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The nucleon-nucleonsNNd interaction is constructed by means of theJ-matrix version of inverse scattering
theory. Ambiguities of the interaction are eliminated by postulating tridiagonal and quasitridiagonal forms of
the potential matrix in the oscillator basis in uncoupled and coupled waves, respectively. The obtained inter-
action is very accurate in reproducing theNN scattering data and deuteron properties. The interaction is used
in the no-core shell model calculations of3H and4He nuclei. The resulting binding energies of3H and4He are
very close to experimental values.
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I. INTRODUCTION

Nucleon-nucleonsNNd potentials conventionally referred
to as “realistic” are derived from the meson exchange theory.
Modern realisticNN potentials like Bonn[1], Argonne[2],
Nijmegen[3], etc., are carefully fitted to the existing experi-
mental data onNN scattering and deuteron properties. Un-
fortunately, none of the knownNN interactions provides a
completely satisfactory description of the trinucleon and
other light nuclei. To overcome this deficiency, meson ex-
change[4] or phenomenological[5] three-nucleonsNNNd
forces are usually introduced. Impressive progress has been
achieved recently in the description of the trinucleon and4He
binding energies with realisticNN andNNN forces[6]. How-
ever, theNNN force parameters in such studies are some-
times fitted to the trinucleon binding and some of them may
not be consistent with the parameters of the two-body inter-
action. In one very detailed study, when theNNN interaction
parameters were chosen consistently with the two-body pa-
rameters, the three-nucleon force contribution to the triton
binding energy was shown to be negligible[7]. Rather than
constructNNN forces, we will developNN forces in which
we exploit the off-shell freedom to improve the description
of light nuclei. We defer the development of consistentNNN
forces to a future effort.

Impressive progress using effective field theory has re-
cently been reported(see review in Ref.[8]). The versions
that provide the most accurate fit to the nucleon-nucleon
properties[9] use a momentum-space cutoff and are still
quite strong at short distances. The match with the nuclear

many body model space cutoff is unclear; additional renor-
malization is required for typical model spaces that are fea-
sible. We aim in this paper to have high quality descriptions
of the phase shifts with softer potentials whose cutoff is well-
matched to the anticipated application in many-body sys-
tems.

Various microscopic models have been designed for the
studies of few-body systems. It was demonstrated in Ref.
[10] that all modern realistic microscopic models provide
approximately the same results for the4He ground state. The
no-core shell model[11,12], which we adopt here, is one of
these models. This model can be used not only for the few-
body nuclear applications but also, with modern computer
facilities, for microscopic studies of heavier nuclei with the
number of nucleonsA up to A,12 [12]. The no-core shell
model is based on a wave function expansion in a many-
body oscillator function series with the aim to describe
bound states and narrow resonances treated as bound states.

The oscillator basis matrices of the modern realisticNN
potentials are very large and cannot be directly used without
a severe truncation in the many-body no-core shell model
calculations. As a result, the convergence of the calculations
appears to be slow. This deficiency is conventionally ad-
dressed by constructing the so-calledeffective NN interac-
tion (see, e.g., Ref.[11]). Ideally the effectiveNN interaction
should reproduce in the finite model space the results of the
infinite model space calculation. In a realistic application, the
construction of the effectiveNN interaction is a complicated
problem involving various approximations. In the present
work, we do not adopt the effective interaction approach.
Rather, we retain the bare interaction and carry out large
space calculations sufficient to obtain converged ground state
energies.

In this contribution, we construct theNN interaction by
means of theJ-matrix version of inverse scattering theory
[13–15]. The matrix of theNN potential in the oscillator
basis is obtained for each partial wave independently. There-
fore, in our approach we derive theNN interaction as a set of
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potential matrices for different partial waves. We reproduce
the experimentalNN scattering data and deuteron properties
with small potential matrices. OurNN interaction can be
imagined as an effective interaction since its matrix can be
directly used in the no-core shell model calculations of light
nuclei. However, ourNN interaction reproduces the energy
spectrum and other observables in a many-body system as
well as deuteron properties andNN scattering data. From this
point of view, ourNN interaction can be treated as a realistic
one as well. Our interaction is not related to the meson ex-
change theory, however, we shall see that we obtain the deu-
teron and scattering wave functions that are very close to the
ones obtained with realistic meson exchange potentials.

The potential derived by theJ-matrix inverse scattering
approach is ambiguous. The ambiguity originates from the
phase-equivalent transformation suggested in Ref.[16] (see
also Refs.[17,18], and references therein). The ambiguity is
eliminated in the present approach by a phenomenological
ansatz that the potential matrix in the uncoupled partial
waves is tridiagonal. Therefore, our potentials areinverse
scattering tridiagonal potentials(ISTP). The noncentral na-
ture of theNN interaction is manifested in the coupling of
some partial waves, and the tridiagonal potential ansatz
should be extended to allow for the coupling of these partial
waves. We postulate phenomenologically the simplest gener-
alization of the tridiagonal form of the potential matrix in
this case; however, we refer to our potentials as ISTP in the
cases of both uncoupled and coupled partial waves(though,
strictly speaking, it is not correct in the later case). It is just
the tridiagonal ansatz that brings us to the scattering wave
functions which are very close to the ones provided by the
meson exchange realisticNN potentials. However, in the
case of the coupledsd waves we perform a phase equivalent
potential transformation to improve the description of the
deuteron properties.

The ansatz of a tridiagonal form represents a very eco-
nomical version of an inverse scattering potential in the rela-
tive harmonic oscillator basis since it has the minimum num-
ber of off-diagonal two-body potential matrix elements for a
given basis size. More complicated forms are easily imag-
ined and may be obtained either by a unitary transformation
[16–18] from the tridiagonal form or from direct inversion
techniques that might be developed for each proposed form.

The suggested ISTP are used in the no-core shell model
calculations of3H and 4He. We shall see that the predicted
3H and4He binding energies are very close to the experimen-
tal values. We do not useNNN interactions, yet our predic-
tions of the3H and 4He bindings are approximately of the
same accuracy as the predictions based on the best realistic
meson exchange two-nucleon plus three-nucleon forces.

Here we would like to mention some recent papers where
other approaches to the problem of constructing high-quality
effective interaction were utilized. The authors of Refs.
[19,20] added phenomenological nonlocal terms to a cutoff
Yukawa tail of the realisticNN potentials. The obtained in-
teraction reproduces the3H binding energy. The additional
nonlocal terms do not reduce the rank of the potential energy
matrix in the oscillator basis of the underlying realisticNN
interaction. Therefore, the use of this interaction in the shell
model studies requires the construction of the shell model
effective interaction.

A very interesting approach is the construction of the low
momentumNN potentialVlow−k from the realisticNN inter-
actions(see the review in Ref.[21]). The use ofVlow−k in the
shell model applications still requires the construction of the
shell model effective interaction but this problem is simpli-
fied. The effective interaction obtained fromVlow−k was used
successfully in various shell model applications(see, e.g.,
Ref. [22]). It is unclear whether this interaction provides the
correct binding of three-body and four body nuclear systems.
Contrary toVlow−k, our ISTP is designed for the direct use in
shell model applications for light nuclei.

The paper is organized as follows. In the next section we
present the single channelJ-matrix inverse scattering ap-
proach, derive ISTP in the uncoupled partial waves, and dis-
cuss their properties. The derivation and discussion of the
ISTP properties in the coupled partial waves can be found in
Sec. III. The results of the3H and4He calculations are pre-
sented in Sec. IV. A short summary of the results can be
found in Sec. V.

II. SINGLE CHANNEL J-MATRIX INVERSE SCATTERING
APPROACH AND ISTP IN UNCOUPLED NN PARTIAL

WAVES

The J-matrix formalism in the quantum scattering theory
was initially proposed in atomic physics[23]. Within the
J-matrix formalism, the continuum spectrum wave function
is expanded in an infinite series ofL2 functions. This ap-
proach was shown to be one of the most efficient and precise
methods in calculations of photoionization[24–26] and elec-
tron scattering by atoms[27]. In nuclear physics the same
approach has been developed independently[28,29] as the
method of the harmonic oscillator representation of scatter-
ing theory. This method has been successfully used in vari-
ous nuclear applications allowing for the two-body con-
tinuum, e.g., nucleus-nucleus scattering has been studied in
the algebraic version of RGM based on theJ-matrix formal-
ism (see the review papers Refs.[30,31]); the effect ofL and
neutron decay channels in hypernuclei production reactions
has been investigated in Refs.[32,33], etc. The approach was
extended to the case of true few-body scattering in Ref.[34]
and utilized in the studies of the monopole excitations of the
12C nucleus in the 3a cluster model in Ref.[35]. It was also
used in the studies of double-L hypernuclei in Ref.[36] and
of weakly bound nuclei in the three-body cluster model in
Refs.[16–18].

The J-matrix version of the inverse scattering theory was
suggested in Refs.[13–15]. The discussion of the general
formalism below follows the ideas of Refs.[13–15], how-
ever, some formulas are presented here in a manner that
should be more convenient for the current application. The
tridiagonalization of the interaction obtained by the inverse
scattering methods have not previously been discussed in the
literature, hence, the corresponding theory and results are
new.

The oscillator-basisJ-matrix formalism is discussed in
detail elsewhere(see, e.g., Refs.[23,37]). We present here
only some relations needed for understanding the inverse
scatteringJ-matrix approach.
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The Schrödinger equation in the partial wave with orbital
angular momentuml reads

HlClmsE,rd = EClmsE,rd. s1d

The wave function is given by

ClmsE,rd =
1

r
ulsE,rdYlmsr̂d, s2d

whereYlmsr̂ d is the spherical function. Within theJ-matrix
formalism, the radial wave functionulsE,rd is expanded in
an oscillator function series

ulsE,rd = o
n=0

`

anlsEdRnlsrd, s3d

where

Rnlsrd = s− 1dnÎ 2n!

r0Gsn + l + 3/2dS r

r0
Dl+1

3expS−
r2

2r0
2DL

n

l+1
2S r2

r0
2D , s4d

whereLn
asxd is the associated Laguerre polynomial, the os-

cillator radiusr0=Î" /mv, and m is the reduced mass. All
energies are given in the units of the oscillator basis param-
eter"v.

The wave function in the oscillator representationanlsEd
is a solution of the infinite set of algebraic equations

o
n8=0

`

sHnn8
l − dnn8Edan8lsEd = 0, s5d

where the Hamiltonian matrix elementsHnn8
l =Tnn8

l +Vnn8
l , the

kinetic energy matrix elements

Tn,n−1
l = −

1

2
Însn + l + 1/2d, s6ad

Tn,n
l =

1

2
s2n + l + 3/2d, s6bd

Tn,n+1
l = −

1

2
Îsn + 1dsn + l + 3/2d, s6cd

and the potential energyVl within the J-matrix formalism is
approximated by the truncated matrix with elements

Ṽnn8
l =HVnn8

l
if n and n8 ø N;

0 if n or n8 . N.
s7d

In the inverse scatteringJ-matrix approach, the potential en-
ergy is constructed in the form of the finite matrix of the type
(7); therefore theJ-matrix solutions with such an interaction
are exact.

In the external part of the model spacespanned by func-
tions (4) with nùN, Eq. (5) takes the form of a three-term
recurrence relation

Tn,n−1
l an−1,lsEd + sTnn

l − EdanlsEd + Tn,n+1
l an+1,lsEd = 0.

s8d

Any solution of Eq.(8) is a superposition of the fundamental
regularSnlsEd and irregularCnlsEd solutions[23,37]:

anlsEd = cosdsEdSnlsEd + sin dsEdCnlsEd, s9d

where

SnlsEd =Î pr0n!

Gsn + l + 3/2d
ql+1expS−

q2

2
DLn

l+1/2sq2d,

s10d

CnlsEd = s− 1dlÎ pr0n!

Gsn + l + 3/2d
q−l

Gs− l + 1/2d

3expS−
q2

2
DFs− n − l − 1/2,−l + 1/2;q2d,

s11d

Fsa,b;zd is a confluent hypergeometric function[38], q
=Î2E, anddsEd is the scattering phase shift.

The wave function in the oscillator representationanlsEd
in the internal part of the model spacespanned by functions
(4) with nøN, can be expressed through the external solu-
tion aN+1,lsEd:

anlsEd = GnNTN,N+1
l aN+1,lsEd. s12d

The matrix elements

Gnn8 = − o
l8=0

N knul8lkl8un8l
El8 − E

, s13d

are expressed through the eigenvaluesEl and eigenvectors
knull of the truncated Hamiltonian matrix, i.e.,El andknull
are obtained by solving the algebraic problem

o
n8=0

N

Hnn8
l kn8ull = Elknull, n ø N. s14d

The matrix elementGNN is of primary importance in the cal-
culation of the phase shiftdsEd:

tan dsEd = −
SNlsEd − GNNTN,N+1

l SN+1,lsEd

CNlsEd − GNNTN,N+1
l CN+1,lsEd

. s15d

In the directJ-matrix approach, we first solve Eq.(14) and
next calculate the phase shiftdsEd by means of Eq.(15). In
the inverse scatteringJ-matrix approach, the phase shiftdsEd
is taken to be known at any energyE and, instead of solving
Eq. (14), we extract the eigenvaluesEl and the eigenvectors
knull from this information.

First we assign some value toN, the rank of the desired
potential matrix[see Eq.(7)]. Generally, with a finite rank
potential matrix it is possible to reproduce the phase shift
dsEd only in a finite energy interval; largerN supports a
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larger energy interval. However, from the point of view of
many-body applications, it is desirable to haveN as small as
possible.

The componentsanlsEd of the wave function in the oscil-
lator representation, should be finite at arbitrary energyE.
This is seen from Eqs.(12) and (13) to be possible at the
energiesE=El, l=0,1, . . . ,N only if

aN+1,lsEld = 0. s16d

Knowing the phase shift, we can calculateaN+1,lsEd at any
energyE using Eq.(9). Therefore, we can solve numerically
the transcendental equation(16) and find the eigenvaluesEl,
l=0,1, . . . ,N.

Due to Eq.(16):

aN+1,lsEd →
E→El

al
lsE − Eld, s17d

where

al
l = UdaN+1,lsEd

dE
U

E=El

. s18d

Now it is easy to derive from Eqs.(12) and(13) the follow-
ing equation:

aNlsEld = ukNullu2al
lTN,N+1

l , s19d

or, equivalently,

ukNullu2 =
aNlsEld

al
lTN,N+1

l . s20d

Within the J-matrix formalism, bothaNlsEd andaN+1,lsEd fit
Eq. (9) and can be calculated using this equation at any en-
ergy E. Hence, one can also calculateal

l by means of Eq.
(18). Therefore, the componentskNull can be obtained from
Eq. (20) (the sign of the componentskNull is of no impor-
tance).

Equations(16) and (20) provide the general solution of
the J-matrix inverse scattering problem: solving these equa-
tions we obtain the sets ofEl andkNull, and these quantities
completely determine the phase shiftsdsEd. However,kNull
are supposed to be the components of the eigenvectorsknull
of the truncated Hamiltonian matrix[see Eq. (14)] that
should fit the completeness relation

o
l=0

N

knullklun8l = dnn8, s21d

hence, we should have

o
l=0

N

kNullkluNl = 1. s22d

Generally the set ofkNull obtained by means of Eq.(20)
violates the completeness relation(22). Therefore, this set of
kNull ideally describing the phase shifts, cannot be treated
as the set of last components of the normalized eigenvectors
knull of any truncated Hermitian Hamiltonian matrix; in
other words, the set ofkNull violating Eq. (22) cannot be
used to construct a Hermitian Hamiltonian matrix.

To overcome this difficulty, we fit Eq.(22) by changing
the value of the componentkNul=Nl corresponding to the
highest eigenvalueEl=N. This modification spoils the de-
scription of the phase shiftsdsEd at energiesE different from
El, l=0,1, . . . ,N. We restore the phase shift description in
the energy intervalf0,El=N−1g by variation ofEl=N. From the
earlier consideration it is clear that largerN values make it
possible to reproduce phase shifts in larger energy intervals
f0,El=N−1g.

There is an ambiguity in determining the potential matrix
describing the given phase shiftsdsEd: any of the phase
equivalent transformations discussed in Refs.[16–18] [see
also Eqs.(66)–(68) later] that do not change the truncated
Hamiltonian eigenvaluesEl and respective eigenvector com-
ponentskNull, results in a potential matrix that brings us to

TABLE I. Nonzero matrix elements in"v units of the 8"v
ISTP matrix in the1s0 partial wave.

n Vnn
l Vn,n+1

l =Vn+1,n
l

0 −0.370692591051 0.134054681241

1 −0.159916088622 0.016474369170

2 0.139593205593 −0.133446192137

3 0.266824207307 −0.078690196129

4 0.041490933216

TABLE II. Nonzero matrix elements in"v units of the 7"v
ISTP matrix in the1p1 partial wave.

n Vnn
l Vn,n+1

l =Vn+1,n
l

0 0.106199364772 −0.094411509693

1 0.321832027399 −0.198614230564

2 0.382278903019 −0.125293001922

3 0.088186662748

TABLE III. Nonzero matrix elements in"v units of the 8"v
ISTP matrix in the1d2 partial wave.

n Vnn
l Vn,n+1

l =Vn+1,n
l

0 −0.041824646289 0.038312478836

1 −0.112960462645 0.068735184648

2 −0.127611509816 0.040422120683

3 −0.025546698405

TABLE IV. Nonzero matrix elements in"v units of the 7"v
ISTP matrix in the1f3 partial wave.

n Vnn
l Vn,n+1

l =Vn+1,n
l

0 0.042387100374 −0.027905560992

1 0.074740011106 −0.028153835497

2 0.025116180890
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the same phase shiftsdsEd at any energyE. Additional model
assumptions are needed to resolve this ambiguity. As was
already mentioned, we assume the tridiagonal form of the
potential matrix. We now discuss the construction of the
tridiagonal potential matrix supposingN and the sets ofEl

and kNull to be known.
If the potential matrix is tridiagonal, Eqs.(14) can be

rewritten as

H00
l k0ull + H01

l k1ull = Elk0ull, s23ad

Hn,n−1
l kn − 1ull + Hnn

l knull + Hn,n+1
l kn + 1ull = Elknull

sn = 1,2, . . . ,N − 1d, s23bd

HN,N−1
l kN − 1ull + HNN

l kNull = ElkNull. s23cd

The unknown quantities in Eq.(23c) are the component
kN−1ull and the Hamiltonian matrix elementsHN,N−1

l and
HNN

l . We multiply Eq.(23c) by kl uNl, sum the result overl,
and use the completeness relation(21) to obtain the formula
for the calculation ofHNN

l :

HNN
l = o

l=0

N

ElkNull2. s24d

The Hermitian conjugate of Eq.(23c) reads

kluN − 1lHN,N−1
l + kluNlHNN

l = kluNlEl. s23c8d

We multiply Eq.(23c) by Eq. (23c8), sum the result overl,
and use the completeness relation(21) to obtain the follow-
ing expression for the calculation ofHN,N−1

l :

HN,N−1
l = −Îo

l=0

N

El
2kNull2 − sHNN

l d2. s25d

Generally, the sign in the right-hand side of Eq.(25) is arbi-
trary. Here we use an additional assumption that the off-

diagonal Hamiltonian matrix elementsHn,n±1
l are dominated

by the kinetic energy so that the sign of these matrix ele-
ments is the same as the kinetic energy matrix elementsTnn±1

l

[see Eqs.(6)]. This assumption brings us to the minus sign in
the right-hand side of Eq.(25).

Now Eq. (23c) can be used to calculate the last unknown
quantity

kN − 1ull =
1

HN,N−1
l sElkNull − HNN

l kNulld. s26d

We now turn to Eq.(23b) with n=N−1. This equation
contains one more term than Eq.(23c), however, this term
does not include unknown quantities. We perform with Eq.
(23b) exactly the same manipulations to obtain expressions
for HN−1,N−1

l , HN−2,N−1
l , andkN−2ull. Settingn=N−2 in Eq.

(23b), we obtain the expressions forHN−2,N−2
l , HN−3,N−2

l ,
kN−3ull, etc. Equation(23a) is needed only to calculate the
last matrix elementH00

l . As a result, we obtain the following
generalization of Eq.(24) valid at n=N, N−1, . . . ,0:

Hnn
l = o

l=0

N

Elknull2. s27d

The equations

Hn,n−1
l = −Îo

l=0

N

El
2knull2 − sHnn

l d2 − sHn,n+1
l d2 s28d

and

kn − 1ull =
1

Hn,n−1
l So

l=0

N

Elknull − Hnn
l knull − Hn,n+1

l kn + 1ullD
s29d

are valid atn=N−1, N−2, . . . ,1. Equations(25)–(29) make
it possible to calculate all unknown quantities. After calcu-
lating the Hamiltonian matrix elementsHnn8

l , we derive the
ISTP matrix elements by the obvious equations

TABLE V. Nonzero matrix elements in"v units of the 7"v
ISTP matrix in the3p0 partial wave.

n Vnn
l Vn,n+1

l =Vn+1,n
l

0 −0.136747520574 0.015115026047

1 0.087868702261 −0.105904971180

2 0.236248878650 −0.080401020753

3 0.049099156034

TABLE VI. Nonzero matrix elements in"v units of the 7"v
ISTP matrix in the3p1 partial wave.

n Vnn
l Vn,n+1

l =Vn+1,n
l

0 0.088933281276 −0.092880110751

1 0.338999430587 −0.211115182274

2 0.361586494817 −0.098285652220

3 0.051672685711

TABLE VII. Nonzero matrix elements in"v units of the 8"v
ISTP matrix in the3d2 partial wave.

n Vnn
l Vn,n+1

l =Vn+1,n
l

0 −0.200240578055 0.119332193872

1 −0.288987898733 0.146304772643

2 −0.255222029014 0.079227780212

3 −0.054213944378

TABLE VIII. Nonzero matrix elements in"v units of the 7"v
ISTP matrix in the3f3 partial wave.

n Vnn
l Vn,n+1

l =Vn+1,n
l

0 0.026292148118 −0.013940970302

1 0.034636722707 −0.012592178851

2 0.011196241352
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Vnn
l = Hnn

l − Tnn
l , s30ad

Vn,n±1
l = Hn,n±1

l − Tn,n±1
l . s30bd

The earlier theory is used to construct theNN ISTP matrix
elements in uncoupled partial waves. We use as input thenp
scattering phase shifts reconstructed from the experimental
data by the Nijmegen group[3]. The oscillator basis param-
eter "v=40 MeV. Usually in the shell model calculations,
the completeû"v model space is used, i.e., all many-body
oscillator basis states(configurations) with oiûi øû where
the single-particle state oscillator quantaûi =2ni + l i, are in-
cluded in the calculation. Thus, to be applicable to allp-shell
nuclei in accessible model spaces, we suggest the 8"v and
7"v ISTP, i.e., the rank of the ISTP matrixN is chosen so
that 2N+ l =8 in the partial waves with even orbital angular
momentuml and 2N+ l =7 in the partial waves with odd
orbital angular momentuml.

The nonzero matrix elements of the obtained ISTP in un-
coupled partial waves are presented in Tables I–VIII(in
"v=40 MeV units).

In Figs. 1–16 we present the results of the phase shift and
scattering wave function calculations with our ISTP in the

uncoupled partial waves. The phase shifts are seen to be
better reproduced by ISTP up to the laboratory energyElab

=350 MeV than by one of the best realistic meson exchange
potentials Nijmegen-II. Some discrepancies are seen only at
large energies. These discrepancies can be eliminated by us-
ing largerN values. This is illustrated in phase shifts of odd
partial waves presented in Figs. 3, 7, 9, 11, and 15. These are
the results of the phase shift calculations with the 9"v ISTP
in addition to the 7"v ISTP phase shifts. It is interesting that
the differences between the 7"v ISTP and 9"v ISTP wave
functions in odd partial waves are too small to be seen in
Figs. 4, 8, 10, 12, and 16 even at large energies. We note also
that the use of 7"v ISTP instead of 9"v ISTP in the3H and
4He calculations, result in negligible differences of the bind-
ing energies, wave functions, etc. The ISTPnp scattering
wave functions at different energies are very close to the
Nijmegen-II wave functions both in odd and even partial
waves. In other words, these ISTP wave functions can be
regarded as realistic.

FIG. 1. 1s0 np scattering phase shifts. Filled circles—
experimental data of Ref.[3]; solid line—realistic meson exchange
Nijmegen-II potential(See Ref.[3]) phase shifts; dashed line—
ISTP phase shifts.

FIG. 2. 1s0 np scattering wave functions at the laboratory ener-
giesElab=2, 10, 50, 150, and 250 MeV. Solid line—realistic meson
exchange Nijmegen-II potential(See Ref. [3]) wave functions;
dashed line—ISTP wave functions.

FIG. 3. 1p1 np scattering phase shifts. Filled circles—
experimental data of Ref.[3]; solid line—realistic meson exchange
Nijmegen-II potential(See Ref.[3]) phase shifts; dashed line—7"v
ISTP phase shifts; dotted line—9"v ISTP phase shifts.

FIG. 4. 1p1 np scattering wave functions at the laboratory ener-
giesElab=2, 10, 50, 150, and 250 MeV. Solid line—realistic meson
exchange Nijmegen-II potential(See Ref. [3]) wave functions;
dashed line—7"v ISTP wave functions; dotted line—9"v ISTP
wave functions.
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III. TWO-CHANNEL J-MATRIX INVERSE SCATTERING
APPROACH AND ISTP IN COUPLED NN PARTIAL

WAVES

In the case of the nucleon-nucleon scattering, the spins of
two nucleons can couple to the total spinS=0 (singlet spin
state) or to the total spinS=1 (triplet spin state). In the case
of the singlet spin state, we have only uncoupled partial
waves in the nucleon-nucleon scattering. In the case of the
triplet spin state, the total angular momentumj = l +1 can be
obtained by the coupling of the total spinS=1 with the or-
bital angular momentuml. On the other hand, the higher
triplet-spin partial wave of the same parity with the orbital
angular momentuml8= l +2, can have the same total angular
momentum j = l +1=l8−1. Such partial waves are coupled
due to the noncentral nature of theNN interaction. Thesd
coupled partial waves(the coupling of the3s1 and3d1 partial
waves) andpf coupled partial waves(the coupling of the3p2
and3f2 partial waves) are of special interest for applications.
The case of thesd coupled partial waves is of primary im-
portance due to the existence of the onlynp bound state(the
deuteron). The coupled equations describing theNN system
in the coupled partial waves, are of the same structure with
the coupled equations describing the two-channel system. In
other words, the description of the coupled waves in theNN
scattering is formally equivalent with the description of the
two-channel scattering.

The wave function in the coupled waves case is

C = o
G

1

r
uGsE,rduGl, s31d

whereuGl is the spin-angle wave function which includes the
spin variables of two nucleons coupled to the total spinS
=1, the spherical functionYlGmsr̂d, and the coupling of the
channel orbital momentumlG with the total spinS into the
total angular momentumj ; uGsE,rd is the radial wave func-
tion in the given formal channelG=hlG , jj. Generally there
are two independent solutions for each radial wave function
uGsE,rd. To distinguish these solutions it is convenient to
employ theK-matrix formalism associated with the standing
wave asymptotics of the wave function

uGsGid
sE,rd →

r→`

qr

r0
FdGGi

j lGSqr

r0
D − KGGi

sEdnlGSqr

r0
DG .

s32d

Here the indexGi distinguishes independent radial functions
uGsGid

sE,rd in the channelG, KGGi
sEd is the K matrix, and

j lsxd andnlsxd are spherical Bessel and Neumann functions.
The advantage of theK-matrix formalism is that the radial
functions uGsGid

sE,rd defined according to their standing
wave asymptotics(32) are real contrary to the more conven-
tional S-matrix formalism with complex radial wave func-
tions which are asymptotically a superposition of ingoing
and outgoing spherical waves. TheK-matrix KGGi

sEd, of

FIG. 6. 1d2 np scattering wave functions at the laboratory ener-
giesElab=2, 10, 50, 150, and 250 MeV. See Fig. 2 for details.

FIG. 7. 1f3 np scattering phase shifts. See Fig. 3 for details.

FIG. 8. 1f3 np scattering wave functions at the laboratory ener-
giesElab=2, 10, 50, 150, and 250 MeV. See Fig. 4 for details.

FIG. 5. 1d2 np scattering phase shifts. See Fig. 1 for details.
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course, can be expressed through theS-matrix. However, it is
not theS matrix but the so-called phase shiftsdG anddGi

in
each of the coupled partial wavesG and Gi and the mixing
parameter« that are usually published as functions of the
energyE in the experimental and theoretical investigations.
The S matrix can be parametrized in terms ofdG, dGi

and«.
However, for the present application it is more convenient to
express theK-matrix elements directly throughdG, dGi

and«

(see Refs.[39,40]):

KsssEd =
tan ds + tan2« · tandd

1 − tan2« · tands · tandd
, s33ad

KddsEd =
tan dd + tan2« · tands

1 − tan2« · tands · tandd
, s33bd

KsdsEd = KdssEd =
tan «

cosds · cosdd · s1 − tan2« · tands · tanddd
.

s33cd

To be specific, we have specified the case of the coupledsd
waves where the channel indexesG andGi take the valuess
or d. In the case of the coupledpf waves, one substitutes the
indexess andd by the indexesp and f in the earlier expres-
sions and in other formulas in this section.

Within the inverse scatteringJ-matrix approach, the po-
tential in the coupled partial waves is fitted with the form

V = o
G,G8

o
n=0

NG

o
n8=0

NG8

unGlVnn8
GG8kn8G8u. s34d

Here Vnn8
GG8;knGuVun8G8l is the potential energy matrix ele-

ment in the oscillator basis

unGl = RnlG
srduGl, s35d

where the radial oscillator functionRnlG
srd is given by Eq.

(4) and uGl is the spin-angle function. Different truncation
boundariesNG can be used in different partial wavesG.

The multichannelJ-matrix formalism is well known(see,
e.g., Refs.[23,37]) and we will not discuss it here in detail.
The formalism provides exact solutions for the continuum
spectrum wave functions in the case when the finite-rank
potentialV of the type(34) is employed. In the case of the
discrete spectrum states, the exact solutions are obtained by
the calculation of the correspondingS-matrix poles as is dis-
cussed in Refs.[17,18,34]. In particular, the deuteron ground
state energyEd should be associated with theS-matrix pole
and its wave function is calculated by means of theJ-matrix
formalism applied to the negative energyE=Ed.

Within the J-matrix formalism, the radial wave function
uGsGid

sE,rd is expanded in the oscillator function series

FIG. 9. 3p0 np scattering phase shifts. See Fig. 3 for details.

FIG. 10. 3p0 np scattering wave functions at the laboratory en-
ergiesElab=2, 10, 50, 150, and 250 MeV. See Fig. 4 for details.

FIG. 11. 3p1 np scattering phase shifts. See Fig. 3 for details.

FIG. 12. 3p1 np scattering wave functions at the laboratory en-
ergiesElab=2, 10, 50, 150, and 250 MeV. See Fig. 4 for details.
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uGsGid
sE,rd = o

n=0

`

anGsGid
sEdRnlG

srd. s36d

In the external part of the model space spanned by functions
(35) with nùNG, the oscillator representation wave function
anGsGid

sEd fits the three-term recurrence relation(8). Its solu-
tions corresponding to the asymptotics(32) are

anGsGid
sEd = dGGi

SnlG
sEd + KGGi

sEdCnlG
sEd. s37d

Equation(37) can be used for the calculation ofanGsGid
sEd

with nùNG if the coupled wave phase shiftsdG anddGi
and

the mixing parameter« are known.
The oscillator representation wave functionanGsGid

sEd in
the internal part of the model space spanned by functions
(35) with nøNG, can be expressed through the external os-
cillator representation wave functionsaNG+1,GsGid

sEd as

anGsGid
sEd = o

G8

GnNG8

GG8 TNG8,NG8+1
lG8 aNG8+1,G8sGid

sEd. s38d

The matrix elements

Gnn8
GG8 = − o

l8=0

N knGul8lkl8un8G8l
El8 − E

, s39d

where N=NG+NG8+1, are expressed within the direct
J-matrix formalism through the eigenvaluesEl and eigen-

vectorsknG ull of the truncated Hamiltonian matrix, i.e.,El

and knG ull are obtained by solving the algebraic problem

o
G8

o
n8=0

NG8

Hnn8
GG8kn8G8ull = ElknGull, n ø NG. s40d

Here Hnn8
GG8;knGuH un8G8l are the Hamiltonian matrix ele-

ments.
Within the inverseJ-matrix approach, we start with as-

signing some values to the potential truncation boundaries
NG [see Eq.(34)] in each of the partial wavesG. As a next
step, we calculate the sets of eigenvaluesEl and respective
eigenvector componentskNGG ull. This can be done using
the set of theJ-matrix matching conditions which are ob-
tained from Eq.(38) supposingn=NG. In more detail, these
matching conditions are(to be specific, we again take the
case of the coupledsdwaves so the channel indexesG andGi
take the valuess or d):

aNssssdsEd = o
G8=s,d

GsG8TNG8,NG8+1
G8 aNG8+1,G8ssdsEd, s41ad

aNddssdsEd = o
G8=s,d

GdG8TNG8,NG8+1
G8 aNG8+1,G8ssdsEd, s41bd

FIG. 13. 3d2 np scattering phase shifts. See Fig. 1 for details.

FIG. 14. 3d2 np scattering wave functions at the laboratory en-
ergiesElab=2, 10, 50, 150, and 250 meV. See Fig. 2 for details.

FIG. 15. 3f3 np scattering phase shifts. See Fig. 3 for details.

FIG. 16. 3f3 np scattering wave functions at the laboratory en-
ergiesElab=2, 10, 50, 150, and 250 MeV. See Fig. 4 for details.
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aNsssddsEd = o
G8=s,d

GsG8TNG8,NG8+1
G8 aNG8+1,G8sddsEd, s41cd

and

aNddsddsEd = o
G8=s,d

GdG8TNG8,NG8+1
G8 aNG8+1,G8sddsEd, s41dd

where we introduced the shortened notation

GGG8 ; GNGNG8

GG8 = − o
l8=0

N kNGGul8lkl8uNG8G8l

El8 − E
. s42d

To calculateaNGGsGid
sEd andaNG+1,GsGid

sEd entering Eqs.(41),
we can use Eq.(37) with the K-matrix elements expressed
through the experimental data by Eqs.(33). Therefore,Gss,
Gsd, Gds, andGdd are the only unknown quantities in Eqs.(41)
and they can be obtained as the solutions of the algebraic
problem(41) at any positive energyE.

These solutions may be expressed as

Gss=
DsssEd

TNs,Ns+1
s DsEd

, s43ad

Gdd =
DddsEd

TNd,Nd+1
d DsEd

, s43bd

and

Gsd= Gds= −
r0

Î2EKsd

2TNs,Ns+1
s TNd,Nd+1

d DsEd
, s43cd

where

DsssEd = fSNss
sEd + KsssEdCNss

sEdgfSNd+1,dsEd

+ KddsEdCNd+1,dsEdg − Ksd
2 sEdCNss

sEdCNd+1,dsEd,

s44ad

DddsEd = fSNs+1,ssEd + KsssEdCNs+1,ssEdgfSNddsEd

+ KddsEdCNddsEdg − Ksd
2 sEdCNs+1,ssEdCNddsEd,

s44bd

and

DsEd = fSNs+1,ssEd + KsssEdCNs+1,ssEdgfSNd+1,dsEd

+ KddsEdCNd+1,dsEdg − Ksd
2 sEdCNs+1,ssEdCNd+1,dsEd.

s44cd

To derive Eq.(43c), we used the following expression for the
Casoratian determinant[34,37]:

Kn
l sC,Sd ; Cn+1,lsEdSnlsEd − Sn+1,lsEdCnlsEd =

r0
Î2E

2Tn,n+1
l .

s45d

It is obvious from Eqs.(42) and(43) that the eigenvalues
El can be found by solving the following equation:

DsEld = 0. s46d

The eigenvector componentskNGG ull can be obtained from
Eqs.(43a) and(43b) in the limit E→El in the same manner
as Eq.(20) in the single-channel case

ukNssullu2 =
DsssEld

TNs,Ns+1
s Dl

s47d

and

ukNddullu2 =
DddsEld

TNd,Nd+1
d Dl

, s48d

where

Dl = UdDsEd
dE

U
E=El

. s49d

Equations(47) and (48) make it possible to calculate the
absolute values ofkNssull and kNddull only. However, the
relative sign of these eigenvector components is important.
This relative sign can be established using the relation

kNssullTNs,Ns+1
s

kNddullTNd,Nd+1
d = −

aNd+1,dssdsEld

aNs+1,sssdsEld
= −

aNd+1,dsddsEld

aNs+1,ssddsEld

s50d

that can be easily obtained from Eqs.(41).
Using Eqs.(46)–(50) we obtain all eigenvaluesEl.0 and

corresponding eigenvector componentskNGG ull. For ex-
ample, in the case of the coupledpf waves when theNN
system does not have a bound state, all eigenvaluesEl are
positive and by means of Eqs.(46)–(50) we obtain a com-
plete set of eigenvaluesEl=0,1, . . . ,N and the complete set
of the eigenvector’s last componentskNGG ull providing the
best description of the “experimental”(obtained by means of
phase shift analysis) phase shiftsd1sEd andd3sEd and mixing
parameter«. However, as in the case of the uncoupled

FIG. 17. Structure of the ISTP matrix in the coupledpf waves
and of the Version 0 ISTP in the coupledsd waves. The location of
nonzero matrix is schematically illustrated by solid lines.
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waves, we should take care of fitting the completeness rela-
tion for the eigenvectorsknG ull that in the coupled wave
case takes the form

o
l=0

N

knGullklun8G8l = dnn8dGG8. s51d

Due to Eq.(51), in the two-channel case, we should perform
variation of the componentskNGG ull associated with the two
largest eigenenergiesEl=N andEl=N−1 to fit three relations

o
l=0

N

kNG1
G1ullkluNG1

G1l = 1, s52ad

o
l=0

N

kNG1
G1ullkluNG2

G2l = 0, s52bd

and

o
l=0

N

kNG2
G2ullkluNG2

G2l = 1. s52cd

This immediately spoils the description of the scattering data
that can be restored by the additional variation of the
eigenenergiesEl=N and El=N−1. As a result, in the case of
the coupledpf waves, we perform a standard fit to the
data by minimizing x2 by the variation of kNppul=Nl,
kNppul=N−1l, kNf f ul=Nl, kNf f ul=N−1l, El=N and
El=N−1. These six parameters should fit three relations(52),
hence, we face a simple problem of a three-parameter fit.

In the case of the coupledsd waves, thenp system has a
bound state(the deuteron) at the energyEd sEd,0d and one
of the eigenvaluesEl is negative:E0,0. We should extend
the above theory to the case of a system with bound states.
For the coupledsd waves case when thenp system has only
one bound state, we need three additional equations to cal-
culateE0 and the componentskNssul=0l and kNddul=0l.

The deuteron energyEd should be associated with the
S-matrix pole. As it was already noted, the technique of the
S-matrix pole calculation within theJ-matrix formalism is
discussed together with some applications in Refs.[17,18].
In the case of the finite-rank potentials of the type(34), one
can obtain the exact value of the bound state energyEd and
the exact bound state wave function by theS-matrix pole
calculation within theJ-matrix formalism. To calculate the
S-matrix, we use the standard outgoing-ingoing spherical
wave asymptotics and the respective expression for the
J-matrix oscillator space wave function in the external part
of the model space discussed, e.g., in Refs.[17,18,34,37]
instead of the standing wave asymptotics(32) and respec-
tively modified expression(37) for the J-matrix oscillator
space wave function. Using the expressions for the multi-

TABLE IX. Nonzero matrix elements in"v units of the 7"v
ISTP matrix in thepf coupled partial wave.

Vnn8
pp matrix elements

n Vnn
pp Vn,n+1

pp =Vn+1,n
pp

0 −0.083205863022 0.068281300876

1 −0.173387478975 0.097104660674

2 −0.163079253268 0.047370054433

3 −0.025144490505

Vnn8
f f matrix elements

n Vnn
f f Vn,n+1

f f =Vn+1,n
f f

0 −0.018607311796 0.008146529481

1 −0.012301122585 0.002878668409

2 −0.002274165032

Vnn8
pf matrix elements

n Vn,n−1
pf =Vn−1,n

fp Vnn
pf =Vnn

fp

0 0.031138374332

1 −0.027310965160 0.026548899815

2 −0.005320397951 −0.007039900978

3 0.009906839670

FIG. 18. 3p2 np scattering phase shiftsdp (coupledpf waves).
Filled circles—experimental data of Ref.[3]; solid line—realistic
meson exchange Nijmegen-II potential(See Ref.[3]) phase shifts;
dashed line—7"v ISTP phase shifts; dotted line—9"v ISTP phase
shifts.

FIG. 19. 3f2 np scattering phase shiftsd f (coupledpf waves).
See Fig. 18 for details.
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channelS-matrix within theJ-matrix formalism presented in
Refs.[17,18,34,37], it is easy to obtain the following expres-
sions[14] for the two-channelS-matrix elements:

Sss=
1

DsEd
hfCNss

s−d sEd − GssTNs,Ns+1
s CNs+1,s

s−d sEdg

3fCNdd
s+d sEd − GddTNd,Nd+1

d CNd+1,d
s+d sEdg

− Gsd
2 TNs,Ns+1

s TNd,Nd+1
d CNs+1,s

s−d sEdCNd+1,d
s+d sEdj, s53ad

Sdd =
1

DsEd
hfCNss

s+d sEd − GssTNs,Ns+1
s CNs+1,s

s+d sEdg

3fCNdd
s−d sEd − GddTNd,Nd+1

d CNd+1,d
s−d sEdg

− Gsd
2 TNs,Ns+1

s TNd,Nd+1
d CNs+1,s

s+d sEdCNd+1,d
s−d sEdj,

s53bd

and

Ssd= Sds= −
ir 0

Î2EGsd

DsEd
, s53cd

where

DsEd = fCNss
s+d sEd − GssTNs,Ns+1

s CNs+1,s
s+d sEdg

3fCNdd
s+d sEd − GddTNd,Nd+1

d CNd+1,d
s+d sEdg

− Gsd
2 TNs,Ns+1

s TNd,Nd+1
d CNs+1,s

s+d sEdCNd+1,d
s+d sEd s54d

and

Cnl
s±dsEd = CnlsEd ± iSnlsEd. s55d

We need to calculateCnl
s±dsEd at negative energyE=Ed which

can be done using Eqs.(55), (10), and(11) where imaginary
values ofq=qd= iÎ2uEdu are employed. Extension of these
expressions to the complexq plane is discussed in Ref.[34].

Since we associate the deuteron energyEd with the
S-matrix pole, from Eqs.(53) we have

DsEdd = 0. s56d

Assigning the experimental deuteron ground state energy to
Ed in Eq. (56) and substitutingDsEdd in this formula by its
expression(54), we obtain one of the equations needed to
calculateE0, kNssul=0l and kNddul=0l.

FIG. 20. np scattering mixing parameter« in the coupledpf
waves. See Fig. 18 for details.

FIG. 21. Large componentsupspdsE,rd and ufsfdsE,rd of the
coupled pf waves np scattering wave function at the laboratory
energyElab=2 MeV. See Fig. 18 for details.

FIG. 22. Small componentsupsfdsE,rd and ufspdsE,rd of the
coupled pf waves np scattering wave function at the laboratory
energyElab=2 MeV. See Fig. 18 for details.

FIG. 23. Large componentsupspdsE,rd and ufsfdsE,rd of the
coupled pf waves np scattering wave function at the laboratory
energyElab=10 MeV. See Fig. 18 for details.
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Two other equations utilize information about the
asymptotic normalization constants of the deuteron bound
stateAs andAd. If the Smatrix is treated as a function of the
complex momentumq, then its residue can be expressed
throughAs andAd [41,42]:

i Res
q=iqd

SlGlG8
= r0e

i
p
2

slG+lG8dAlG
AlG8

s57d

(the factorr0 in the right-hand side originates from the use of
the dimensionless momentumq). As andh=Ad/As are de-
termined experimentally. Therefore, it is useful to rewrite
equations(57) as

i lim
q→iqd

sq − iqddSss= r0As
2 s58ad

and

i lim
q→iqd

sq − iqddSsd= − r0hAs
2. s58bd

SubstitutingSss andSsd by its expressions(53) and (54), we
obtain two additional equations for the calculation ofE0,
kNssul=0l and kNddul=0l.

Clearly, in the case of coupledsd waves, we should also
fit the completeness relation(51). We employ the following
method of calculation of the sets of the eigenvaluesEl and
the componentskNssull and kNddull. The El values with
l=1,2, . . . ,N−2 are obtained by solving Eq.(46) while the
respective eigenvector’s last componentskNssull and
kNddull are calculated using Eqs.(47)–(50). Next we per-
form a x2 fit to the scattering data of the parametersE0,
El=N−1, El=N, kNssul=0l, kNssul=N−1l, kNssul=Nl,
kNddul=0l, kNddul=N−1l, andkNddul=Nl. These nine pa-
rameters fit six relations(52a)–(52c), (56), (58a), and(58b),
i.e., we should perform a three-parameter fit as in the case of
coupledpf waves.

Now we turn to the calculation of the remaining eigen-
vector componentsknG ull with n,NG and the Hamiltonian

matrix elementsHnn8
GG8 with nøNG andn8øNG8 entering Eq.

(40). The coupled waves Hamiltonian matrix obtained by the
generalJ-matrix inverse scattering method is ambiguous; the
ambiguity originates from the multichannel generalization of
the phase equivalent transformation mentioned in the single
channel case. As in the single channel case, we eliminate the
ambiguity by adopting a particular form of the potential en-
ergy matrix.

FIG. 24. Small componentsupsfdsE,rd and ufspdsE,rd of the
coupled pf waves np scattering wave function at the laboratory
energyElab=10 MeV. See Fig. 18 for details.

FIG. 25. Large componentsupspdsE,rd and ufsfdsE,rd of the
coupled pf waves np scattering wave function at the laboratory
energyElab=50 MeV. See Fig. 18 for details.

FIG. 26. Small componentsupsfdsE,rd and ufspdsE,rd of the
coupled pf waves np scattering wave function at the laboratory
energyElab=50 MeV. See Fig. 18 for details.

FIG. 27. Large componentsupspdsE,rd and ufsfdsE,rd of the
coupled pf waves np scattering wave function at the laboratory
energyElab=150 MeV. See Fig. 18 for details.
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As in the case of uncoupled partial waves, we construct
8"v ISTP in the coupledsdwaves. Therefore, 2NG+ lG=8, or
2Ns+0=8 and 2Nd+2=8; hence,Ns=Nd+1. In the coupled
pf waves, we construct 7"v and 9"v ISTP; clearly we again

haveNp=Nf +1. Thus, the potential matrixVnn8
GG8 has the fol-

lowing structure: the submatricesVnn8
GG coupling the oscillator

components of the same partial wave are quadratic[e.g.,
sNp+1d3 sNp+1d submatrixVnn8

pp in the 3p2 wave] while the

submatricesVnn8
GG8 with GÞG8 coupling the oscillator compo-

nents of different partial waves aresNG+1d3NG or NG

3 sNG+1d matrices[e.g.,sNp+1d3 sNpd submatrixVnn8
pf cou-

pling the3p2 and3f2 waves]. Our assumptions are: we adopt
(i) the tridiagonal form of the quadratic submatricesVnn8

GG and
(ii ) the simplest two-diagonal form of the nonquadratic sub-

matricesVnn8
GG8 with GÞG8 coupling the oscillator compo-

nents of different partial waves. The structure of the ISTP
matrices in coupled partial waves is illustrated by Fig. 17.

Due to these assumptions, the algebraic problem(40)
takes the following form:

H00
ssk0sull + H01

ssk1sull + H00
sdk0dull = Elk0sull, s59ad

H00
dsk0sull + H01

dsk1sull + H00
ddk0dull + H01

ddk1dull = Elk0dull,

s59bd

Hn,n−1
ss kn − 1,sull + Hnn

ssknsull + Hn,n+1
ss kn + 1,sull

+ Hn,n−1
sd kn − 1,dull + Hnn

sdkndull = Elknsull

sn = 1,2, . . . ,Ns − 1d, s59cd

Hnn
dsknsull + Hn,n+1

ds kn + 1,sull + Hn,n−1
dd kn − 1,dull

+ Hnn
ddkndull + Hn,n+1

dd kn + 1,dull = Elkndull

sn = 1,2, . . . ,Nd − 1d, s59dd

HNs,Ns−1
ss kNs − 1,sull + HNsNs

ss kNssull + HNsNd

sd kNddull

= ElkNssull, s59ed

and

HNd,Ns−1
ds kNs − 1,sull + HNdNs

ds kNssull + HNd,Nd−1
dd kNd − 1,dull

+ HNdNd

dd kNddull = ElkNddull. s59fd

Even though this set of equations is more complicated than
set (23) discussed in the uncoupled waves case, it can be
solved in the same manner.

Multiplying Eqs.(59e) and(59f) by kNssull andkNddull,
summing the results overl and using the completeness rela-
tion (51) we obtain

HNsNs

ss = o
l=0

N

ElkNssull2, s60ad

HNdNd

dd = o
l=0

N

ElkNddull2, s60bd

and

HNsNd

sd = o
l=0

N

ElkNssullkluNddl. s60cd

Now we multiply each of the Eqs.(59e) and (59f) by its
Hermitian conjugate and one of these equations by the Her-
mitian conjugate of the other, sum the results overl and use
Eq. (51) to obtain

FIG. 28. Small componentsupsfdsE,rd and ufspdsE,rd of the
coupled pf waves np scattering wave function at the laboratory
energyElab=150 MeV. See Fig. 18 for details.

FIG. 29. Large componentsupspdsE,rd and ufsfdsE,rd of the
coupled pf waves np scattering wave function at the laboratory
energyElab=250 MeV. See Fig. 18 for details.
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HNs,Ns−1
ss = −Îo

l=0

N

El
2kNssull2 − sHNsNs

ss d2 − sHNsNd

sd d2, s61ad

HNd,Ns−1
ds =

1

HNs,Ns−1
ss Fo

l=0

N

El
2kNssullkluNddl − HNsNd

sd sHNsNs

ss + HNdNd

dd dG , s61bd

and

HNd,Nd−1
dd = −Îo

l=0

N

El
2kNddull2 − sHNdNd

dd d2 − sHNsNd

sd d2 − sHNd,Ns−1
ds d2. s61cd

As in the case of uncoupled waves, we take the off-diagonal
matrix elementsHNs,Ns±1

ss andHNd,Nd±1
dd to be dominated by the

respective kinetic energy matrix elementsTNs,Ns±1
s and

TNd,Nd±1
d and therefore choose the minus sign in the right-

hand sides of Eqs.(61a) and (61c).
By means of Eqs.(60) and (61) we obtain all matrix

elementsHnn8
GG8 entering Eqs.(59e) and (59f). Using this

information, the eigenvector componentskNs−1,sull and
kNd−1,dull can be extracted directly from Eqs.(59e) and
(59f):

kNs − 1,sull =
1

HNs,Ns−1
ss sElkNssull − HNsNs

ss kNssull

− HNsNd

sd kNddulld s62ad

and

kNd − 1,dull =
1

HNd,Nd−1
dd sElkNddull − HNdNd

dd kNddull

− HNdNs

ds kNssull − HNd,Ns−1
ds kNs − 1,sulld.

s62bd

Now we can perform the same manipulations with Eqs.
(59a)–(59d). We taken=Ns−1, Ns−2, . . . ,1 in Eq.(59c) and
n=Nd−1, Nd−2, . . . ,1 in Eq. (59d). Equations(59c) and
(59d) are a bit more complicated than Eqs.(59e) and (59f),
however the additional terms in Eqs.(59c) and(59d) include
only the quantities calculated on the previous step. As a re-
sult, we obtain the following relations for the calculation of

the matrix elementsHnn
GG8:

Hnn
ss = o

l=0

N

Elknsull2, s63ad

Hnn
dd = o

l=0

N

Elkndull2, s63bd

and

Hnn
sd = o

l=0

N

Elknsullklundl. s63cd

Equation (63a) is valid for n=Ns,Ns−1, . . . ,0 while Eqs.
(63b) and (63c) are valid forn=Nd,Nd−1, . . . ,0.

For the matrix elementsHn,n−1
GG8 we obtain

Hn,n−1
dd = −Îo

l=0

N

El
2kndull2 − sHnn

dsd2 − sHn,n+1
ds d2 − sHnn

ddd2 − sHn,n+1
dd d2, s64ad

Hn,n−1
sd =

1

Hn,n−1
dd Fo

l=0

N

El
2knsullklundl − Hnn

sdsHnn
ss + Hnn

ddd − Hn,n+1
ss Hn,n+1

ds G , s64bd

and

Hn,n−1
ss = −Îo

l=0

N

El
2knsull2 − sHnn

ssd2 − sHn,n+1
ss d2 − sHn,n−1

sd d2 − sHnn
sdd2. s64cd
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Equation(64a) is valid for n=Nd−1, Nd−2, . . . ,1; Eq.(64b)
is valid for n=Nd, Nd−1, . . . ,1, and Eq.(64c) is valid for
n=Ns−1, Ns−2, . . . ,1.

The eigenvector componentskn−1,sull with n=Ns−1,
Ns−2, . . . ,1 andkn−1,dull with n=Nd−1, Nd−2, . . . ,1 can
be calculated using the following expressions:

kn − 1,sull =
1

Hn,n−1
ss sElknsull − Hnn

ssknsull − Hn,n+1
ss kn + 1,sull

− Hn,n−1
sd kn − 1,dull − Hnn

sdkndulld s65ad

and

kn − 1,dull =
1

Hn,n−1
dd sElkndull − Hnn

dsknsull

− Hn,n+1
ds kn + 1,sull − Hnn

ddkndull

− Hn,n+1
dd kn + 1,dulld. s65bd

Having calculated the Hamiltonian matrix elementsHnn8
GG8,

we obtain the potential energy matrix elementsVnn8
GG8 by sub-

tracting the kinetic energy.

We recall here that we arbitrarily assigned the valuess
and d to the channel indexG but the earlier theory can be
applied to any pair of coupled partial waves. The only equa-
tions specific for thesd coupled partial waves case are Eqs.
(56)–(58) that are needed to account for the experimental
information about the bound state which is present in thenp
system in thesd coupled partial waves. In Eqs.(33), (41)–
(50), and (59)–(65) one can substitutes and d by p and f,
respectively, and use them for constructing the ISTP in the
coupledpf waves.

We construct ISTP in the coupledNN partial waves using
as input thenp scattering phase shifts and mixing parameters
reconstructed from the experimental data by the Nijmegen
group [3]. We start the discussion from the ISTP in the
coupledpf waves.

The nonzero potential energy matrix elements of the ob-
tained 7"v pf-ISTP are given in Table IX(in "v=40 MeV
units). The description of the phase shiftsdp and d f and of
the mixing parameter« is shown in Figs. 18–20. The phe-
nomenological data are seen to be well reproduced by the
7"v ISTP up to the laboratory energyElab<270 MeV; at
higher energies there are discrepancies between the ISTP
predictions and the experimental data that are most pro-
nounced in the3p2 partial wave (note the very different
scales in Figs. 18–20). These discrepancies are seen to be
eliminated by constructing the 9"v pf-ISTP.

FIG. 30. Small componentsupsfdsE,rd and ufspdsE,rd of the
coupled pf waves np scattering wave function at the laboratory
energyElab=250 MeV. See Fig. 18 for details.

FIG. 31. 3s1 np scattering phase shiftsds (coupledsd waves).
Filled circles—experimental data of Ref.[3]; solid line—realistic
meson exchange Nijmegen-II potential(See Ref.[3]) phase shifts;
dashed line—Version 0 and Version 1 ISTP phase shifts; dotted
line—Version 2 ISTP phase shifts.

FIG. 32. 3d1 np scattering phase shiftsdd (coupledsd waves).
See Fig. 31 for details.

FIG. 33. np scattering mixing parameter« in the coupledsd
waves. See Fig. 31 for details.
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Generally, for the coupledpf waves, we have 4 radial
wave function componentsupspdsE,rd, upsfdsE,rd, ufspdsE,rd,
and ufsfdsE,rd defined according to their standing wave as-
ymptotics(32). We present in Figs. 21–30 the plots of these
components at the laboratory energiesElab=2, 10, 50, 150,
and 250 MeV obtained with the 7"v and 9"v ISTP in com-
parison with the respective Nijmegen-II wave function com-
ponents.

It is seen from the figures that the 9"v ISTP and
Nijmegen-II “large” (diagonal) wave function components
upspdsE,rd and ufsfdsE,rd are indistinguishable. The same
7"v ISTP components differ a little from those of
Nijmegen-II at high energies. At the same time, the “small”
(nondiagonal) ISTP wave function componentsupsfdsE,rd
and ufspdsE,rd differ essentially at small distances from the
Nijmegen-II ones. It is a clear indication of a very different
nature of the ISTP tensor interaction.

Now we apply the inverse scatteringJ-matrix approach to
the coupledsd partial waves and obtain the 8"v ISTP here-
after refered to as Version 0 ISTP. The description of the
phenomenological data by this potential(and other ISTP ver-

sions discussed later) is shown in Figs. 31–33. Thenp s
wave andd wave phase shiftsds and dd are excellently re-
produced up to the laboratory energy of 350 MeV. There is a
small discrepancy between the experimental and the Version
0 ISTP mixing parameter« at the laboratory energy ofElab
<25 MeV. However, the overall Version 0 ISTP description
of experimental scattering data(including the mixing param-
eter«) over the full energy intervalElab=0–350 MeV is seen
from Figs. 31–33 to be competitive with the Nijmegen-II,
one of the best realistic meson exchange potentials.

The Version 0 ISTP is constructed by fitting the experi-
mental scattering data, the deuteron ground state energyEd,
the s wave asymptotic normalization constantAs and h
=Ad/As. However, there are other important deuteron ob-
servables known experimentally such as the deuteron root-
mean-square(rms) radiuskr2l−1/2 and the probability of thed
state. Various deuteron properties obtained with the Version 0
ISTP(and other ISTP versions discussed later) are compared
in Table X with the predictions obtained with Nijmegen-II
potential and with recent compilations of the experimental
data[43,44]. It is seen from the table that the Version 0 ISTP

TABLE X. Deuteron property predictions obtained with various 8"v ISTP versions and with Nijmegen-II
potential in comparison with recent compilations(See Refs.[43,44]).

Potential Ed sMeVd
d state prob-
ability (%) rms radiussfmd As sfm−1/2d h= Ad/As

Version 0 −2.224575 0.4271 1.9877 0.8845 0.0252

Version 1 −2.224575 5.620 1.9997 0.8845 0.0252

Version 2 −2.224575 5.696 1.968 0.8629 0.0252

Nijmegen-II −2.224575 5.635 1.968 0.8845 0.0252

Compilationa −2.224575s9d 5.67(11) 1.9676(10) 0.8845(8) 0.0253(2)

Compilationb −2.224589 h1.9635

1.9560

1.950

0.8781 0.0272

aSee Ref.[43].
bSee Ref.[44].

FIG. 34. Radial deuteron wave functions. Solid line—realistic
meson exchange Nijmegen-II potential(See Ref.[3]) wave func-
tions; dot-dash line—Version 0 ISTP wave functons; dashed line—
Version 1 ISTP wave functions; dotted line—Version 2 ISTP wave
functons.

FIG. 35. Structure of the Version 1 and Version 2 ISTP matrix.
The location of nonzero matrix is schematically illustrated by solid
lines and filled circles.
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overestimates the deuteron rms radius and underestimates the
d state probability.

The deuteron wave functions can be calculated by utiliz-
ing the J-matrix formalism at the negative energyEd as is
discussed in Refs.[17,18]. The plots of the deuteron wave
functions are presented in Fig. 34. It is seen that the Version
0 ISTPs wave component is very close to that of Nijmegen-
II. The Version 0 ISTPd wave component coincides with
that of Nijmegen-II at large distances since both potentials
provide the sameAd value; however, at the distances less
than 5 fm the Version 0 ISTPd wave component is sup-
pressed. We note also that the Version 0 ISTP scattering

wave functions(not shown in the figures later) are signifi-
cantly different from those of Nijmegen-II at short distances.

Our conclusion is that the Version 0 ISTP does not seem
to be a realisticNN potential.

To improve the description of the deuteron properties, it
appears natural to apply to our Version 0 ISTP a phase
equivalent transformation that leaves unchanged the scatter-
ing observablesds, dd, «, the deuteron ground state energyEd
and the deuteron asymptotic normalization constantsAs and
Ad. The phase equivalent transformation discussed in Refs.
[16–18] is very convenient for our purposes since it is de-
fined in the oscillator basis. This transformation gives rise to
an ambiguity of the potential fit within the inverse scattering
J-matrix approach, which have been mentioned several times
already. We now need to discuss this in more detail.

This phase equivalent transformation is based on the uni-
tary transformation

U = o
G=s,d

o
G8=s,d

o
n=0

`

o
n8=0

`

unGlUnn8
GG8kn8G8u, s66ad

where the unitary matrixfUg with matrix elementsUnn8
GG8

should be of the form[16–18]:

TABLE XI. Nonzero matrix elements elements in"v units of
the Version 1 ISTP matrix in thesd coupled waves.

Vnn8
ss matrix elements

n Vnn
ss Vn,n+1

ss =Vn+1,n
ss

0 −0.457670450906 0.211126251530

1 −0.278324060593 0.078168834003

2 −0.011531530086 −0.053467071879

3 0.151447629416 −0.055928268627

4 0.036322781738

Vnn8
dd matrix elements

n Vnn
dd Vn,n+1

dd =Vn+1,n
dd

0 0.008456639592 −0.083373543646

1 0.322043907371 −0.178838809860

2 0.308493158866 −0.093044099373

3 0.061181660346

Vnn8
sd =Vn8n

ds matrix elements

n Vn,n−1
sd =Vn−1,n

ds Vnn
sd=Vnn

ds Vn,n+1
sd =Vn+1,n

sd

0 −0.482407689587 0.254012350019

1 −0.068997529558 −0.061366928740

2 0.067744180124 −0.080685245987

3 0.049138732449 −0.020412912639

4 −0.001715094993

FIG. 36. Large componentsusssdsE,rd and udsddsE,rd of the
coupled sd waves np scattering wave function at the laboratory
energyElab=2 MeV. See Fig. 34 for details.

FIG. 37. Small componentsussddsE,rd and udssdsE,rd of the
coupled sd waves np scattering wave function at the laboratory
energyElab=2 MeV. See Fig. 34 for details.

FIG. 38. Large componentsusssdsE,rd and udsddsE,rd of the
coupled sd waves np scattering wave function at the laboratory
energyElab=10 MeV. See Fig. 34 for details.
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fUg = fU0g % fIg = FfU0g 0

0 fIg G s66bd

andfIg is the infinite unit matrix. The unitary transformation
(66b) is applied to the infinite Hamiltonian matrixfHg in the
oscillator basishunGlj:

fH̃g = fUgfHgfU+g. s67d

The transformed HamiltonianH̃ is defined through its(infi-

nite) matrix fH̃g with matrix elementsH̃nn8
GG8;knGuH̃un8G8l.

That is, the matrixfH̃g is obtained by means of the unitary
transformation(67) in the original basishunGlj and not in the

transformed basishunG̃lj;UhunGlj. Clearly the spectra of

the HamiltoniansH and H̃ are identical. If the submatrix
fU0g is small enough, the unitary transformation(67) leaves
unchanged the last componentskNGG ull of the eigenvectors
knG ull obtained by solving the algebraic problem(40), and
hence, it leaves unchanged the functionsGGG8 that com-
pletely determine theK matrix, theSmatrix, the phase shifts
ds anddd, the mixing parameter«, the asymptotic normaliza-
tion constantsAs andAd, etc.

The potential Ṽ entering the HamiltonianH̃, phase
equivalent to the initial potentialV entering the Hamiltonian
H, can be expressed as

Ṽ = V + DV, s68ad

where

DV = H̃ − H. s68bd

We should improve the tensor component of theNN in-
teraction to increase thed state probability in the deuteron
and reduce the rms radius. Therefore, the only nontrivial sub-
matrix fU0g of the matrix(66b) should couple the oscillator
componentsunsl andun8dl of different partial waves. We take
the simplest form of the submatrixfU0g: a 232 matrix cou-
pling the u0sl and u0dl basis functions. In other words, the

nontrivial matrix elementsUnn8
GG8 constitute a 232 rotation

matrix with a single continuous parameterq:

fU0g = FU00
ss U00

sd

U00
ds U00

ddG = F cosq + sin q

− sin q cosq
G , s69ad

while all the remaining matrix elements

Unn8
GG8 = dnn8dGG8 for n . 0 or n8 . 0. s69bd

Varying the parameterq of the transformation(67)–(69),
we obtain a family of phase equivalent potentials and exam-
ine which of them provides the better description of the deu-
teron properties andnp scattering wave functions. The best

FIG. 39. Small componentsussddsE,rd and udssdsE,rd of the
coupled sd waves np scattering wave function at the laboratory
energyElab=10 MeV. See Fig. 34 for details.

FIG. 40. Large componentsusssdsE,rd and udsddsE,rd of the
coupled sd waves np scattering wave function at the laboratory
energyElab=50 MeV. See Fig. 34 for details.

FIG. 41. Small componentussddsE,rd and udssdsE,rd of the
coupled sd waves np scattering wave function at the laboratory
energyElab=50 MeV. See Fig. 34 for details.

FIG. 42. Large componentsusssdsE,rd and udsddsE,rd of the
coupled sd waves np scattering wave function at the laboratory
energyElab=150 MeV. See Fig. 34 for details.
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result seems to be the potential obtained withq=−14°. This
potential is hereafter referred to as Version 1 ISTP.

As a result of the transformation(67)–(69), the potential
energy matrix acquires two additional nonzero matrix ele-
mentsV01

sd=V10
ds. These additional matrix elements are sche-

matically illustrated by filled circles in Fig. 35. The nonzero
matrix elements of the Version 1 ISTP are given in Table XI
(in "v=40 MeV units).

The deuteron properties obtained with the Version 1 ISTP
are presented in Table X. Thed state probability is improved
by the phase equivalent transformation. However, the phase
equivalent transformation produces an increase of the deu-
teron rms radius; so this observable becomes even worse
than that given by the Version 0 ISTP. We found it impos-
sible to obtain an exact description of all deuteron properties
by means of the phase equivalent transformation(67) with
the simplest matrix(69a) and (69b).

The deuteron wave functions provided by the Version 1
ISTP are shown in Fig. 34. The Version 1 ISTPs wave com-
ponent is seen to be very close to that of the Nijmegen-II.
The maximum of the Version 1 ISTPd wave component is
seen to be shifted to larger distances as compared with that
of the Nijmegen-II. Of course, the shape of thed wave com-
ponent of the wave function cannot be determined experi-
mentally. Hence, the shape of the Version 1 ISTP deuteron
wave functions look realistic though these wave functions
result in the slightly overestimated deuteron rms radius.

The Version 1 ISTPnp scattering wave function compo-
nents at the laboratory energiesElab=2, 10, 50, 150, and
250 MeV are shown in Figs. 36–45 in comparison with
those of Nijmegen-II potential. As in the case of the coupled
pf partial waves, the large componentsusssdsE,rd and
udsddsE,rd differ very little from the Nijmegen-II ones but the
small components are essentially different at short distances
due to the difference of the tensor interaction of these two
potential models.

Generally we conclude that the Version 1 ISTP is very
close to the realistic interaction. The most important discrep-

TABLE XII. Nonzero matrix elements elements in"v units of
the Version 2 ISTP matrix in thesd coupled waves.

Vnn8
ss matrix elements

n Vnn
ss Vn,n+1

ss =Vn+1,n
ss

0 −0.466063146350 0.216883948836

1 −0.276168029473 0.080907735691

2 −0.009473803659 −0.051881443108

3 0.152873734289 −0.055193589842

4 0.037547929880

Vnn8
dd matrix elements

n Vnn
dd Vn,n+1

dd =Vn+1,n
dd

0 0.008667454659 −0.083339374560

1 0.322126471805 −0.178808793641

2 0.308516673061 −0.093012604766

3 0.061200037193

Vnn8
sd =Vn8n

ds matrix elements

n Vn,n−1
sd =Vn−1,n

ds Vnn
sd=Vnn

ds Vn,n+1
sd =Vn+1,n

ds

0 −0.483308500313 0.254003830709

1 −0.067221025404 −0.060476585693

2 0.068044496963 −0.080187106458

3 0.049400578816 −0.020205646231

4 −0.001503998139

FIG. 43. Small componentsussddsE,rd and udssdsE,rd of the
coupled sd waves np scattering wave function at the laboratory
energyElab=150 MeV. See Fig. 34 for details.

FIG. 44. Large componentsusssdsE,rd and udsddsE,rd of the
coupled sd waves np scattering wave function at the laboratory
energyElab=250 MeV. See Fig. 34 for details.

FIG. 45. Small componentsussddsE,rd and udssdsE,rd of the
coupled sd waves np scattering wave function at the laboratory
energyElab=250 MeV. See Fig. 34 for details.
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ancy of this interaction is that it overestimates the deuteron
rms radius by approximately 1.5%.

We attempted the phase equivalent transformation(67)
with a more complicated matrixfUg than (69a) and (69b).
However, we did not manage to obtain a completely satisfac-
tory interaction. It is possible to obtain the potential provid-
ing the required values of the deuteron rms radius and of the
d state probability by increasing the dimension of the sub-
matrix fU0g and introducing additional transformation pa-
rameters, but our attempts yielded unrealistic scattering wave
functions.

To improve thesd-ISTP we suggest a slight change to the
s wave asymptotic normalization constantAs that is used as
an input in our inverse scattering approach. TheAs value
cannot be measured in a direct experiment. As was men-
tioned in Ref.[44], theAs values discussed in the literature
vary within a broad range from 0.7592 to 0.9863 fm−1/2.
Therefore, the modified valueAs=0.8629 fm−1/2 that we use
for the construction of the improvedsd-ISTP, seems to be
reasonable. We do not change the remaining inputs in our
inverse scattering approach includingh=Ad/As (and hence
we modify Ad together withAs) to obtain the ISTP of the
type shown in Fig. 17 and apply to it the phase equivalent
transformation(67) with the parameterq=−14° of the ma-
trix (69a) and(69b). This potential is referred to as Version 2
ISTP. This potential has the structure schematically depicted
in Fig. 35 and its matrix elements are listed in Table XII.

The deuteron properties are seen from Table X to be well
described by the Version 2 ISTP. The Version 2 ISTP scat-
tering wave functions are very close to those of the Version 1
ISTP(see Figs. 36–45). Its deuteron wave functions are very
close to those of Version 1 ISTP(see Fig. 34) and differ from
those of Nijmegen-II in the position of thed wave compo-
nent maximum.

We suppose that the Version 2 ISTP can be treated as a
realistic interaction in the coupledsd partial waves.

IV. APPLICATION OF NN ISTP IN 3H AND 4He
CALCULATIONS

We employ the obtained ISTP in the3H and4He calcula-
tions within the no-core shell model[11,12] with "v
=40 MeV. The sameNN potentials are used to describe the
neutron-neutron and neutron-proton interactions; in the
proton-proton case these potentials are supplemented by the
Coulomb interaction.

The calculations are performed in the completeN"v
model spaces withNø14. We use both 7"v-ISTP and
9"v-ISTP in odd partial waves. The3H and 4He nuclei are
slightly more bound in the case when we use the 7"v-ISTP
in the odd waves. However, the differences are very small:
less than 15 keV for3H and about 40 keV for4He. The se-
quence of levels in the4He spectrum provided by the odd
wave 7"v-ISTP and by the odd wave 9"v-ISTP is the same
but the energies of excited4He states are shifted down in the
case of the odd wave 7"v-ISTP by approximately 100 keV
or less. Therefore, the deviations of the 7"v-ISTP predic-
tions from the experimental odd wave scattering data at high
enough energies seem to produce a negligible effect in the

3H and4He calculations. At the same time, 7"v-ISTP has a
smaller matrix than 9"v-ISTP, and hence, is more conve-
nient in applications. Later we present only the results ob-
tained with the 7"v-ISTP in the odd partial waves.

We have presented various versions of ISTP in the
coupledsdpartial waves. The choice of ISTP in other partial
waves is fixed. Using this fixed set of the non-sd-ISTP in
combination with the Version Msd-ISTP, we have the set of
potentials that is referred to as the Version M potential model
in what follows.

The3H ground state energiesEt obtained with the Version
1 and the Version 2 potential models inN"v model spaces
are presented in Fig. 46 as functions of 1/N. It is seen that
both potential models provide very similarEt values. The
convergence of the calculations withN appears adequate.
The ground state energyEt is seen from the figure to be
nearly a linear function of 1/N. Therefore, it is natural to
perform a linear extrapolation to the infiniteN"v model
space, i.e., to the point 1/N=0. The linear extrapolation us-
ing the two results at the highest N values yields
Et<−8.6 MeV in the Version 1 potential model and inEt
<−8.7 MeV in the Version 2 potential model.

In Fig. 47 we present the results of the4He ground state
energyEa calculations with the same potential models. In the
4He case we also obtain very similar results with the Version
1 and the Version 2 potential models. It is interesting that the
convergence of the4He ground state energy is better than
that of 3H. In this case the curves connecting theEa values
deviate from the straight lines. Nevertheless, we also perform
the linear extrapolations ofEas1/Nd to infinite N using the
Ea values obtained in 12"v and 14"v calculations and ob-
tain Ea<−26.6 MeV in the Version 1 potential model and
Ea<−27.0 MeV in the Version 2 potential model.

The quality of the linear extrapolation ofEg.s.s1/Nd may
be tested in the deuteron calculations. In the deuteron case,
we know the exact result for the infiniteN"v model space
ground state energyEd=−2.244575 MeV obtained by the
S-matrix pole calculation with our potentials. TheEd results

FIG. 46. (Color online) 3H ground state energy obtained in the
N"w no-core shell model calculation vs 1/N. 1—Version 1 poten-
tial model;3—Version 2 potential model; dashed line—linear ex-
trapolation to the infiniteN"v model space based on the last two
calculated points; solid and dash-dot lines are to guide the eye.
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obtained in theN"v model spaces withNø14 with the Ver-
sion 1 and Version 2sd-ISTP, are shown in Fig. 48. It is seen
that Eds1/Nd seems to be a linear function in the interval 4
øNø14. The linear extrapolation results inEd
<−2.5 MeV that differs from the exact energy. Therefore,
the linear extrapolation results can be regarded only as a
rough estimate of the binding energy. However, in the4He
case we achieved a reasonable convergence and by the linear
extrapolation we increase the binding energy by approxi-
mately 0.3 MeV only. Therefore, our estimate of the4He
binding energy seems to be accurate enough.

The differences in convergence rates for the deuteron,3H
and4He can be understood from the fact that"v=40 MeV is
more optimal for the tighter bound4He than for the lesser
bound systems.

Our results of the3H and4He ground state energy calcu-
lations are summarized in Table XIII. We also present in the
table the results obtained with the less realistic Version 0
potential model. Both3H and4He are essentially overbound
in this potential model. With both Version 1 and Version 2
potential models we obtain a reasonable description of the

3H and4He bindings. Our4He results are better than the ones
obtained(see Ref.[6]) with any of the realistic meson ex-
change interactions without allowing for the three-body in-
teractions. In the3H case, we have underbinding in the 14"v
model space and a small overbinding obtained by the linear
extrapolation. Unfortunately, the difference between the
14"v model space and the linear extrapolation results is
rather large. Most probably the3H ground state energy curve
in Fig. 46 will flatten out in larger model spaces. This will
shift the extrapolated ground state energy upwards from our
current result. Hence, the expected ground state energy in the
N→` limit lies between the 14"v and the present linear
extrapolation. In other words, our linear extrapolation and
14"v results are expected to be the lower and upper bound-
aries for the exact results, respectively. An approximately
0.9 MeV difference between the 14"v and the linear ex-
trapolation ground state energies in the3H case indicates the
0.9 MeV uncertainty of our predictions. The3H ground state
energy obtained in Faddeev calculations with CD-BonnNN
potential is −8.012 MeV(see Ref.[6]). All the remaining
modern realistic meson exchange potentials predict the3H
binding energy to be less than 7.4 MeV[6]. Therefore, our
3H binding energy predictions are not worse than those ob-
tained with the realistic meson exchange potentials without
allowing for the three-body forces while our4He binding
energy predictions are better.

In Fig. 49 we present the spectrum of the lowest excited
4He states of eachJp. The description of the excited states

FIG. 47. (Color online) 4He ground state energy obtained in the
N"v no-core shell model calculation vs 1/N. See Fig. 46 for
details.

FIG. 48. (Color online) Deuteron ground state energy obtained
in theN"v no-core shell model calculation vs 1/N. See Fig. 46 for
details.

TABLE XIII. 3H and 4He ground state energies(in MeV) ob-
tained in 14"v no-core shell model calculations and by the linear
extrapolation to the infiniteN"v model space.

Potential 3He 4He

model 14"v Extrapolation 14"v Extrapolation

Version 0 −9.091 −9.7 −33.223 −33.4

Version 1 −7.718 −8.6 −26.241 −26.6

Version 2 −7.860 −8.7 −26.734 −27.0

Nature −8.48 −28.30

FIG. 49. 4He spectrum obtained with Version 2 potential model
in the no-core shell model in the 14"v s13"vd model space for
even(odd) parity states. Dashed line shows the result of the linear
extrapolation of the ground state energy to the infiniteN"v model
space. Experimental data are taken from Ref.[45].
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energies is reasonable though further from experiment than
the ground state. On the other hand, we expect the excited
states to be less converged and to drop more in larger model
spaces. Of course, a full discussion of the states above
breakup must await proper extensions of the theory to the
scattering domain.

V. CONCLUDING REMARKS

We obtained nucleon-nucleon ISTP potentials by means
of the J-matrix version of the inverse scattering approach.
The potentials accurately describe the scattering data. They
are in the form of 8"v-truncated matrices in the oscillator
basis with"v=40 MeV. The potential matrices are tridiago-
nal in the uncoupled partial waves. In the coupled partial
waves, the potential matrices have two additional quasidi-
agonals in each of the submatrices responsible for the chan-
nel coupling. Thesd-ISTP of this type(Version 0) underes-
timates the deuterond state probability and overestimates the
deuteron rms radius. We designed two othersd-ISTP with
two additional matrix elements providing the correct descrip-
tion of thed state probability, one of them(Version 1) over-
estimates the rms radius by approximately 1.5% while the
other one(Version 2) provides the correct description of the
deuteron rms radius. All other deuteron observables are re-
produced by allsd-ISTP versions.

The ISTP potentials are used in the3H and 4He no-core
shell model calculations. Both Version 1 and Version 2 ISTP
potential models provide very good predictions for the3H
and 4He binding energies and a reasonable4He spectrum.
With the less realistic Version 0 potential model, we obtain
overbound3H and4He nuclei. We note that there were other
attempts to design theNN interaction providing the descrip-
tion of the triton binding energy together with theNN scat-
tering data and the deuteron properties[19,20]. Our interac-
tions are much simpler and can be directly used in the shell
model calculations of heavier nuclei.

Generally our approach is aimed at shell model applica-
tions in heavier nuclei. However, our potentials are simple
enough and can be used directly in other microscopic ap-
proaches, e.g., in Faddeev calculations. We hope that our
interactions minimize the need for three-body forces. It is
known [46] that the three-body force effect can be repro-
duced in a three-body system by the phase equivalent trans-
formation of the two-body interaction. This phase equivalent

transformation can also spoil the description of the deuteron
observables, in particular, the deuteron rms radius can be
arbitrarily changed by phase equivalent transformations[47].
We expect that there exist transformations minimizing the
need for three-body force effects, that do not significantly
change the nucleon-nucleon interaction. That is, the deuteron
properties, the deuteron and scattering wave functions of the
transformedNN potential may remain very close to the ones
developed here while achieving improved descriptions of
other nuclei. In this context, it is worth noting that our ap-
proach does not assume either a particular operator structure
to the interaction or locality.

From this point of view, the Version 2 ISTP accurately
describing the deuteron properties and providing good pre-
dictions for the3H and4He bindings, can be regarded as such
an interaction effectively accounting for effects that might
otherwise be attributed to three-body forces. Clearly, addi-
tional efforts may provide superior NN interactions with less
dependence on three-body forces for precision agreement
with experiment.

Finally, we suggested a new approach to the construction
of the high-qualityNN interaction and examined the obtained
ISTP NN interaction in three and four nucleon systems by
means of the no-core shell model. The3H and 4He binding
energies are surprisingly well described. Obviously it will be
very interesting to extend these studies on heavier nuclei, to
investigate in detail not only their binding but the spectra of
excited states as well. It is also important to investigate more
carefully the ISTP description of the two-nucleon system
since, for example, we have deferred the discussion of the
deuteron quadrupole momentQ. We just mention here that
the Version 2 ISTP prediction ofQ=0.317 fm2 is not so far
from the experimental value of 0.2875±20 fm2 [48]. The
phase equivalent transformations discussed above make it
possible to improve theQ predictions and to examine the
effect of such improvement in light nuclear systems. We plan
to address this problem in future publications.
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