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The nucleon-nucleofNN) interaction is constructed by means of thenatrix version of inverse scattering
theory. Ambiguities of the interaction are eliminated by postulating tridiagonal and quasitridiagonal forms of
the potential matrix in the oscillator basis in uncoupled and coupled waves, respectively. The obtained inter-
action is very accurate in reproducing tN&l scattering data and deuteron properties. The interaction is used
in the no-core shell model calculations®f and*He nuclei. The resulting binding energies3bf and*He are
very close to experimental values.
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[. INTRODUCTION many body model space cutoff is unclear; additional renor-
_ _ malization is required for typical model spaces that are fea-
Nucleon-nucleor(NN) potentials conventionally referred gjpje. We aim in this paper to have high quality descriptions
to as ‘fealistic’ are derived from the meson exchange theory.of the phase shifts with softer potentials whose cutoff is well-
Modern realisticNN potentials like Bonr(1], Argonne[2],  matched to the anticipated application in many-body sys-
Nijmegen[3], etc., are carefully fitted to the existing experi- tems.
mental data orNN scattering and deuteron properties. Un-  Various microscopic models have been designed for the
fortunately, none of the knowiN interactions provides a studies of few-body systems. It was demonstrated in Ref.
completely satisfactory description of the trinucleon and[10] that all modern realistic microscopic models provide
other light nuclei. To overcome this deficiency, meson ex-approximately the same results for thée ground state. The
change[4] or phenomenological5] three-nucleon(NNN) no-core shell mod_eﬂll,la, which we adopt here, is one of
forces are usually introduced. Impressive progress has bedfiese models. This model can be used not only for the few-
achieved recently in the description of the trinucleon #el  00ody nuclear applications but also, with modern computer
binding energies with realisthiN andNNN forces[6]. How- facilities, for microscopic studies of heavier nuclei with the
ever, theNNN force parameters in such studies are somelumber of nucleons up to A~12[12]. The no-core shell
times fitted to the trinucleon binding and some of them ma){Tody oscillator function series with the aim to describe

not be consistent with the parameters of the two-body inter;
. . . ; bound states and narrow resonances treated as bound states.
action. In one very detailed study, when tRBIN interaction

i h istently with the two-bod The oscillator basis matrices of the modern realidiid
parameters were chosen consistently with the tWo-body Pa;qiantigis are very large and cannot be directly used without
rameters, the three-nucleon force contribution to the ftrito

bindi h 0 b i Rather th severe truncation in the many-body no-core shell model

in '?g ?&?\;ﬁl}; was shown 'I?d N nleg '?\;Wf@ ather h'ar? calculations. As a result, the convergence of the calculations
construct orces, we will deve C.)FN orces in which appears to be slow. This deficiency is conventionally ad-
we exploit the off-shell freedom to improve the description

. . : dressed by constructing the so-calleffective NN interac-
of light nuclei. We defer the development of consisteiNN tion (see, e.g., Refl11]). Ideally the effectiveNN interaction
forces to a future effort.

) . - should reproduce in the finite model space the results of the
Impressive progress using effective field theory has re

tv b ; iew in Ref(8D). Th . infinite model space calculation. In a realistic application, the
cently been repor edsee review in Re [8]). The versions construction of the effectivBIN interaction is a complicated
that provide the most accurate fit to the nucleon-nucleo

; .rbroblem involving various approximations. In the present
prc_)pertles[g] use a momentum-space cutoff_and are St'"work, we do not adopt the effective interaction approach.
quite strong at short distances. The match with the nuClea\’"?ather, we retain the bare interaction and carry out large

space calculations sufficient to obtain converged ground state

energies.
*Electronic address: shirokov@nucl-th.sinp.msu.ru In this contribution, we construct theN interaction by
"Electronic address: mazur@hpicnit.khstu.ru means of theJ-matrix version of inverse scattering theory
*Electronic address: zaytsev@fizika.khstu.ru [13-15. The matrix of theNN potential in the oscillator
SElectronic address: jvary@iastate.edu basis is obtained for each partial wave independently. There-
'Electronic address: taweber@iastate.edu fore, in our approach we derive tiNN interaction as a set of
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potential matrices for different partial waves. We reproduce A very interesting approach is the construction of the low
the experimentaNN scattering data and deuteron propertiesmomentumNN potential Vg, from the realisticNN inter-
with small potential matrices. OUNN interaction can be actions(see the review in Ref21]). The use oV, in the
imagined as an effective interaction since its matrix can bghell model applications still requires the construction of the
directly used in the no-core shell model calculations of lightshell model effective interaction but this problem is simpli-
nuclei. However, oulNN interaction reproduces the energy fied. The effective interaction obtained frowy,,, was used
spectrum and other observables in a many-body system @g,ccessfully in various shell model applicatiofsee, e.g.,
well as deuteron properties ahtN scattering data. From this pet [22]). It is unclear whether this interaction provides the
point of view, ourNN interaction can be treated as a realistic . a0t binding of three-body and four body nuclear systems.

one as well. Our interaction is not related to the meson ex : : : .
) Contrary toV,y,,— rISTP i igned for the dir in
change theory, however, we shall see that we obtain the deghe" mgdel :gpiﬁc%l:ioni forsligr?tsnguceigi or the direct use

teron and scattering wave functions that are very close to the . . .
ones obtained with realistic meson exchange potentials. The paper IS organized as follpws. In the next section we
present the single channétmatrix inverse scattering ap-

The potential derived by thd-matrix inverse scattering i . i .
approach is ambiguous. The ambiguity originates from thdProach, derive ISTP in the uncoupled partial waves, and dis-

phase-equivalent transformation suggested in Ref} (see  CUSS their properties. The derivation and discussion of the
also Refs[17,18, and references thergirThe ambiguity is ISTP properties in the coupled pi\rtlal waves can be found in
e“minated in the prESent approach by a phenomeno'ogica?ec. I”The reSU|tS Of thé" and He Ca|Cu|atI0nS are pre-
ansatz that the potential matrix in the uncoupled partiapented in Sec. IV. A short summary of the results can be
waves is tridiagonal. Therefore, our potentials areerse found in Sec. V.

scattering tridiagonal potential§lSTP). The noncentral na-
ture of theNN interaction is manifested in the coupling of
some partial waves, and the tridiagonal potential ansaty- SINGLE CHANNEL J-MATRIX INVERSE SCATTERING
should be extended to allow for the coupling of these partial APPROACH AND ISTP IN UNCOUPLED NN PARTIAL
waves. We postulate phenomenologically the simplest gener- WAVES

alization of the tridiagonal form of the potential matrix in  tha 3-matrix formalism in the quantum scattering theory
fvas initially proposed in atomic physig®3]. Within the
strictly speaking, it is not correct in the later cpse is just J-matrix formalism, the continuum spectrum wave function

the tridiagonal ansatz that brings us to the scattering wave expanded in an infinite series bf functions. This ap-

functions which are very close to the ones provided by theSroaCh was shown to be one of t.he most efficient and precise
meson exchange realistiN potentials. However, in the methods in calculations of photoionizatifit4—2§ and elec-

case of the couplesd waves we perform a phase equivalent /01 Scattering by atomg27]. In nuclear physics the same
potential transformation to improve the description of the@PProach has been developed independei2#29 as the
deuteron properties. _method of the. harmonic oscillator representation of s_catter_—
The ansatz of a tridiagonal form represents a very ecold theory. This method has been successfully used in vari-
nomical version of an inverse scattering potential in the rela®us nuclear applications allowing for the two-body con-
tive harmonic oscillator basis since it has the minimum numdinuum, e.g., nucleus-nucleus scattering has been studied in
ber of off-diagonal two-body potential matrix elements for athe algebraic version of RGM based on thenatrix formal-
given basis size. More complicated forms are easily imagism (see the review papers Ref80,31)); the effect ofA and
ined and may be obtained either by a unitary transformatiomeutron decay channels in hypernuclei production reactions
[16-1§ from the tridiagonal form or from direct inversion has been investigated in Ref82,33, etc. The approach was
techniques that might be developed for each proposed fornextended to the case of true few-body scattering in R,
The suggested ISTP are used in the no-core shell modeind utilized in the studies of the monopole excitations of the
calculations offH and “He. We shall see that the predicted 12C nucleus in the @ cluster model in Ref[35]. It was also
3H and*He binding energies are very close to the experimenused in the studies of double-hypernuclei in Ref[36] and
tal values. We do not ussNN interactions, yet our predic- of weakly bound nuclei in the three-body cluster model in
tions of the®H and “He bindings are approximately of the Refs.[16-18.
same accuracy as the predictions based on the best realistic The J-matrix version of the inverse scattering theory was
meson exchange two-nucleon plus three-nucleon forces. suggested in Refg13-15. The discussion of the general
Here we would like to mention some recent papers wheréormalism below follows the ideas of Reff13-15, how-
other approaches to the problem of constructing high-qualitgver, some formulas are presented here in a manner that
effective interaction were utilized. The authors of Refs.should be more convenient for the current application. The
[19,20 added phenomenological nonlocal terms to a cutoffridiagonalization of the interaction obtained by the inverse
Yukawa tail of the realistidNN potentials. The obtained in- scattering methods have not previously been discussed in the
teraction reproduces th#d binding energy. The additional literature, hence, the corresponding theory and results are
nonlocal terms do not reduce the rank of the potential energpew.
matrix in the oscillator basis of the underlying realis® The oscillator-basis)-matrix formalism is discussed in
interaction. Therefore, the use of this interaction in the shelfetail elsewherdgsee, e.g., Ref423,37). We present here
model studies requires the construction of the shell modebnly some relations needed for understanding the inverse
effective interaction. scatteringJ-matrix approach.

cases of both uncoupled and coupled partial watlesugh,
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The Schrédinger equation in the partial wave with orbital 7!~ a , (E) + (T\ .~ E)ay(E) + T} s18n1,(E) = 0.
angular momenturh reads ’ ' ' '

8
| -
HW (1) = E¥im(E,1). @ Any solution of Eq.(8) is a superposition of the fundamental
The wave function is given by regularS,(E) and irregularC,,(E) solutions[23,37:
1 . (E) =cos&E)S,(E) + sin 8(E)C(E), (9
Vil ED) = U(E D) Vin(F), @ o & o
r where
where Y, (f) is the spherical function. Within th&matrix | 5
formalism, the radial wave function(E,r) is expanded in Sy(E) = A /$q'”exp<— q_)LIn+1/2(q2)’
an oscillator function series L(n+1+3/2) 2
o (10
W(E 1) =2 an(B)Ry(r), &) |
n=0 at on! q
E)=(-1'4/ 0
where Cl®=CUN v 3T+ 12
2n! r\* Xexp< q2>cp( n—1-1/2,~1 + 1/2:¢%)
=(— 1 n [ (R -5 L T 1 1
Ralr) = VN r e +3/2)<r0) 2
2\ .1/r2 (11)
><exp<— 2_r(2)> n 2(%)' (4) ®(a,b;2) is a confluent hypergeometric functicids], g

e ) ) =\2E, and §(E) is the scattering phase shift.
whereL;(x) is the associated Laguerre polynomial, the 0s-  The wave function in the oscillator representatiay(E)
cillator radiusro=v#A/mw, andm is the reduced mass. All iy theinternal part of the model spacganned by functions
energies are given in the units of the oscillator basis paramu) with n<N, can be expressed through the external solu-

eterfio. o _ _ tion ay,1(E):
The wave function in the oscillator representatay(E) ‘
is a solution of the infinite set of algebraic equations an(E) = GanTh nesne 1) (E). (12
oo The matrix elements
2 (Hyy ~ dwE)ag(B) =0, (5) )
=0 _ (nAYN'[n")
. _ Ca Ly G == 22—, (13)
where the Hamiltonian matrix elemenﬁ%n,—TnnﬁVnn,, the veo Ev—E
kinetic energy matrix elements
are expressed through the eigenval&gsand eigenvectors
l— (n|\) of the truncated Hamiltonian matrix, i.€, and{n|\)
T === Vn(n+1+1/2), 6 : ) (O
nn-1 2" ( ) (63 are obtained by solving the algebraic problem
N
-|-|n’n = %(ZH +1+3/2), (6b) > Hlnn,<n’|)\> =E(n\), n<N. (14
n’'=0

1 The matrix elemengyy is of primary importance in the cal-
Thne1=— E\s’(n +1)(n+1+3/2), (6c)  culation of the phase shifi(E):

Su(E) = GanThns 1S (B)

and the potential energy' within the J-matrix formalism is tan 8(E) = - ) (15)
approximated by the truncated matrix with elements Cni(E) = GunThneaCnie1i ()

- Vlnn’ if n and n'<N; In the directJ-matrix approach, we first solve E¢L4) and

—— 0 fn oo n=N (7)  next calculate the phase sh#E) by means of Eq(15). In

: the inverse scatteringymatrix approach, the phase shifE)

In the inverse scattering-matrix approach, the potential en- is taken to be known at any energyand, instead of solving

ergy is constructed in the form of the finite matrix of the type EQ. (14), we extract the eigenvalu&g and the eigenvectors

(7); therefore theJ-matrix solutions with such an interaction (n|\) from this information.

are exact. First we assign some value i, the rank of the desired
In the external part of the model spagpanned by func- potential matrix[see Eq.(7)]. Generally, with a finite rank

tions (4) with n=N, Eq. (5) takes the form of a three-term potential matrix it is possible to reproduce the phase shift

recurrence relation S(E) only in a finite energy interval; largeN supports a
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TABLE |. Nonzero matrix elements ihiw units of the &w

ISTP matrix in the's, partial wave.
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TABLE lll. Nonzero matrix elements ihw units of the &w
ISTP matrix in the'd, partial wave.

n \/nn Vln,n+1:V:'1+l,n n \/nn VIn,n+1:V|n+l,n

0 —0.370692591051 0.134054681241 0 —0.041824646289 0.038312478836
1 —0.159916088622 0.016474369170 1 -0.112960462645 0.068735184648
2 0.139593205593 —-0.133446192137 2 -0.127611509816 0.040422120683
3 0.266824207307 —-0.078690196129 3 —-0.025546698405

4 0.041490933216

Equations(16) and (20) provide the general solution of

larger energy interval. However, from the point of view of the J-matrix inverse scattering problem: solving these equa-

many-body applications, it is desirable to hdavas small as
possible.

The components,,(E) of the wave function in the oscil-
lator representation, should be finite at arbitrary endfgy
This is seen from Eqg12) and (13) to be possible at the
energiesE=E,, A=0,1,... N only if

ay+1)(Ey) =0. (16)

Knowing the phase shift, we can calculaig.,,(E) at any
energyE using Eq.(9). Therefore, we can solve numerically
the transcendental equati¢h6) and find the eigenvaluds,
A=0,1,...N.

Due to Eq.(16):

an1)(E) — o (E-Ey), (17)
E—E),
where
day.q(E
a|)‘: an+1)(E) (19)
dE E=E,

Now it is easy to derive from Eq$12) and(13) the follow-
ing equation:

ay(Ey) = |<N|)\>|2aI)\TIN,N+1* (19
or, equivalently,
an(Ey)
(NP2 = 5= (20
@ TN,N+1

Within the J-matrix formalism, bothay(E) anday.,(E) fit

tions we obtain the sets &, and(N|\), and these quantities
completely determine the phase shift&€). However,(N|\)
are supposed to be the components of the eigenvegtprs
of the truncated Hamiltonian matritsee Eq.(14)] that
should fit the completeness relation

N
2 <n|)\><)\|n’> = 5nn’7 (21)
A=0
hence, we should have
N
2 (NN = 1. (22)
A=0

Generally the set ofN|\) obtained by means of Eq20)
violates the completeness relati@®). Therefore, this set of
(N|\) ideally describing the phase shifts, cannot be treated
as the set of last components of the normalized eigenvectors
(n|\) of any truncated Hermitian Hamiltonian matrix; in
other words, the set ofN|\) violating Eq.(22) cannot be
used to construct a Hermitian Hamiltonian matrix.

To overcome this difficulty, we fit Eq22) by changing
the value of the componerN|\=N) corresponding to the
highest eigenvalud, . This modification spoils the de-
scription of the phase shiftf E) at energie€ different from
E,, A\=0,1,... N. We restore the phase shift description in
the energy intervdl0,E,-\-1] by variation ofE, . From the
earlier consideration it is clear that largdrvalues make it
possible to reproduce phase shifts in larger energy intervals
[OvE)\=N—1]-

Eq. (9) and can be calculated using this equation at any en- There is an ambiguity in determining the potential matrix

ergy E. Hence, one can also calculatsé by means of Eq.
(18). Therefore, the componentsl|\) can be obtained from
Eq. (20) (the sign of the component®|\) is of no impor-

tance.

TABLE Il. Nonzero matrix elements ikw units of the 7w
ISTP matrix in thelpl partial wave.

n Vlnn Vln,n+1=V!1+l,n

0 0.106199364772 —-0.094411509693
1 0.321832027399 —0.198614230564
2 0.382278903019 —-0.125293001922
3 0.088186662748

describing the given phase shif§E): any of the phase
equivalent transformations discussed in R¢i6-19 [see
also Eqgs.(66)«68) later] that do not change the truncated
Hamiltonian eigenvaluel, and respective eigenvector com-
ponents(N|\), results in a potential matrix that brings us to

TABLE IV. Nonzero matrix elements ihw units of the 7w
ISTP matrix in the'f, partial wave.

n \/nn Vln,n+l=VIn+l,n
0.042387100374 —0.027905560992
0.074740011106 —0.028153835497

N O

0.025116180890
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TABLE V. Nonzero matrix elements ihw units of the 7w

ISTP matrix in the®p, partial wave.

PHYSICAL REVIEW C 70, 044005(2004

ISTP matrix in the®d, partial wave.

TABLE VII. Nonzero matrix elements ihw units of the &w

n \/nn Vln n+1_V:'1+ln n \/nn Vln n+1_V|n+1n

0 -0.136747520574 0.015115026047 0 —-0.200240578055 0.119332193872
1 0.087868702261 —0.105904971180 1 —0.288987898733 0.146304772643
2 0.236248878650 —0.080401020753 2 —0.255222029014 0.079227780212
3 0.049099156034 3 —0.054213944378

the same phase shif&§E) at any energ¥. Additional model  diagonal Hamiltonian matrix elemenﬂfh ne1 are dominated
assumptions are needed to resolve this ambiguity. As waly the kinetic energy so that the sign of these matrix ele-
already mentioned, we assume the tridiagonal form of thenents is the same as the kinetic energy matrix elem'émﬁ
potential matrix. We now discuss the construction of the[see Eqs(6)]. This assumption brings us to the minus sign in
tridiagonal potential matrix supposifg and the sets oE,  the right-hand side of Eq25).
and({N|\) to be known. Now Eg. (230 can be used to calculate the last unknown

If the potential matrix is tridiagonal, Eqg14) can be quantity
rewritten as

HLO) + Hiy(1IN) = E, (O, (233 N=1p) = HNN 1

We now turn to Eq.23b) with n=N-1. This equation
contains one more term than E®3c), however, this term
does not include unknown quantities. We perform with Eq.
(23b) exactly the same manipulations to obtain expressions
for Hy_1n-2 Hi-an1 @nd(N=2|X). Settmgn N-2 in Eq.
o (23b), we obtain the expressions fdy_ 2N-2> Hi- 3N-2>
The unknown quantities in Eq23¢) are the component (N_3|)), etc. Equatlor(ZSa) is needed only to calculate the
<'\|| 1/\) and the Hamiltonian matrix eIemenH*,N 1and jast matrix eIemenH o As a result, we obtain the following
Hin- We multiply Eq..(23¢) by (\[N), sum the result ovex, generalization of Eq(24) valid atn=N, N-1,...,0:
and use the completeness relat{@i) to obtain the formula
for the calculation oHy;

N
Hin = 2 Ex(NIV2. (24)
A=0

——ENNDN) —HW(NRY). (26)

Hi (N = 1) + HL (A + HY oa(n+ 20 = Ex(n|A)
(n=1,2,...N-1), (23b)

Hineo(N = 20 + H NIV = ENY. (239

N
= > Ex(n|\)2. (27
A=0

The equations

The Hermitian conjugate of E@23¢) reads
(NN = DHy -1+ N HG = A NYE,. (23¢)

We multiply Eq.(23¢) by Eq.(23c), sum the result ovex,  and
and use the completeness relat{@i) to obtain the follow- ( N

N
Hin1=— \/EE§<nlx>2—<H'nn>2—(H'n,n+1>2 (29
A=0

ing expression for the calculation &fyy_;: (n=1\)= > Exnin)
A=0

- Hlnn<n|)\> - Hln,n+1<n + 1|)\>)

n,n-1

E EXNIN? = (Hy)?. (25) (29)

are valid ain=N-1,N-2,...,1. Equation$25)—<29) make
Generally, the sign in the right-hand side of E25) is arbi- it possible to calculate all unknown quantities. After calcu-
trary. Here we use an additional assumption that the offfating the Hamiltonian matrix eIementsknn,, we derive the
ISTP matrix elements by the obvious equations

HNN 1=~

TABLE VI. Nonzero matrix elements ihw units of the 7w
ISTP matrix in the®p, partial wave. TABLE VIII. Nonzero matrix elements ik units of the %

ISTP matrix in the’f partial wave.

n Vlnn Vln n+1_V!1+1 n I

0 0.088933281276 -0.092880110751 n Vi Viner= Vlf”lv”

1 0.338999430587 -0.211115182274 0 0.026292148118 -0.013940970302
2 0.361586494817 -0.098285652220 1 0.034636722707 -0.012592178851
3 0.051672685711 2 0.011196241352
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< 40 Nijmegen—II 2 "."\\
————— ISTP, 8hw e
30 Ezperiment —20 -
e
20 S,
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FIG. 1. lsO np scattering phase shifts. Filled circles— FIG. 3. lp1 np scattering phase shifts. Filled circles—

experimental data of Ref3]; solid line—realistic meson exchange experimental data of Ref3]; solid line—realistic meson exchange
Nijmegen-Il potential(See Ref.[3]) phase shifts; dashed line— Nijmegen-II potentia{See Ref[3]) phase shifts; dashed line-#%®
ISTP phase shifts. ISTP phase shifts; dotted line-#8& ISTP phase shifts.

Vlnn: Hlnn_ Tlnn’ (309 ) )

uncoupled partial waves. The phase shifts are seen to be
(30b) better reproduced by ISTP up to the laboratory eneggy
i ) } =350 MeV than by one of the best realistic meson exchange

The earlier theory is used to construct M ISTP matrix  hotentials Nijmegen-Il. Some discrepancies are seen only at
elements in uncoupled partial waves. We use as inpulfhe o6 energies. These discrepancies can be eliminated by us-
scattering phqse shifts reconstructed from the (.expenment{mg largerN values. This is illustrated in phase shifts of odd
data by the Nijmegen grou[pS]. The oscillator basis param- partial waves presented in Figs. 3, 7, 9, 11, and 15. These are
fﬁgrf:r; Alfgtgﬂfzz/). #gg;"g Igctehies Suhsee”d rr}oedegﬁarlrg::rl]at_lggz, the results of the phase shift calculations with thes9STP
oscillatof basis stateS:onf?guration)s With Ses < whyere Yin addition to the #w ISTP phase shifts. It is interesting that
" the differences between thé@ ISTP and % ISTP wave

the single-particle state oscillator quanta=2n;+l;, are in- ¢ . in odd o Il to b :
cluded in the calculation. Thus, to be applicable tgpathell ~ functions in odd partial waves are too small to be seen in
Figs. 4, 8, 10, 12, and 16 even at large energies. We note also

nuclei in accessible model spaces, we suggest the ad X > 3
7ho ISTP, i.e., the rank of the ISTP matrlX is chosen so  that the use of 7w ISTP instead of 8w ISTP in the’H and
that 2N+1=8 in the partial waves with even orbital angular “He calculations, result in negligible differences of the bind-

momentum| and N+I=7 in the partial waves with odd ing energies, wave functions, etc. The ISWP scattering
orbital angular momenturh wave functions at different energies are very close to the

The nonzero matrix elements of the obtained ISTP in unNijmegen-Il wave functions both in odd and even partial
coupled partial waves are presented in Tables |-Vt ~ waves. In other words, these ISTP wave functions can be
hw=40 MeV unity. regarded as realistic.

In Figs. 1-16 we present the results of the phase shift and
scattering wave function calculations with our ISTP in the

| — ! _ 7l
Vn,nil_Hn,nil Tn,nil'

w
~ 1.5 *é
E P 2 g
3 == o]
. 4 ~
£0 ///I AN 10 ©
1 7, N\ V. ~
© Lo \\ N 50 4 —
~—~ rs 2V 4 &
— %% ‘\ D\ Y Eq“
E: 00 L > N 4 L Vi —
& 0 1 e}

\g /r (fm)

250 Nigmegen—IiI
Nijmegen—IT
----- ISTP, 8hw -15
-1.5

FIG. 4. lp1 np scattering wave functions at the laboratory ener-
FIG. 2. lso np scattering wave functions at the laboratory ener-giesE,=2, 10, 50, 150, and 250 MeV. Solid line—realistic meson

giesE»=2, 10, 50, 150, and 250 MeV. Solid line—realistic meson exchange Nijmegen-Il potentiglSee Ref.[3]) wave functions;

exchange Nijmegen-ll potentialSee Ref.[3]) wave functions; dashed line—#w ISTP wave functions; dotted line—+#% ISTP

dashed line—ISTP wave functions. wave functions.
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FIG. 5. ld2 np scattering phase shifts. See Fig. 1 for details. FIG. 7. 1f3 np scattering phase shifts. See Fig. 3 for details.

Ill. TWO-CHANNEL J-MATRIX INVERSE SCATTERING 1
APPROACH AND ISTP IN COUPLED NN PARTIAL v=2 FUr(E,r)|F>, (31
r

WAVES
In the case of the nucleon-nucleon scattering, the spins O\yhereﬂ“) is the spin-angle wave function which includes the
two nucleons can couple to the total SiBR0 (sig’ let s F?n Spin variables of two nucleons coupled to the total spin
P 9 P =1, the spherical functiomrm(f), and the coupling of the

statg or to the total spirS=1 (triplet spin statg In the case . X P
of the singlet spin state, we have only uncoupled partithannel orbital momenturt} with the total spinS into the

waves in the nucleon-nucleon scattering. In the case of thg)tal angular momenturyt ur(E,r) is the radial wave func-

triplet spin state, the total angular momentjyai +1 can be tion in the given formal cr_lanndF:{IF,j}. Gt_enerally there_
obtained by the coupling of the total sp8+1 with the or- are two independent solutions for each radial wave function

bital angular momentunh. On the other hand, the higher Ur(E.r). To distinguish these solutions it is convenient to
triplet-spin partial wave of the same parity with the orbital ©MPloy theK-matrix formalism associated with the standing

angular momenturt =I+2, can have the same total angular Wave asymptotics of the wave function

momentumj=l+1=l"-1. Such partial waves are coupled qr qr ar
due to the noncentral nature of tiNN interaction. Thesd urery(Er) — —{@F_ j'r<_) - Krr.(E)Wr(—)]
coupled partial waveghe coupling of thé’'s; and®d, partial ' r—=To ' l'o ' r

wave$ andpf coupled partial waveghe coupling of thé'p, (32)

and3f2 partial waves are of special interest for applications. ] o ) ) )
The case of thed coupled partial waves is of primary im- Here the indeX’; distinguishes independent radial functions

portance due to the existence of the onlybound statgthe  Ura)(E.r) in the channel’, Krr,(E) is the K matrix, and
deuteron. The coupled equations describing tR&l system  Ji(X) andni(x) are spherical Bessel and Neumann functions.
in the coupled partial waves, are of the same structure witihe advantage of th&-matrix formalism is that the radial
the coupled equations describing the two-channel system. Ifunctions urq)(E,r) defined according to their standing
other words, the description of the coupled waves inNinNe  wave asymptotic$32) are real contrary to the more conven-
scattering is formally equivalent with the description of thetional S'matrix formalism with complex radial wave func-

two-channel scattering. tions which are asymptotically a superposition of ingoing
The wave function in the coupled waves case is and outgoing spherical waves. Thématrix Kpri(E), of
—~ 15 —~ 15 ‘ ‘ ‘ ‘
2 2 s 250 150
: : 50
e e
~ ~
3 10 &
g ~ 10
£ 0.0 —= : S 0.0
5 0 1 2 3 4 5 0 1 2 3 4 5
K 7 (fm) g 7 (fm)
.. _ Nigmegen—II
Nijmegen—II
----- 1STP, Bhas N - A o
-1.5 -1.5

FIG. 6. ld2 np scattering wave functions at the laboratory ener-  FIG. 8. 11‘3 np scattering wave functions at the laboratory ener-
giesE,p=2, 10, 50, 150, and 250 MeV. See Fig. 2 for details. giesEup=2, 10, 50, 150, and 250 MeV. See Fig. 4 for details.
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FIG. 9. 3p0 np scattering phase shifts. See Fig. 3 for details. FIG. 11. 3p1 np scattering phase shifts. See Fig. 3 for details.

course, can be expressed through$traatrix. However, it is Np N/ ,
not theS matrix but the so-called phase shiffs and &, in V=2 > [NV (n'T|. (34)
each of the coupled partial wavésandI'; and the mixing I I’ n=0n'=0

parametere that are usually published as functions of the

energyE in the experimental and theoretical investigations. - ) . )
The S matrix can be parametrized in terms &f, &, ande. ~ HereVy, =(nl'|V|n'T") is the potential energy matrix ele-
However, for the present application it is more convenient tonent in the oscillator basis

express th&-matrix elements directly througéy, 5Fi ande
(see Refs[39,40): Inl) =Ry, ([T, 35)
tan &, + tarfe - tan &

KsdE) = , (339
1-tarfe - tans;- tand where the radial oscillator functioRy (r) is given by Eq.
_ (4) and|T") is the spin-angle function. Different truncation
Kgd(E) = tan & + tarfs - tan &, (33b) boundariedN can be used in different partial wavEs

The multichannel-matrix formalism is well knowr{see,

e.g., Refs[23,37) and we will not discuss it here in detail.
tane The formalism provides exact solutions for the continuum
COS 8, - C0Sdy - (1 —tarfe - tan &5 - tan &) spectrum wave functions in the case when the finite-rank
(339 potential V of the type(34) is employed. In the case of the
discrete spectrum states, the exact solutions are obtained by

To be specific, we have specified the case of the cougpded the calculation of the correspondiggmatrix poles as is dis-
waves where the channel indexésndT’; take the values  cussed in Refd.17,18,34. In particular, the deuteron ground
or d. In the case of the couplgaf waves, one substitutes the state energyey should be associated with tf&matrix pole
indexess andd by the indexegp andf in the earlier expres- and its wave function is calculated by means of dh@atrix
sions and in other formulas in this section. formalism applied to the negative enerByE,.

Within the inverse scattering-matrix approach, the po- Within the J-matrix formalism, the radial wave function
tential in the coupled partial waves is fitted with the form  upr)(E,r) is expanded in the oscillator function series

1-tarfe - tané, - tan

Ksd(E) = Kyd(E) =

~ 15 ~ 15
[2) [2)
+ +
o=l o=l
=] =]
=] =]
o o
[ [
© ©
N’ N’
—~ —~
& &
8 8
§ §
Nijmegen—IT Nijmegen—IT
------------ ISTP, Shw e ISTP, Qhaw
-15 -15

FIG. 10. 3p0 np scattering wave functions at the laboratory en-  FIG. 12. 3p1 np scattering wave functions at the laboratory en-
ergiesE,=2, 10, 50, 150, and 250 MeV. See Fig. 4 for details. ergiesE,=2, 10, 50, 150, and 250 MeV. See Fig. 4 for details.
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FIG. 13.3d2 np scattering phase shifts. See Fig. 1 for details. FIG. 15. 3f3 np scattering phase shifts. See Fig. 3 for details.

> vectors(nI'|\) of the truncated Hamiltonian matrix, i.eE,
urcr)(E.T) => anr(r,) (E)Ry (). (36)  and(nT'|\) are obtained by solving the algebraic problem
n=0
In the external part of the model space spanned by functions Nr/ o
(35) with n=Nr, the oscillator representation wave function E 2 H,, (0'T'[\) =E(n[|N), n<Nr. (40)
anp(pi)(E) fits the three-term recurrence relati). Its solu- I’ n'=0
tions corresponding to the asymptoti@2) are
I’ _ . . . . )
Bt (E) = drr, S, (E) + Kpr, (E)Cyy (E). (37) rI—r|1(2rnetSHm, =(nl'|H|n'T"’) are the Hamiltonian matrix ele
Equation(37) can be used for the calculation efr)(E) Within the inverseJ-matrix approach, we start with as-

signing some values to the potential truncation boundaries
the mixing parametes are known. Nr [see Eq(34)] in each of the partial waveB. As a next
The oscillator representation wave functief(E) in  Step, we calculate the sets of eigenvaléigsand respective

the internal part of the model space spanned by function§igenvector componentrI'(x). This can be done using
(35) with n=<Ny, can be expressed through the external osthe set of theJ-matrix matching conditions which are ob-
cillator representation wave functioag, ., rr(E) as tained from Eq(38) supposingh=Nr. In more detail, these

' matching conditions aréto be specific, we again take the

anrr)(E) = > gg{,; TL{F’,’NrﬁlaNr,ﬂ,rr(ri)(E). (38)  case of the couplesidwaves so the channel indexésndl;
l"!

with n= Ny if the coupled wave phase shif& and 5Fi and

take the values or d):

The matrix elements o
anss(B) = > Gar T N1+ 9(B), (418

N ! ! ! !
I o_ (nCI\")(N'[n'T) I'=sd
Gy == 2 T E_E (39) °
A'=0 A
where N=Np+Np,+1, are expressed within the direct aNdd(S)(E) => gdr,T{,'F,’Nr,ﬂaNF,ﬂyr,(S)(E), (41b)
J-matrix formalism through the eigenvalu&g and eigen- I'=sd
—~ 15 ‘ —~ 15 ‘ ‘ ‘ ‘
3B 250 2 3f, 250 150
) )
g g
~ ~
& &
& & 0.0
8 5 0 1 2 3 4 5
3 F r (fm)
Nijmegen—IT
----- ISTP, 7hw
------------ ISTP, 9hw
-1.5 -1.5

FIG. 16. 3f3 np scattering wave functions at the laboratory en-

FIG. 14. 3d2 np scattering wave functions at the laboratory en-
ergiesEp=2, 10, 50, 150, and 250 MeV. See Fig. 4 for details.

ergiesE;p=2, 10, 50, 150, and 250 meV. See Fig. 2 for detalils.
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FP F

FIG. 17. Structure of the ISTP matrix in the coupletiwaves
and of the Version 0 ISTP in the coupled waves. The location of

nonzero matrix is schematically illustrated by solid lines.

ans@(E) = 2 Garr T, npsa@nprr@(E), (410

I'=sd

and

ang(B) = 2 Gar Ty, wp i@ @(B), (410)

I''=sd

where we introduced the shortened notation

N (NFTI YOV NG T

T’
Grrr =GN ,:_2
T N E)\r - E

(42)

To calculateay, rr,)(E) anday .1 rr,(E) entering Eqs(41),

we can use Eq(37) with the K-matrix elements expressed

through the experimental data by E@83). Therefore,Ggg

Gsa» Ggs aNdGyq are the only unknown quantities in Eq41)
and they can be obtained as the solutions of the algebraic

problem(41) at any positive energiz.
These solutions may be expressed as

_ AJF)
9= 15 A(E)’
NgNg+1
G = Aqo(E)
dd= 9 =
Tﬂld,Nd+1A(E)
and
r0\“““Est
G d= gd == )
) ) 2TSNS,NS+leNd,Nd+lA(E)
where

AE) = [Sys(E) + Ked E)Cy s (E)[Sy 1)

(433

(43b)

(430

+ Kad E)Cnyyr1 o E)] — KE(E)Cyys(E)Cpy 1. (E),

(44a)

PHYSICAL REVIEW C 70, 044005(2004)

B4 E) =[Sy s1.o(E) + Kl E)Cry a1 o E Sy (E)
+ Koo E)Cryya(E)] = KEH(E) Cry o1 (E)Cyo(E),
(44b)
and
A(E) =[Sy14E) + Kd E)Cy1 BV [Suyra o E)
+ Kgd E)Cnyyr1. o E)] ~ KE{E)Cpy o1 (E)Cpy 1 o).
(440

To derive Eq(430), we used the following expression for the
Casoratian determinaip4,37:

roV’E
2Tln,n+l
(45)
It is obvious from Eqs(42) and(43) that the eigenvalues
E, can be found by solving the following equation:
A(E,) =0. (46)

The eigenvector componentisi:I'|\) can be obtained from
Eqgs.(433 and(43b) in the limit E— E, in the same manner
as Eq.(20) in the single-channel case

KHC,S) = Cpia)(E)Su(E) — Sp1)(E)Cri(E) =

AE)
NsSIM)? = == (47)
TﬁIS,NS+lA)\
and
Ayy(E
(N2 = el (49
Td A)\
Ng,Ng+1
where
dA(E
A= —d(E) | (49)
E=E,

Equations(47) and (48) make it possible to calculate the
absolute values ofNs|\) and (Nq4d|\) only. However, the
relative sign of these eigenvector components is important.
This relative sign can be established using the relation

(NSIMTR N1 Cangae(EN  angrae (B
(NdVT s Bvgtss(B) angasa(EY

(50)

that can be easily obtained from E@41).

Using Eqs(46)—50) we obtain all eigenvalues, >0 and
corresponding eigenvector componergtsrI'|\). For ex-
ample, in the case of the couplgd waves when theNN
system does not have a bound state, all eigenvdhyjesre
positive and by means of Eq&16)—(50) we obtain a com-
plete set of eigenvaluds, =0,1, ... N and the complete set
of the eigenvector’s last componerts;I'|\) providing the
best description of the “experimentalibtained by means of
phase shift analysighase shifts;(E) and 85(E) and mixing
parameters. However, as in the case of the uncoupled

044005-10
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TABLE IX. Nonzero matrix elements ihw units of the 7w

ISTP matrix in thepf coupled partial wave.

VPP matrix elements
P
45

>

PP —\/PP
Vn,n+1_Vn+1,n

0 —-0.083205863022 0.068281300876
1 —0.173387478975 0.097104660674
2 -0.163079253268 0.047370054433
3 —-0.025144490505

V:fn, matrix elements

if i _\ff

n Vnn Vn,n+1_Vn+1,n
0 -0.018607311796 0.008146529481
1 -0.012301122585 0.002878668409
2 -0.002274165032

VP matrix elements
n Vﬁ,fn—lzvrfﬁl,n VEL:VL’%
0 0.031138374332
1 -0.027310965160 0.026548899815
2 —0.005320397951 —0.007039900978
3 0.009906839670

PHYSICAL REVIEW C 70, 044005(2004

oy}
o
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—
(o]

Nijmegen—II
————— ISTP, Thw
~~~~~~~~~ ISTP, Qhw
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FIG. 18. 3p2 np scattering phase shift§, (coupledpf waves.
Filled circles—experimental data of Rdf]; solid line—realistic
meson exchange Nijmegen-II potent{&@ee Ref[3]) phase shifts;
dashed line—flw ISTP phase shifts; dotted line-£& ISTP phase
shifts.

In the case of the couplestl waves, thenp system has a
bound stat€the deuteropat the energy, (E4<0) and one
of the eigenvalueg, is negativelE;<0. We should extend
the above theory to the case of a system with bound states.
For the coupledd waves case when thegp system has only
one bound state, we need three additional equations to cal-
culateEy and the componentdNs|\=0) and(Nyd|\=0).

The deuteron energ¥#, should be associated with the

waves, we should take care of fitting the completeness relas matrix pole. As it was already noted, the technique of the
tion for the eigenvectorsnl'|\) that in the coupled wave g matrix pole calculation within the-matrix formalism is

case takes the form

N
DTN NTY = S Srpr - (51)
A=0

discussed together with some applications in REfg,1§.
In the case of the finite-rank potentials of the ty[3d), one
can obtain the exact value of the bound state en&ggand
the exact bound state wave function by tBenatrix pole
calculation within theJ-matrix formalism. To calculate the

Due to Eq.(51), in the two-channel case, we should performs matrix, we use the standard outgoing-ingoing spherical

variation of the component®I'|\) associated with the two

largest eigenenergids,_y and E,_y-; to fit three relations

N

wave asymptotics and the respective expression for the
J-matrix oscillator space wave function in the external part
of the model space discussed, e.g., in R¢19,18,34,37
instead of the standing wave asymptot{&2) and respec-

AEZO<NF1F1|)\><)\|NF1F1>= L, (529 tively modified expression37) for the J-matrix oscillator
space wave function. Using the expressions for the multi-

N

2 (Np TiNNR ) =0, (52b) g °

A=0 = *p—2f2

&

and N S

N S RS -

2 (Np,To NN, T = 1. (520) L

A=0
This immediately spoils the description of the scattering data }%’}?"’gﬁn‘”

. . R T T . At » A

that can be restored by the additional variation of the Y S ISTP, 9hw
eigenenergies, -y and E,—y_;. As a result, in the case of 0 *  Ezperiment

the coupledpf waves, we perform a standard fit to the
data by minimizing x> by the variation of (Npp|N=N),
(Npp|A=N-1), (N¢f[A=N), (N¢(f|A=N-1), E,-y and
E,-n-1- These six parameters should fit three relati3®),

044005-
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FIG. 19. 3f2 np scattering phase shiftg (coupledpf waves.
hence, we face a simple problem of a three-parameter fit. See Fig. 18 for details.
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waves. See Fig. 18 for details.

D(E) = [CRA(E) = GesTRn+1Ch 1 (E)]
channelS-matrix within theJ-matrix formalism presented in

(+ (+)
Refs.[17,18,34,37, it is easy to obtain the following expres- X[CNdd(E gddTNd N+ 1N+, o)
sions[14] for the two-channeE-matrix elements: _ gngﬁ‘s:NsﬂTdedeﬂ (J)+1 s(E)CN L1 (E) (54
Se= ){[d (E) = GeTi N 1CN L1 E)] o

><[C<N*dd<E> = GadThngr1Ch b1 o(B)]

(+)
. I (E) =Cn(E) £iSy(E). (55
_gngils,NsﬂT Nd+lCN +1s(E)C§\|;+1,d(E)}, (533 I S

We need to calculat@ (E) at negative energg=E,4 which

Sye= _{[ = Gl ns1C k1 (B can be done usmg_q§55) (10), and(11) where imaginary
D(E) st T values ofq=0q4=iV2|E4 are employed. Extension of these
=0y d ploy
« C E) - -|—d c) . (E expressions to the c.omplexplane is discussed in RG[B4].
[CNGE) = GaaThy 1o )] Since we associate the deuteron enefgy with the
gszN N ﬂld,Nd §\|+)+1 s(E)CN )1 (E)}, S-matrix pole, from Eqs(53) we have
53b
(53D D(Egy) =0. (56)
and
iro\fﬁgsd Assigning the experimental deuteron ground state energy to
Sg= Sus= ~ “DE (530  E4in Eq. (56) and substitutindd(Eg) in this formula by its
expression54), we obtain one of the equations needed to
where calculateE, (Nss|A=0) and(Nyd|\=0).
—~ 0.1 —~ 0.8 w \ ‘ ‘
;aé — 2 MeV -aé =21, E, =10 MeV
J J
a a
- -
K K
S S 04
£ £
3 3
Usny)
0.0 0.0
4 5 4 5
7 (fm) 7 (fm)
FIG. 21. Large components,p(E,r) and us(E,r) of the FIG. 23. Large components,y(E,r) and uqs(E,r) of the
coupled pf wavesnp scattering wave function at the laboratory coupled pf wavesnp scattering wave function at the laboratory
energyE,,=2 MeV. See Fig. 18 for details. energyE;;,=10 MeV. See Fig. 18 for details.
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coupled pf wavesnp scattering wave function at the laboratory | d f' ma compongntsp(f)( ,rf) an U (p)( h,r)lob the
energyE ;=10 MeV. See Fig. 18 for details. coupled pf wavesnp scattering wave function at the laboratory

energyE,;,=50 MeV. See Fig. 18 for details.

Two other equations utilize information about the
asymptotic normalization constants of the deuteron bound Clearly
stateAs and.Ay. If the Smatrix is treated as a function of the '
complex momentuny, then its residue can be expressed
throughAg and A4 [41,42:

in the case of couplextl waves, we should also
fit the completeness relatiq®l). We employ the following
method of calculation of the sets of the eigenvaligsand
the componentgNgs|\) and (Nyd|\). The E, values with
- N=1,2,... N-2 are obtained by solving E¢46) while the
iResS |, =ro€2 M4 A (57)  respective eigenvector's last componentdls|\) and
E (Ngd|\) are calculated using Eq§47)<50). Next we per-
(the factorr, in the right-hand side originates from the use of form a x’ fit to the scattering data of the parametds
the dimensionless momentug). A and =Aq/ A are de-  Exn-1. Exone (NsS|A=0), (Nss[A=N-1), (Nss|]A=N),
termined experimentally. Therefore, it is useful to rewrite (Ngd|A=0), (Ngd|Ax=N-1), and(N4d|\=N). These nine pa-

equationg57) as rameters fit six relationé52a—(520¢), (56), (58a, and(58by),
i.e., we should perform a three-parameter fit as in the case of
i im (- gy Sys=roA? (589  coupledpf waves.
qﬁ'qd

Now we turn to the calculation of the remaining eigen-
vector componentél’|\) with n< Ny and the Hamiltonian

and . M’ . -
matrix elementdd . with n<Np andn’ <N, entering Eq.
i lim (a=i -t 2 58b (40). The couple_d waves Hamil_tonian matri_x obtai_ned by the
qﬂiqd(q A Ssa= ~To7As (580) generalJ-matrix inverse scattering method is ambiguous; the

ambiguity originates from the multichannel generalization of
SubstitutingSys and Sy by its expressiongs3) and(54), we  the phase equivalent transformation mentioned in the single
obtain two additional equations for the calculation &  channel case. As in the single channel case, we eliminate the

(Nes|A=0) and(Nyd|x=0). ambiguity by adopting a particular form of the potential en-
ergy matrix.

;‘g 1.5

5 ~ 1.5 : : : ‘

; *g p=fe _ Fu = 150 MeV

5 1.0} e S

= £

&

s =

= &

;?f 0.5} & 0.0

0.0 .
0 1 2 3 4 5
7 (fm) -15

FIG. 25. Large components,p(E,r) and us(E,r) of the FIG. 27. Large components,y(E,r) and uys(E,r) of the
coupled pf wavesnp scattering wave function at the laboratory coupled pf wavesnp scattering wave function at the laboratory
energyE;,,=50 MeV. See Fig. 18 for details. energyE;;,=150 MeV. See Fig. 18 for details.
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FIG. 28. Small componentsiy(E,r) and ug(E,r) of the FIG. 29. Large compongntap(p)(E,r) and ugr)(E,r) of the
coupled pf wavesnp scattering wave function at the laboratory coupledpf wavesnp scattering wave function at the laboratory
energyE.,,=150 MeV. See Fig. 18 for details. energyEp=250 MeV. See Fig. 18 for details.

As in the case of uncoupled partial waves, we construct — Hy  -1(Ns= 1,8]\) + HR?\ (NsSIN) + Hﬁ,‘:Nd<Ndd|>\>
8w ISTP in the coupleddwaves. Therefore, - +1-=8, or
2N;+0=8 and Ny+2=8; hence,Ns=N4+1. In the coupled =ExNs\), (599
pf waves, we constructitv and %o ISTP; clearly we again

haveN,=N;+1. Thus, the potential matrblg,' has the fol-  gpg
lowing structure: the submatriceé;rrl, coupling the oscillator
components of the same partial wave are quadrig.,

(Np+1) X (N,+1) submatrixVPP, in the ®p, wavel while the HRE - 2(Ns = L8N + HP N NSV + HRE y-2(Ng = 1,00

submatriceS/E,f,’ with ' #I"" coupling the oscillator compo- + HﬂENd<Nddp\> = E,(Ngd|\). (59f)
nents of different partial waves ar@Np+1) X N or Nr

X (Nr+1) matrices[e.g.,(Ny+1) X (Np) submatrixVE;, cou-

pling the3p2 and3f2 waveg. Our assumptions are: we adopt Even though this set of equations is more complicated than
(i) the tridiagonal form of the quadratic submatriéds, and ~ Set(23) discussed in the uncoupled waves case, it can be
(i) the simplest two-diagonal form of the nonquadratic SUb-SOImJCIjtimI tir;]e SEans]e ggan;‘r?g 500 by (N.s|A) and(Nad|n)
matricesvgrf, with I'#I"" coupling the oscillator compo- plying Egs. (599 ( YANSS d '

! ) summing the results over and using the completeness rela-
nents of different partial waves. The structure of the ISTR;;,, (51) we obtain

matrices in coupled partial waves is illustrated by Fig. 17.
Due to these assumptions, the algebraic probl(d®)
takes the following form: N

Ron, = 2 En(NsIV?, (603
A=0
S60sIN) + HEX(1sIN) + H3KOd|N) = E,(Os]A), (598

N
HE0SIA) + HEX(AsIN) + HEKO0dIN) + HIX1d|N) = E\(Od]A), Hi, =S BNV, (60b)
(59b) A=0
and
Hin-1(n = 1,sIN) + HRXngA) + Hit (n + 1s]h)
+Hyha(n = 1dN) + H3Ynd\) = Ex(nsh) N
(n=1,2,... Ng- 1), (599 HRi, = 2 Ex(NsSIV(NNd). (600
A=0

HangA) + Hi%a(n+ 1,s\) + HOG_(n = 1,d]\) Now we multiply each of the Eqg59¢ and (59f) by its

dd dd _ Hermitian conjugate and one of these equations by the Her-
+ Hon(nd\) + Hypua(n+ LdlA) = Edndh) mitian conjugate of the other, sum the results avand use
(n=1,2,...Ng— 1), (59d) Eqg. (51) to obtain
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N
H SS =
NgNg-1

and

2 EXNGSIN = (HRen)? = (HRl )% (612
A=0
HG N1 = [2E<Nss|x><x|Ndd> Hiin(Hion, + Hii) (61b)
N N1 =0
Nde)2 H NNd)2 ( NS—1)2- (610

N
HR N1 ?0 EX(Ngd\)? - (

As in the case of uncoupled waves, we take the off-diagonal Now we can perform the same manipulations with Egs.

matrix elementzia-lﬁS N1 and Hﬂ,d ng1 f0 be dominated by the  (59859d). We taken=Ns—1, Ns-2,

respective kinetic energy matrlx elemenﬂif\, Nt and

Tﬁ Nl and therefore choose the minus S|gn in the right-

hand sides of Eqg61a and(610.

By means of Eqs(60) and (61) we obtain all matrix
eIementsH . entering Egs.(59¢ and (59f). Using this
|nformat|on the eigenvector componenrifd,—1,s|\) and
(Ng—1,d|\) can be extracted directly from Eq&9e) and

,1in Eq(590 and
n=Ny-1, Ng—2,...,1 in Eq. (590) Equat|ons(59c) and
(59d) are a bit more complicated than E¢59¢ and (59f),
however the additional terms in Eq$9¢) and(59d) include
only the quantities calculated on the previous step. As a re-
sult, we obtain the following relations for the calculation of

the matrix elementsi'!":

(59f): Hn = EEA<n$\>2 (633
1 SS
(Ns= L8A) = o5 (Ex(NssIA) = Hip (NssiN)
NoNs~1 Hoo= EE)\(ndD\)Z (63b)
= Hiin (Nadh)) (623
d and
an |
sd _
(Ng= 1d0) = o —(Ex(Ngl) ~ HE, (Nadh) Hin= 2 BN Ind. (639
Nd N1
Equation (639 is valid for n=Ng,Ns—1,...,0 while Egs.
HNG (NS = HRE 1 (Ns = 18IA). (63b) and (639 are valid forn=Ng,Ny-1, ... ,0.
(62b) For the matrix elementsiL", we obtaln
|
N
Hin-1= =\ 2 EXndN)? = (HED? = (HR5.0) = (HE)? - (HA.0%, (64
A=0
= [%E (A~ HEHER +HE) — HE, s | (64
nn-1] A=
and
N
Hi-1 =~ \) 2 EXNSN? = (HER)? = (H350% - (HRG-0)° - (HED2. (649
A=0
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0.1

Upry(E.7) (arb. units)

Nijmegen—IT
ISTP, Thw
ISTP, Shw

-0.1

FIG. 30. Small componentsiy)(E,r) and ug(E,r) of the

coupled pf wavesnp scattering wave function at the laboratory

energyE,;;,=250 MeV. See Fig. 18 for details.

Equation(649) is valid forn=Nyg—1, N4—2,...,1; Eq(64b)
is valid for n=Ng, Nyg—1,...,1, and Eq(640 is valid for
n=Ng-1,Ns—2,...,1.

The eigenvector componenta—1,s|\) with n=Ng—1,
Ng—2,...,1 andn-1,d|\) with n=Ng4—1,N4—2,...,1 can
be calculated using the following expressions:

(=180 = ——(E(nsh) = HEnh) - HEa(n+ L

n,n-1

- H39_(n— 1,d\) - HSXndn)) (653
and
1
(n=1,d\) = ——(Ex(nd]\) = HE(ng\)
Hn,n—l
—HE, (n+ 1,9N) - HInd|n)
—HY, (n+1,d\). (65b)

Having calculated the Hamiltonian matrix elemeHﬁ,,,

we obtain the potential energy matrix eleme\ﬂﬁﬁ,/ by sub-
tracting the kinetic energy.

~—~160
)
8 331_3‘11
Y]
[)
z
&
80 I Nijmegen—II
----- ISTP, Bhw, ver.0,1
--------- ISTP, 8hw, ver.2
®  Fzperimeni
O L L L L L L
0 50 100 150 200 250 300 350

E\q, (MeV)

FIG. 31. 331 np scattering phase shiftg (coupledsd waves.
Filled circles—experimental data of Rgf]; solid line—realistic
meson exchange Nijmegen-II potent{&ee Ref[3]) phase shifts;
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w 0
3 3
o 3s,=3d,
Y]
[
z
<
—15F
Nijmegen—II
————— ISTP, 8haw, ver.0,1
~~~~~~~~~ ISTP, 8hw, ver.2
®  FEzxperiment
-30 - - : - -
0 50 100 150 200 250 300 350

E\q, (MeV)

FIG. 32. 3d1 np scattering phase shift&; (coupledsd waves.
See Fig. 31 for detalils.

We recall here that we arbitrarily assigned the valges
andd to the channel indeX’ but the earlier theory can be
applied to any pair of coupled partial waves. The only equa-
tions specific for thesd coupled partial waves case are Eqs.
(56)—<(58) that are needed to account for the experimental
information about the bound state which is present inrthe
system in thesd coupled partial waves. In Eqé33), (41)—
(50), and (59)—<(65) one can substitute andd by p and f,
respectively, and use them for constructing the ISTP in the
coupledpf waves.

We construct ISTP in the couplédN partial waves using
as input thenp scattering phase shifts and mixing parameters
reconstructed from the experimental data by the Nijmegen
group [3]. We start the discussion from the ISTP in the
coupledpf waves.

The nonzero potential energy matrix elements of the ob-
tained 7%w pf-ISTP are given in Table IXin Z0=40 MeV
units). The description of the phase shiis and & and of
the mixing parametet is shown in Figs. 18—20. The phe-
nomenological data are seen to be well reproduced by the
Theo ISTP up to the laboratory enerdy,,~270 MeV; at
higher energies there are discrepancies between the ISTP
predictions and the experimental data that are most pro-
nounced in thee'p2 partial wave (note the very different
scales in Figs. 18—-30These discrepancies are seen to be
eliminated by constructing thei® pf-ISTP.

5
2 4r 381_3d1 o -
=1} i
(M) =
< =
w 31 r”’
.—‘/l/’/
2t o=
r
3
1t Nijmegen—IT
----- ISTP, 8hw, ver.0,1
~~~~~~~~~ ISTP, 8hw, ver.2
0 ‘ ‘ e FExperiment ‘
0 50 100 150 200 250 300 350
E 4y (MeV)

dashed line—Version 0 and Version 1 ISTP phase shifts; dotted FIG. 33. np scattering mixing parameter in the coupledsd

line—Version 2 ISTP phase shifts.

waves. See Fig. 31 for details.
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TABLE X. Deuteron property predictions obtained with variod’,.8STP versions and with Nijmegen-II
potential in comparison with recent compilatiof®ee Refs[43,44).

d state prob-

Potential Eq4 (MeV) ability (%)  rms radius(fm)  As (fm /2 n=Ad/ As
\ersion 0 —2.224575 0.4271 1.9877 0.8845 0.0252
Version 1 —2.224575 5.620 1.9997 0.8845 0.0252
\ersion 2 —2.224575 5.696 1.968 0.8629 0.0252
Nijmegen-II —2.224575 5.635 1.968 0.8845 0.0252
Compilatiorf —2.22457%9) 5.6711) 1.967610) 0.88458) 0.02532)
Compilatiorj? -2.224589 1.9635 0.8781 0.0272
1.9560
1.950
aSee Ref[43].

bSee Ref[44].

Generally, for the couplegpf waves, we have 4 radial sions discussed lateis shown in Figs. 31-33. Thap s
wave function components,,,(E,r), Uy (E,r), Uz (E,r),  wave andd wave phase shiftg; and 65 are excellently re-
and ug)(E,r) defined according to their standing wave as-produced up to the laboratory energy of 350 MeV. There is a
ymptotics(32). We present in Figs. 21-30 the plots of theseSmall discrepancy between the experimental and the Version
components at the laboratory energigs,=2, 10, 50, 150, 0 ISTP mixing parameter at the laboratory energy d,,,

and 250 MeV obtained with thefo and %o ISTP in com- =25 MeV. However, the overall Version 0 ISTP description
parison with the respective Nijmegen-Il wave function com-Of €xperimental scattering da@acluding the mixing param-
ponents. etere) over the full energy intervet,,,=0—350 MeV is seen

It is seen from the figures that the#® ISTP and from Figs. 31-33 to be competitive with the Nijmegen-ll,
Nijmegen-Il “large” (diagona) wave function components ©ne of the best reallstlc' meson exchange pqtentlals. .
Upp(E,1) and ug(E,r) are indistinguishable. The same The Version 0 ISTP is constructed by fitting the experi-
Thew ISTP components differ a little from those of mental scattering dat&_" the deu;ero_n ground state ertgfgy
Nijmegen-Il at high energies. At the same time, the “small”t"€ S Wave asymptotic normalization constad; and 7
(nondiagongl ISTP wave function components,(E,r) =Aq4/ As. However, therg are other important deuteron ob-
and us((E,r) differ essentially at small distances from the fneé\;ﬁi?;;r?r\:g %ﬁ’j&f‘gﬁ‘f,";"g’njliﬁz Srsolgg%ilcijtf/ucgfe;ﬁg root-
Egth fegg?-tueo?518'i:lttelf];flii?ér:g:gi“on of a very different state. Various deuteron properties obtained with the Version 0

Now we apply the inverse scatteridgmatrix approach to ISTP(and other ISTP versions discussed lptge compared

. X in Table X with the predictions obtained with Nijmegen-I|
g]ﬂeercc;g?;?gdtgag'sal\/gzgz %ijSE)I'tlgal'lljhtehegg)sLsri-:—) It:i)oieroi- th epotential and with recent compilations of the experimental
phenomenological data by this potentiahd other ISTP ver- data[43,44. It is seen from the table that the Version 0 ISTP

- 0.6 ‘ ‘
fT us(r) Nijmegen~—II S S D
E - e~ | ISTP, 8hw, ver.0
s e TV |t ISTP, 8hw, ver.1
~ '6" \:\\\ --------- ISTP, Bhw, ver.2
O 5 2,
~ /a4 Ny
3 7
0.3t
/’ ur)
/ /I \\\\ D
/ /,/ \\\\\‘\ ® DS
I i m i m————— e
0.0 e T
0 2
r (fm)
FIG. 34. Radial deuteron wave functions. Solid line—realistic

meson exchange Nijmegen-Il potenti{@ee Ref[3]) wave func-

tions; dot-dash line—Version 0 ISTP wave functons; dashed line— FIG. 35. Structure of the Version 1 and Version 2 ISTP matrix.
Version 1 ISTP wave functions; dotted line—Version 2 ISTP waveThe location of nonzero matrix is schematically illustrated by solid
functons. lines and filled circles.
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TABLE Xl. Nonzero matrix elements elements #w units of . 0.1
the Version 1 ISTP matrix in thed coupled waves. 3 3s,—3%d, Ey, =2 MeV
g
SS : =
V;,, matrix elements a
2 0.0
n v Ve =V, B
— r(fm )
0 —0.457670450906 0.211126251530 ::
1 —0.278324060593 0.078168834003 = —0.1}
2 —0.011531530086 -0.053467071879 §:
3 0.151447629416 -0.055928268627 | \ %/ 5 |t Nygmegen—il
4 0.036322781738 b\ e [T, S, ver®
-0.2
V2 matrix elements FIG. 37. Small componentsq(E,r) and uyg(E,r) of the
n Vﬁﬁ ngml:\/ggln coupled sd wavesnp scattering wave function at the laboratory
. . energyE;;,=2 MeV. See Fig. 34 for details.
0 0.008456639592 —-0.083373543646
1 0.322043907371  -0.178838809860 wave functions(not shown in the figures lateare signifi-
2 0.308493158866  —0.093044099373 cantly different from those of Nijmegen-II at short distances.
3 0.061181660346 Our conclusion is that the Version 0 ISTP does not seem
to be a realistid\NN potential.
VﬁﬂFVg,Sn matrix elements To improve the description of the de_zuteron properties, it
N el oy /S0y NI appears natural to apply to our Version 0 ISTP a phase
nn-1” "n-ln nn_ "nn n+l” Tnkln equivalent transformation that leaves unchanged the scatter-
0 -0.482407689587 0.254012350019 ing observables,, d, €, the deuteron ground state enefgyy
1 —0.068997529558 -0.061366928740 and the deuteron asymptotic normalization constafitand
: ooorraiz:  -0osbeszisser i The phase equivalent vansformaton discussed n Refs
3 0049138732449 -0.020412912639 fined in the oscillator basis. This transformation gives rise to
4 —0.001715094993

an ambiguity of the potential fit within the inverse scattering
J-matrix approach, which have been mentioned several times

overestimates the deuteron rms radius and underestimates tﬂléeady' We now need to discuss this in more detail.
d state probability.

The deuteron wave functions can be calculated by utiliz-

ing the J-matrix formalism at the negative ener@y as is
discussed in Refd.17,18. The plots of the deuteron wave

functions are presented in Fig. 34. It is seen that the Version

This phase equivalent transformation is based on the uni-
tary transformation

u= > 3 X hnutlor,

0 ISTPs wave component is very close to that of Nijmegen- I'=5d [/os.d 10 n'=0 (663
[I. The Version 0 ISTPd wave component coincides with ’

that of Nijmegen-Il at large distances since both potentials

provide the same4, value; however, at the distances less T’

than 5 fm the Version 0 ISTE wave component is sup-
pressed. We note also that the Version 0 ISTP scatteringhould be of the fornj16-18:

where the unitary matriU] with matrix elementsU_

:‘@ 0.8 :‘@ 3

= 3s,—%d, = 3s,—%d,

= 5 2F

a 0.4} a

o o

& &

% 0.0k s ‘

8 8 6 8

§ r (fm) § r(fm)
-0.4}

et 1 TR Nwuwy £ T 1T B ver ||
~~~~~~~~ ISTP, Bhw, ver.2 <--oo--- ISTP, Bhw, ver.R

-0.8

FIG. 36. Large componentayq(E,r) and ugq(E,r) of the FIG. 38. Large componentayq(E,r) and ugq(E,r) of the
coupled sd waves np scattering wave function at the laboratory coupledsd wavesnp scattering wave function at the laboratory
energyE,,=2 MeV. See Fig. 34 for details. energyE;;,=10 MeV. See Fig. 34 for details.
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- 0.5 \ 0.6

B2 8s,—3d, E, = 10 MeV n E, = 50 MeV
g ‘g

A Us@) ] S 0.4}

R e —— £ gt
© R e 4 e s | [/ £ N N |m==-- ISTP, Bhaw, ver.1
: R ~ N N e ISTP, Bhw, ver.2
Yy % ~ 0.2}
8 % )

Z 05 % B

§ \'{‘.:ud(s) 5’3 0.0

-1.0 -0.2

FIG. 39. Small compongntss(d)(E,r) anq Ug(9(E.1) of the FIG. 41. Small componentigq)(E,r) and uge(E,r) of the
coupledsd wavesnp scatte_rlng wave fun_ct|on at the laboratory coupled sd wavesnp scattering wave function at the laboratory
energyE,=10 MeV. See Fig. 34 for details. energyE;,,=50 MeV. See Fig. 34 for details.

[Ul=[Uo] @ [1]= {[%O] [?J (66h) V=V+AV, (683

where
and[1] is the infinite unit matrix. The unitary transformation

(66b) is applied to the infinite Hamiltonian matrp] in the AV=H-H. (68b)
oscillator basig|nI')}:

We should improve the tensor component of tl in-

[H]=[U][H][U"]. (67)  teraction to increase the state probability in the deuteron
_ and reduce the rms radius. Therefore, the only nontrivial sub-
The transformed HamiltoniaH is defined through itginfi- matrix [Ug] of the matrix(66b) should couple the oscillator

nite) matrix [H] with matrix elementsHl, = (n[[H[n'T"). ck?mpon?nt$nfs> and]|cn’hd> of different partial waves. We take
. L~ . . t i t t t ca2x?2 tri -
That is, the matri{H] is obtained by means of the unitary e simplest form of the submatriio): a matrix cou

. ; . ! . ling th is functions. In oth h
transformation(67) in the original basig|nI")} and not in the ping .t'e|Os> a'nd|0d> baS|sFanct|on§ n other words', the
wransformed basi s{Tﬁf)}EU {jAY}. Clearly the spectra of nontrivial matrix elementdJ_, constitute a 2 2 rotation

~ ' matrix with a single continuous parameter
the HamiltoniansH and H are identical. If the submatrix e _
[U,] is small enough, the unitary transformatitgv) leaves (U] = Uoo Ugo | _| cosd +sind
unchanged the last componefitgT'|\) of the eigenvectors o= ugds ydd “l-sind cos¥d
(nI"|\) obtained by solving the algebraic problga0), and hile all th o i el
hence, it leaves unchanged the functighs that com- while all the remaining matrix elements

pletely determine th& matrix, theS matrix, the phase shifts I’ _ ~ 'S
5 and &, the mixing parametes, the asymptotic normaliza- Uny = & dpre forn=>0 orn’>0. (69
tion constants4s and Ay, etc.

} , (693

Al _ Varying the parametef of the transformatiori67)—<69),
The potential V entering the HamiltonianH, phase we obtain a family of phase equivalent potentials and exam-

equivalent to the initial potential entering the Hamiltonian ine which of them provides the better description of the deu-

H, can be expressed as teron properties andp scattering wave functions. The best
—~ 2 w w w : —~ 15 w \ ‘ ‘
= 8g,=3d, ... E, = 50 MeV = s, —%d, Ep = 150 MeV
= / * = TS
a 1f a
- -
s s
0 T 0.0k
& 0 & 0.0 5
J -1 _ s >
————— }Ig",}"bf m,-ger.l -———- —}vgg'?fglmtgwi .
~~~~~~~~ ISTP, Bhw, ver.2 veeereeoe ISTP, Bhw, ver.2
us(s)
-2 -1.5
FIG. 40. Large componentayq(E,r) and ugq(E,r) of the FIG. 42. Large componentayq(E,r) and ugq(E,r) of the
coupled sd waves np scattering wave function at the laboratory coupledsd wavesnp scattering wave function at the laboratory
energyE;,,=50 MeV. See Fig. 34 for details. energyE;,,=150 MeV. See Fig. 34 for details.
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0.4

Eyp = 150 MeV

Upry(E.7) (arb. units)

Nijmegen—II
ISTP, Bhw, ver.1
ISTP, 8hw, ver.2

-0.4

FIG. 43. Small componentsiyq(E,r) and ugg(E,r) of the
coupled sd waves np scattering wave function at the laboratory coupledsd wavesnp scattering wave function at the laboratory

energyE,;;,=150 MeV. See Fig. 34 for details.

result seems to be the potential obtained with—14°. This
potential is hereafter referred to as Version 1 ISTP.

As a result of the transformatioi®7)—69), the potential
energy matrix acquires two additional nonzero matrix ele
mentsV59=VSS These additional matrix elements are sche
matically illustrated by filled circles in Fig. 35. The nonzero
matrix elements of the Version 1 ISTP are given in Table X

(in Aw=40 MeV unity.

by the phase equivalent transformation.

Upry(E.7) (arb. units)

PHYSICAL REVIEW C 70, 044005(2004)

Ey = 250 MeV

-0.4

Us(q)

5

7 (fm)

Nijmegen—II
ISTP, 8hw, ver.1
ISTP, 8hw, ver.2

FIG. 45. Small componentsiq)(E,r) and ugg(E,r) of the

energyE,;;,=250 MeV. See Fig. 34 for detalils.

The Version 1 ISTHp scattering wave function compo-
nents at the laboratory energi€s,,=2, 10, 50, 150, and
250 MeV are shown in Figs. 36—45 in comparison with
‘those of Nijmegen-II potential. As in the case of the coupled
pf partial waves, the large componentg(E,r) and
Iud<d)(E,r) differ very little from the Nijmegen-II ones but the

small components are essentially different at short distances
The deuteron properties obtained with the Version 1 STEue to the difference of the tensor interaction of these two
are presented in Table X. Thikstate probability is improved Petential models.

However, the phase

Generally we conclude that the Version 1 ISTP is very

equivalent transformation produces an increase of the de(flose to the realistic interaction. The most important discrep-
teron rms radius; so this observable becomes even worse
than that given by the Version 0 ISTP. We found it impos-

sible to obtain an exact description of all deuteron propertieghe Version 2 ISTP matrix in thed coupled waves.

by means of the phase equivalent transformati®r with

the simplest matrix69a and(69b).

TABLE XIlI. Nonzero matrix elements elements #w units of

The deuteron wave functions provided by the Version 1n

ISTP are shown in Fig. 34. The Version 1 IS§®ave com-

ponent is seen to be very close to that

V., matrix elements

S
Vin

S _—\/SS
\/?1,n+1_v

n+ln

of the Nijmegen-ll.0

The maximum of the Version 1 IST&® wave component is 1
seen to be shifted to larger distances as compared with that

of the Nijmegen-II. Of course, the shape
ponent of the wave function cannot be

of thevave com- 3
determined experiz

mentally. Hence, the shape of the Version 1 ISTP deuteron
wave functions look realistic though these wave functions
result in the slightly overestimated deuteron rms radius.

—-0.466063146350
—-0.276168029473
—-0.009473803659
0.152873734289
0.037547929880

0.216883948836
0.080907735691
—-0.051881443108
—-0.055193589842

Vﬁﬁ, matrix elements

n Vin Vae1=Vos1n
el 15 T T T
2 35,~3d, Uy Ey, = 250 MeV 0 0.008667454659  —0.083339374560
5 7 1 0.322126471805 -0.178808793641
4 2 0.308516673061 —0.093012604766
) 3 0.061200037193
— 4
::“ 0.0
= 0 Vf]ﬂ,:\/g,sn matrix elements
g n Vﬁ,dn—lzvgfl,n \/ﬁ?ﬁvgﬁ VrS1§jn+1=Vgi1,n
;jii;fé’;%‘fgiﬂmé 0 -0.483308500313  0.254003830709
15 — 1 -0.067221025404 -0.060476585693
' 2 0.068044496963  —0.080187106458
FIG. 44. Large componentays(E,r) and uygq(E,r) of the 3 0.049400578816  —0.020205646231
coupled sd wavesnp scattering wave function at the laboratory 4 ~0.001503998139

energyE,,=250 MeV. See Fig. 34 for details.
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ancy of this interaction is that it overestimates the deuteron ~ -Ig—
rms radius by approximately 1.5%.

We attempted the phase equivalent transformat®r) E
with a more complicated matrikU] than (693 and (69h). S
However, we did not manage to obtain a completely satisfac- ~ _
tory interaction. It is possible to obtain the potential provid- = F
ing the required values of the deuteron rms radius and of the ~ -5F
d state probability by increasing the dimension of the sub- = [
matrix [Ug] and introducing additional transformation pa- F
rameters, but our attempts yielded unrealistic scattering wave  -7F
functions. E

To improve thesd-ISTP we suggest a slight change to the
s wave asymptotic normalization constasy that is used as -9
an input in our inverse scattering approach. Thegvalue
cannot be measured in a direct experiment. As was men-
tioned in Ref.[44], the A values discussed in the literature  FiG. 46. (Color onling ®H ground state energy obtained in the
vary within a broad range from 0.7592 to 0.9863#A  N#w no-core shell model calculation vs N/ +—Version 1 poten-
Therefore, the modified valud=0.8629 fm'/? that we use  tial model; x—Version 2 potential model; dashed line—linear ex-
for the construction of the improvesd-ISTP, seems to be trapolation to the infiniteN#w model space based on the last two
reasonable. We do not change the remaining inputs in oufalculated points; solid and dash-dot lines are to guide the eye.
inverse scattering approach includimg A4/ As (and hence
we modify A4 together withAg) to obtain the ISTP of the *H and“He calculations. At the same timef@-ISTP has a
type shown in Fig. 17 and apply to it the phase equivalensmaller matrix than Bw-ISTP, and hence, is more conve-
transformation(67) with the parametey=-14° of the ma- nient in applications. Later we present only the results ob-
trix (698 and(69b). This potential is referred to as Version 2 tained with the Zw-ISTP in the odd partial waves.

ISTP. This potential has the structure schematically depicted We have presented various versions of ISTP in the
in Fig. 35 and its matrix elements are listed in Table XII.  coupledsd partial waves. The choice of ISTP in other partial

The deuteron properties are seen from Table X to be welvaves is fixed. Using this fixed set of the netHSTP in
described by the Version 2 ISTP. The Version 2 ISTP scateombination with the Version Md-ISTP, we have the set of
tering wave functions are very close to those of the Version Jotentials that is referred to as the Version M potential model
ISTP(see Figs. 36—45Its deuteron wave functions are very in what follows.

:’/‘ | L1 1 | L | L | L | L | L | L | L
0 005 0.1 0.15 02 025 03 035 04 045 0.5
1/N

close to those of Version 1 ISTBee Fig. 34and differ from The>H ground state energids obtained with the Version
those of Nijmegen-Il in the position of thé wave compo- 1 and the Version 2 potential models lfw model spaces
nent maximum. are presented in Fig. 46 as functions oNL/t is seen that
We suppose that the Version 2 ISTP can be treated aslgoth potential models provide very simil&; values. The
realistic interaction in the couplest partial waves. convergence of the calculations witlh appears adequate.

The ground state enerdy; is seen from the figure to be
nearly a linear function of IM. Therefore, it is natural to
perform a linear extrapolation to the infinifdzo model
space, i.e., to the point N=0. The linear extrapolation us-
We employ the obtained ISTP in tiel and“He calcula- ing the two results at the highest N values yields
tions within the no-core shell modell1,17 with Zw  E;=-8.6 MeV in the Version 1 potential model and i
=40 MeV. The samé&N potentials are used to describe the =—-8.7 MeV in the Version 2 potential model.
neutron-neutron and neutron-proton interactions; in the In Fig. 47 we present the results of thide ground state
proton-proton case these potentials are supplemented by tle@ergyE, calculations with the same potential models. In the
Coulomb interaction. “He case we also obtain very similar results with the Version
The calculations are performed in the compléiéw 1 and the Version 2 potential models. It is interesting that the
model spaces witiN<14. We use both #w-ISTP and convergence of théHe ground state energy is better than
9%w-ISTP in odd partial waves. Th#H and“*He nuclei are that of °H. In this case the curves connecting e values
slightly more bound in the case when we use the-1STP  deviate from the straight lines. Nevertheless, we also perform
in the odd waves. However, the differences are very smallthe linear extrapolations dt,(1/N) to infinite N using the
less than 15 keV fofH and about 40 keV fofHe. The se- E, values obtained in ¥2» and 14w calculations and ob-
quence of levels in théHe spectrum provided by the odd tain E,~-26.6 MeV in the Version 1 potential model and
wave Tw-ISTP and by the odd wavei®-ISTP is the same E,~-27.0 MeV in the Version 2 potential model.
but the energies of exciteltHe states are shifted down in the  The quality of the linear extrapolation & s(1/N) may
case of the odd wavefil»-ISTP by approximately 100 keV be tested in the deuteron calculations. In the deuteron case,
or less. Therefore, the deviations of th8«?ISTP predic- we know the exact result for the infiniféo model space
tions from the experimental odd wave scattering data at higiground state energ¥,=-2.244575 MeV obtained by the
enough energies seem to produce a negligible effect in th&matrix pole calculation with our potentials. Tlig results

IV. APPLICATION OF NN ISTP IN H AND “He
CALCULATIONS
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TABLE XIIIl. °H and“He ground state energiém MeV) ob-
tained in 14 no-core shell model calculations and by the linear
extrapolation to the infinitdN\zw model space.

= Potential He “He

= model 14w  Extrapolation ldw Extrapolation

S Version 0 -9.091 -9.7 -33.223 -33.4
Version1  -7.718 -8.6 -26.241 -26.6
Version 2 -7.860 -8.7 -26.734 -27.0
Nature —-8.48 -28.30

7k E

E_ | ! | ! | L | ! | L | ! | ! | L | o

0 005 0. 015 0.2 025 03 035 04 045 05
1N

3H and*He bindings. OufHe results are better than the ones
obtained(see Ref[6]) with any of the realistic meson ex-
FIG. 47. (Color online® “He ground state energy obtained in the change interactions without allowing for the three-body in-
Nfiw no-core shell model calculation vs M/ See Fig. 46 for teractions. In théH case, we have underbinding in the/ils
details. model space and a small overbinding obtained by the linear
extrapolation. Unfortunately, the difference between the

obtained in theN% o model spaces withi< 14 with the Ver- 144w model space and the linear extrapolation results is
sion 1 and Version 2¢-ISTP, are shown in Fig. 48. It is seen "ather large. Most probably tfiet ground state energy curve

that E4(1/N) seems to be a linear function in the interval 4 N 'Fig. 46 will flatten out in larger model spaces. This will
<N<14. The linear extrapolation results inEg shift the extrapolated ground state energy upwards from our

~-2.5 MeV that differs from the exact energy. Therefore current result. Hence, the expected ground state energy in the

the linear extrapolation results can be regarded only as & % I|Im|.t lies bet\r/]veen th: W al_nd the preserln linear q
rough estimate of the binding energy. However, in {he  ©xtrapolation. In other words, our linear extrapolation an

case we achieved a reasonable convergence and by the Iinéladfﬁ“’ results are expected to be the lower and upper bound-

extrapolation we increase the binding energy by approxi-""”es for the exact results, respectively. An approximately

mately 0.3 MeV only. Therefore, our estimate of tfide 0.9 MeV difference between the A& and the linear ex-
binding e.nergy seems to be accurate enough. trapolation ground state energies in i€ case indicates the

The differences in convergence rates for the deutéin, 0.9 MeV uncertainty of our predictions. THel ground state
and*He can be understood from the fact thai=40 MeVis  €Neray obtained in Faddeev calculations with CD-Bdiv
more optimal for the tighter bountHe than for the lesser potential is ._8.'012 MeVsee Ref.[6]). Al _the remaining
bound systems. modern realistic meson exchange potentials predict’the

Our results of théH and“He ground state energy calcu- ?t’)lnd[ng.energy to be Ie.ss. than 7.4 M¢¥]. Therefore, our
H binding energy predictions are not worse than those ob-

lations are summarized in Table XlIl. We also present in the " ; . . .
table the results obtained with the less realistic Version dalned with the realistic meson exchange potentials without

potential model. BotiH and“He are essentially overbound 2/10Wing for the three-body forces while odHe binding

in this potential model. With both Version 1 and Version 2 Energy predictions are better.

; ; - In Fig. 49 we present the spectrum of the lowest excited
potential models we obtain a reasonable description of tthe stagt]es of eac?ﬂ” The desc?ription of the excited states

LS

E 10
1 — %\ T experiment T ver.2
3 Z ol .. 10—
& Bb R 10 ot0
< -0.5F ru- -
-~ 7F -10} / 00
S| | 0*0
-15E ' E i
g ] —207 0*0
2 - = - 0*0 extrapolation ™\
] I ~ T
_2'5;{ P i 0w e a4 g g 0 s d g 3 —-30
0 005 0.1 015 02 025 03 035 04 045 05
1/N FIG. 49. “He spectrum obtained with Version 2 potential model

in the no-core shell model in the 44 (13hw) model space for
FIG. 48. (Color onling Deuteron ground state energy obtained even(odd) parity states. Dashed line shows the result of the linear
in the Niw no-core shell model calculation vs N/ See Fig. 46 for  extrapolation of the ground state energy to the infilNtew model
details. space. Experimental data are taken from Ré&5].
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energies is reasonable though further from experiment thammansformation can also spoil the description of the deuteron
the ground state. On the other hand, we expect the exciteabservables, in particular, the deuteron rms radius can be
states to be less converged and to drop more in larger modatbitrarily changed by phase equivalent transformat|dis
spaces. Of course, a full discussion of the states abovd/e expect that there exist transformations minimizing the
breakup must await proper extensions of the theory to th@eed for three-body force effects, that do not significantly

scattering domain. change the nucleon-nucleon interaction. That is, the deuteron
properties, the deuteron and scattering wave functions of the
V. CONCLUDING REMARKS transformed\IN potential may remain very close to the ones

i ) developed here while achieving improved descriptions of

We obtained nucleon-nucleon ISTP potentials by meangher nuclei. In this context, it is worth noting that our ap-
of the J-matrix version of the inverse scattering approach.proach does not assume either a particular operator structure
The potentials accurately describe the scattering data. They the interaction or locality.
are in the form of 8w-truncated matrices in the oscillator  Erom this point of view, the Version 2 ISTP accurately
basis withiw=40 MeV. The potential matrices are tridiago- gescribing the deuteron properties and providing good pre-
nal in the uncoupled partial waves. In the coupled partiakjictions for the’H and*He bindings, can be regarded as such
waves, the potential matrices have two additional quasidizp jnteraction effectively accounting for effects that might
agonals in each of the submatrices responsible for the chagherwise be attributed to three-body forces. Clearly, addi-
nel coupling. Thesd-ISTP of this type(Version  underes-  tjona) efforts may provide superior NN interactions with less
timates the deuteroth state probability and overestimates the dependence on three-body forces for precision agreement
deuteron rms radius. We designed two otBeilSTP with  \uith experiment.
two additional matrix elem_ents providing the correct descrip- Finally, we suggested a new approach to the construction
tion of thed state probability, one of therfVersion 1) over-  of the high-qualityNN interaction and examined the obtained
estimates the rms radius by approximately 1.5% while th§sTp NN interaction in three and four nucleon systems by
other one(Version 2 provides the correct description of the ,eans of the no-core shell model. THe and *He binding
deuteron rms radius. All other deuteron observables are resergies are surprisingly well described. Obviously it will be
produced by albd-ISTP versions. A very interesting to extend these studies on heavier nuclei, to

The ISTP potentials are used in thid and‘He no-core investigate in detail not only their binding but the spectra of
shell model calculations. Both Version 1 and Version 2 ISTPgycited states as well. It is also important to investigate more
pote?tlal models provide very good predictions for thve carefully the ISTP description of the two-nucleon system
and “He binding energies and a reasonafie spectrum. gjnce, for example, we have deferred the discussion of the
With the less realistic Version 0 potential model, we obtaingeyteron quadrupole mome@ We just mention here that
overbound®H and“He nuclei. We note that there were other the Version 2 ISTP prediction @®=0.317 fn? is not so far
attempts to design thiIN interaction providing the descrip- from the experimental value of 0.2875+20%rfug]. The
tion of the triton binding energy together with teN scat-  phase equivalent transformations discussed above make it
tering data and the deuteron properti&9,2Q. Our interac-  npossible to improve th& predictions and to examine the
tions are much simpler and can be directly used in the shelffect of such improvement in light nuclear systems. We plan

model calculations of heavier nuclei. _ to address this problem in future publications.
Generally our approach is aimed at shell model applica-

tions in heavier nuclei. How_ever, our potentia_ls are si_mple ACKNOWLEDGMENTS
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