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A nonperturbative renormalization scheme for nucleon-nucleon interaction based on boundary conditions at
short distances is presented and applied to the one pion exchange potential. It is free of off-shell ambiguities
and ultraviolet divergences, provides finite results at any step of the calculation, and allows us to remove the
short distance cutoff in a suitable way. Low energy constants and their nonperturbative evolution can be
directly obtained from experimental threshold parameters in a completely unique and model independent way
when the long range explicit pion effects are eliminated. This allows us to compute scattering phase shifts
which are, by construction, consistent with the effective range expansion to a given order in the center of mass
(c.m.) momentump. In the singlet1S0 and triplet3S1-

3D1 channels ultraviolet fixed points and limit cycles are
obtained, respectively, for the threshold parameters. Data are described satisfactorily up to c.m. momenta of
aboutp,mp.
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I. INTRODUCTION

Effective field theories(EFT) are a powerful tool to deal
with nonperturbative low energy physics. Over the last years,
they have provided promising results as regards a systematic
and model independent understanding of hadronic and
nuclear physics. The scale separation between long and short
distance physics makes the development of a systematic
power counting possible. After the original proposal of Wein-
berg [1] to design power counting based on applying chiral
perturbation theory(ChPT) to the potential, many works
have followed, implementing such a counting[2–4,48] with
finite cutoffs or proposing a counting in the renormalizedS
matrix [5,6] which has also been pursued to NNLO[7]. The
relation of both the Weinberg(W) and Kaplan-Savage-Wise
(KSW) counting has been understood as perturbative expan-
sions about infrared fixed points in the limit of small and
large scattering lengths[8], respectively (see also Refs.
[9,10] for a discussion on long range forces in that context).
For systems with a large scattering length, as it turns out to
be the case in low energyNN scattering, the Weinberg count-
ing may be modified to iterate the scattering length to all
orders, but then the connection to ChPT must be given up
[12]. On the other hand the KSW counting, although system-
atic, does not converge at NNLO[7]. In Ref. [13] a new
counting [Beane, Bedaque, Savage, and van Kolck(BB-
SvK)] involving also the chiral limit should be invoked. Ac-
cording to these authors, one should treat nonperturbatively
the NN potential in the chiral limit and consider finite pion
mass corrections perturbatively on top of that. For a recent
and more complete review on these and related issues see,
e.g., Ref.[14] and references therein. More recent works
supporting the W counting have also appeared[15,16].

The practical problem one encounters withinNN scatter-
ing is the disentanglement between short and long range

physics in a nonperturbative and model independent way. As
we will show in this paper such a separation can be achieved
using renormalization group ideas. However, the issue of
regularization and renormalization in the present context is
not at all trivial, particularly if the calculation involves sum-
ming up some infinite set of diagrams(see, e.g., the discus-
sions in Refs.[17–20]). From a diagrammatic point of view
momentum space treatments based on nonperturbative analy-
sis of the Lippmann-Schwinger equation[4,21–27] are more
natural within a Lagrangian framework and allow explicit
consideration of nonlocal potentials. On the other hand, the
long rangeNN potentials making use of chiral symmetry
constraints are local, and for those the analysis of nonpertur-
bative renormalization in coordinate space becomes much
simpler, as will be shown along this work. In addition, the
Schrödinger equation is a second order operator and mixed
boundary conditions define a complete and unique solution
of the scattering problem in the whole space at both sides of
the boundary. This sharp boundary separation of the space is
naturally formulated in coordinate space for a local potential.
Boundary conditions forNN scattering were used many
years ago(see, e.g., Ref.[28] and references therein), and
there has been renewed interest motivated by the develop-
ments within EFT[29–31]. Actually, the thorough analysis of
Ref. [31] shows that in the absence of long range forces a
low momentum expansion of the potential within EFT
framework for the Lippmann-Schwinger equation is com-
pletely equivalent to an effective range expansion(ERE) [32]
and also to an energy expansion of a generic boundary con-
dition at the origin in coordinate space for the Schrödinger
equation. Moreover, the reference partial wave analysis of
the Nijmegen group[33,34] uses this method to successfully
describe the largeNN scattering database, when long range
potentials are used. While in the first works phenomenologi-
cal potentials were used, more recent studies consider poten-
tials deduced from ChPT with a rather satisfactory descrip-
tion of the experimental scattering data[35]. The minimal
boundary radius that can still provide an acceptable
x2/degree of freedom is aboutRS=1.4–1.8 fm. Obviously, if
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the radius cannot be lowered without spoiling the quality of
the fit, the short distance cutoff becomes an indispensable
parameter of the theory, which cannot be removed. The cor-
responding momentum space cutoffL=2p /RS,600 MeV is
comparable to the one needed in early momentum space
treatments[4]. Within the spirit of an EFT it would actually
be more appropriate to take instead largerL’s or equivalently
shorterRS’s and to check for insensitivity of results in the
low energy regime. Thus, there arises the natural question
whether in fact the EFT program can be implemented regard-
less of any finite cutoff.

In our previous work[36] we showed that for the1S0
singlet channel with OPE the boundary radius can be effec-
tively removed without spoiling a good description of the
corresponding phase shift up to thea priori expected center
of mass(c.m.) momentum ofk,mp where the two pion
exchange(TPE) effects should start playing a role. The first
order differential equation satisfied by the boundary condi-
tion of the problem defined in the intervalR, r ,` as a
function of the boundary radius was very helpful, since the
whole problem could be mapped into a variable phase equa-
tion [37] of a truncated potential in the region 0, r øR with
a nontrivial initial condition at the origin, encoding the short
distance physics. In this way, the long range pions could be
eliminated and the evolution of the threshold parameters as a
function of the boundary radius could be determined nonper-
turbatively. Actually, a trivial ultraviolet fixed point limit for
the scattering length was found nonperturbatively. Remark-
ably, this behavior coincides with the one found in Ref.[12]
within a perturbative treatment. This trivial fixed point at the
origin implies a fine tuning of the short distance physics in
order to reproduce the physical scattering length. In this pa-
per we want to extend our results for the interesting case of
the triplet 3S1-

3D1 channel. The solution of the boundary
condition problem requires solving a coupled set of
Schrödinger equations. Instead of doing so, we prefer to di-
rectly compute the change of the boundary condition by an
equivalent variable phase approach[37] with nontrivial ini-
tial conditions that encode the short distance physics[36].1

This provides, in addition, a direct and quite transparent con-
nection to renormalization group ideas[8–10]. In this paper
we do not advocate any power counting in particular. In-
stead, we want to tackle the renormalization problem regard-
less of thea priori assumption that some perturbative expan-
sion might work, since our formalism is flexible enough to
treat any power counting.

Related works in spirit to the present one are, besides the
original work of Bethe[32], the work of Ref.[11] and the
more recent ones of Refs.[13,39] and [9,10]. In Ref. [32] a
modified effective range expansion was defined in the con-
text of Coulomb forces to acount forpp scattering(see also
Ref. [11] for a more general discussion on long range poten-
tials and higher partial waves), but assuming a regular be-
havior of the wave function at the origin. For those the ef-
fective range parameters are not defined, and the
corresponding effective range function(M matrix) has

branch cuts at small momenta. Our approach yields also a
kind of modified effective range expansion, but our long
range piece has a finite range,1/mp. In contrast, we can
deal with singular potentials at the origin, and the analyticity
of the M matrix around the origin is maintained. This is
rather useful in the case ofNN interaction since chiral poten-
tials although exponentially suppressed at large distances be-
come highly singular at the origin(see, e.g., Ref.[35]). In
Refs. [13,39] a square well potential is used to regulate the
short distance behavior simulating a smearedd function. The
renormalization group flow for the potential strength is not
uniquely defined. This phenomenon is also found in the
theory of self-adjoint extensions of the Schrödinger operators
[42]. In Refs. [9,10] a d shell regulator located at a finite
distance is assumed as the short distance potential whereas
the long distance piece is solved exactly using a distorted
wave basis. This formalism has been used to the study of
renormalization of repulsive singular potentials(like 1/r2). A
common feature of both regularization schemes is that the
wave function at the origin is uniquely determined by the
regularity condition,us0d=0. The boundary condition regu-
larization that we use in this paper provides a uniquely de-
fined renormalization group flow[36], to treat both repulsive
and attractive singular potentials[43]. In addition, the
boundary condition admits a simple physical interpretation:
it can be transformed into a variable phase shift problem[37]
with a truncated potential. This interpretation directly pro-
vides the nonperturbative renormalization flow of low energy
parameters and a quite transparent analysis of both infrared
as well as ultraviolet fixed points and limit cycles[43].

In this paper we analyze precisely how the energy depen-
dent boundary condition must change as we move the bound-
ary radius for fixed energy to achieve independence of physi-
cal observables such as scattering phase shifts. By doing so
we are effectively changing the Hilbert space since the wave
function in the outer region is defined only from the bound-
ary to infinity. An advantage of this procedure is that we
never need to invoke off-shellness explicitly; at any step we
are dealing with an on-shell problem. In addition, we work
directly with finite quantities and no divergences appear at
any step of the calculation when the boundary radius is taken
to zero from above. Another advantage of our construction,
as it will become clear along the paper, is that we only need
the potentials and physical threshold parameters as input of
the calculation(the cutoff dependence is removed com-
pletely, so this is not a parameter). This implies, in particular,
that given this information we never have to make a fit(ex-
cept perhaps for the determination of the threshold param-
eters); our calculations are predictions for the phase shifts
that are consistent, by construction, with a low energy expan-
sion up to a given order. Thus, the potential danger of com-
promising the low energy fit due to a global fit up to
300 MeV may be precluded from the start. This shows a
difference with the standard way of proceeding, where the
low energy parameters are fitted to the phase shifts and the
threshold parameters are then recomputed. Actually, our
analysis is equivalent to making a fit only in the low energy
region, where explicit pions do not contribute, and predicting
the intermediate energy region. We believe this is a possible
and practical way of learning about the role of explicit pions

1For a variable phase treatment of the singlet channel with OPE
and trivial boundary conditions see Ref.[38].
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in the NN interaction. Actually, our motivation was partly to
see whether OPE can actually be seen in low partial waves in
the intermediate energy regionmp /2økømp.

In the present paper we analyze the OPE potential(U
=2mV andm=MN/2), which reads

UsxWd = UCsrd + S12UTsrd s1d
with sx̂=xW / rd

S12 = 3sW 1 · x̂sW 2 · x̂ − sW 1 · sW 2 s2d

and

UC = −
mp

2MNgA
2

16pfp
2

e−mpr

r
, s3d

UT = −
mp

2MNgA
2

16pfp
2

e−mpr

r
S1 +

3

mpr
+

3

smprd2D , s4d

whereMN is the nucleon mass,mp the pion mass,fp the pion
weak decay constant, andgA the nucleon axial coupling con-
stant. In the numerical calculations below we takeMN
=938.92 MeV, fp=93 MeV, mp=138 MeV, andgA=1.25.
Note that the singularity at the origin of the tensor potential

UT → −
3MNgA

2

16pfp
2r3 r → 0 s5d

is independent on the pion massmp.
The plan of the paper is as follows. In Sec. II we present

the basic object of our analysis, the variableS-matrix, which
we supplement with general mixed boundary conditions in
the general case of coupled channel scattering. We also dis-
cuss the role played by the irregular solutions for singular
potentials in the spirit of an effective field theory. After that
we rewrite in Sec. III the variableS-matrix equation for the
variableM matrix in a way that the low energy limit may be
taken. As a result, we find the boundary radius evolution of
threshold parameters. We apply the resulting equations to
determine the low energy threshold parameters from well
establishedNN potentials, which we relegate to the Appen-
dix. In Sec. IV we study the short distance behavior of the
threshold parameters. There we show that one has for the1S0
and3S1-

3D1 channels an UV fixed point and a UV limit cycle
for the scattering lengths. In Sec. V we present our numerical
results, both for the threshold parameters as well as for the
1S0 and 3S1-

3D1 phase shifts. Finally in Sec. VI we present
some final remarks, conclusions, and perspectives for future
work.

II. VARIABLE S MATRIX WITH BOUNDARY
CONDITIONS

In order to generalize to triplet states the results of Ref.
[36] for the singlet channel case, we introduce the variable
S-matrix formalism for the general coupled channel case. For
potentials that are either regular or singular repulsive at the
origin the procedure is standard[37] and it has many vari-
ants. For completeness and to make the exposition more self
contained we present here our particular derivation which
also applies to singular attractive potentials and at the same
time introduce our basic notation for the rest of the paper.

Although in the case under study we are interested in, at
most, two coupled channels, the formalism can be developed
for the general case with almost no additional effort.

The coupled channel Schrödinger equation for the relative
motion reads

− u9srd + FUsrd +
l2

r2Gusrd = k2usrd, s6d

where Usrd is the coupled channel matrix potential,l2

=diag(l1sl1+1d , . . . ,lNslN+1d) is the angular momentum,
usrd is the reduced matrix wave function, andk is the c.m.
momentum. We assume forusrd the mixed boundary
condition2

u8sRd − L ksRdusRd = 0, s7d

whereL ksRd is a real Hermitean matrix in coupled channel
space, which in our framework encodes theunknownphysics
at distancesr below the boundary radiusR. In addition, we
assume the asymptotic normalization condition

usrd → uinsrd − uoutsrdS, s8d

with S the standard coupled channelS matrix. The corre-
sponding outgoing and ingoing free spherical waves are
given by

uoutsrd = diag„ĥl1
+ skrd, . . . ,ĥlN

+ skrd… ; hs+dsRd,

uinsrd = diag„ĥl1
− skrd, . . . ,ĥlN

− skrd… ; hs−dsRd, s9d

with ĥl
±sxd the reduced Hankel functions of orderl, ĥl

±sxd
=xHl+1/2

± sxd sĥ0
±=e±ixd, and satisfy the free Schrödinger’s

equation for a free particle,

− uout9 srd +
l2

r2uoutsrd = k2uoutsrd, s10d

− uin9 srd +
l2

r2uinsrd = k2uinsrd. s11d

The boundary condition, Eq.(7), for the outer boundary
value problem, Eq.(6) and Eq. (8), can be interpreted in
simple physical terms of a complementaryinner problem
where the potentialUsrd acts in the intervalRø r ,`. If we
switch off the potential above a given boundary radiusR we
have, at the boundary

L ksRd = u8sRdu−1sRd = fuin8 sRd − uout8 sRdSsRdg fuinsRd

− uoutsRdSsRdg−1, s12d

whereSsRd is the S matrix associated to the potentialUsrd
acting in the region 0, r øR, which inherits the dependence
on the chosen boundary radiusR. The equation satisfied by
the variableS matrix can be obtained from Schrödinger’s
equation applied to the matrixL sRd, yielding

2This is the most general boundary condition that makes the
coupled channel Hamiltonian self-adjoint in the intervalRø r ,`.
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L ksRd8 + L ksRd2 = UsRd +
l2

R2 − k2. s13d

From here3 it is straightforward to obtain the equation for the
variableS matrix,

2ik
dSsRd

dR
= fSsRdĥs+dsRd − ĥs−dsRdgUsRd

3 fĥs−dsRd − ĥs+dsRdSsRdg. s14d

This is a first order nonlinear matrix differential equation that
can be solved by standard means, provided theS matrix is
known at one given scale. One of the interesting aspects of
this equation is that there is no need to invoke any off-
shellness; for any value of the boundary radius we have a
different on-shell scattering problem. As we will discuss be-
low, Eq. (14) describes the renormalization group flow of the
S matrix as a function of the distance scaleR where the long
range potential is truncated.

In the case of a regular potential, Eq.(14) has to be
supplemented with an initial condition at the origin, namely
the trivial one(corresponding to the absence of a potential),
and its asymptotic value yields the fullS matrix

Ss0d = 1, S= Ss`d sregulard. s15d

In this paper we are concerned with the OPE potential, which
has a singular 1/r behavior at the origin in the1S0 singlet
channel and singular 1/r3 behavior at the origin due to the
tensor force in the3S1-

3D1 triplet channel. While in the sin-
glet channel the singularity is a mild one in the sense that
there still exists a unique regular solution at the origin,
us0d=0 (like in the Coulomb potential), in the triplet channel
both linearly independent solutions to Schrödinger’s equa-
tion vanish at the origin, and the regularity conditionus0d
=0 does not uniquely specify the solution.

The point of view we take in the present work is that of an
EFT; low energy physics should not depend on the detailed
knowledge of the interaction at short distances. This applies,
in particular, to the case of a singular potential as will also
become clear below. Following the lines already sketched in
our previous work[36], we take instead the value at infinity
as the initial value for the variableS matrix. Of course, for a
short range potential, this corresponds to start integration at
sufficiently large distances(where the potential may be ne-
glected). An advantage of this procedure is thatby construc-
tion a unique solutionSsRd is obtained. Even for a regular
potential, it is clear that a generic choice ofSs`d cannot
yield by downward integration towards the origin the result
Ss0d=1 besides the very exceptional cases which acciden-
tally correspond to the regular solution at the origin. Thus,
we expect in general an admixture of both the regular and
irregular solutions, which corresponds to a mixed boundary
condition close to the origin,

lim
R→0+

hu8sRd − L sRdusRdj = 0. s16d

In the case of a singular potential both solutions vanish and
we equally have a unique mixed boundary condition as in
Eq. (16). Thus, we may define theshort distance Smatrix as
the extrapolation to the origin of a given solution at infinity,

Ss ; lim
R→0+

SsRd, S= Ss`d sgenerald. s17d

Actually, the precise meaning of the previous limit will be
the main topic of the present work. We anticipate already that
we will find ultraviolet fixed points for the singlet1S0 chan-
nel and limit cycles for the3S1-

3D1 triplet channel. Eqs.(14)
and(18) are well known in potential scattering(for a review
see, e.g., Ref.[37]), but they have always been used assum-
ing the trivial initial conditionsSs0d=1.

Obviously, if one would literally use the fullS matrix and
integrate downwards, nothing could be achieved, since that
would correspond to eliminating the full potential. A more
interesting perspective, already pursued in Ref.[36] for the
singlet 1S0 channel, consists of regarding the low energy
limit of the previous equations, extracting the threshold pa-
rameters at short distances by integrating downwards from
their experimental values and integrate back upwards the
variableS-matrix equation to infinity. Physically, this proce-
dure corresponds to explicitly separating the OPE contribu-
tions on top of any good low energy approximation, like,
e.g., the effective range expansion.

In the case of one channel, like the1S0, the S matrix can
be parameterized asSlsk,Rd=expf2idlsk,Rdg, with dlsk,Rd
the variable phase. Equation(14) becomes rather simple[37]
for s waves, yielding

dd0sk,Rd
dR

= −
1

k
UsRdsin2fkR+ d0sk,Rdg, s18d

and the obvious conditions both at the origin and at infinity
must be satisfied:

lim
R→0

d0sk,Rd = d0
Sskd, lim

R→`
d0sk,Rd = d0skd. s19d

The OPE potential in the coupled triplet3S1-
3D1 channel

space is given by

Usrd = S Ussrd Usdsrd
Usdsrd Udsrd

D , s20d

where
Us = UC, Usd= 2Î2UT, Ud = UC − 2UT. s21d

The two coupled channelS-matrix can be represented in the
Blatt-Biedenharn(BB or eigen phase) parameterization:

S= Scose − sine

sine cose
DSe2id1 0

0 e2id2
DS cose sine

− sine cose
D , s22d

which will be used along this paper. The relation to the
coupled channel effective range function orM matrix is
given by43An alternative derivation of Eq.(13), closer in spirit to the renor-

malization group and the Callan-Symanzik equation will be pre-
sented elsewhere in Ref.[43]. 4In the one channel caseM =k cotd.
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S= sM + ikdsM − ikd−1. s23d

The low energy limit acquires its simplest form in the Stapp-
Ypsilantis-Metropolis(SYM or nuclear bar) parameterization

S= S e2id̄1 cos 2ē ieisd̄1+d̄2d sin 2ē

ieisd̄1+d̄2d sin 2ē e2id̄2 cos 2ē
D , s24d

which is related to the BB phase shifts by

d̄1 + d̄2 = d+ + d−, s25d

sinsd̄1 − d̄2d =
tans2ēd
tans2ed

. s26d

The low energy limit in the SYM representation becomes

d̄1 → − a0k, d̄2 → − a2k
5, ē → − a02k

3 s27d

The scaledM matrix, M̂ , has a good low energy behavior
and is defined[44] (see e.g. Ref.[45] for a review and many
references therein) by making an energy dependent transfor-
mation

M̂ = DMD s28d

with D=diagskl1, . . . ,klNd. The scaledM matrix admits the
coupled channel analog of the effective range expansion

M̂ = − a−1 +
1

2
rk2 + vk4 + . . . , s29d

wherea, r , andv are the scattering length matrix, effective
range, and curvature parameters, respectively.

III. EVOLUTION OF LOW ENERGY PARAMETERS

In order to take this low energy limit and corrections
thereof, we introduce the variable or runningM matrix

SsRd = fM sRd + ikgfM sRd − ikg−1 s30d

as well as the reduced Bessel functions

ĵ lsxd = xjlsxd, ŷlsxd = xylsxd, s31d

i.e., ĵ0sxd=sinx, ŷ0sxd=−cosx. Thus,

ĵ =
1

2i
sĥs+d − ĥs−dd, s32d

− ŷ =
1

2
sĥs+d + ĥs−dd. s33d

Then we get

M 8sk,Rd = S1

k
M sk,Rdĵ skRd − ŷskRdDUsRd

3 S1

k
ĵ skRdM sk,Rd − ŷskRdD . s34d

The running scaledM matrix, M̂ sRd, is defined similarly to
Eq. (28),

M̂ sRd = DM sRdD s35d

and satisfies the equation

M̂ 8sk,Rd = SM̂ sR,kd
1

k
j skRdD−1 − yskRdDDUsRd

3 S1

k
j skRdD−1M̂ sR,kd − yskRdDD . s36d

The scaledM matrix admits the analog of the effective range
expansion

M̂ sRd = − asRd−1 +
1

2
r sRdk2 + vsRdk4 + ¯ , s37d

where asRd, r sRd, and vsRd are the corresponding running
scattering length matrix, effective range, and curvature pa-
rameters, respectively. In this form the low energy limit can
be easily taken. Defining the matrix functions and their low
energy expansion

AksRd =
j skRd

k
D−1 = A0 + k2A2 + k4A4 + . . . , s38d

BksRd = yskRdD = B0 + k2B2 + k4B4 + . . . , s39d

we get the system of coupled equations

d

dR
fasRdg−1 = − hfasRdg−1A0 + B0jUsRdhA0fasRdg−1 + B0j,

d

dR
r sRd = hfasRdg−1A0 + B0jUsRdhr sRdA0 + 2fasRdg−1A2

+ 2B2j + hr sRdA0 + 2fasRdg−1A2 + 2B2jUsRd

3hfasRdg−1A0 + B0j,

d

dR
vsRd = sfasRdg−1A0 + B0dUsRdh− fasRdg−1A4 + 1

2r sRdA2

+ vsRdA0 − B4j + h− fasRdg−1A4 + 1
2r sRdA2

+ vsRdA0 − B4jUsRdhfasRdg−1A0 + B0j

+ h 1
2r sRdA2 − fasRdg−1A2 − B2jUsRdh 1

2r sRdA2

− fasRdg−1A2 − B2j . s40d

These equations generalize to the coupled channel case those
already found in Ref.[36] and have to be supplemented with
some initial conditions, at, e.g., infinity,

as`d = a, r s`d = r , vs`d = v. s41d

For the case ofs wave one channel scattering Eq.(36) be-
comes

dMsk,Rd
dR

= UsRdFMsk,Rd
sin kR

k
+ coskRG2

, s42d

where

Msk,Rd = k cotdsk,Rd, s43d

yielding at low energies an effective range expansion,
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k cotdsk,Rd = −
1

a0sRd
+

1

2
r0sRdk2 + v2sRdk3

¯ s44d

where

da0

dR
= UsRdsa0 − Rd2, s45d

dr0

dR
= 2UsRdR2S1 −

R

a0
DS r0

R
+

R

3a0
− 1D , s46d

dv2

dR
=

UsRd
R

H1

4
S r0

R
+

R

3a0
− 1D2

+ 2S1 −
R

a0
DS−

1

12

r0

R
+

v2

R3

−
1

120

R

a0
+

1

24
DJ . s47d

These equations have been studied by us in Ref.[36] for
analyzing the OPE in the singlet1S0 channel.

In the 3S1-
3D1 coupled channel case the threshold param-

eters matrices are

a = S a0 a02

a02 a2
D , s48d

r = S r0 r02

r02 r2
D , s49d

v = S v0 v02

v02 v2
D . s50d

The explicit form of the equations for the3S1-
3D1 running

scattering lengths reads

R4a08 = 9Uda02
2 + sa0 − RdR2fsa0 − RdUs + 6a02Usdg,

15R5a028 = − 15a02R
4s− a0 + RdUs + R2f45a02

2 − sa0 − Rd

3s− 45a2 + R5dgUsd− 3a02s− 45a2 + R5dUd,

225R4a28 = 225a02
2 R4Us − 30a02R

2s− 45a2 + R5dUsd

+ s− 45a2 + R5d2Ud. s51d

Note that all three running low energy parametersa0, a02,
and a2 (the explicit R-dependence has been suppressed for
simplicity) are coupled due to the mixing potentialUsd.
Thus, it would be inconsistent to take any of them as a con-
stant; exact renormalization group invariance requires mix-
ing between theS andD channels. As we see the mixing is
related both to a nonvanishing of the mixing potentialUsd
and a nonvanishing value ofasd at a given point. If by some
accident both vanish at a given point, the mixing will vanish.

The evolution of the low energy parameters can be trans-
lated into the corresponding evolution of the short distance
boundary condition as a function of the boundary radius.
Defining the dimensionless quantity

CksRd = 1 − RL ksRd = 1 − Ruk8sRduksRd−1 s52d

and using Eq.(13) we get

− RCk8sRd = Cks1 − Ckd + UsRdR2 + l2 − k2R2. s53d

Expanding into powers of the momentumk one gets

CksRd = C0sRd + k2R2C2sRd + ¯ . s54d

For the singlet1S0 channel we have, in particular,

C0 =
a0sRd

R− a0sRd
. s55d

Note that forR→` we have a fixed point behaviorC0→0
unlessa=` in which caseC0→1. The evolution of the
boundary condition with the short distance boundary radius
for 3S1-

3D1 in terms of the running scattering lengths is given
by

Cs
0 = 1 +

RsR5 − 45a22d
45a02

2 + sa00 − RdsR5 − 45a22d
, s56d

Csd
0 =

15a02R
3

45a02
2 + sa00 − RdsR5 − 45a22d

, s57d

Cd
0 = 3 −

5sR− a00dR5

45a02
2 + sa00 − RdsR5 − 45a22d

. s58d

Again, for R→` we have for nonexceptional values of the
parametersCs

0→0, Csd
0 →0, and Cd

0→−2. In Ref. [43] a
more detailed study on these issues will be carried out.

IV. SHORT DISTANCE BEHAVIOR FOR OPE: FIXED
POINTS AND LIMIT CYCLES

In this section we analyze the short distance behavior of
the equations for the scattering lengths for the singlet1S0,
Eq. (45), and the triplet3S1-

3D1, Eq. (51), channels in the
short distance limit. According to Eq.(12) this is equivalent
to study the mixed boundary condition at short distances.

We study first the case of OPE in the singlet1S0 channel.
At short distancesR!1/mp the OPE potential behaves like
the Coulomb potential. Equation(45) can be easily solved in
two extreme cases,a0!R anda0@R. While in the first case
we get

a0sRd → −
gA

2mp
2MN

32pfp
2 R2, a0 ! R s59d

in the second case one solution behaves as

a0sRd → 16pfp
2

gA
2mp

2MN

1

logsR/R0d
, a0 ! R s60d

whereR0 is a reference scale fulfillingR,R0!1/mp. As we
see,a0sRd goes to zero in both cases but, while Eq.(59) goes
rapidly a08sRd→0, Eq. (60) goes very slowly and with
a08sRd→−` at short distances. In momentum space theR
→0 limit corresponds to the ultraviolet limit. Equation(60)
resembles a sort of asymptotic freedom and hence we have
an ultraviolet fixed point. One can see that the first case, Eq.
(59), corresponds to selecting the regular solution at the ori-
gin, whereas Eq.(60) corresponds to a generic case, which
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always contains an admixture of the irregular solution. The
regular case at the origin corresponds to integrate from the
origin starting with the trivial initial conditiondsk,0d=0 up
to infinity. As we have discussed in Ref.[36] the result cor-
responds to a pure OPE interaction, with no short distance
interactions. The important thing to realize is that regardless
of the value ofa0 at infinity, removing one-pion exchange
goes into the same value at the origin, as implied by Eq.(60).
This also implies that any tiny deviation of thea0sRd at small
distances results in huge variations at infinity. Thus, remov-
ing OPE in the1S0 channel implies an extreme fine tuning of
the scattering length at short distances, and hence of the
boundary condition at the origin.

We turn now to the case of the3S1-
3D1 channel, where the

tensor force plays a role. In the region close to the origin the
wave function oscillates wildly and hence a WKB approxi-
mation may be used. The calculation is simplified by taking
into account that for the OPE interaction the potential matrix
is diagonalized by anr-independent unitary transformation,
i.e.,

MU srdM −1 = SUCsrd − 4UTsrd 0

0 UCsrd + 2UTsrd
D ,

s61d

with

M = 1−
1
Î2

1

Î2 1
2 . s62d

Note that this transformationdoes notdiagonalize the full
potentialU+ l2/ r2 including the centrifugal barrier, which for
r →0 may be neglected. Thus, in the short distance limit we
may decouple all our equations into pairs, and in particular
we can apply the transformation to the boundary condition,
Eq. (7), at zero energy

ML 0sRdM −1 = diag„l1sRd,l2sRd…, s63d

wherel1sRd and l2sRd are the logarithmic derivatives at zero
energy of the decoupled problem with potentialsU1=UC
−4UT andU2=UC+2UT, respectively. After straightforward
algebra we get

a0sRd = 3
Rl2sRdsRl1sRd + 1d − 2

4l2sRd + l1sRds3Rl2sRd + 2d
, s64d

a02sRd = −
Î2R3

3

l1sRd − l2sRd
4l2sRd + l1sRds3Rl2sRd + 2d

, s65d

a2sRd =
R5

15

l1sRdsRl2sRd − 1d − 2l2sRd
4l2sRd + l1sRds3Rl2sRd + 2d

. s66d

Now, as we approach the origin the tensor potential domi-
nates, and the potentialsU1 andU2 behave as repulsive and
attractive 1/r3 potentials, respectively, corresponding to tak-
ing l1→` and l2sRd by the zero energy limit of the logarith-
mic derivative of a WKB function,

a0sRd → R
3RlWKBsRd

3RlWKBsRd + 2
, s67d

a02sRd → −
Î2R3

3

1

3RlWKBsRd + 2
, s68d

a2sRd → R5

15

RlWKBsRd − 1

3RlWKBsRd + 2
, s69d

with

RlWKBsRd =
3

4
+

1

2
ÎRM

R
cotSD + FÎRM

R0
−ÎRM

R
GD .

s70d

Here D is an energy independent phase, andR0 a reference
point, given by

R0lWKBsR0d =
3

4
+

1

2
ÎRM

R0
cotsDd s71d

and

RM =
3g2M

2f2p
= 16 fm. s72d

As we see the scattering lengthsa0, a02, anda2 present an
oscillatory behavior as we approach the origin, so they do
not converge to a well defined value; as we approach the
origin the a’s take all possible values. This situation corre-
sponds to a limit cycle at short distances.5 A way of avoiding
the unbound variation of the scattering lengths consists of
going to the origin stepwise through some envelope subse-
quence defined by a fixed condition forlWKBsRd. For in-
stance, if we define a cycle by the conditionasRnd=0, we
haveRnlWKBsRnd=0, yielding

5We use the term limit cycle in a loose sense as already done in
Ref. [39]. These are to be distinguished from the limit cycles ob-
tained for an attractive 1/r2 potential(see, e.g., Refs.[40,41] and
references therein for a discussion on the context of Efimov states
in the three body problem) where a logarithmic flow with the regu-
lator scale is found. This behavior can trivially be seen from the
evolution of the dimensionless boundary conditionC0 from Eq.(53)
[see also Eq. 14 of Ref.[36]] in the one channels-wave case at zero
energy. ForU=g/ r2 one has

− RC08sRd = C0sRdf1 − C0sRdg + g, s73d

which formally presents scale invariance explicitly broken by a
nontrivial initial conditionC0sR0d. This equation exhibits real and
complex fixed points forg.−1/4 andg,−1/4, respectively. The
latter case corresponds indeed to scale independent ultraviolet limit
cycles. For more singular potentials the flow becomes “acceler-
ated,” and hence the cycles become scale dependent, although the
cyclic pattern in the limitR→0 remains[43] and hence the short
distance fine tuning becomes more acute.
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a0sRnd = 0, s74d

a02sRnd = −
Î2Rn

3

6
, s75d

a2sRnd = −
Rn

5

30
. s76d

Another possibility would be to takelWKBsRnd=`, etc. As we
see, there are infinitely many such possibilities, although all
of them go towards the trivial values,a0s0+d=a02s0+d
=a2s0+d=0. Actually, any of the choices correspond to a dif-
ferent starting condition at infinity, modulo a cycle. Con-
versely, if we go to very short distances, where the scattering
lengths vary wildly, any tiny perturbation there results in a
completely different value at infinity. So, we see again that
an extreme fine tuning of the threshold parameters at short
distances is required.

In practical numerical calculations the finite integration
stepDR provides a given resolution scale, and these infinite
limit cycles may not be observed due to the rapid oscilla-
tions. Instead, one sees the envelope corresponding to the
stationary points of the scattering lengths. This point will
become clear below, Sec. V.

V. NONPERTURBATIVE SOLUTIONS

A. Evolution of the low energy parameters

The exact mathematical analysis of the general set of
equations is rather complicated since we are dealing with a
nonlinear system of equations. In Ref.[43] simple cases are
analyzed analytically and the general features that can be
deduced there are consistent with the numerical results we
have obtained in the present work.

As we have said the set of equations, Eq.(45) and Eq.
(51), can be numerically solved. Given the fact that as we
approach the origin the tensor part of the potential develops
a singularity it is important to carefully check for numerical
accuracy at short distances. A crucial property that must be
fulfilled by any algorithm is that of exact reversibility; i.e.,
evolving upwards or downwards should be inverse opera-
tions of each other. This is a stringent test and, moreover, the
only way to make sure that when the long range piece of the
potential is switched on for theM-matrix integration we have
consistency with the effective range expansion up to the rel-
evant order(see also below). We prefer to impose this revers-
ibility exactly, independently, on the number of mesh points
used in the integration, so that any numerical irreversibility
is merely attributable to computer arithmetic round-off er-
rors. This feature will prove extremely relevant when com-
puting the phase shifts below since our calculation requires
upwards integration from lower distances. In all calculations
presented in this paper we have checked that the correct
threshold behavior is obtained. Quite generally, we find
stable results when we take the long distance cutoff to be
R`=20 fm. On the other hand, the lowest radius we can

achieve numerically and preserving reversibility isRS

=0.1 fm, mainly due to computer arithmetic round-off errors
triggered by the singularity of the potential. One could fur-
ther lower the radius by a semiclassical approximation as
outlined in Sec. IV since as the origin is approached the
wave function undergoes an increasing number of oscilla-
tions and WKB methods can be applied. Nevertheless, as we
will see below, for our short distance cutoff the phase shifts
for c.m. momenta up tok=250 MeV are rather stable nu-
merically.

The strong dependence of the low energy threshold pa-
rameters on the short distance cutoff provides a clue to the
fact that there seems to be a lower finite limit for the bound-
ary radiusRS=Rmin,1.4 fm [35] with still an acceptable fit;
if the boundary radius is lowered, the parameters encoding
the short distance boundary condition that are used as fitting
parameters depend in a nonsmooth way onRS. In addition,
the strong singularity at the origin triggers a fine tuning in
those parameters. According to our previous discussion, this
short distance fine tuning of low energy parameters is abso-
lutely necessary to comply with the independence of the
scattering amplitude on the short distance boundary radius.
For such a situation, a fit based on successive adiabatic
changes ofRS becomes impractical since the fitting param-
eters do not change adiabatically and also because these pa-
rameters should have to be determined to extraordinary high
precision. In addition, the way how the limitRS→0 should
be taken differs from channel to channel. Our method pro-
vides a practical way to overcome the difficulty, given the
fact that the boundary radius is taken exactly to zero along
the renormalization trajectories while keeping the low energy
threshold parameters at fixed values.

1. 1S0 and 3S1 without mixing channels

In Fig. 1 we show our results for the evolution of the
threshold parametersa0, r0, and v2 in the singlet1S0 and
triplet 3S1 without mixing (i.e., neglecting the tensor force)
channels. The main difference one can appreciate from the
comparison of both channels is that while the scattering
length for the1S0 channel exhibits a monotonic trend to-
wards the origin, the scattering length in the3S1 channel
diverges at a distance of about 0.7 fm. The interpretation of
this fact in our framework is clear; the central part of the
OPE potential is purely attractive. Thus, by eliminating the
pions down to a certain distance, we are effectively building
some repulsion, until we lose a bound state. An alternative
interpretation is that as we switch on the OPE potential from
the origin up to a certain distance we can accommodate a
bound state above 0.7 fm. With this interpretation in mind,
we should add 180° to the3S1 phase shift to comply with
Levinson’s theorem.

2. 3S1-
3D1 channel

We finally analyze the triplet3S1-
3D1 channel taking into

account the tensor mixing. In Fig. 2 we show our numerical
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solutions of the set of Eqs.(40), starting at sufficiently long
distances(in practiceR`=20 fm turns out to be adequate)
and evolving downwards to the origin. Operationally this
corresponds to eliminate OPE in the triplet channel. We have
clearly seen for distances aboveR,3 fm nothing dramatic
happens and a monotonic trend is observed. At smaller dis-
tances,2 fm, however, we note a rapid change in the run-
ning scattering lengths. Again, a rather flat evolution follows
until the region below 1 fm. An enlargement is plotted in
Fig. 2. The number of cycles increases without any bound as
the origin is approached. This situation is dramatically dif-
ferent from that found in the case without tensor mixing,
since there OPE produced an ultraviolet fixed point. The situ-
ation we encounter here is not new and has already been
described in the context of noncoupled channels. The limit
cycle structure naturally raises the problem of undefined val-
ues of the short distance parameters as we take the limitR
→0. The point is that there is a way of taking the limit
through equivalent points defined by the propertyasRnd
=asRn+1d; any two such points produce identical low energy
parameters at infinity. Thus, the limitRn→` through equiva-
lent points produces the same parameters at long distances.
The cycles ina02 anda2 are hardly seen in the plot due to a
low resolutionDR compared with the typical cycle spacing.

B. Phase shifts

The standard way of proceeding would be to determine
the low energy constants or, equivalently, the short distance
parameters directly from a fit to the data in a large energy
range(say up tok,mp where the two-pion exchange left cut
should start contributing) for the theory with OPE. The low
energy parameters would have to be recomputed, and the
description at lower energiessk,mpd might become even
worse than a pure effective range expansion(see, e.g., Refs.
[46,47]). Obviously, this is an undesirable situation. The ef-
fective range expansion is convergent up to the OPE left cut,

located atk= ±imp /2, and should be applied only there.6 Our
formalism can be specifically constructed to avoid such a
situation. Once the threshold parameters are determined in
the short distance limitRS→0, our phase shifts become pure
predictionswithout any additional parameter fittingobtained
to a given orderk2 expansion of the initial condition by in-
tegrating Eq.(42) using the effective range type of initial
condition,

M̂ S= M̂ sRSd = − aS
−1 +

1

2
r Sk

2 + vSk
4 + ¯ s77d

with RS→0. The solution of Eq.(42) at R→` gives a solu-
tion, which when expanded in powers ofk2, exactly repro-
duces ERE to the order imposed by the initial condition, Eq.
(29). Thus, the difference beyond the displayed terms is
merely attributable to the OPE potential. In what follows we
use LO, NLO, NNLO, etc., to denote keeping up to the first,
second, third order terms in Eq.(77), respectively.

1. 1S0 and 3S1 without mixing channels

In Fig. 3 we show the results for the phase shifts for both
1S0 and3S1 without mixing channels depending on the num-
ber of terms kept in the low energy expansion at short dis-
tances. Our results exhibit a good convergence rate. For
comparison we also depict the effective range expansion re-
sults without explicit pions, which is expected to work at low
energies only. As we see, the effect of introducing pions
always improves the results. This can be fully appreciated at
NNLO, where ERE does a poor job above c.m. momenta
,100 MeV, but explicit OPE effects enlarge the energy

6The fact that only two terms in the expansion, involving the
scattering length and the effective range only, works so well at high
momenta, almost up tok,mp, is purely accidental. Actually, in-
cluding the nextv2 term in the expansion and fitting it in the region
k,mp /2 does not reproduce the data formp /2,k,mp, but im-
proves the fit fork,mp /2. This is obviously an indication of the
breakdown of the expansion beyond the analyticity domain.

FIG. 1. Evolution of the scattering1S0 (left panel) and3S1 without mixing (right panel) NN threshold parametersa0sRd (in fm), r0sRd (in
fm), andv2sRd (in fm3) from the asymptotic values at infinity(which we take in practiceR`=20 fm) when OPE effects are removed down
to the origin.
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FIG. 2. Evolution of the3S1,
3D1, andE1 NN-threshold parameters from the physical values at infinity down to the origin using the OPE

potential in the short distance region below 1 fm. Scattering lengthsa0sRd (in fm), a02sRd (in fm3), anda2sRd (in fm5). Effective ranges
r0sRd (in fm), r02sRd (in fm3), andr2sRd (in fm5). Curvature parametersv0sRd (in fm3), v02sRd (in fm5), andv2sRd (in fm7). Limit cycles are
clearly visible in thes-wave scattering lengtha0 and effective ranges. TheE1 and3D1 scattering lengthsa02 anda2 go quickly to zero below
0.25 fm.

FIG. 3. Predicted phase shifts in the1S0 (left panel) and the3S1 without mixing (right panel) channels forNN scattering as a function of
the c.m. momentum in MeV. In the3S1 channel we assume no mixing according to Eq.(42) when OPE potential is switched on and the initial
condition is a low energy expansion of theM matrix at short distances[see Eq.(77)]. LO means keepingaS,0 only, NLO keepingaS,0 and
r0,S, and NNLO keepingaS,0, r0,S, andv2,S. The short range parameters are directly determined by evolving the low energy parameters from
their experimental values, Eqs.(A1) and (A2), ER-LO, ER-NLO, and ER-NNLO corresponds to a pure effective range expansion keeping
a0 only, aS,0 and r0, anda0, r0, andv2, respectively. No further fit is involved. Data are the PWA from Refs.[33,34].
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range up to about,140 MeV,mp, where we expect ex-
plicit two-pion exchange contributions to start playing a role.

2. 3S1-
3D1 channel

Once the short distance evolution of the low energy pa-
rameters are known one may compute the phase shifts to any
order of the approximation in ak2 expansion of the initial
condition without any additional parameter fittingby inte-
grating Eq.(42) upwards with a suitable initial condition at a
short distance radius. As a matter of fact the practical choice
of the radius in the numerical calculation is far from obvious,
particularly in the triplet channel case where the low energy
parameters take unbounded values in an increasingly finer
scale at short distances(see, e.g., Fig. 2). It is most practical
to use the WKB approximation to match the numerical solu-
tion at a radiusRWKB, which can safely be taken in the range
,0.5 fm. The results for LO(contact terms), NLO (k2

terms), and NNLO (k4 terms) are presented in Fig. 5 and
compared to the partial wave analysis(PWA) of Refs.
[33,34]. As we see the best scheme to take into account the
OPE potential corresponds to using the NLO initial condi-
tion. This means on the one hand that while the scattering
lengths may be considered large and comparable to the ef-

fective ranges the curvature parametersv2 can be considered
to be small.

C. Finite cutoff effects

Finite short distance cutoff effects in the scattering phase
shifts can be seen in Fig. 4 for finite representative radiiRS
=1.4 fm andRS=1.8 fm as compared to the renormalized
RS=0 case, for the OPE-NLO approximation(the OPE-LO
and OPE-NNLO display similar features). As one naively
expects these finite effects increase for larger energies, since
they probe smaller wavelengths. A very important feature
that can be deduced from the plots is that these effects are
sizable for momenta where TPE effects should not play a
decisive role,mp /2,k,mp. Thus, letting a finite short dis-
tance boundary radiusRS,1.4 fm provides a large system-
atic error, already in the region where OPE dominates. Thus,
it is not clear whether TPE can beseenin the centralNN
waves with a finite cutoff distance of aboutRc=1.4 fm. Of
course, one should include TPE contributions in order to
make a definite statement. In any case, it is worth mentioning
that the error band that would be generated by decreasing
smoothly the short distance cutoff radiusRS does not follow
a monotonic trend, as one might naively expect, i.e., small

FIG. 4. The effect of having a finite short distance boundary radius for the OPE potential on top of the effective range expansion(ERE).
We compare the theory with finite radiiR=1.4 fm andR=1.8 fm with the renormalized theoryR=0. We only show the results for OPE-NLO
for 3S1,

3D1, andE1 channels. The low energy threshold parameters coincide with those extracted from the NijmII potential. Data are the
PWA from Refs.[33,34].
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variations in RS may generate large changes in the phase
shifts at k,mp. This is mainly due to the onset of limit
cycles at short distances.

D. Are pions perturbative?

The discussion of which power counting is the appropri-
ate one for theNN interaction corresponds physically to the
question whether or not the pion cloud can be considered to
be perturbative. It is important to realize that within our
framework we are considering OPE departures from the ef-
fective range expansion to a given order. Thus, at sufficiently
low k explicit pion effects can always be considered pertur-
bative. This is so regardless of the number ofk2 terms in-
cluded in the initial condition. Actually, the point is rather if
the low energy threshold parameters can be considered large
or small. According to our results in Fig. 5 it seems that the
best possible agreement can be obtained when both the scat-
tering lengths and the effective ranges are taken to be large,
while other low energy parameters can be taken to be small.
This can be seen in Fig. 5 where the effects of including OPE
are compared to the ERE to LO, NLO, and NNLO. Given

this fact we expect a kind of consistent long distance pertur-
bation theory to work. The details of such an expansion will
be presented elsewhere.

E. Evolution of the short distance boundary condition

As we have said, the short distance singularity of the OPE
potential enforces a very precise determination of the run-
ning low energy threshold parameters at short distances, and
hence of the boundary condition. We can directly determine
this dependence by using Eq.(55) and Eq.(58). For simplic-
ity and to illustrate the point we just display in Fig. 6 the
behavior of the boundary condition parameters as a function
of the short distance boundary radius in the zero energy
limit, both for the singlet1S0 and triplet3S1 channel without
mixing and for the triplet3S1-

3D1 channel. The fixed point
and limit cycle behavior obtained for the running of the low
energy threshold parameters maps into a similar behavior for
the short distance boundary condition. From the picture it is
clear that the standard procedure of integrating the
Schrödinger equation upwards from a given short distance
boundary radius to infinity in order to fit the low energy

FIG. 5. The effect of including the OPE potential on top of the effective range expansion(ERE). Top panel:3S1,
3D1, andE1 at LO with

(OPE-LO) and without(ER-LO) OPE explicit effects. Middle panel: same but for NLO. Bottom panel: same but NNLO. The difference
between ER and OPE indicates the size of the explicit effects due to the OPE potential to LO(contact terms), NLO (k2 terms), and NNLO
(k4 terms). In both cases the low energy threshold parameters coincide with those extracted from the NijmII potential. Data are the PWA from
Refs.[33,34].
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parameters would require a very high precision determina-
tion of a rapidly varying boundary condition in the case of
the triplet3S1-

3D1 channel. It is clear that a determination of
the C0 constants from a fit to the phase shifts in the low
energy region would be extremely delicate in the limitRc
→0 in practice. Instead, the present approach computes di-
rectly the boundary condition in a power expansion of the
energy at any given radius from the physical values of the
low energy parameters. Actually, our method is equivalent to
integrate the Schrödinger equation from that short distance
boundary radius to infinity. In addition, the singular and at-
tractive nature of the OPE potential allows a WKB treatment
of the short distance singularity, and allows elimination of
the finite cutoff radius taking the limitRc→0. Obviously, the
present framework can be extended to reanalyze the role of
TPE potentials in a nonperturbative way and completely free
of finite cutoff artifacts, where the short distance behavior is
qualitatively similar.7

VI. CONCLUSIONS

In the present paper we have analyzed the renormalization
of the OPE interaction in the presence of contact and deriva-
tive interactions of any order forNN scattering both for the
singlet and triplet channel states. The basic point of our ap-
proach is to regularize theunknownshort distance physics by
means of a boundary condition at a certain boundary radius,
above which the OPE potential is assumed to work, i.e.,
where pions are treated explicitly. Below that scale pions
contribute implicitly to the scattering properties although al-
ways in combination with other effects that cannot be disen-
tangled unless a given distance scale is specified. Actually,
when the boundary radius goes to infinity, above the pion
Compton wavelength, we have a low energy theory of con-
tact interactions and derivatives thereof. As the boundary ra-
dius goes below the OPE range, we have a theory where
pions are eliminated above the scale set by the boundary.
This allows us to remove explicitly pion effects in the thresh-
old parameters for the OPE potential in an unambiguous and
model independent way. The renormalization group flow im-
plied by our nonperturbative equations is unique provided
the OPE potential is assumed to be valid all the way down to

7Unlike the OPE where one has both an attractive and repulsive
1/r3 singularity (see Sec. IV), in the TPE case one encounters at-
tractive 1/r6 singularities for coupled channels.

FIG. 6. Evolution of the dimensionless short distance boundary conditions at zero energyC0sRd=1−RL 0sRd=1−Ru08sRdu0sRd−1 with the
boundary radiusR due to OPE potential. Top: Singlet1S0 channel(left) and triplet3S1 channel(right) without mixing using Eq.(55). Bottom:
The triplet3S1-

3D1 channel. The coefficientsCss
0 , Csd

0 , andCdd
0 are related to the running scattering lengthsa00, a02, anda22 through Eq.(58).

Large scale(left) and enlarged(right) picture.
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the origin. This is obviously not a realistic assumption but it
is absolutely necessary to go to these small distances in order
to get rid of any finite short distance cutoff effect and prop-
erly define the OPE contributions to the scattering observ-
ables. This result fully complies with the spirit of an effective
field theory: the terms in a low momentum expansion of the
amplitude are shape independent, while the remaining pow-
ers depend both on the long distance OPE details(like the
left branch cut) and the shape independent low energy pa-
rameters themselves.

The short distance behavior of threshold parameters
present either an ultraviolet fixed point structure in the1S0
and 3S1-without-mixing channels, whereas we find limit
cycles for the3S1-

3D1 channel due to the singular and attrac-
tive behavior of the OPE contribution to the tensor potential.
This means that in the latter case there is not a monotonic
trend at short distances. A direct consequence of having both
ultraviolet fixed points and limit cycles for the threshold pa-
rameters is that a delicate fine tuning of the short distance
physics is implied. In addition, for the experimental values of
the threshold parameters one obtains huge changes for dis-
tances below 2 fm when OPE effects are removed. Never-
theless, we find moderate changes in the phase shifts due to
explicit pion effects. Actually, in the 1S0 and
3S1-without-mixing channels the effect is found to be com-
patible with a perturbative treatment. In the3S1-

3D1 channel
the effect is a bit more complicated due to the presence of
ultraviolet limit cycles triggered by the singular character of
the tensor potential; the coupled channel amplitudes are non-
perturbatively renormalizable while they become perturba-
tively nonrenormalizable. This makes a naive perturbative
treatment slightly more subtle. One of the advantages of hav-
ing a renormalizable theory is that nonperturbative equations
make sense, and any perturbative treatment should arise as a
controllable approximation to the full equations. As we have
pointed out along the paper, this is probably an advantage of
using coordinate space methods and a boundary condition
renormalization versus momentum space methods.

Taking into account all the nice features of the present
calculation, in particular, getting a handle on the finite cutoff
corrections, the results presented in this paper are very satis-
factory, suggesting several improvements. Explicit two-pion
exchange contributions are expected to contribute signifi-
cantly at about 1.5–2 fm at the level of the potential, so our
results for the evolution of the threshold parameters should
not be considered realistic below that scale, or equivalently
above c.m. momenta of about 100–150 MeV, as it seems to
be the case. In addition, our description should be enlarged to
include higher partial waves. For peripheral waves one ex-
pects perturbative methods to work since there is a strong
centrifugal suppression of the wave function at the origin,
and perturbative renormalization methods can be applied.
For those the present approach does not have much to say.
Low partial waves, however, are particularly interesting
since a resummation of pion exchanges seems crucial to un-
derstand the data. Work along these lines will be presented
elsewhere[43].

Note added. Recently the work of Ref.[40] appeared on
the web. There, their previous work was extended to take
into account also attractive 1/r2 potentials. The mixed
boundary condition plays an essential role.
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APPENDIX: DETERMINATION OF LOW ENERGY
PARAMETERS AND THE THEORY WITHOUT EXPLICIT

PIONS

An essential ingredient of our formalism is to parameter-
ize the scattering data directly in terms of low energy thresh-
old parameters, such asa, r, andv, defined through Eq.(29).
Unfortunately, besidesa and r0 in the singlet and triplet
channels, the PWA database[33,34] does not provide values
for them. In principle they could be obtained directly from a
fit to the NN data base in the pertinent channels, at suffi-
ciently low energies. Such a procedure turns out to be nu-
merically unstable, particularly for thev parameter, because
it depends very strongly on the energy window chosen for
the fit. We have also tried, with no success, other methods for
the determination of the low energy threshold parameters,
such as evaluation of derivatives within several algorithms.
The reason for the failure has to do with round-off errors
generated by the relatively small number of digits provided
in the NN database. On the other hand, theNN database
provides explicit potentials, some of them local such as the
NijmII and Reid93 potentials, for which the variable phase
approach may directly be applied. In such a way we can
uniquely and accurately determine all the needed low energy
threshold parameters by integrating Eqs.(40) upwardsfrom
the origin to infinity with trivial boundary conditions. Our
results can be summarized as follows for the NijmII and the
Reid93(in brackets) potential.

(1) Singlet1S0 NijmII (Reid93):

a0 = − 23.74s3d, r0 = 2.67s75d, v2 = − 0.48s9d. sA1d

(2) Triplet 3S1 without mixing NijmII (Reid93):

a0 = 5.001s3d, r0 = 1.833,v2 = 0.131s41d. sA2d

(3) Triplet 3S1-
3D1 with mixing NijmII (Reid93):

a = S5.419s22d 1.647s6d
− 6.504s453d

D , sA3d

r = S1.833 0.404s12d
− − 3.522s66d

D , sA4d

v = S− 0.131s41d − 0.274s64d
− − 3.70s80d

D . sA5d

The 3S1 channel without mixing parameters has been ob-
tained from the3S1-

3D1 channel for the3S1 component and
a0=1/sa−1d00, complying with the low energy expansion of
theM matrix, Eq.(29) (although we will be using the NijmII
parameters).
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Once the threshold parameters have been determined,
we can use the coupled channel effective range expan-
sion, Eq. (29), to find out to what extent this expansion
applies. On theoretical grounds we expect this expansion
to converge within the region of analyticity of theS
matrix, which presents a left cut atk= ±imp /2. In Fig. 5
we compare the quality of the ERE including LO, NLO,
and NNLO contributions to the original data of Refs.

[33,34]. As we see, to describe the data within the ERE
approach up to the convergence radiusmp /2 one has to go
at least to NLO. The description of the data belowmp /2
is improved, as expected, with higher orders in the ERE.
Above this region, where OPE should play a role, this
is not necessarily so. Actually, we see that in the3S1 and
E1 channels the NNLO is worse than the NLO approxima-
tion.
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