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The chiral SU(3) quark model is extended to include an antiquark in order to study the kaon-nucleon system.
The model input parametersbu, mu, ms are taken to be the same as in our previous work which focused on the
nucleon-nucleon and nucleon-hyperon interactions. The mass of the scalar mesons is chosen to be 675 MeV
and the mixing ofs0 ands8 is considered. Using this model the kaon-nucleonS and P partial waves phase
shifts of isospinI =0 andI =1 have been studied by solving a resonating group method equation. The numerical
results ofS01, S11, P01, P03, andP11 partial waves are in good agreement with the experimental data while the
phase shifts ofP13 partial wave are a little bit too repulsive when the laboratory momentum of the kaon meson
is greater than 500 MeV in this present calculation.
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I. INTRODUCTION

As is well known, the nonperturbative quantum chromo-
dynamics(QCD) effect is very important in the light quark
system, but up to now there is no serious practical approach
to really solve the nonperturbative QCD problem. People
still need QCD-inspired models to help. Among these mod-
els, the chiral SU(3) quark model[1] has been successful in
reproducing the energies of the baryon ground states, the
binding energy of deuteron, the nucleon-nucleon(NN) scat-
tering phase shifts of different partial waves, and the
hyperon-nucleon(YN) cross sections by the resonating group
method (RGM) calculations [1,2]. In the study of the
dibaryon structure, the binding energy of theH particle ob-
tained from this model is around the threshold of twoL [3],
consistent with the recent experimental estimation from the
binding energy of the doubleL hypernucleus[4]. Inspired by
these achievements, we try to extend this model to the sys-
tems with antiquarks to study the baryon-meson interactions.
With the antiquarksq̄d in the meson brought in, the complex-
ity of the annihilation part in the interactions will appear. As
a first step we start with the study ofKN elastic scattering
processes because in theKN system the annihilation to glu-
ons and vacuum is forbidden and theus̄ sds̄d can only anni-
hilate to kaon mesons.

Another motivation of the present work came from the
discovery of theQ+s1540d pentaquark state, an exoticK+n or
K0p resonance reported by some laboratories recently
[5–12]. The strangeness quantum number of thisQ particle
is S= +1 and the upper limit of the width is about
GQ,25 MeV. It may be the first exotic hadron observed and
has triggered great interest and heated discussions. However,
the nature of this particle, its isospin, parity, and angular
momentum, is still going to be determined. In order to obtain
a reasonable interpretation of the data of theuudds̄system, a
prior understanding of the kaon-nucleon interaction on a
quark level is important and necessary.

Actually, theKN scattering had aroused particular interest
in the past due to the kaon meson’s high penetrating power
[13,14], which makes the kaon one of the deepest probes of
the nuclear medium in the energy range between 0 and
1 GeV/c. The model based on hadronic degrees of freedom
[15] can give a good description ofKN interaction, but
Buettgenet al. had to add the exchange of a short range
s,0.2 fmd repulsive scalar meson in order to reproduce the
S-wave phase shifts in the isospinI =0 channel. The range of
this repulsion is smaller than the nucleon radius, which
clearly shows that the quark substructure of the kaon mesons
and nucleons cannot be neglected. In Ref.[16], theKN phase
shifts are calculated within a constituent quark model by
numerically solving the RGM equation. In that calculation,
the quark-quark potential includes gluon, pion, and sigma
exchanges and the ground state energies of mesons can be
reproduced, but the agreement of the obtained results with
the experimental phase shifts is quite poor. Recently, Wanget
al. [17] gave a study on theKN elastic scattering in a quark
potential model. Their results are consistent with the experi-
mental data, but in their model, a factor of color octet com-
ponent is added arbitrarily and the size parameter of har-
monic oscillator is chosen to bebu=0.255 fm, which is too
small compared with the radius of nucleon.

The goal of the present work aims at studying theKN
elastic scattering phase shifts ofS and P partial waves of
isospin I =0 and I =1 in the framework of the chiral SU(3)
quark model by carrying on a resonating group method cal-
culation. We take the same input model parameters
bu, mu, ms as in our previous work[1,2], which successfully
explained the existingNN and YN experimental data. The
difference is that in the present work the mass of the scalar
mesons is chosen to be 675 MeV(in our previous work
ms=595 or 625 MeV) and the mixing betweens0 ands8 is
considered. By this means the attraction ofs meson inKN
S01 partial wave can be reduced a lot. Except for the case of
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P13, the numerical results of different partial waves are in
agreement with the experimental data. In comparison with
the previous results[16,18], our calculation achieves a con-
siderable improvement on the theoretical phase shifts. In this
sense, it means that our model also works well when an
antiquark is added in the system(at least for theKN system),
so that one can regard that the interactions between two
quarks obtained from this model is almost reasonable, which
is useful for studying the structure of theQ+s1540d pen-
taquark state from the constituent quark model point of view.

The paper is organized as follows. In the next section the
framework of the chiral SU(3) quark model and the RGM
approach applying to theKN system are briefly introduced.
The calculated results of the isospinI =0 andI =1 KN phase
shifts ofS andP partial waves are shown in Sec. III, as well
as some discussions are made in this section. Finally, conclu-
sions are drawn in Sec. IV.

II. FORMULATION

A. The model

Following Georgi’s idea[19], the interaction Lagrangian
of the quark-chiral SU(3) field can be written as

LI = − gchsc̄LScR + c̄RS+cLd, s1d

with gch being the quark–chiral-field coupling constant,cL
andcR being the quark-left and quark-right spinors, respec-
tively, and

S = expfipala/fg, a = 1,2,…,8, s2d

wherepa is the Goldstone boson field andla the Gell-Mann
matrix of the flavor SU(3) group. Generalizing the linear
realization ofS from the SU(2) case to the SU(3) case, one
obtains

S = o
a=0

8

sala + io
a=0

8

pala, s3d

and the interaction Lagrangian

LI = − gchc̄So
a=0

8

sala + io
a=0

8

palag5Dc, s4d

wherel0 is a unitary matrix,s0,… ,s8 are the scalar nonet
fields, andp0,… ,p8 the pseudoscalar nonet fields. Clearly,
LI is invariant under the infinitesimal chiral SUs3dL

3SUs3dR transformation. Consequently, one obtains the in-
teractive Hamiltonian as

Hch = gchFsq2dc̄So
a=0

8

sala + io
a=0

8

palag5Dc. s5d

Here we insert a form factorFsq2d to describe the chiral-field
structure[20,21]. As usual,Fsq2d is taken as

Fsq2d = S L2

L2 + q2D1/2

, s6d

and the cutoff massL indicates the chiral symmetry breaking
scale[20–23].

From Eqs. (5) and (6) the SU(3) chiral-field-induced
quark-quark potentials can be derived, and their expressions
are given in the following:

Vsa
sr i jd = − Csgch,msa

,LdX1smsa
,L,r ijdflasidlas jdg

+ Vsa

l·ssr i jd, s7d

Vsa

l·ssr i jd = − Csgch,msa
,Ld

msa

2

4mqi
mqj

HGsmsa
r ijd

− S L

msa

D3

GsLr ijdJfL · ssi + s jdgflasidlas jdg,

s8d

and

Vpa
sr i jd = Csgch,mpa

,Ld
mpa

2

12mqi
mqj

X2smpa
,L,r ijdssi · s jd

3flasidlas jdg, s9d

with

Csgch,m,Ld =
gch

2

4p

L2

L2 − m2m, s10d

X1sm,L,rd = Ysmrd −
L

m
YsLrd, s11d

X2sm,L,rd = Ysmrd − SL

m
D3

YsLrd, s12d

Ysxd =
1

x
e−x, s13d

Gsxd =
1

x
S1 +

1

x
DYsxd, s14d

and msa
being the mass of the scalar meson andmpa

the
mass of the pseudoscalar meson.

As mentioned in Ref.[24], in the chiral SU(3) quark
model the interaction induced by the coupling of chiral field
describes the nonperturbative QCD effect of the low-
momentum medium-distance range. To study the hadron
structure and hadron-hadron dynamics, one still needs an ef-
fective one-gluon-exchange interactionVij

OGE which governs
the short-range perturbative QCD behavior,

Vij
OGE=

1

4
gigjsli

c · l j
cdH 1

r ij
−

p

2
dsr i jdS 1

mqi

2 +
1

mqj

2

+
4

3

1

mqi
mqj

ssi · s jdDJ + VOGE
l·s , s15d

with
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VOGE
l·s = −

1

16
gigjsli

c · l j
cd

3

mqi
mqj

1

r ij
3 L · ssi + s jd, s16d

and a confinement potentialVij
conf which provides the nonper-

purbative QCD effect in the long distance,

Vij
conf = − aij

c sli
c · l j

cdr ij
2 − aij

c0sli
c · l j

cd. s17d

For theKN system, we have to extend our chiral SU(3) quark
model to the case with an antiquark. Now, the total Hamil-
tonian ofKN system is written as

H = o
i=1

5

Ti − TG + o
i, j=1

4

Vij + o
i=1

4

Vi5̄, s18d

whereTG is the kinetic energy operator of the center of mass
motion, andVij and Vi5̄ represent the interactions between
quark-quarksq−qd and quark-antiquarksq− q̄d, respectively,

Vij = Vij
OGE+ Vij

conf + Vij
ch, s19d

Vij
ch = o

a=0

8

Vsa
sr i jd + o

a=0

8

Vpa
sr i jd. s20d

The interaction betweenusdd and s̄ includes two parts[25]:
direct interaction and annihilation parts,

Vi5̄ = V
i5̄

dir
+ V

i5̄

ann
, s21d

with

V
i5̄

dir
= V

i5̄

conf
+ V

i5̄

OGE
+ V

i5̄

ch
, s22d

and

V
i5̄

conf
= − ai5

c s− li
c · l5

c*dr i5
2 − ai5

c0s− li
c · l5

c*d, s23d

V
i5̄

OGE
=

1

4
gigss− li

c · l5
c*dH 1

r i5
−

p

2
dsr i5dS 1

mqi

2 +
1

ms
2

+
4

3

1

mqi
ms

ssi · s5dDJ −
1

16
gigss− li

c · l5
c*d

3
3

mqi
mq5

1

r i5
3 L · ssi + s5d, s24d

V
i5̄

ch
= o

j

s− 1dGjVi5
ch,j . s25d

Heres−1dGj describes theG parity of the j th meson. For the
KN system,usdds̄ can only annihilate into aK meson, i.e.,

V
i5̄

ann
= Vann

K , s26d

with

Vann
K = Cann

K S1 − sq · sq̄

2
D

spin

S2 + 3lq · lq̄
*

6
D

color

3S38 + 3lq · lq̄
*

18
D

flavor

L2

r
e−Lr , s27d

Cann
K = −

g̃ch
2

4p

1

mK
2 − sm̃+ m̃sd2 , s28d

whereg̃ch is the effective coupling constant of chiral field in
the annihilation case andm̃ represents the effective quark
mass. Actually,m̃ is quark momentum dependent; here we
treat it as an effective mass. In the present form of the anni-
hilation interactionVann

K , a form factorFsq2d [Eq. (6)], which
is also used in the vertex of the quark–chiral-field coupling,
is inserted to flatten the sharp behavior of thed function. In
this work we treatCann

K as a parameter and adjust it to fit the
mass of kaon meson.

B. Determination of parameters

We have three initial input parameters: the harmonic-
oscillator width parameterbu, the up (down) quark mass
musdd, and the strange quark massms. These three parameters
are taken to be the same as in our previous work[1,2], i.e.,
bu=0.5 fm, musdd=313 MeV, andms=470 MeV. By some
special constraints, the other model parameters are fixed in
the following way: the chiral coupling constantgch is fixed
by

gch
2

4p
= S3

5
D2gNNp

2

4p

mu
2

MN
2 , s29d

with gNNp
2 /4p=13.67 taken as the experimental value. The

masses of the mesons are also adopted to the experimental
values, except for thes meson, where its mass is treated as
an adjustable parameter; in this work, it is adopted to be 675
MeV. The cutoff radiusL−1 is taken to be the value close to
the chiral symmetry breaking scale[20–23]. After the param-
eters of chiral fields are fixed, the one-gluon-exchange cou-
pling constantsgu and gs can be determined by the mass
splits betweenN, D andS , L, respectively. The confinement
strengthsauu

c , aus
c , andass

c are fixed by the stability conditions
of N, L, andJ, and the zero point energiesauu

c0 , aus
c0, andass

c0

by fitting the masses ofN, S, andJ+V, respectively. About
Cann

K , we adjust it to fit the mass of kaon meson. The resultant
model parameters are tabulated in Table I and the masses of

TABLE I. Model parameters. The meson masses and the cutoff
masses: ms8=980 MeV, mk=1430 MeV, me=980 MeV, ms

=675 MeV, mp=138 MeV, mK=495 MeV, mh=549 MeV, mh8
=957 MeV, L=1500 MeV fork and 1100 MeV for other mesons.

mu sMeVd 313

ms sMeVd 470

bu sfmd 0.5

gu 0.886

gs 0.755

auu
c sMeV/fm2d 52.40

aus
c sMeV/fm2d 75.30

auu
c0 sMeVd −50.37

aus
c0 sMeVd −66.80

Cann
K sfm2d −0.137
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octet and decuplet baryons obtained from this set of param-
eters are listed in Table II.

In our calculation, the meson mixing between the flavor
singlet and octet mesons is considered, i.e.,h , h8 mesons are
mixed byh0, h8:

h8 = h8sinuPS+ h0cosuPS,

h = h8cosuPS− h0sinuPS, s30d

with the mixing angleuPS taken to be the usual value −23°
ands , e mesons are ideally mixed bys0, s8:

s = s8sinuS+ s0cosuS,

e = s8cosuS− s0sinuS, s31d

with uS=35.264°, which means thats only acts on theusdd
quark, ande on thes quark, respectively. Under this ideal
mixing, the scalar meson exchange interactions betweenusdd
and s̄ are totally vanished, so that the attraction force of
scalar meson betweenK andN can be reduced a lot.

C. The RGM approach applying to the KN system

In this section, we present the applying of the resonating
group method(RGM) to theKN system. We take the follow-
ing choice of the coordinates to construct the total wave
function of the system:

j1 = r2 − r1, s32d

j2 = r3 −
r1 + r2

2
, s33d

j3 = r5 − r4, s34d

RKN =
r1 + r2 + r3

3
−

mur4 + msr5

mu + ms
, s35d

Rc.m. =
musr1 + r2 + r3 + r4d + msr5

4mu + ms
. s36d

Here,r i is the coordinate of theith quark,j1 andj2 are the
internal coordinates for the clusterN, and j3 the internal
coordinate forK. RKN is the relative coordinate betweenK
andN, andRc.m. is the center of mass coordinate of the total
system.

Following the cluster model calculation[26–28], the
RGM wave function is written as

C = Aff̂Nsj1,j2df̂Ksj3dxrelsRKNdZsRc.m.dgST, s37d

with

fNsj1,j2d = Smuv

2p
D3/4S2muv

3p
D3/4

expF− muvSj1
2

4
+

j2
2

3
DG ,

s38d

fKsj3d = Sv

p

mums

mu + ms
D3/4

expF−
v

2

mums

mu + ms
j3

2G , s39d

ZsRc.m.d = Sv

p
s4mu + msdD3/4

expF−
v

2
s4mu + msdRc.m.

2 G .

s40d

Here fNsj1,j2d and fKsj3d denote the internal wave func-
tion in coordinate space of clusterN and K, respectively.
f̂Nsj1,j2d represents the antisymmetrized wave function of

clusterN andf̂Ksj3d, the wave function of clusterK with N
and K further specifying all the quantum numbers of the
relevant cluster.xrelsRKNd is the trial wave function of the
relative motion between interacting clustersK and N, and
ZsRc.m.d is the wave function of the motion of the total center
of mass. The oscillator frequencyv is associated with the
width parameterbu by the constituent quark massmu:

1

bi
2 = miv. s41d

The symbolA is the antisymmetrizing operator defined as

A ; 1 − o
iPN

Pi4 ; 1 − 3P34. s42d

S andT denote the total spin and isospin of theKN system,
respectively. SubstitutingC into the projection equation

kdCusH − EduCl = 0, s43d

where

E = EK + EN + Erel, s44d

with E, EK , EN, and Erel being the total energy, the inner
energies of clustersK andN, and the relative energy between
clustersK andN, respectively, we obtain RGM equation

E LsR8,RdxrelsRddR = 0, s45d

with

LsR8,Rd = HsR8,Rd − ENsR8,Rd, s46d

where the Hamiltonian kernelH and normalization kernelN
can, respectively, be calculated by

TABLE II. The masses of octet and decuplet baryons.

N S J L D S* J* V

Theor. 939 1194 1334 1116 1237 1375 1515 1657

Expt. 939 1194 1319 1116 1237 1385 1530 1672
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HHsR8,Rd

NsR8,Rd J
=Kff̂Nsj1,j2df̂Ksj3ddsR8 − RKNdZsRc.m.dgSTUHH

1
JU

3Aff̂Nsj1,j2df̂Ksj3ddsR − RKNdZsRc.m.dgSTL . s47d

In the actual calculation, the unknownxrel is determined
in the following way: First, we perform a partial wave ex-
pansion,

xrelsRKNd = o
L

xrel
L sRKNd, s48d

and then, for a bound-state problem,xrel
L sRKNd is expanded as

xrel
L sRKNd = o

i=1

n

ci E SvmKN

p
D3/4

3expF−
vmKN

2
sRKN − Sid2GYLMsŜiddŜi

= o
i=1

n

ci
1

RKN
uLsRKN,SidYLMsR̂KNd, s49d

with

uLsRKN,Sid ; 4pRKNSvmKN

p
D3/4

expF−
1

2
vmKNsRKN

2 + Si
2dG

3 iLsvmKNRKNSid, s50d

whereSi is called the generate coordinate,mKN is the reduced
mass ofKN system, andiL theLth modified spherical Bessel
function. UsuallyxrelsRKNd is also expanded as

xrelsRKNd = o
L

1

RKN
xrel

L sRKNdYLMsR̂KNd, s51d

so equivalently, Eq.(49) can be written in a compact form

xrel
L sRKNd = o

i=1

n

ciu
LsRKN,Sid. s52d

Now all the information about the relative wave function is
contained in the coefficientsci ’ s which are left to be solved.
Performing variational procedure, one can deduce aLth
partial-wave equation for the bound-state problem,

o
j=1

n

Li j
Lcj = 0 si = 1,…,nd, s53d

with

Li j
L =E uLsR8,SidLLsR8,RduLsR,SjdR8RdR8dR, s54d

LLsR8,Rd =E YLM
* sR̂8dLsR8,RdYLMsR̂ddR̂8dR̂. s55d

Solving Eq. (53), we can get the binding energy and the
corresponding wave function of the two-cluster system.

For a scattering problem, the relative wave function is
expanded as

xrel
L sRKNd = o

i=1

n

ciũ
LsRKN,Sid, s56d

ũLsRKN,Sid

; Hpiu
LsRKN,Sid, RKN ø RC

fhL
−skKNRKNd − sihL

+skKNRKNdgRKN, RKN ù RC
J
s57d

with hL
± being Lth spherical Hankel functions,kKN

=Î2mKNErel the momentum of relative motion, andRC a cut-
off radius beyond which all the strong interactions can be
disregarded. The complex parameterspi and si are deter-
mined by the smoothness condition atRKN=RC andci ’ s sat-
isfy oi=1

n ci =1. Performing variational procedure, aLth
partial-wave equation for the scattering problem can be de-
duced as

o
j=1

n−1

L̃i j
Lcj = M̃i

L si = 1,…,nd, s58d

with

L̃i j
L = K̃i j

L − K̃in
L − K̃nj

L + K̃nn
L , s59d

M̃i
L = K̃nn

L − K̃in
L , s60d

and

K̃i j
L =E ũLsR8,SidLLsR8,RdũLsR,SjdR8RdR8dR, s61d

where the RGM kernelLLsR8 ,Rd is defined in Eq.(55). Be-

fore solving Eq.(58), we have to calculate the kernelK̃i j
L.

Considering the asymptotic form of spherical Hankel func-

tions, K̃i j
L can be written as

K̃i j
L = pipjsLi j

L − Kij
Lsexdd, s62d

Kij
Lsexd =E

RC

`

uLsR,SidS−
"2

2mKN

d2

dR2 +
"2

2mKN

LsL + 1d
R2 − ErelD

3uLsR,SjddR. s63d

Having solved Eq.(58), the S-matrix elementSL and the
phase shiftsdL are given by

SL ; e2idL = o
i=1

n

cisi . s64d
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III. RESULTS OF KN PHASE SHIFTS
AND DISCUSSIONS

A RGM dynamical calculation is made to study the partial
wave phase shifts ofKN scattering by using the Hamiltonian,
Eq. (18), and the calculated phase shifts ofS and P waves
with isospin I =0 andI =1 are shown in Figs. 1 and 2 with
solid lines.

For theS01, P01, P11, and P03 waves(here the first sub-
script refers to the isospin quantum numberI and the second
one to twice of the total angular momentum of the system
2J), our results are in agreement with the experimental data.
While for theP13 channel our numerical phase shifts are too
repulsive when the laboratory momentum of the kaon meson
in greater than 500 MeV andS11 channel a little repulsive.
Comparing with the results of the recent resonating group
method calculation of Lemaireet al. [16] based on a con-

stituent quark model(CQM), in which the calculated phase
shifts of S01, P03, P11 waves have opposite sign and theP01

channel is too repulsive for the experimental data, we ob-
tained the correct sign and reproduced the experimental data
quite well. This means that a reasonable interaction between
K andN can be obtained from the chiral SU(3) quark model
when the mixing ofs0 ands8 mesons is considered as ideal
mixing and the mass of thes meson is taken to be 675
MeV, which is closely consistent with the relationms

=Împ
2 +s2mud2 from the dynamical vacuum spontaneous

breaking mechanism[31]. We also compare our results with
those of the previous work of Black[18]. Although our
calculation achieves a considerable improvement on the
theoretical phase shifts in the magnitude forS01, S11, P01,
P11, P03 waves, the results of theP13 channel are too repul-
sive in both Black’s work and our present work. Maybe the

FIG. 1. KN S-wave phase shifts as a function of the laboratory momentum of kaon meson. The solid lines represent the results obtained
by consideringuS=35.264° while the dotted linesuS=−18°. The hole circles and the triangles correspond respectively to the phase shifts
analysis of Hyslopet al. [29] and Hashimoto[30].

FIG. 2. KN P-wave phase shifts. Same notation as in Fig. 1.
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effects of the coupling to the inelastic channels and hidden
color channels should be considered in future work.

Since there is something uncertain in the annihilation in-
teraction part, its influence on the phase shifts should be
investigated. We omitted the annihilation part entirely to see
the effect, and found that the numerical phase shifts only
have very small changes. This is because the annihilation
part acts in the very short range, so that it plays a nonsignifi-
cant role in theKN scattering process.

One thing should be mentioned: in our present one chan-
nel calculation forKN scattering process the confinement
potential contributes pimping interactions between the two
color singlet clustersK and N. Thus our numerical results
will almost remain unchanged; even the color quadratic con-
finement is replaced by the color liner confinement or an
improved one which is presently unknown.

Recently we became aware of Ref.[32] written by Dai
and Wu, in which an investigation based on a dynamically
spontaneous symmetry breaking mechanism predicted that
the mass ofs meson isms=677 MeV and the mixing angle
betweens0 and s8 is uS=−18°. Using thisms and uS, we
calculated theKN phase shifts and the results are shown as
dotted lines in Figs. 1 and 2. One can see that theKN phase
shifts can be also explained quite well by taking this group of
parameters. It is comprehensible because in both of these two
cases the attraction ofs is reduced, just in different ap-
proaches. WhenuS=35.264° (ideal mixing), the reduction
comes from the interaction betweenusdd ands quarks van-
ished, whileuS=−18°, the interaction ofs between twou, d
quarks, is strongly reduced.

From the phase shifts ofKN (Figs. 1 and 2) one can see
that there is no signal for an existingKN resonance state both
in SandP waves until the laboratory momentum of the kaon
meson stretches to 1 GeV. For studying the existence of
bound states of theKN system, we solved the RGM equation
for the bound state problem[Eq. (53)]. The results showed

that the energies of theKN system for bothS and P waves
are located above theKN threshold, which means that there
is no bound state. As a consequence, it can be said that the
newly observed exotic baryonQ+ cannot be explained as a
KN resonance state or aKN bound state in our present cal-
culation.

IV. CONCLUSIONS

The chiral SU(3) quark model is extended to the system
with an antiquark, and theKN scattering process is studied
by using this model in the framework of the resonating group
method. We take the same initial input parameters as in our
previous work, which successfully explained the existingNN
and YN experimental data. The difference is that in the
present work the mass of the scalar mesons is chosen to be
675 MeV (in our precious workms=595 or 625 MeV) and
the mixing ofs0 ands8 is considered. Except for the case of
P13, the numerical results of different partial waves are in
agreement with the experimental data. In comparison with
the previous results, our calculation achieves a considerable
improvement on the theoretical phase shifts. It seems that
our model can work well for theKN system, in which an
antiquarks̄ is there besides fourusdd quarks, and the inter-
actions between two quarks obtained from this model might
be reasonable, which would be useful to study the structure
of the Q+s1540d pentaquark state from the constituent quark
model point of view.
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