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A nonperturbative renormalization scheme for nucleon-nucleon interaction based on boundary conditions at
short distances is presented and applied to the one pion exchange potential. It is free of off-shell ambiguities
and ultraviolet divergences, provides finite results at any step of the calculation, and allows us to remove the
short distance cutoff in a suitable way. Low energy constants and their nonperturbative evolution can be
directly obtained from experimental threshold parameters in a completely unique and model independent way
when the long range explicit pion effects are eliminated. This allows us to compute scattering phase shifts
which are, by construction, consistent with the effective range expansion to a given order in the center of mass
(c.m) momentump. In the singletlsJ and triplet3sl-3D1 channels ultraviolet fixed points and limit cycles are
obtained, respectively, for the threshold parameters. Data are described satisfactorily up to c.m. momenta of

aboutp~m_.
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[. INTRODUCTION physics in a nonperturbative and model independent way. As

L . we will show in this paper such a separation can be achieved
Effective field theoriesEFT) are a powerful tool to deal ,qjng renormalization group ideas. However, the issue of

with nonperturbative low energy physics. Over the last yearSI.'eguIarization and renormalization in the present context is

they have provided promising results as regards a systemalgy o o) trivial, particularly if the calculation involves sum-
and model _mdependent underst_andlng of hadronic an ing up some infinite set of diagranisee, e.g., the discus-
nuclear physics. The scale separation between long and Sh%ribns in Refs[17—-20). From a diagrammatic point of view

distance physics m"?‘kes the develppment of a systematiG, mentum space treatments based on nonperturbative analy-
power counting possible. After the original proposal of Wein-giq of the Lippmann-Schwinger equatiph21—-27 are more

berg[1] to design power counting based on applying chiraly 4,51 within a Lagrangian framework and allow explicit

Eerturszﬁtion (;ch_eoryl(ChP'l')_ to theh potential, mjzy w_orr]ks consideration of nonlocal potentials. On the other hand, the
ave followed, implementing such a countify-4,49 wit long rangeNN potentials making use of chiral symmetry

f|n|te. cutofis Or proposing & counting in the renormalized constraints are local, and for those the analysis of nonpertur-
matrix [5,6] which has "’.IISO been pursued to NNIT). The bative renormalization in coordinate space becomes much
relation of bo_th the Weinber@V) and Kaplan-Savag_e-Wse simpler, as will be shown along this work. In addition, the

(KSW) counting has been understood as perturbative expans s ginger equation is a second order operator and mixed

sions about |_nfrared fixed points n the limit of small and boundary conditions define a complete and unique solution
large scattering Ie.ngth$8], respectlvely(seg also Refs. of the scattering problem in the whole space at both sides of
9,10 for a dlsqussmn on long range forces in t.hat context e boundary. This sharp boundary separation of the space is
For systems' with a large scatterln'g length, as It turns out t?laturally formulated in coordinate space for a local potential.
be the case in low energyN scattering, the Weinberg count- Boundary conditions forNN scattering were used many
ing may be modified to itera_te the scattering Iength_ to all ears aga(see, e.g., Ref[28] and references thergjnand
orders, but then the connection to ChPT must be given Ughere has been renewed interest motivated by the develop-
[12]. On the other hand the KSW counting, although SySteMinants within EFT29-31]. Actually, the thorough analysis of

atic, QOeS not converge at NNL{]. In Ref. [13] a new Ref. [31] shows that in the absence of long range forces a
counting [Be_ane, Bedaque_, 3?“’?‘9‘3’ and van KofBig- low momentum expansion of the potential within EFT
SvK)] involving also the chiral limit should be invoked. Ac- framework for the Lippmann-Schwinger equation is com-
cording to these authors, one should treat nonperturbativelkgletely equivalent to an effective range expansBRE) [32]
the NN poten.tial in the chirgl limit and consider finite pion and also to an energy expansion of a generic boundary con-
mass corrections perturpatlvely on top of that. For a recenlision at the origin in coordinate space for the Schrodinger
and more complete review on these and related iSSues Seg,, ation. Moreover, the reference partial wave analysis of
€.g., Ref.[14] and references therein. More recent workSyye Njijmegen groups33,34 uses this method to successfully
supporting the W counting have also appea[rﬁilq. describe the larg&IN scattering database, when long range
__ The practical problem one encounters withil scatter- o nials are used. While in the first works phenomenologi-
ing is the disentanglement between short and long rang al potentials were used, more recent studies consider poten-
tials deduced from ChPT with a rather satisfactory descrip-
tion of the experimental scattering dgtgs]. The minimal
*Electronic address: mpavon@ugr.es boundary radius that can still provide an acceptable
"Electronic address: earriola@ugr.es X’/degree of freedom is aboRs=1.4—1.8 fm. Obviously, if
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the radius cannot be lowered without spoiling the quality ofbranch cuts at small momenta. Our approach yields also a
the fit, the short distance cutoff becomes an indispensablkind of modified effective range expansion, but our long
parameter of the theory, which cannot be removed. The corange piece has a finite rangel/m_. In contrast, we can
responding momentum space cutaff 277/Rg~ 600 MeV is  deal with singular potentials at the origin, and the analyticity
comparable to the one needed in early momentum spac¥ the M matrix around the origin is maintained. This is
treatmentg4]. Within the spirit of an EFT it would actually rather useful in the case 8N interaction since chiral poten-
be more appropriate to take instead largé or equivalently  tials although exponentially suppressed at large distances be-
shorterRgs and to check for insensitivity of results in the come highly singular at the origisee, e.g., Reft39)). In
low energy regime. Thus, there arises the natural questioRefS:[13,39 a square well potential is used to regulate the
whether in fact the EFT program can be implemented regaros-hort dlst'anc.e behavior simulating a smeajédnctlon. The
less of any finite cutoff. renormalization group flow for the potential strength is not

In our previous work[36] we showed that for théS, uniquely defined. This phenomenon is aiso found in the
singlet channel with OPE the boundary radius can be effe theory of self-adjoint extensions of the Schrodinger operators
tively removed without spoiling a good description of thec[42]' In Refs. [9,10 a & shell regulator located at a finite

. ; - distance is assumed as the short distance potential whereas

corresponding phase shift up to theoriori expected center

" fk h h . the long distance piece is solved exactly using a distorted
of mass(c.m,) momentum ofk~m, where the two pion yaye pasis. This formalism has been used to the study of
exchanggTPE) effects should start playing a role. The first renormalization of repulsive singular potentidike 1/r2). A

order differential equation satisfied by the boundary condizommon feature of both regularization schemes is that the
tion of the problem defined in the intervll<r<o as a \aye function at the origin is uniquely determined by the
function of the boundary radius was very helpful, since theregularity condition,u(0)=0. The boundary condition regu-
whole problem could be mapped into a variable phase equaarization that we use in this paper provides a uniquely de-
tion [37] of a truncated potential in the regiond <R with  fined renormalization group flo{ig6], to treat both repulsive
a nontrivial initial condition at the origin, encoding the short ;g attractive singular potentialp3]. In addition, the
distance physics. In this way, the long range pions could bg,yngary condition admits a simple physical interpretation:
eliminated and the evolution of the threshold parameters asif-an pe transformed into a variable phase shift proHia
function of the boundary radius could be determined nonperyith g truncated potential. This interpretation directly pro-
turbatlvely.'ActuaIIy, a trivial ultraviolet fixed point limit for  \ides the nonperturbative renormalization flow of low energy
the scattering length was found nonperturbatively. Remarkparameters and a quite transparent analysis of both infrared
ably, this behavior coincides with the one found in R&2] 55 well as ultraviolet fixed points and limit cyclg43).
within a perturbative treatment. This trivial fixed point at the | this paper we analyze precisely how the energy depen-
origin implies a fine tuning of the short distance physics ingent houndary condition must change as we move the bound-
order to reproduce the physical scattering length. In this paary radius for fixed energy to achieve independence of physi-
per we want to extend our results for the interesting case ofg| gpservables such as scattering phase shifts. By doing so
the triplet °S,-°D, channel. The solution of the boundary e are effectively changing the Hilbert space since the wave
condition problem requires solving a coupled set Offnction in the outer region is defined only from the bound-
Schrddinger equations. Instead of doing so, we p_r_efer to dlary to infinity. An advantage of this procedure is that we
rectly compute the change of the boundary condition by ameyer need to invoke off-shellness explicitly; at any step we
equivalent variable phase approd@] with nontrivial ini- are dealing with an on-shell problem. In addition, we work
tial conditions that encode the short distance phyBS&."  girectly with finite quantities and no divergences appear at
This provides, in addition, a direct and quite transparent conzpy step of the calculation when the boundary radius is taken
nection to renormalization group |de{3f$—_lq._ln th|s_paper to zero from above. Another advantage of our construction,
we do not advocate any power counting in particular. In-a5 it will become clear along the paper, is that we only need
stead, we want to tackle the renormalization problem regarde potentials and physical threshold parameters as input of
less of thea priori assumption that some perturbative expan-the calculation(the cutoff dependence is removed com-
sion might work, since our formalism is flexible enough to pletely, so this is not a parametethis implies, in particular,
treat any power counting. _ that given this information we never have to make defi-
_Related works in spirit to the present one are, besides th@ept perhaps for the determination of the threshold param-
original work of Bethe[32], the work of Ref.[11] and the  gtery: our calculations are predictions for the phase shifts

more recent ones of Reffl3,39 and[9,10. In Ref.[32] @  that are consistent, by construction, with a low energy expan-
modified effective range expansion was defined in the congjgp, up to a given order. Thus, the potential danger of com-

text of Coulomb forces to acount f@p scattering(see also promising the low energy fit due to a global fit up to
Ref. [11] for a more general discussion on long range potenggg peV may be precluded from the start. This shows a
tials and higher partial wavgsbut assuming a regular be- gifference with the standard way of proceeding, where the
hav!or of the wave function at the origin. qu those the ef-|q,y energy parameters are fitted to the phase shifts and the
fective range parameters are not defined, and thgyeshold parameters are then recomputed. Actually, our
corresponding effective range functioM matri) has  analysis is equivalent to making a fit only in the low energy
region, where explicit pions do not contribute, and predicting
For a variable phase treatment of the singlet channel with OPEhe intermediate energy region. We believe this is a possible
and trivial boundary conditions see RE38]. and practical way of learning about the role of explicit pions
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in the NN interaction. Actually, our motivation was partly to Although in the case under study we are interested in, at
see whether OPE can actually be seen in low partial waves imost, two coupled channels, the formalism can be developed

the intermediate energy region/2<k=m_. for the general case with almost no additional effort.
In the present paper we analyze the OPE potential The coupled channel Schrédinger equation for the relative
=2uV and u=My/2), which reads motion reads
|2
U(X) = Ug(r) + SpU+(r) 1 -u"(r) + {U(r) + —2] u(r) =k?u(r), (6)
with (X=X/r) r

S12= 301 X0 X~ 71 02 @ where U(r) is the coupled channel matrix potentidf
and ) ) =diagl4(1,+1), ... Iy(Iy+21)) is the angular momentum,
Ue=— mzMngae " 3) u(r) is the reduced matrix wave function, akds the c.m.
c” 1672 1 momentum. We assume fou(r) the mixed boundary
My e 2 3 conditiorf
— ™ A ’ _ —
Ur= 167-rffr ; (1 + mr + (m,,r)2>’ (4) u’(R) - L (Ru(R) =0, (7)

whereL ((R) is a real Hermitean matrix in coupled channel
space, which in our framework encodes thgknownphysics

at distances below the boundary radiuR. In addition, we
assume the asymptotic normalization condition

whereMy is the nucleon mass), the pion massf . the pion
weak decay constant, awgg the nucleon axial coupling con-
stant. In the numerical calculations below we taki,
=938.92 MeV, f.=93 MeV, m_=138 MeV, andg,=1.25.

Note that the singularity at the origin of the tensor potential U(F) — Ui (F) = UgyT)S, ®)
2
Ur— —SM—Nzg’Z —0 (5)  with S the standard coupled chanr@lmatrix. The corre-
16mfr sponding outgoing and ingoing free spherical waves are
is independent on the pion mass. given by A A
The plan of the paper is as follows. In Sec. Il we present Uoul(r) = diag(hy (kr), ... b (kr) = h*"(R),
the basic object of our analysis, the variaBlenatrix, which ' N
we supplement with general mixed boundary conditions in Uy () = diag(h,‘l(kr), 1hI_N(kr)) —hO(R), (9)

the general case of coupled channel scattering. We also dis-
cuss the role played by the irregular solutions for singular . -, ) ~
potentials in the spirit of an effective field theory. After that With hi(x) the reduced Hankel functions of ordgrhj(x)
we rewrite in Sec. Ill the variabl&matrix equation for the =xHJ,;,,(X) (hg=€*¥), and satisfy the free Schrédinger’s
variableM matrix in a way that the low energy limit may be equation for a free particle,
taken. As a result, we find the boundary radius evolution of 12
threshold parameters. We apply the resulting equations to —UP ) + SUoulr) = K2Ugydr), (10)
determine the low energy threshold parameters from well r
established\N potentials, which we relegate to the Appen-
dix. In Sec. IV we study the short distance behavior of the
threshold parameters. There we show that one has fdighe
and®s,-*D, channels an UV fixed point and a UV limit cycle N
for the scattering lengths. In Sec. V we present our numerical he boundary condition, Eq(7), for the outer boundary
results, both for the threshold parameters as well as for thgalue problem, Eq(6) and Eq.(8), can be interpreted in
15, and®S,-°D; phase shifts. Finally in Sec. VI we present Simple physical terms of a complementanner problem
some final remarks, conclusions, and perspectives for futur&here the potentidl(r) acts in the intervaR<r <co. If we
work. switch off the potential above a given boundary radiuse
have, at the boundary

2
SUL1) + (1) =K (1) (1D

Il. VARIABLE S MATRIX WITH BOUNDARY Li(R) = U’ (RU™(R) = [u/(R) — up {RIS(R][uin(R)
CONDITIONS _ uout(R)S(R)]_la (12)

In order to generalize to triplet states the results of RefWhereS(R) is the S matrix associated to the potentialr)

[36] for the singlet channel case, we introduce the variable tina in th ion &1 <R which inherits the d d

S-matrix formalism for the general coupled channel case. Fo?ﬁ |tr;]g mh e I'r?%IOnndl’r\ r’(\j/\i/E!IsCThm ern Sti ?] ef{’ie]fi] gnbce

potentials that are either regular or singular repulsive at th € chosen bounaary ra 1€ equation satistie y
e variableS matrix can be obtained from Schrodinger’s

origin the procedure is standafd7] and it has many vari- ; . S
ants. For completeness and to make the exposition more sdifiuation applied to the matrix(R), yielding

contained we present here our particular derivation which
also applies to singular attractive potentials and at the same®This is the most general boundary condition that makes the
time introduce our basic notation for the rest of the papercoupled channel Hamiltonian self-adjoint in the interRak r <o,
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2 H l _ _
LR + L (R2=U(R) + % -2, (13 lim W'(R)~ L (Ru(R} =0. (16)

In the case of a singular potential both solutions vanish and
we equally have a unique mixed boundary condition as in
Eqg. (16). Thus, we may define thghort distance $natrix as

the extrapolation to the origin of a given solution at infinity,

From heréitis straightforward to obtain the equation for the
variableS matrix,

. dS(R)

— 7 = NG NG
2ik drR [SRNTR - RIUVR) S;= lim S(R), S=S(«) (general. (17)
R—0"
X [NO(R) - hD(R)S(R)]. (14)  Actually, the precise meaning of the previous limit will be

the main topic of the present work. We anticipate already that

This is a first order nonlinear matrix differential equation thatwe will find ultraviolet fixed points for the singléﬁ) chan-
can be solved by standard means, providedSheatrix is  nel and limit cycles for théS,-*D; triplet channel. Eqg(14)
known at one given scale. One of the interesting aspects afnd(18) are well known in potential scatteriror a review
this equation is that there is no need to invoke any off-see, e.g., Ref37]), but they have always been used assum-
shellness; for any value of the boundary radius we have &g the trivial initial conditionsS(0)=1.
different on-shell scattering problem. As we will discuss be-  Obviously, if one would literally use the fuf matrix and
low, Eq.(14) describes the renormalization group flow of the integrate downwards, nothing could be achieved, since that
Smatrix as a function of the distance sc&evhere the long  would correspond to eliminating the full potential. A more
range potential is truncated. interesting perspective, already pursued in RR&6] for the

In the case of a regular potential, EQL4) has to be singlet 'S, channel, consists of regarding the low energy
supplemented with an initial condition at the origin, namely|imit of the previous equations, extracting the threshold pa-
the trivial one(corresponding to the absence of a poteptial rameters at short distances by integrating downwards from

and its asymptotic value yields the fiimatrix their experimental values and integrate back upwards the
variableS-matrix equation to infinity. Physically, this proce-
S(0)=1, S=8§(x) (regulay. (159 dure corresponds to explicitly separating the OPE contribu-

. : . ._tions on top of any good low energy approximation, like,
In this paper we are concerned with the OPE potential, whic g., the effective range expansion.

has a singular I/ behavior at the origin in théS, singlet In the case of one channel, like th§,, the S matrix can

channel and singular 17 behavior at the origin due to the be parameterized as(k,R)=exf2i(k,R)], with &(k,R)

tensor force in théS-*D; triplet channel. While in the sin- . ) .
glet channel the singularity is a mild one in the sense '[haihe variable phase. Equatiof) becomes rather simp[@7]

there still exists a unique regular solution at the origin, or s waves, yielding

u(0)=0 (like in the Coulomb potentiglin the triplet channel déo(k,R) 1 _

both linearly independent solutions to Schrédinger’s equa- iR :—EU(R)S|n2[kR+ d(k,R)], (18
tion vanish at the origin, and the regularity conditio(®)

=0 does not uniquely specify the solution. and the obvious conditions both at the origin and at infinity

The point of view we take in the present work is that of anmust be satisfied:
EFT; low energy physics should not depend on the detailed . )
knowledge of the interaction at short distances. This applies, L'Lno So(k,R) = ‘%(k)' FL'E!C So(k,R) = 8p(K). (19
in particular, to the case of a singular potential as will also
become clear below. Following the lines already sketched in  The OPE potential in the coupled trip8,->D, channel
our previous work36], we take instead the value at infinity space is given by
as the initial value for the variabl® matrix. Of course, for a
short range potential, this corresponds to start integration at u(r) = < Us(r) - Usd(r) ) (20)
sufficiently large distance@vhere the potential may be ne- Usdr)  Uq(r)
glected. An advantage of this procedure is tigt construc- ~ Where —
tion a unique solutiorS(R) is obtained. Even for a regular Us=Uc, Ugg=2v2Ur, Ug=Uc-2Ur. (21)

pptentlal, Itis clear. that a generic choice 56_00,) cannot The two coupled chann&-matrix can be represented in the
yield by downward integration towards the origin the reSUItBIatt—Biedenharr(BB or eigen phaseparameterization:
S(0)=1 besides the very exceptional cases which acciden-

tally correspond to the regular solution at the origin. Thus,  [cose -sine\[e?% 0 cose Sine
we expect in general an admixture of both the regular anc= 0 &%

irregular solutions, which corresponds to a mixed boundary

), (22)

sine COSe —Sine COSe

condition close to the origin, which will be used along this paper. The relation to the
coupled channel effective range function BF matrix is
given b)f

3An alternative derivation of Eq13), closer in spirit to the renor-
malization group and the Callan-Symanzik equation will be pre-
sented elsewhere in Rg#3]. “In the one channel cagd =k cot 5.
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S=(M +iky(M —ik)™. (23) M(R) =DM (R)D (35)

The low energy limit acquires its simplest form in the Stapp-anq satisfies the equation
Ypsilantis-MetropoligSYM or nuclear barparameterization

- T
( 20 cos E id@+) sin 2;) M'(k,R) = (M (R,k)EJ (kRD l—Y(kR)D)U(R)
= - - I ], (24)
id01*% gin 2 e?%cos %

1 R
X (—j(kR)D‘lM(R,k) —y(kR)D). (36)
which is related to the BB phase shifts by K

The scaledV matrix admits the analog of the effective range

St 5=8.+5, (25) expansion
s a2 I\7I(R):—a(R)‘1+}r(R)k2+v(R)k4+ o, (37
sin(8; — &) = tan2e)” (26) 2

The low energy limit in the SYM representation becomes Wherea(R), r(R), andv(R) are the corresponding running
. . scattering length matrix, effective range, and curvature pa-
8 — — agk, & — — ak®, €— — apk® (27) rameters, respectively. In this form the low energy limit can
. be easily taken. Defining the matrix functions and their low
The scaledV matrix, M, has a good low energy behavior energy expansion
and is defined44] (see e.g. Refl45] for a review and many

references therejrby making an energy dependent transfor- AR) = j(k—R)D—l =Ap+ KA, + KA+ ..., (39
mation k
M =DMD (28) BW(R) =y(kRD=By+k?B,+k‘B,+ ..., (39)

with D=diagk's, ... kN). The scaledVl matrix admits the we get the system of coupled equations
coupled channel analog of the effective range expansion d
—[a(R)]™ =-{[a(R]"A¢+ BaJU(R{Aa(R)] ™ + By},

. 1
M:—a‘1+§rk2+vk4+ (29 dR

d _ _
wherea, r, andv are the scattering length matrix, effective EF(R) ={[a(R)] Ay + BalU(R{r(RIA; + 2[a(R)] A,
range, and curvature parameters, respectively.
+2B,} +{r(RAq + 2[a(R)] A, + 2B,JU(R)

x{[a(R)]'Aq+ By},

Ill. EVOLUTION OF LOW ENERGY PARAMETERS

In order to take this low energy limit and corrections
thereof, we introduce the variable or runnilgmatrix d .
JRVR = (AR Ay + BYURI{-[aR]As+ 51 (RA,

S(R) =[M(R) +ik][M(R) —ik]™* (30)
as well as the reduced Bessel functions +V(R)Ap - B4} + {— [a(R)] A, + %r(R)Az
100 = X510, 910 =xyi(%), (32) +V(R)Ao - B4U(R{[a(R)]*Aq + B}
i.e., jo(X)=sinX, §o(x)=—cosx. Thus, +{3r(RIA, - [a(R]T A, - BJUR{3r (RA,
NI ~[a(R]™A,~B,}. (40)
j=(h®=h0), (32 . .
2i These equations generalize to the coupled channel case those
already found in Ref{36] and have to be supplemented with
1A N some initial conditions, at, e.g., infinity,
-y==(h®+h0), (33
2 a(e)=a, r(x)=r, v(®)=v, (41)
Then we get For the case o§ wave one channel scattering E86) be-
1 A comes
M’(kR) = (EM(k,R)j(kR) -9(kR)>U(R) dM(k,R) sin kR 2
T:U(R) M(k,R) K +coskR| , (42
1. N
X <EJ (kRM (k,R) —y(kR)). (34 where
The running scaled! matrix, M(R), is defined similarly to M(k.R) =k cots(k,R), (43)
Eq. (28), yielding at low energies an effective range expansion,
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1
kcot8(k,R) = - + 1R+ vp(RK3 -+ (44)
a(R) 2
where
%% - Y(R)(ap- RY? (45)
drR Qo )
drg ( R)(ro R )
— =2URR|1-— (= +-—-1], 46
dR ( ) (%) R 3a0 ( )
%:@ }(r_()+i_1>2+2<1_5><_i@+2
dR R [4\R 3a ap/\ 12R R®
1R 1
_1_2020-'-5,)}' (47

These equations have been studied by us in R} for
analyzing the OPE in the singléﬁ) channel.

In the S,-3D; coupled channel case the threshold param-

eters matrices are

az(“‘) aoz), (48)

Qpp Ay
ro r

r:< ° °2>, (49)
fo2 T2

v=<v0 voz). (50)
Uo2 U2

The explicit form of the equations for thi,-*D, running
scattering lengths reads

Reag = 9Uqag, + (g~ RIR (g~ R)Us + 6agoUsd],
15R5a(, = — 15a0,R(~ ag + R)Us + R{45a%, - (a9~ R)
X (= 450, + R)]Usq~ 3ap( - 450, + RO) U,

225R ar) = 22505, RU — 3000,R%(— 45, + R®)Uq
+ (= 45a, + R%)2U. (51)

Note that all three running low energy parametegs agp,

and «, (the explicit R-dependence has been suppressed for

simplicity) are coupled due to the mixing potentiblgg.

PHYSICAL REVIEW C 70, 044006(2004

-RC(R) =C,(1-C) +URR?+I2-Kk?R?.  (53)
Expanding into powers of the momentuaone gets
Cu(R)=Co(R) + KPR2C,(R) + -+ . (54)
For the singletlSD channel we have, in particular,
ap(R)
Co=——. 55
0= R- ag(R) (55

Note that forR— o we have a fixed point behavi&€,— 0
unless @= in which caseCy—1. The evolution of the
boundary condition with the short distance boundary radius
for 381-3D1 in terms of the running scattering lengths is given

by

R(R® - 45«
C=1+— ! 22 . (56)
4505, + (apy— R)(R® — 45a5,)
0 _ 15&02R3
Cey= > 3 , (57)
45a, + (agg— R)(R° — 45a,,)
5(R - apg R®
c3=3 (R= 200 (58)

" 4502, + (ago- R)(R® - 450a)

Again, for R—«~ we have for nonexceptional values of the
parametersC?— 0, C2,—0, and C{j—-2. In Ref.[43] a
more detailed study on these issues will be carried out.

IV. SHORT DISTANCE BEHAVIOR FOR OPE: FIXED
POINTS AND LIMIT CYCLES

In this section we analyze the short distance behavior of
the equations for the scattering lengths for the sindBst
Eq. (45), and the triple’S-®D,, Eq. (51), channels in the
short distance limit. According to E@12) this is equivalent
to study the mixed boundary condition at short distances.
We study first the case of OPE in the singig§ channel.
At short distancefR<1/m,. the OPE potential behaves like
the Coulomb potential. Equatigd5) can be easily solved in
two extreme casesy, <R and «y>R. While in the first case
we get

Thus, it would be inconsistent to take any of them as a con-

stant; exact renormalization group invariance requires mix-
ing between thes andD channels. As we see the mixing is

related both to a nonvanishing of the mixing potentig},

2.2
gAmvTMN 2
R -—— R, <R 59
a’o( ) - 32771:37 &%} (59
in the second case one solution behaves as
1672 1
ag(R) — o @ <R (60)

gam?Mylog(RIRy)’

and a nonvanishing value ofy at a given point. If by some whereR, is a reference scale fulfilinB<Ry,<1/m,_. As we
accident both vanish at a given point, the mixing will vanish.see,a(R) goes to zero in both cases but, while Esp) goes

The evolution of the low energy parameters can be transrapidly «5(R)—0, Eq. (60) goes very slowly and with
lated into the corresponding evolution of the short distanceyj(R) — -« at short distances. In momentum space ke
boundary condition as a function of the boundary radius._, 0 limit corresponds to the ultraviolet limit. Equati@f0)
Defining the dimensionless quantity resembles a sort of asymptotic freedom and hence we have

_a_ 1Dy -1 an ultraviolet fixed point. One can see that the first case, Eq.
CiR) =1 -RL(R) =1~ Ru(RIu(R) (52) (59), corresponds to selecting the regular solution at the ori-

and using Eq(13) we get gin, whereas Eq(60) corresponds to a generic case, which
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always contains an admixture of the irregular solution. The 3Rlyks(R)

regular case at the origin corresponds to integrate from the ap(R) — RRI (R 2’ (67)
o : . L TES - = 3RIwkg(R) +2

origin starting with the trivial initial conditionS(k,0)=0 up

to infinity. As we have discussed in R¢B6] the result cor- _

responds to a pure OPE interaction, with no short distance V2R3 1

interactions. The important thing to realize is that regardless apR) — = 3 3Rlya(R) +2’ (68)

of the value ofey at infinity, removing one-pion exchange

goes into the same value at the origin, as implied by(EQ). s

This also implies that any tiny deviation of thag(R) at small R’ Rlwks(R) -1
e S (69

distances results in huge variations at infinity. Thus, remov-
ing OPE in thelsb channel implies an extreme fine tuning of

the scattering length at short distances, and hence of thaith
boundary condition at the origin.

We turn now to the case of tH&,->D, channel, where the 3 1 [Ry Ru Ry
tensor force plays a role. In the region close to the origin the Riwks(R) = 2 + S\ R € A+ E VR |/
wave function oscillates wildly and hence a WKB approxi-
mation may be used. The calculation is simplified by taking (70)

into account that for the OPE interaction the potential matrixHere A
is diagonalized by am-independent unitary transformation,

153Rlya(R) + 2

is an energy independent phase, &y reference
point, given by

ie.,
_1_ (Yen) -4U+(n) 0 ) 3,1 |Ru
MU |v|1:< , | =—+—-4/— cot(A 71
(r) 0 U(r) + 2U+(r) Rolwie (Ro) 272VR, t(A) (71)
(61) and
with 2
3g°M
1 R = = =16 fm. (72)
-—= 1 2f aa
M=[ V2 (62
\5 1 As we see the scattering lengthg, aq,, and a, present an

oscillatory behavior as we approach the origin, so they do

Note that this transformatiodoes notdiagonalize the full not converge to a well defined value; as we approach the
potentialU +12/r2 including the centrifugal barrier, which for origin the o’s take all possible values. This situation corre-
r—0 may be neglected. Thus, in the short distance limit wesponds to a limit cycle at short distancesway of avoiding
may decouple all our equations into pairs, and in particulathe unbound variation of the scattering lengths consists of
we can apply the transformation to the boundary conditiongoing to the origin stepwise through some envelope subse-
Eq. (7), at zero energy guence defined by a fixed condition fogkg(R). For in-

1 stance, if we define a cycle by the conditiefiR,)=0, we

ML o(RIM = =diagl4(R),1»(R)), (63 haveR Jys(R,) =0, yielding

wherel;(R) andl,(R) are the logarithmic derivatives at zero

energy of thf decoupled pmb!em with pOtentim§:UC We use the term limit cycle in a loose sense as already done in
—4Ur and U,=Uc+2Ur, respectively. After straightforward Ref. [39]. These are to be distinguished from the limit cycles ob-

algebra we get tained for an attractive 17 potential(see, e.g., Refg40,4] and
references therein for a discussion on the context of Efimov states
ay(R) =3 RL(R)(RI(R) + 1) - 2 , (64)  inthe three body problepwhere a logarithmic flow with the regu-
4l5(R) +1,(R(3RI(R) + 2) lator scale is found. This behavior can trivially be seen from the
evolution of the dimensionless boundary condit@yifrom Eq.(53)
\,'ER3 [1(R) = 1,(R) [see also Eq. 14 of Reff36]] in the one channed-wave case at zero
R)=- y 65 A = 2
ag(R) 3 4,R+1.(RGERLR +2) (65  energy. Folu=g/r2 one has
-RG(R) =Cy(R[1-Cy(R] +9, (73
a,(R) = 55 L(R(RL(R) — 1) ~ 21,(R) (66) which formally presents scale invariance explicitly broken by a
2 1541,(R) + 1;(R)(3RI(R) + 2) nontrivial initial condition Cy(Ry). This equation exhibits real and

o . .complex fixed points fog>-1/4 andg<-1/4, respectively. The
Now, as we approach the origin the tensor potential domitatter case corresponds indeed to scale independent ultraviolet limit
nates, and the potential; andU, behave as repulsive and cycles. For more singular potentials the flow becomes “acceler-
attractive 1f2 potentials, respectively, corresponding to tak- ated,” and hence the cycles become scale dependent, although the
ing I, — andl,(R) by the zero energy limit of the logarith- cyclic pattern in the limitR— 0 remains[43] and hence the short
mic derivative of a WKB function, distance fine tuning becomes more acute.
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ao(R,) =0, (74  achieve numerically and preserving reversibility Rg
=0.1 fm, mainly due to computer arithmetic round-off errors
R triggered by the singularity of the potential. One could fur-
ag(R,) = - Al Rn, (75) ther lower the radius by a semiclassical approximation as
6 outlined in Sec. IV since as the origin is approached the

wave function undergoes an increasing number of oscilla-

Rﬁ tions and WKB methods can be applied. Nevertheless, as we
ay(R)=—-—. (76)  will see below, for our short distance cutoff the phase shifts
30 for c.m. momenta up t&=250 MeV are rather stable nu-
merically.
Another possibility would be to takgykg(R,) ==, etc. As we The strong dependence of the low energy threshold pa-

see, there are infinitely many such possibilities, although altameters on the short distance cutoff provides a clue to the
of them go towards the trivial valuesao(0")=aox0")  fact that there seems to be a lower finite limit for the bound-
=a,(0%)=0. Actually, any of the choices correspond to a dif- ary radiusRs=R,,i;~ 1.4 fm [35] with still an acceptable fit;
ferent starting condition at infinity, modulo a cycle. Con-if the boundary radius is lowered, the parameters encoding
versely, if we go to very short dlstance§, where the scatteringhe short distance boundary condition that are used as fitting
lengths vary wildly, any tiny perturbation there results in a,,rameters depend in a nonsmooth wayRanIn addition,
completely different value at infinity. So, we see again thaly,e girong singularity at the origin triggers a fine tuning in

an extreme fine tuning of the threshold parameters at Shofﬁose parameters. According to our previous discussion, this

distances IS requwed.. . L . _short distance fine tuning of low energy parameters is abso-
In practical numerical calculations the finite integration . ,

; . . ... lutely necessary to comply with the independence of the

stepAR provides a given resolution scale, and these infinite . , . .

limit cycles may not be observed due to the rapid oscilla-Scattering amplitude on the short distance boundary radius.

r such a situation, a fit based on successive adiabatic

tions. Instead, one sees the envelope corresponding to t ﬁ . ) : >
stationary points of the scattering lengths. This point will changes oRs becomes impractical since the fitting param-
become clear below, Sec. V. eters do not change adiabatically and also because these pa-
rameters should have to be determined to extraordinary high
precision. In addition, the way how the linfRs— 0 should
V. NONPERTURBATIVE SOLUTIONS be taken differs from channel to channel. Our method pro-
vides a practical way to overcome the difficulty, given the
fact that the boundary radius is taken exactly to zero along
The exact mathematical analysis of the general set ofhe renormalization trajectories while keeping the low energy
equations is rather complicated since we are dealing with ghreshold parameters at fixed values.
nonlinear system of equations. In Rg43] simple cases are
analyzed analytically and the general features that can be
deduced there are consistent with the numerical results we

h i in th k. . .
ave obtained in the present wor In Fig. 1 we show our results for the evolution of the

As we have said the set of equations, E45) and Eq. ) . 1
(51), can be numerically solved. Given the fact that as wi thfeShS'd parameters, ro, and v, in the singlet’s, and
let °S, without mixing (i.e., neglecting the tensor force

approach the origin the tensor part of the potential developgrlp S .
a singularity it is important to carefully check for numerical ch@nnels. The main difference one can appreciate from the
accuracy at short distances. A crucial property that must b omparison Ofl both channels_ IS that while the scattering
fulfilled by any algorithm is that of exact reversibility; i.e., ength for the_z S0 channel exh|b|ts a mqnotomc trend to-
evolving upwards or downwards should be inverse opera¥ards the origin, the scattering length in tfi§; channel

tions of each other. This is a stringent test and, moreover, thg'Ver9€s ata distance of at_)out 0.7 fm. The interpretation of
is fact in our framework is clear; the central part of the

only way to make sure that when the long range piece of th e . N
OPE potential is purely attractive. Thus, by eliminating the

potential is switched on for thigl-matrix integration we have ™ ) X J "
consistency with the effective range expansion up to the relPions down to a certain distance, we are effectively building
some repulsion, until we lose a bound state. An alternative

evant orde(see also beloy We prefer to impose this revers- : S ) ;
iility exactly, independently, on the number of mesh pc)imslnterpretatlon is that as we switch on the OPE potential from

used in the integration, so that any numerical irreversibilityNe Origin up to a certain distance we can accommodate a
bound state above 0.7 fm. With this interpretation in mind,

is merely attributable to computer arithmetic round-off er- . ’ X
rors. This feature will prove extremely relevant when com-"€ _ShOU|d add 180° to th%l phase shift to comply with
Levinson's theorem.

puting the phase shifts below since our calculation require
upwards integration from lower distances. In all calculations

presented in this paper we have checked that the correct 2.3%s,-*D, channel

threshold behavior is obtained. Quite generally, we find

stable results when we take the long distance cutoff to be We finally analyze the tripletS,-®D, channel taking into
R.=20 fm. On the other hand, the lowest radius we caraccount the tensor mixing. In Fig. 2 we show our numerical

A. Evolution of the low energy parameters

1. 15, and 3S, without mixing channels
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FIG. 1. Evolution of the scatterinjﬁJ (left pane) and?’S1 without mixing (right pane) NN threshold parameterg(R) (in fm), ro(R) (in
fm), andv,(R) (in fm®) from the asymptotic values at infinifyhich we take in practic®,=20 fm) when OPE effects are removed down
to the origin.

solutions of the set of Eq$40), starting at sufficiently long located ak=+im_/2, and should be applied only thér@ur
distances(in practiceR,,=20 fm turns out to be adequate formalism can be specifically constructed to avoid such a
and evolving downwards to the origin. Operationally this situation. Once the threshold parameters are determined in
corresponds to eliminate OPE in the triplet channel. We havéhe short distance limiRs— 0, our phase shifts become pure
clearly seen for distances aboRe-3 fm nothing dramatic ~Predictionswithout any additional parameter fittingbtained
happens and a monotonic trend is observed. At smaller dig0 @ given ordek? expansion of the initial condition by in-
tances~2 fm, however, we note a rapid change in the run-tégrating Eq.(42) using the effective range type of initial
ning scattering lengths. Again, a rather flat evolution followscondition,

until the region below 1 fm. An enlargement is plotted in . . 1

Fig. 2. The number of cycles increases without any bound as Ms=M(Ry =-ag + Efskz +vekt e (77)

the origin is approached. This situation is dramatically dif-

ferent from that found in the case without tensor mixing, with Rs— 0. The solution of Eq(42) at R— « gives a solu-
since there OPE produced an ultraviolet fixed point. The sitution, which when expanded in powers ki, exactly repro-
ation we encounter here is not new and has already beeftices ERE to the order imposed by the initial condition, Eq.
described in the context of noncoupled channels. The limif29). Thus, the difference beyond the displayed terms is
cycle structure naturally raises the problem of undefined valmerely attributable to the OPE potential. In what follows we
ues of the short distance parameters as we take the Rmit Use LO, NLO, NNLO, etc., to denote keeping up to the first,
—0. The point is that there is a way of taking the limit S€cond, third order terms in E(7), respectively.

through equivalent points defined by the propeti{R,)
=a(Ry41); any two such points produce identical low energy
parameters at infinity. Thus, the linf&, — o through equiva- . In Fi%. 3 we show_the results for the pha§e shifts for both
lent points produces the same parameters at long distance$b and~S; without mixing channels depending on the num-
The cycles inag, and «, are hardly seen in the plot due to a Per of terms kept in the low energy expansion at short dis-

low resolutionAR compared with the typical cycle spacing. tances. Our results exh_ibit a good_convergence rate. For
comparison we also depict the effective range expansion re-

sults without explicit pions, which is expected to work at low
B. Phase shifts energies only. As we see, the effect of introducing pions
always improves the results. This can be fully appreciated at

The standard way of proceeding would be to determindVNLO, where ERE does a poor job above c.m. momenta
the low energy constants or, equivalently, the short distance"100 MeV, but explicit OPE effects enlarge the energy
parameters directly from a fit to the data in a large energy
range(say up tok~m, where the two-pion exchange left cut ~ erpe fact that only two terms in the expansion, involving the
should start contributingfor the theory with OPE. The low  gcattering length and the effective range only, works so well at high
energy parameters would have to be recomputed, and thgomenta, almost up te~m,, is purely accidental. Actually, in-
description at lower energie&k<m,) might become even cluding the nexw, term in the expansion and fitting it in the region
worse than a pure effective range expangiege, e.g., Refs. k<m_/2 does not reproduce the data for,/2<k<m._, but im-
[46,47). Obviously, this is an undesirable situation. The ef-proves the fit fork<<m,/2. This is obviously an indication of the
fective range expansion is convergent up to the OPE left cureakdown of the expansion beyond the analyticity domain.

1.1s, and ®S; without mixing channels
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FIG. 2. Evolution of the°’Sl, 3D1, andE; NN-threshold parameters from the physical values at infinity down to the origin using the OPE
potential in the short distance region below 1 fm. Scattering lenggtR) (in fm), ap(R) (in fm3), and a»(R) (in fm®). Effective ranges
ro(R) (in fm), rox(R) (in fm3), andr,(R) (in fm®). Curvature parameterg(R) (in fm3), vox(R) (in fm%), anduv,(R) (in fm7). Limit cycles are
clearly visible in thes-wave scattering lengthgy and effective ranges. THg, and3D1 scattering lengthgg, and «, go quickly to zero below
0.25 fm.
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FIG. 3. Predicted phase shifts in tﬂﬁ) (left pane) and the3Sl without mixing (right pane) channels foNN scattering as a function of
the c.m. momentum in MeV. In trﬁsl channel we assume no mixing according to &) when OPE potential is switched on and the initial
condition is a low energy expansion of the matrix at short distancegsee Eq(77)]. LO means keepingsg only, NLO keepingaso and
ros and NNLO keepingrs, o s, andv, s. The short range parameters are directly determined by evolving the low energy parameters from
their experimental values, EgA1) and(A2), ER-LO, ER-NLO, and ER-NNLO corresponds to a pure effective range expansion keeping
ag only, agg andry, anday, ro, andu,, respectively. No further fit is involved. Data are the PWA from R§38,34.
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FIG. 4. The effect of having a finite short distance boundary radius for the OPE potential on top of the effective range effRBsion
We compare the theory with finite rad®i=1.4 fm andR=1.8 fm with the renormalized theo=0. We only show the results for OPE-NLO
for 331, 3Dl, andE; channels. The low energy threshold parameters coincide with those extracted from the Nijmll potential. Data are the
PWA from Refs.[33,34.

range up to about-140 MeV~m_, where we expect ex- fective ranges the curvature parametergan be considered
plicit two-pion exchange contributions to start playing a role.to be small.

2.33,-*D, channel C. Finite cutoff effects

Once the short distance evolution of the low energy pa- Finite short distance cutoff effects in the scattering phase
rameters are known one may compute the phase shifts to asjifts can be seen in Fig. 4 for finite representative rRdii
order of the approximation in &? expansion of the initial =1.4 fm andRs=1.8 fm as compared to the renormalized
condition without any additional parameter fittingy inte-  Rs=0 case, for the OPE-NLO approximatigthe OPE-LO
grating Eq.(42) upwards with a suitable initial condition at a and OPE-NNLO display similar featunesAs one naively
short distance radius. As a matter of fact the practical choicexpects these finite effects increase for larger energies, since
of the radius in the numerical calculation is far from obvious,they probe smaller wavelengths. A very important feature
particularly in the triplet channel case where the low energythat can be deduced from the plots is that these effects are
parameters take unbounded values in an increasingly finaizable for momenta where TPE effects should not play a
scale at short distancésee, e.g., Fig.)2 It is most practical decisive rolem,./2<k<m_. Thus, letting a finite short dis-
to use the WKB approximation to match the numerical solutance boundary radiuRs~ 1.4 fm provides a large system-
tion at a radiuRyykg, Which can safely be taken in the range atic error, already in the region where OPE dominates. Thus,
~0.5 fm. The results for LO(contact terms NLO (k? it is not clear whether TPE can tse=enin the centralNN
term9, and NNLO (k* termg are presented in Fig. 5 and waves with a finite cutoff distance of aboBt=1.4 fm. Of
compared to the partial wave analyiBWA) of Refs. course, one should include TPE contributions in order to
[33,34. As we see the best scheme to take into account thmake a definite statement. In any case, it is worth mentioning
OPE potential corresponds to using the NLO initial condi-that the error band that would be generated by decreasing
tion. This means on the one hand that while the scatteringmoothly the short distance cutoff radiRg does not follow
lengths may be considered large and comparable to the e& monotonic trend, as one might naively expect, i.e., small
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FIG. 5. The effect of including the OPE potential on top of the effective range expafi&Riy). Top paneI.SSl, 3Dl, andE; at LO with
(OPE-LO and without(ER-LO) OPE explicit effects. Middle panel: same but for NLO. Bottom panel: same but NNLO. The difference
between ER and OPE indicates the size of the explicit effects due to the OPE potential¢orit@ct termg NLO (k? terms, and NNLO
(k* terms. In both cases the low energy threshold parameters coincide with those extracted from the Nijmll potential. Data are the PWA from
Refs.[33,34.

variations inRg may generate large changes in the phasehis fact we expect a kind of consistent long distance pertur-
shifts atk~m_. This is mainly due to the onset of limit bation theory to work. The details of such an expansion will
cycles at short distances. be presented elsewhere.

D. Are pions perturbative? E. Evolution of the short distance boundary condition

The discussion of which power counting is the appropri- As we have said, the short distance singularity of the OPE
ate one for the\N interaction corresponds physically to the potential enforces a very precise determination of the run-
guestion whether or not the pion cloud can be considered toing low energy threshold parameters at short distances, and
be perturbative. It is important to realize that within our hence of the boundary condition. We can directly determine
framework we are considering OPE departures from the efthis dependence by using E&5) and Eq.(58). For simplic-
fective range expansion to a given order. Thus, at sufficientlyty and to illustrate the point we just display in Fig. 6 the
low k explicit pion effects can always be considered pertur-behavior of the boundary condition parameters as a function
bative. This is so regardless of the numberkéfterms in-  of the short distance boundary radius in the zero energy
cluded in the initial condition. Actually, the point is rather if limit, both for the singlet'S, and triplet®s; channel without
the low energy threshold parameters can be considered largeixing and for the tripletgsl—?’D1 channel. The fixed point
or small. According to our results in Fig. 5 it seems that theand limit cycle behavior obtained for the running of the low
best possible agreement can be obtained when both the scatergy threshold parameters maps into a similar behavior for
tering lengths and the effective ranges are taken to be largéhe short distance boundary condition. From the picture it is
while other low energy parameters can be taken to be smaltlear that the standard procedure of integrating the
This can be seen in Fig. 5 where the effects of including OPESchrodinger equation upwards from a given short distance
are compared to the ERE to LO, NLO, and NNLO. Givenboundary radius to infinity in order to fit the low energy
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The triplet®S,-*D, channel. The coefficien82, C2, andC{, are related to the running scattering lengilgs aoz, anday, through Eq(58).
Large scalgleft) and enlargedright) picture.

parameters would require a very high precision determina- VI. CONCLUSIONS
tion of a rapidly varying boundary condition in the case of
the triplet®s,-*D, channel. It is clear that a determination of
the Cy constants from a fit to the phase shifts in the low

In the present paper we have analyzed the renormalization
of the OPE interaction in the presence of contact and deriva-
tive interactions of any order fdXN scattering both for the

energy at any given radius from the physical values of the" ) I .
low energy parameters. Actually, our method is equivalent t@?}ove V‘{h'Ch the tOPItE dpotenlt]alltl IS Sslsumf[ahd tto W?rk' 1€
integrate the Schrodinger equation from that short distanc/1€r€ pions aré treated expiicitly. below that scale pions
boundary radius to infinity. In addition, the singular and at_contnbute implicitly to the scattering properties although al-

tractive nature of the OPE potential allows a WKB treatmentwayT '3 co:nblnatlo_n Wltr:j_other effectls t_hat can_r;_otjbidlselr:-
of the short distance singularity, and allows elimination oftangled unless a given distance scale Is specified. Actually,
the finite cutoff radius taking the limR,— 0. Obviously, the ~When the boundary radius goes to infinity, above the pion

present framework can be extended to reanalyze the role &O”Tpt"” wgvelength, we hgve a low energy theory of con-
dact interactions and derivatives thereof. As the boundary ra-

of finite cutoff artifacts, where the short distance behavior isd!US goes b_elo_w the OPE range, we have a theory where
o imilar’ pions are eliminated above the scale set by the boundary.
qualitatively similar. : - ) .

This allows us to remove explicitly pion effects in the thresh-
old parameters for the OPE potential in an unambiguous and
"Unlike the OPE where one has both an attractive and repulsivénodel independent way. The renormalization group flow im-
1/r3 singularity (see Sec. 1Y, in the TPE case one encounters at- plied by our nonperturbative equations is unique provided
tractive 14° singularities for coupled channels. the OPE potential is assumed to be valid all the way down to
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the origin. This is obviously not a realistic assumption but it ACKNOWLEDGMENTS
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amplitude are shape independent, while the remaining pow-

ers depend both on the long distance OPE dettiks the APPENDIX: DETERMINATION OF LOW ENERGY

left branch cut and the shape independent low energy pa-paraAMETERS AND THE THEORY WITHOUT EXPLICIT
rameters themselves. PIONS

The short distance behavior of threshold parameters

presgnt either an ultraviolet fixed point structure in iLISg _ An essential ingredient of our formalism is to parameter-
and “Si-without-mixing channels, whereas we find limit ize the scattering data directly in terms of low energy thresh-
cycles for the’s;-°D; channel due to the singular and attrac- old parameters, such asr, andw, defined through Eq29).

tive behavior of the OPE contribution to the tensor potential.Unfortunately, besidesx and ro in the singlet and triplet
This means that in the latter case there is not a monotonighannels, the PWA databagg8,34 does not provide values
trend at short distances. A direct consequence of having boif them. In principle they could be obtained directly from a
ultraviolet fixed points and limit cycles for the threshold pa- it 1o the NN data base in the pertinent channels, at suffi-

rameters is that a delicate fine tuning of the short distancgienﬂy low energies. Such a procedure turmns out to be nu-

physics is implied. In addition, for the experimental values Of.merically unstable, particularly for the parameter, because

the threshold parameters one obtains huge changes for dis- :
tances below 2 fm when OPE effects are removed. Nevers depends very strongly on the energy window chosen for

theless, we find moderate changes in the phase shifts due E}ée fit. We have also tried, with no success, other methods for
explicit, pion effects. Actually, in the 150 and e determination of the low energy threshold parameters,

3s-without-mixing channels the effect is found to be com- such as evaluation of derivatives within several algorithms.
patible with a perturbative treatment. In tf®-°D, channel The reason for the fa!lure has to do with rogn_d—off errors
the effect is a bit more complicated due to the presence 0generated by the relatively small number of digits provided
ultraviolet limit cycles triggered by the singular character ofin the NN database. On the other hand, thé&l database
the tensor potential; the coupled channel amplitudes are nofyovides explicit potentials, some of them local such as the
perturbatively renormalizable while they become perturbaNiimll and Reid93 potentials, for which the variable phase
tively nonrenormalizable. This makes a naive perturbativeapproach may directly be applied. In such a way we can
treatment slightly more subtle. One of the advantages of hawniquely and accurately determine all the needed low energy
ing a renormalizable theory is that nonperturbative equationghreshold parameters by integrating EGE) upwardsfrom
make sense, and any perturbative treatment should arise ashee origin to infinity with trivial boundary conditions. Our
controllable approximation to the full equations. As we haveresults can be summarized as follows for the Nijmll and the
pointed out along the paper, this is probably an advantage ®eid93(in bracket$ potential.
using coordinate space methods and a boundary condition (1) Singletlso Nijmll (Reid93:
renormalization versus momentum space methods.

Taking into account all the nice features of the present ag=—23.743), 1y =2.67175), v,=-0.489). (Al)
calculation, in particular, getting a handle on the finite cutoff
corrections, the results presented in this paper are very sati€2) Triplet °S; without mixing Nijmll (Reid93:
factory, suggesting several improvements. Explicit two-pion
exchange contributions are expected to contribute signifi- ap=5.0013), ro=1.833,0,=0.13¥41).  (A2)

cantly at about 1.5—-2 fm at the level of the potential, so our . 3¢ 3 : o - N
results for the evolution of the threshold parameters shouléz) Triplet °5,-"D, with mixing Nijmil (Reid93:

not be considered realistic below that scale, or equivalently

above c.m. momenta of about 100—150 MeV, as it seems to = (5.41€{22) 1.6416) ) (A3)
be the case. In addition, our description should be enlarged to B 6.504453

include higher partial waves. For peripheral waves one ex-

pects perturbative methods to work since there is a strong 1.833 0.40412)

centrifugal suppression of the wave function at the origin, r :< - -3 52266))’ (A4)
and perturbative renormalization methods can be applied. '

For those the present approach does not have much to say.

Low partial waves, however, are particularly interesting . (— 0.13141) - 0-27464)> (A5)
since a resummation of pion exchanges seems crucial to un- B - -3.7080) /°

derstand the data. Work along these lines will be presented

elsewherg43]. The S, channel without mixing parameters has been ob-
Note addedRecently the work of Reff40] appeared on tained from the’S;-*D, channel for the’S, component and

the web. There, their previous work was extended to takex=1/(a™)q, complying with the low energy expansion of

into account also attractive 6% potentials. The mixed theM matrix, Eq.(29) (although we will be using the NijmlI

boundary condition plays an essential role. parameters
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Once the threshold parameters have been determinef83,34. As we see, to describe the data within the ERE
we can use the coupled channel effective range exparapproach up to the convergence rading/2 one has to go
sion, Eg.(29), to find out to what extent this expansion at least to NLO. The description of the data beloaw/2
applies. On theoretical grounds we expect this expansiois improved, as expected, with higher orders in the ERE.
to converge within the region of analyticity of th&  Above this region, where OPE should play a role, this
matrix, which presents a left cut &=+im_/2. In Fig. 5 is not necessarily so. Actually, we see that in fi% and
we compare the quality of the ERE including LO, NLO, E; channels the NNLO is worse than the NLO approxima-
and NNLO contributions to the original data of Refs. tion.
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