonstrate that, in the kinematics of the
SAMPLE experiments[4,83], the asymmetry fromg-Z inter-
ference is dominated by one-body currents, and that it is two
orders of magnitude larger than that associated with the PV
hadronic weak interaction. Hence even the largest estimates
of the weakpNN coupling constant will not affect extrac-
tions of single-nucleon matrix elements. These conclusions
corroborate those of the authors of Ref.[86], who have car-
ried out a similar study of the impact of hadronic weak in-
teraction on quasielastic electrodeuteron scattering.

VIII. CONCLUSIONS

A systematic study of parity-violating observables in the
np system, including the asymmetries innWp radiative capture
anddsgW ,ndp photodisintegration, the spin rotation and longi-
tudinal asymmetry innWp elastic scattering, and the asymme-
try in electrodisintegration of the deuteron by polarized elec-

FIG. 23. The asymmetriesAgg andAgZ calculated, as function of
the scattered electron energyE8, with the DDH-adj model in com-
bination with either the AV18 or BONN model. The other electron
kinematical variables are as in Fig. 20. Predictions are shown ob-
tained by including one- and two-body terms in the electromagnetic
and neutral weak currents. For theAgZ asymmetry the AV18 and
BONN calculated values are essentially indistinguishable.

FIG. 24. The asymmetryAgZ and the two contributions to the
asymmetryAgg (notation as in Fig. 22) calculated, as function of the
scattered electron energyE8, with the (PC) AV18 and (PV) DDH-
adj interaction models. Predictions are shown obtained by including
one- and two-body terms in the electromagnetic and neutral weak
currents. Note that the electron incident energy is 192 MeV and its
scattering angleue is 138.4°.

FIG. 25. Contribution to the asymmetryAgg, calculated as func-
tion of the scattered electron energyE8, corresponding to the pres-
ence in the wave functions of opposite-parity components induced
by either the full DDH-adj or a truncated DDH model, consisting of
its pion-exchange component only, in combination with the AV18
model. The other electron kinematical variables are as in Fig. 20.
Predictions are shown obtained by including(PC and PV) one- and
two-body terms in the electromagnetic current.
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trons at quasielastic kinematics, has been carried out by
using a variety of latest-generation, strong-interaction poten-
tials in combination with the DDH model of the PV hadronic
weak interaction. We find that the model dependence of the
nWp-capture asymmetry upon the strong-interaction potential
is quite small, at a level similar to the expected contributions
of the short-range parts of the interaction. This process is in
fact dominated by the long-range interaction components as-
sociated with pion exchange. A measurement of the
nWp-capture asymmetry is then a clean probe of that physics.

Similarly, we find that the asymmetry in thedseW ,e8dnp
reaction at quasielastic kinematics is a very clean probe of
the electroweak properties of individual nucleons. The pro-
cesses associated with two nucleons, including PV admix-
tures in the deuteron and scattering wave functions and elec-
tromagnetic two-body currents induced by hadronic weak

interactions, play a very small role at the values of momen-
tum transfers explored so far[4,83].

We also find that the neutron-spin rotation is sensitive to
both the pion and vector-meson PV couplings to the nucleon,
while exhibiting a modest model dependence, at the level of
s5–10d%, due to the input strong-interaction potential
adopted in the calculation. Thus a measurement of this ob-
servable[87], when combined with measurements of the
asymmetries innWp radiative capture[2] and pWp elastic scat-
tering [1], could provide useful constraints for some of these
PV amplitudes.

The asymmetry in the deuteron disintegration by circu-
larly polarized photons from threshold up to 20 MeV ener-
gies is dominated by the short-range components of the DDH
interaction. However, it also displays enhanced sensitivity to
the short-range behavior in the strong-interaction potentials.
Indeed, predictions for the asymmetry at threshold differ by
almost a factor of 2, depending on whether the Argonnev18
or Bonn 2000 interaction is used in the calculations. There-
fore, this observable cannot provide an unambiguous value
of short-range weak meson-nucleon couplings; however, it
would be valuable in placing constraints on the hadronic
weak mixing angles.

Finally, the issue of electromagnetic current conservation
in the presence of parity-conserving and PV potentials has
been carefully investigated. In particular, in the case of the
psnW ,gdd anddsgW ,ndp processes dramatic cancellations occur
betweeen the contributions associated with the two-body cur-
rents induced, respectively, by the PC and PV potentials.
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