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Renormalization of the o-w model within the framework of U(1) gauge symmetry
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It is shown that ther-w model which is widely used in the study of the nuclear relativistic many-body
problem can be exactly treated as an Abelian massive gauge field theory. The quantization of this theory can
perfectly be performed by means of the general methods described in the quantum gauge field theory. Espe-
cially, the local Y1) gauge symmetry of the theory leads to a series of Ward-Takahashi identities satisfied by
Green’s functions and proper vertices. These identities form a uniquely correct basis for the renormalization of
the theory. The renormalization is carried out in the mass-dependent momentum space subtraction scheme and
by the renormalization group approach. With the aid of the renormalization boundary conditions, the solutions
to the renormalization group equations are given in definite expressions without any ambiguity and renormal-
ized S'matrix elements are exactly formulated in forms as given in a series of tree diagrams provided that the
physical parameters are replaced by the running ones. As an illustration of the renormalization procedure, the
one-loop renormalization is concretely carried out and the results are given in rigorous forms which are
suitable in the whole energy region. The effect of the one-loop renormalization is examined by the two-nucleon
elastic scattering.
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[. INTRODUCTION finite temperature and density. In this renormalization, the
_ o loop expansion and spectral function methods were applied
The quantum hadrodynamioQHD), as a relativistic g evaluate the loop corrections. However, there are various
quantum field theory for baryons and mesons, has beegifficulties to occur in the renormalizatiof8—16). For ex-
widely applied to studying various nuclear phenomena inample, in Ref[12], the authors calculated the nuclear matter
cluding the hadron-hadron interaction, the hadron-nucleugnergy density up to the two loop level and found enormous
scattering, the bulk and single-particle properties of nucleicontributions arising from the loop terms that alter the de-
etc.[1-5]. It is commonly recognized that although the quan-scription of the nuclear bound state qualitatively. Therefore it
tum chromodynamics is a fundamental theory for strong inwas concluded that “the loop expansion does not provide a
teraction, the QHD, as an effective field theory formulated inreliable approximation scheme in renormalizable QHD”
terms of hadronic degrees of freedom, provides a simple anil9]. To this end, one may ask what is the correct procedure
reliable approach to produce the nuclear observables that agé performing the renormalization for a model of QHD, and
insensitive to the short-range dynamics. There are variouB0OW to assess the applicability of a renormalizable model of
QHD models, renormalizable and nonrenormalizable, whicHD for which the renormalization is carried out? To answer
were tested in the past to reproduce the empirical nucleéPese questions, it is meanlngful to examine the renormaliza-
properties and the experimental data. Among these model£0N Of @ QHD model from different angles and, as suggested
the o~ model proposed by Waleckid] has been raising in Ref.[19], “to develop and apply systematic and consistent

particular interest. This model contains proton, neutron, antlﬁ%wegpg?g)zmlgggggm:ﬁ dthtaot Igiﬂj;o gﬁgfngg?gﬁéﬁogfgfg
isoscalar, _Lorentz scalar and vector mesore d @ and in methods that could determine the analytic structure of the
the tree diagram and nonrelativistic approximations leads t : "

: ) X . round-state energy functional.
a nucleon-nucleon interaction potential which behaves a

h Isi d di . Th In this paper, we confine ourself to discussing the renor-
short-range repulsion and medium-range attraction. Th,5ji7ation of theo-w model by the renormalization group

early development of this model is based on the relativisticmethod in the case of zero temperature. The procedure is
mean—f!eld and Hartree approximation a_nd shows t_ha.t .theery similar to that described in our previous work on the
model is quite successful in the applications to the mﬂmteQED and QCD renormalizatior{20]. The main features of
nuc!ear ma}tgr and atomic nuclel.. S'”C"t‘ the model is reNOMfhe renormalization given in this paper contain two aspects:
r_nallzable, it is necessary to con_5|der_h|gher order perturba(-l) the renormalization is based on thelyygauge symmetry
tive corrections to the results given in the mean field aPhecause thero model. as argued in the next section, is
proximation by a certain renormalization procedure. Alongexactly of the W1) local gauge symmetryii) The renormal-

tEh'S Im_e,”a r;]umk;fer of efforts welre made prev:;)ugﬁy-hlq. ization is carried out by a mass-dependent momentum space
specially, the efforts were mostly concentrated on the renoréub'[ractior[21—24| which will lead to rigorous renormalized
malization of the model in the study of the nuclear matter a

tesults by the renormalization group methi@$—2§. Ordi-
narily, the massive vector fields such as theneson field,
the p meson field, and so on, are not viewed as gauge fields
*Electronic mail: whj@mail.jlu.edu.cn because the mass term in the Lagrangian is not gauge invari-
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ant [29-31. On the contrary, it was pointed out in Refs.  The remainder of this paper is arranged as follows. In Sec.
[32-34 that a massive vector field must be viewed as dl, we present arguments for the gauge invariance of the
constrained system in the whole space of the vector potential-w model. In Sec. llI, thes-w model will be respectively
A,(X). This is because a massive vector meson has only thre@antized in the Hamiltonian and Lagrangian path-integral
polarization states which need only three spatial componentgrmalisms. In Sec. IV, we will derive a set of WT identities
of the vector potentialA,(x) to describe them, while the obeyed by the generating functionals. In Sec. V, a WT iden-
remaining component of th&,(x) appears to be a redundant tity satisfied by thew meson propagator will be derived and
degree of freedom which must be eliminated by introducinghe renormalization of the propagator will be discussed. In
the Lorentz condition. According to the general principle for sec. vI, we will derive a WT identity satisfied by the vecto-
constrained systems, the gauge invariance of a massive Abga]| vertex(nucleon-nucleons meson vertexand discuss the
lian or non-Abelian gauge field should be seen from its acyenormalizations of the vertex and the nucleon propagator. In
tion given in the physical space defined by the Lorentz congec v/, the renormalizations of themeson propagator and
dition. This viewpoint will be explained in more detail in the the scalar coupling vertesaucleon-nucleonr meson vertex

m_axt riiijtglmié ZLorg} tfg? V'evlvgcoe'lrt’ ;u'Seess%raoe;ee_rtﬁ::et_h%ill be derived and discussed. Section VIl is used to sketch
grw y of Ul) gauge sy Y- the renormalization group method and the renormalized

fore the model may be quantized by the method as used 'S matrix elements. Section IX serves to derive the one-loo
the gauge field theory. In this paper, we will describe the ffecti i ' tant d In the last " P
Lorentz-covariant quantization performed in both the Hamil-STECtIVE coupling constants and masses. In the last section,

tonian and Lagrangian path-integral formalisms by followingSummary and discussions will be made. In Appendix A, the

the procedure proposed in Ref82-34. From this quanti- 92uge mdepend_ence of ti@matrix elemgnts given in the

zation, we obtain an effective action which contains a gauge@ne-loop level will be proved. In Appendix B, we will show

invariant under a set of Becchi-Rouet-Stora-Tyu@RST)  tering in the approximation of ordg?” and examine the ef-

transformationg35]. It should be mentioned that the quan- fect of the one-loop renormalization on it.

tum theory of theo-w model was set up previously by the

method of canonical quantization and in the path-integral

formalism[29—3l,36,3ﬁ Especially, with the timeppaths bg- Il. ARGUMENT OF GAUGE INVARIANCE

ing generalized to a manifestly covariant form, a covariant FOR THE o~ MODEL

path-integral formulation for the model at finite temperature  The -y model is described by the following Lagrangian

was achieved in Ref{37] and led to manifestly covariant density[1]:

Feynman rules for both real and imaginary times. Neverthe-

less, owing to the lack of the gauge-fixing term and ghost —. ) 5 1

term in the effective action, the generating functional given £=#(¥D,=M)y=7F*F,, + SMAA, + 50" 0d,¢

in these quantizations would not exhibit the BRST symme-

try. S (2.1)
As emphasized in Ref{20], a correct renormalization 2 @ '

procedure for a gauge field theory must respect the gauge-

symmetry(the Ward-Takahashi identitig88,39), the Lor-  where

entz invariance(the energy-momentum conservatipand

the mathematical convergence principles. Otherwise, the W= (%)

renormalization would be incorrect. From the gauge invari- n

ance(or say, the BRST symmetiryof the o-w model, we . . . . .

derivc(a A sot of Ward-Taka)ﬁasfwt)% identities satisfied by 'S the nucleon isospin doublet in whiah, and i, are the

the generating functionals, Green's functions, and vertice8roton and neutron field functions, respectively,

which provide a firm basis for the renormalization of the i

model. As mentioned before, in this paper, the renormaliza- D,=d,-ig,A, - ngyﬂqn (2.3

tion of the o-w model will be performed in the mass-

dependent momentum space subtraction. The prominent a the covariant derivative in which, and¢ stand for thew

vantage of such a subtraction is that it naturally providesand o meson fieldsg, and g designate the vectorial and

boundary conditions satisfied by the renormalized wavescalar coupling constants,

functions, propagators, and proper vertices for the quantum

o-w model. These boundary conditions enable us to uniquely Fruv=0,A,— A, (2.4)

Qetermine the solutions_ to the rer_u_)rmaliz_ation group equdy the vector field strength, ant, m,, and m, are the

tions for thos_e rgnormallzed qugnnnes. W|th the solutions of,55ses of nucleony meson, andr meson, respectively. In

the renormalization group equations3anatrix element can e ahove Lagrangian, the scalar self-couplings are ignored

b_e expressed in the_ form as given in the tree'd|agrams Pr%s was done originally in the Walecka mod].

vided that the physical parameters in tBenatrix element In the previous, ther-w model was considered to be

are replaced by the effectiveunning ones. To specify the = g5,ge-noninvariant with respect to the following locafLy
procedure of the renormalization group method, the one-looejauge transformation@9—31:

effective physical parameters are concretely calculated and _
given exact and analytical expressions. ' (x) = €98 y(x)

(2.2
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T (y) = @19, 000 11 ) 1 1 .

y=e Ylx), L= J{ 7”("% + gvAT,u + ng'yM‘P) -M } = ZFLLFL FT,MV
Al(X)=A,X) +3,0(X), 1 1 1

" " a + EmiAfr‘ATlu + Eﬁﬂ(p&ﬁcp - Em(zrgoz, (2.19

@' (X) = @(x), (2.5

where 6(x) is the scalar parametric function of(1J group

since the mass term of the meson in the Lagrangian is not
gauge invariant. But, this does not mean that the dynamics
the @ meson system is not gauge invariant. As mentioned i
the Introduction, thew meson field must be viewed as a
constrained system in the space spanned by the fou

whereF4” is defined as in Eq2.4) with replacing theA*(x)

by A%(x). The Lagrangian represented above gives a com-
lete description of the dynamics of thew model. If we

A ant to represent the dynamics in the whole space of the full

vector potential as described by the Lagrangian in(Edb),

the w field must be treated as a constrained system. In this

) . . ) IE:'ase, according to the general procedure for constrained sys-

dimensional vector potentid,(x). As we know, a massive tems as formulated in mechanics, the Lorentz condition in

gauge field has three polarization states which need onl, 5 19 a5 a constraint, must be introduced from the onset
three spatial components of the four-dimensional vector poz 4 imposed on the Lagrangian in E8.1) so as to guaran-

tential A, to describe them. In the Lorentz-covariant formu- .4 the redundant degree of freedom to be eliminated from

lation, a full vector potential“(x) can be split into WO o | agrangian. Otherwise, the Lagrangian in Exyl) itself
Lorentz-covariant parts: the transverse vector poteAi&)  cannot give a complete description for thefield system.,

and the longitudinal vector potential‘(x), From the Lagrangian in Eq2.14), one may derive an equa-
AH(X) = AL(X) + AK(X), (2.6 ton of motion satisfied by the meson field as follows:
where 3FE + miAr ==, (2.15
1 where
Ak(x) = (gf” - aa“a”)Ay(xx (2.7) _
1"=0047" (2.1

1 is the current generated from the nucleon field. The above
Al (x) = Er?”(?”AV(X) (2.8)  equation describes the evolution of the independent variable
Af with time. In particular, when we take divergence of the
with (0=¢*3,, being the D’Alembertian operator. The vector both sides of Eq(2.19), considering the identities in Eq.
potentialsA%(x) and A{(x) satisfy the following transverse (2.9 and d,d,Ff"=0, we immediately obtain the current

and longitudinal field condition@dentities: conservation
a,N(x) =0, (2.9 =0 (2.17)
1 which shows that the current is transverse.
Vigy — Ordinarily, the Lorentz condition is viewed as a conse-
-—=3d,0,|A/(X)=0 2.10 ' . ) . : e
(g’” o* ) L) (2.19 quence of the following field equation of motion which is

and the orthogonality relation derived from the Lagrangian in E@.1) [29,30,36,

a,FH + AT = - 7. (2.18

4 _
f dXAF(IALL(X) =0 (21D The argument of this viewpoint is as follows. When we take

_ _ _ _ ~ divergence of Eq(2.18 and notice the current conservation,
which characterizes the linear independence of the two fielg is found that

variables. Since the Lorentz-covariant transverse vector po-

tential A%(x) contains three-independent spatial components, m,*A, = 0. (2.19
it is sufficient to represent the polarization states of a massiv

vector boson, whereas the Lorentz-covariant IongitudinaE
vector potentialA{" appears to be a redundant unphysical
variable which must be constrained by introducing the Lor
entz condition

incem,, # 0, the above equation leads to the Lorentz con-
ition which implies that one component of the vector po-
tential is not independent. It is pointed out here that the
“above viewpoint actually is an ill concept and the procedure
leading to the Lorentz condition logically is not consistent

x=dA,=0 (2.12  with the principle established well in the mechanics for con-

o strained systems. In fact, the aforementioned derivation

whose solution is seems to imply that the Lorentz condition has already been
AF=0. (2.13 included in the Lagrangian denoted in Eg.1). If so, when

the Lagrangian is written in the first order form, we should
With this solution, theo-w model Lagrangian may be ex- see a term in the Lagrangian which is given by incorporating
pressed in terms of the independent dynamical variablethe Lorentz condition with the aid of the Lagrange multiplier
A(X), method. Nevertheless, as will be shown in the next section,
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there is no such term to appear in the Lagrangian. Moreover, H * (p;,q;)(j =1,2,--,n—m) (2.22)

as we know, equations of motion should describe the evolu- =~ . ) . ]

tion of the independent variables with time as the equatiofvhich is expressed via the independent variables and gives a
given in Eq.(2.15 does and should not lead to a constraintcomplete formulation of the constrained system. Obviously,
condition which implies that some variable in the equation is{C €xamine some symmetry of the constrained system, it is
not independent. Therefore the viewpoint stated above is n@nly necessary to see if the Hamiltoniait (p;,q;) other
reasonable. In accordance with the general principle for conthan the HamiltoniaH(p;, q;) has the desired symmetry be-
strained systems, the correct procedure is to treat the Lorengause in contrast to the* (p;,q;), the H(p;,q;) is not com-
condition as a primary constraint and to impose this condiplete for describing the system.

tion on the Lagrangian in Eq2.1) from the beginning. The Certainly, in some special cases, the Lagrangian given in
necessity of introducing the Lorentz condition can also beghe physical space itself is locally gauge invariant so that the
seen from the derivation mentioned in E¢g18 and(2.19.  gauge invariance of the corresponding action is ensured. This
Equation(2.19 can be understood in such a way that if the Situation happens for the massless gauge fields and the mas-
Lorentz condition is not introduced, there would appear &ive Abelian gauge field. The gauge transformation of an
contradiction that the right hand side of the equation is zeroAbelian gauge field was shown in the third equality in Eq.
but the left hand side is not. Only when the Lorentz condi-(2.5). Sinced, A(x) acts as a longitudinal field, according to
tion is introduced, the contradiction disappears. In this caséhe decomposition denoted in E@.6) and considering the
due to the Lorentz condition, E¢R.19), as a trivial identity, independence of the fields{(x) andAf(x), the gauge trans-
naturally holds and the equation of motiGh 18 can natu- formation of thew field can be equivalently divided into two
rally go over to Eq(2.15), exhibiting the self-consistency of transformations:

the theory. Particularly in the latter case, when the diver-

gence of Eq.(2.18 is taken and the Lorentz condition is AT (%) = AF(X), (2.23
employed, one immediately obtains the current conservation
in Eq. (2.17). In addition, we would like to note that for the A (X) = A(X) + *6(X). (2.29

quantum theory, in the zero-mass limitt,— 0, the vector
field part of the Lagrangian in E¢2.1) naturally goes over
to the one for the massless vector meson, but, as shown
Sec. V, the vector meson propagator does not and a wor

singularity occurs, revealing a severe inconsistence of th ) o
theory. Only when the Lorentz condition is introduced ini- ' $35¥ to verify that the longitudinal vector potenifi(x),

tially and incorporated into the Lagrangian by the LagrangaVNich may be expressed #¢(x)=d"¢(x) where ¢(x) is a
multiplier method can a consistent quantum theory be conscalar function, is canceled in the field strength tensor so that

structed. MV — AAV _ VAR — AUAY _ VAN — EMV

Now, let us turn to address the gauge invariance of the FESHN - IN = A - IR =R (229
o-w model. Usually, the gauge invariance is required to therlhis indicates that the longitudinal part of the vector poten-
Lagrangian. From the dynamical viewpoint, as pointed out irtial has no kinetic energy term in the Lagrangian and hence
Refs. [32-34, the action is of more essential significance has no dynamical meaning. Such a vector potential can only
than the Lagrangian. This is why in mechanics and fieldoe viewed as a constrained variable. Since the transverse
theory, to investigate the dynamical and symmetric properfield variable A{ is gauge invariant, the Lagrangi&8.14)
ties of a system, one always starts from the action of thavhich is written in the physical space is manifestly gauge
system. Similarly, when we examine the gauge-symmetriénvariant. Therefore the action given by this Lagrangian is
property of a field system, in general, we should also segauge invariant. Alternatively, the gauge invariance may also
whether the action for the system is gauge invariant or notbe seen from the action given by the Lagrangian in@dL)
In particular, for a constrained system such as the massiwehich is now constrained by the Lorentz condition. Under
vector field, we should see whether or not the action reprethe gauge transformation written in §@.5) and the Lorentz
sented in terms of the independent dynamical variables isondition denoted in Eq2.12), it is easy to find that
gauge invariant. This point of view is easy to understand
from the mechanics for constrained systems. Suppose a me- 5S= -t f d*09*A =0. (2.26)
chanical system is described by a Hamiltonian ¢ .

Equations(2.23 and (2.24) clearly express the fact that the

gauge transformation only changes the unphysical longitudi-
Sqeal part of the vector potential, while the physical transverse
gector potential is a gauge-invariant quantity. Furthermore, it

H(p,a)(i=1,2,--+,n) (2.20 This indicates that the-» model can surely be set up on the

which is given in the B-dimensional phase space and c:on-baSIS of gauge-invariance principle.
straint conditions
Q) = = IIl. PATH-INTEGRAL QUANTIZATION
0a(pi,0i) =0(@=1,2,---,2m< 2n) (2.21 OF THE 00 MODEL
which define a physical phase space of dimensign-2)
where the system exists and moves only. If the constrained
variables can be solved out from the constraint conditions, According to the general procedure of dealing with con-

we may write a Hamiltonian strained systems, the Lorentz conditi@l12 may be incor-

A. Quantization in the Hamiltonian path-integral formalism
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porated into the Lagrangiaf2.1) by the Lagrange undeter- Egs.(2.12 and(3.9) should simultaneously occur in the La-
mined multiplier method to give a generalized Lagrangiangrangian(3.6). Otherwise, if the Lorentz condition is not

[32,4Q. In the first order formalisni32,40,4], this Lagrang-
ian can be written as

2 1 1 2 2 1 V|
Ly=iy"D, - M)+ Eé’“(pﬁﬂqo——mg(p +ZF” F

1 ., 1,
_ EF,U« (3,A, - 3,A,) + EmwA“Aﬂ +N*A,, (3D

whereA, andF,, are now treated as the mutually indepen-
dent variables and is chosen to represent the Lagrange

multiplier. Using the canonically conjugate variables defined

by
L — 5
M= =iy, (32
iy
oL
H;:—.: , (3.3
oY
I1 _E L (3.9
¢ (9(;0_(’0’ :
and
L Fwo=E, if u=k=1,2,3;
IL(X)=——=F,0+t\j,0= kf “ -M_
IAH N=-Eqy if u=0,
(3.5

the Lagrangian in Eq2.1) may be rewritten in the canonical
form

L=EFA, + T+ T1,o+AC-Eox-H, (3.6
whereE, =(Ey,Ey) is a Lorentz vector,
C= ", + MPAg+ 9"y, (3.7

x was defined in Eg(2.12), andH is the Hamiltonian den-
sity expressed by

1 1 1 1
H =2 (B2 + 5 (Fy)?+ SmE[(A)%+ (AT + SIITG + (V)?

+0g?] =iy -V gt M= 9,0/ YA~ 0t (3.9
in which Fj; was defined in E¢(2.4). In the above, the four-

dimensional and the spatial indices are respectively denoted

by the Greek and Latin letters. Equatit$6) clearly shows
that the termsA\,C andEyy are respectively given by incor-
porating the constraint condition

C=0 (3.9

introduced, the ternit,y does not appear in the Lagrangian
shown in Eq«(3.6) or in EqQ.(2.1). In this case, the Lagrang-
ian could not be complete for describing the constrained sys-
tem under consideration.

From the stationary condition of the action constructed by
the Lagrangian(3.6), one may derive the following first-
order canonical equations of motion:

A= o~ Ex, (3.10

Ex= dFic+ MAH Ao+ 9, Y, (3.1
p=11,, (3.12

1, = V2 ~ M+ goiul, (313
(9, =M +g,7"A, +dsp)y=0, (3.14
Wiy, +M=-0,"A,~ ) =0,  (3.19

as well as the constraint equations written in §Gs12 and
(3.9. Equations(3.10 and (3.11) act as the equations of
motion satisfied by the independent canonical variaBles
andE,(k=1,2,3 which precisely describe the three degrees
of freedom of polarization for the massiuefield, while Egs.
(2.12 and(3.9) can only be regarded as the constraint equa-
tions obeyed by the constrained variabfgsand E, because

in these equations, there are no time derivatives of the dy-
namical variablesA, and E,. It is clear to see that in Egs.
(3.10—3.15, (2.12), and(3.9), there are altogether 12 equa-
tions. They are sufficient to determine the 12 variables in-

cluding the dynamical canonical variablégs ¢, 11,, ¢, A,
and E,(k=1,2.3 and one pair of constrained variablég
and Eq, showing the completeness of the equations.

Now, we turn to formulate the quantization performed in
the Hamiltonian path-integral formalism for tlee @ model.
In accordance with the general procedure of the quantization,
we should first write a generating functional of Green'’s func-
tions in terms of the independent canonical variables which

are ¢, ¢, 11, ¢, and the transverse parts of the vecta(s
andE, for the  meson field32,40,4},

_ 1 —
Z[‘]M"]’n’ 7]] = N f D(AM:EM! {//! l//!H(p!(P)
xexp{i f d*X[E4Ar, + [T, + [,
—H* (AELEE g 11, 0) + AT,

+J<p+?w+%]}, (3.16

and the Lorentz condition into the Lagrangian by the _

Lagrange multiplier method and the Lagrange multipliggs ~ where 1 * (Af,Ef, 4, 4,11, ¢) is the Hamiltonian which is
and E, are just the constrained variables themselves in thisbtained from the Hamiltonia3.8) by replacing the con-
case. Since thé, andE, are a pair of the canonically con- strained variableA{* andEf* with the solutions of Eqg2.12)
jugate unphysical variables, their constraint conditions inand(3.9),
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H* (ALEE, .. = HIALEX, .. coc0,  (3.17)

andJ,,J, 7, and are the external sources coupled to the

PHYSICAL REVIEW (70, 044003(2004)

Z[3,3,1,7]

1 _
:_JD(AM,EM,I//,1//,H(P,(p,p/277)det|\/|5[)(]

meson,o meson, and nucleon fields, respectively. As men- N

tioned before, Eq(2.12) leads toA!*=0. Noticing this solu-
tion and the decomposition
EX(x) = E4(x) + E/X), (3.18
when setting
Ef(x) = #Q(x), (3.19

whereQ(x) is a scalar function, one may get from E§.9)

an equation obeyed by the scalar functi@(x),
0Q(x) = W(X), (3.20

where

WIX) = = g, th(X) YP(x) - MEAI(X).

With the aid of the Green’s functio®(x-y) (the ghost par-
ticle propagatorwhich satisfies the equation

(3.21)

O0,G(x-y) = 8*(x~y), (3.22
one may find the solution to E¢3.20 as follows:
Q) = f dyG(x - y)W(y). (3.23

From the expressions given in E@8.19), (3.21), and(3.23),

xexp{i f d"’x[E“AM + H¢¢+ ¢+ pC

- H(A/,u E/,u 'r//,%H(p: (P) + ‘]MA,LL + ‘](P + ;Ir/,-'- E”]]} .

(3.27)

In the above exponent, there isE-related termEq(doAq
—dop) Which permits us to perform the integration ou&y,
giving a delta functional

8 doAo — dop] = detdol Ao - p].

The determinant dg|™*, as a constant, may be put in the
normalization constanl and the delta functionad] Ay—p]

will disappear when the integration oveis carried out. The
integrals overE, I1, are of Gaussian type and hence easily
calculated. After these computations and noticing the expres-
sion in EQ.(3.2), we arrive at

(3.28

_ 1 —
2033, m 7] = f D(A,, ., ¢,)detM I #A,]

Xexp{i J d™[ L +J#A, + o +?¢/+Z77]} ,
(3.29

we see that th&f*(x) is a complicated functional of the vari-
ablesAt andEf so that the Hamiltonia{* (A7,Ef,...) i where £ was written in Eq(2.1). When employing the fa-
of a much more complicated functional structure which ismijliar expressior{41,42

not convenient for constructing the diagram technique in per-
turbation theory. Therefore it is better to express the gener-
ating functional in Eq(3.16) in terms of the variablea,, and

E,. For this purpose, it is necessary to insert the following
delta functional into Eq(3.16) [32,40,41:

detM = f D(aC)eifd“xd“y&x)M(x,y>c<y>

— f D(a C)eifd‘lxg(x)[]c(x)' (3.30
SIAIAEL - EMAS, )] = detM A Clax], (3.24)

whereM is the matrix whose elements are

M(x,y) ={C(x), x(¥)}

Whereax) and C(x) are the mutually conjugate ghost field
variables and the following limit for the Fresnel functional:

AA,] = lim Claje (20> A)° (331
- d4z{ 500 Sy _ oxly) 5T } e
6A,(2) E*(2)  SE,(2) SA*(2) where C[a]~1I1,(i/27a)*? and supplementing the external

source terms for the ghost fields, the generating functional in

(3.295
. ] ] ] Eq. (3.29 is finally given in the form
where{C(x), x(y)} is the Poisson bracket as defined in the

second equality in Eq3.25. The relation in Eq(3.29) is
easily derived from Eqs(2.12 and (3.9) by applying the
property of the delta functional. Upon inserting E§.24)
into Eq.(3.16) and utilizing the Fourier representation of the
delta functional,

=Dx54(x_y);

-1 -
Z[‘JMvJv 7,7, g! g] = N J D(A,w lﬂ: lﬂ,(,D,C,C)

Xexp{i f A Lo+ A, + Jo + i

JCl= f D(pl2m)e d*CK) (3.26

we have

+Zn+Ec+E§]}, 2

where
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6(x) =sC(x), (3.39

wheres is an infinitesimal Grassmann’s number. Based on

which is the effective Lagrangian for the quantizedw izsvr?t?gngeﬂmtlon’ the constraint conditih38 can be

model in which the last two terms are the so-called gauge-
fixing term and the ghost term, respectively. In E§.32), (O,+1%C=0, (3.40

the limit «— 0 is implied. Certainly, the theory may be given ) )
in arbitrary gaugesa+0). In this case, as will be seen where the numbes has been dropped. This constraint con-

; ; ; ; dition usually is called ghost equation. When the condition
shortly, the ghost particle will acquire a spurious mass o _ .
=\@my g P g P (3.40 is incorporated into the Lagrangiaf8.36 by the
@ Lagrange multiplier method, we obtain a more generalized
Lagrangian as follows:

1 J—
Lest=L — 2—((9MAM)2 +COC (3.33
o

B. Quantization in the Lagrangian path-integral formalism

Now let us quantize the-w model in the(second order Ly=L+NFA, + 1oz)\z +C(O.+1AC, (3.4)
Lagrangian path-integral formalism following the procedure 2
proposed in Refd.32—-34,40. For later convenience, the La-
grangian in Eq(2.1) and the Lorentz constraint condition in
Eq. (2.12 are respectively generalized to the following

whereax), acting as a Lagrange undetermined multiplier, is
the new scalar variable conjugate to the ghost varigijie.
At present, we are ready to formulate the quantization of the

forms: o-w model. As we learn from the Lagrange undetermined
1 multiplier method, the dynamical and constrained variables
Ly=L~- 5)\2 (3.349  as well as the Lagrange multiplier in the Lagrangi8ml)
can all be treated as free ones, varying arbitrarily. Therefore
and we are allowed to use this kind of Lagrangian to construct

the generating functional of Green’s functions,
A, +aN=0, (3.35

_ = 1 — —
Z JIU"J’ L 1 L = D A 1 1 1 !C!CYA’
where\(x) is an extra function which will be identified with [ 7.74¢] N f Bt )

the Lagrange multiplier and is an arbitrary constant play-

ing the role of gauge parameter. According to the general Xexp{i f d4x[£)\(x)\]l‘Alu+J(p+;1//
procedure for constrained systems, E3)35 may be incor-

porated into Eq(3.34) by the Lagrange multiplier method to

give a generalized Lagrangian, +ym+ EC+CE | (3.42
Lo=L+No"A, + }a)\z_ (3.36) Looking at th_e expression of f[he Lagrang_ian in E841),
w2 we see, the integral ovex(x) is of Gaussian type. Upon

) o ) . ) completing the calculation of this integral, we finally obtain
This Lagrangian is obviously not gauge invariant. However,

for building up a correct gauge field theory, it is necessary to I § — =

require the dynamics of the gauge field to be gauge invariant. 2L, 7,m.8.€1= N DA, 4.4,¢.C.0)

In other words, the action given by the Lagrangi8rB6) is

required to be invariant under the gauge transformations e -Jd4 r A+ Jo+ 7
shown in Eq.(2.5). By this requirement and applying the B! X LerlI A+ o+ ip
constraint conditior(3.35), we have

+ym+ EC+CéE] ¢, (3.43

oS, = - - f d*xd"A,(X)(Ox + 90X =0, (3.37)
a where

where?=am?. From Eq.(3.35 we see(1/a)d"A,=-\ #0.
Therefore, to ensure the action to be gauge invariant, the

following constraint condition on the gauge group is neces- . ) . )
sary to be required: is the effective Lagrangian given in the general gauges. In

the Landau gaugéx— 0), the Lagrangian(3.44) just goes
(O,+ 17 6(x) =0. (3.39  over to the one given in Eq3.33). As proved in Ref[32],
the quantization described in EQq§3.34 and (3.49 is
The constraint condition in Eq3.38) may also be incorpo- equivalent to the quantization performed by the Faddeev-
rated into the Lagrangian in E¢3.36) by the Lagrange un- Popov approaci42]. At last in this section, we would like to
determined multiplier method. In doing this, it is convenient,emphasize that the ghost term in thg; does not couple to
as is usually done, to introduce the ghost field varia@l®)  the other fields. But, we do not integrate it out in the gener-
in such a fashion, ating functional. Keeping this term in the effective action and

1 —
Lett=L - z(awAﬂ)2 +C(0O, + 1AC (3.44
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in the generating functional is helpful to later derivations of B. WT identity satisfied by the generating functionals
WT identities. for Green’s functions

When we make the BRST transformations shown in Egs.

IV. WARD-TAKAHASHI IDENTITIES (4.1 to the generating functional in E¢3.43 and consider

FOR GENERATING FUNCTIONALS the invariance of the generating functional, the action, and
A. BRST transformation the integration measure under the transformations, we obtain

. . : . identit h thaf29-3
In this section, we show that the action and the generatmém identity such tha29-31

functional in Eq.(3.43 are invariant with respect to a set of

BRST transformations which include the infinitesimal gauge .

transformations of the nucleoar,meson, andy meson fields — f D(A,, ¢4, ¢,C,C) J d4x{J“(x)5Aﬂ(x) + 7(X) Sy(X)
as well as the transformations for the ghost fi¢Ri-31,35. N

The BRST transformations can be written in the form + 5Z(X) 7(x) + é’C_:(x) E(X)} S ED = (4.4)
Sr=s A i,
— — where E-® with E=(J,,J,7, 7. and @
SU=s AT, (Jusdim,m,6,8)

:(A#,go,zp,Z,C,E) stands for the external source terms ap-
pearing in Eq(3.43. The Grassmann numbercontained in

SAL=SAA,, the BRST transformations in E¢4.1) may be eliminated by
o o performing a partial differentiation of Eq4.4) with respect
SC=sAC, to s. As a result, we get a WT identity as follows:
sC=0, 1 o
N f D(AL ¢ ,¢,C,C) f d%{F*() A AL () = 700 A ¢A%)
Sp=0, (4.7
where + AP 7(x) + A COEX) =P =0, (4.5)
Ay=ig,Cy _In order to represent the composite field functiaos,,
o Ay, andA in EqQ. (4.5) in terms of derivatives of the func-
- — tional Z with respect to external sources, we may, as usual,
Ay=-ig,Cy, construct a generalized generating functional by introducing
new external sourcggalled BRST sources later pimto the
AA,=4,C, generating functional written in E@3.43),
= 1 . o B
AC—;& A, (4.2 Z[I4, 7,1, & E UM 0,0]
The above transformations for the nucleenmeson, ando = lf D(A,, ,r/,,%(p,ac)
meson fields can directly be written out from E¢&.5) and N
(3.39. The transformations for the ghost fields may be found
from the stationary condition of the effective action under Xexp) iSer+iE - P +i f d4x[uf‘AAM
the BRST transformations for the nucleanmeson, ando
meson fields,

+0A Y+ AJU] , (4.6)
5Sbff:Jd4X5£eff

whereu#, v, andv are the sources coupled to the functions
AA,, AY, andAW, respectively. Obviously* andAA,, are
-0 43 anticommuting quantities, while, v, Ay, andAy are com-

T 3 muting ones. It is easy to verify that the BRST-source terms
This expression suggests that when the ghost fields underg$e invariant under the BRST transformation because the
the transformations shown in Eqé.1) and(4.2), the effec-  functionsAA,,, Ay, andA¢ are nilpotent with respect to the
tive action is invariant. It is easy to prove that the integrationBRST transformations. Thus we may start from the above
measure in Eq3.43 is also invariant under the BRST trans- generating functional to re-derive the WT identity. The result
formations owing to the Jacobian of the transformations beis the same as given in E@4.5 except that the external
ing unity. source terms are now extended to include the BRST sources,

= f d4x{ (56— Ea”Ay)(Dx+ PC+C(O+ VZ)O’C}
o
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1 - — . _ functional I for proper (one-particle-irreducible vertex
Nf D(A., ¢, ,¢,C,C) f d™{JH(x) A A, (X) = 7(X) A (x) functions. The functional is usually defined by the follow-
ing Legendre transformatiof29-31:

+ A (X 7(x) + A E(x)g(x)}exp{ iSer¢+IE - D T[A*,.C,C, o, ¢, ; U, o,v]= \,\,[Jwggy\]ﬁ 7U,,0,0]
+ifd4x[u"AA,L+v_Al//+ A%]}:O. (4.7) —fd4x[JﬂA#+§C+C§+J<P
Clearly, Eq.(4.7) may be represented §29-31] + 7+ ], (4.13
ao| 1 — ) whereA,, E C, o, Z andy are field variables defined by the
d] J(x) éuu(x) — (%) S0(X) + 7(x )5 (x) following functional derivatives:
A= S0 == o =
I = = ; == =—,
This is the WT identity satisfied by the generating functional
of full Green’s functions. Z(X): W(xX) = ﬂN . o(x )_ﬂ_ (4.14)
Apart from the identity in Eq(4.8), there is another iden- o (X) on(X) dJ(x)

tity called ghost equation. The ghost equation may easily b%rom Eq.(4.13), it is not difficult to get the inverse transfor-
derived by first making the translation transformatid®:  mjations,

—C+\in Eq. (4.6 where is an arbitrary Grassmann vari-

able, then differentiating Eq4.6) with respect tox and fi- JH(X) = - g( X)=——, &x)=- or ,
nally setting\=0. The result is 5AM( X)' ( X' 8C(x)
1 f - oT oT oT
< | DAL #,4,¢,C,O{E(x) + (O, + 1A)C(X)} = JX) = - _
N # 7(x) = 00’ 7(X) = w(x), () 50X
Xexp{iSeff+iE-CI>+ifd4x[u“AAM+v_Az// (4.19
It is obvious that
+ A%]} =0 4.9 W _ T AW_OT W o

éU &l 50_5_0' S v

Employing Egs(4.15 and(4.16), Eqs.(4.11) and(4.12 will
}Z[Jw . 0]=0. (4.10 be represented as
f 4{ s ar s ar o or

which may be represented in the fof20-31]

[§(X)+(D +17)
i 5¢(%)

On substituting into Eqs4.8) and (4.10) the relationZ
=eWV, where W denotes the generating functional of con-

X + —  +t—
OA,(X) UH(x)  Y(X) Sv(x) S(x) Sv(X)

nected Green'’s functions, one may obtain a WT identity and o | _
a ghost equation satisfied by the functioké@lsuch that T a”A W) (x)} =0 (4.17
8 — S é
f dAX[J“(x) - 7)) —— + 7(x and
N —— - (O, + ¥*)C(x) = 0. (4.18
) xw( ) W, ... v]=0 (4.11) SC(x)

and When we define a new function&l in such a manner,

. 1
Ex) + (O + vz) \N[J,u L.v]=0. (412 r=r+ a f d*x(*AL)?, (4.19

it follows that

C. WT identity obeyed by the generating functional -
. or o 1
for proper vertex functions — = ——+ —J*P"A, (4.20

. o L oA, A, «
The WT identity in Eq.(4.11) and the ghost equation in
Eg. (4.12 may be represented in terms of the generatingand
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~ (SZZ J—
a_a (421 IAKX-y)= =—" = (0T{C(X)C(y)}07)
5 5D OE(X) O&(Y) | gr=g=. - =v=0

where ®=4, ¢, u*, v, and v. Upon inserting Egs. 6.3

(4.18—4.2]) into Eq.(4.17) and noticingsl'/ su,=4*C, we  (here and afterward the bold letters represent the opeyators

arrive at and interchanging the coordinate variables and Lorentz indi-
ces, Eq(5.1) may be written as

oA, O S sy o0 mPd"A,C ( =0. 3D ,u(x=Y) =ia(0"T* {AA,()CH}0)
U
- o =~ ad A (x-Y), (5.4

where T* symbolizes the covariant time-ordering product

The ghost equation represented through the functibmagy ~ @nd the definition oA, given in Eq.(4.2) has been con-
be written as sidered. Similarly, when taking the derivative of E¢.10

with respect to the sourdgy) and then letting all the sources
- A vanish, we get

ol ol
- VZC(X) =0. (423) (DX+ Vz) A (X_ y) = 54(X— y) (55)

— -
SCx) ()

. This is the equation obeyed by the ghost particle propagator.

In the Landau gauge, sinee=0 andd"A,=0, Eqs(4.22 and  Differentiating Eq.(5.4) with respect tox and utilizing Eq.

Jd“x o0 o el ol ol of

(4.22

(4.23 are respectively reduced to (5.5, we find
BT KD u(x=Y) =~ a0+ A5 (x-y).  (5.6)
J KM@ * KM_U—* 5_;5_0 =0 (@29 g just is the WT identity satisfied by the fulh meson
propagator.
and By the Fourier transformation
s S D,.(X~Y) = J d*D,,, (ke Y, (5.7
— —-g*—=0. (4.25 a "
sc o
Eqg. (5.6) becomes
These equations formally are the same as those for the mass- ak?
less Abelian gauge field theof29-31. kKD, (K) = = 2o 2 (5.9

From the WT identities formulated in this section, we
may derive various WT identities obeyed by Green’s func-The propagatoD ,,(k) may be decomposed into a transverse

tions and vertices, as will be illustrated later. part and a longitudinal part:
) kK, 2 KK,
V. WT IDENTITY FOR @ MESON PROPAGATOR AND D,,,(k) =D1(k%){ g, — JI:T +D(k )JI:T' (5.9

RENORMALIZATION OF THE PROPAGATOR

The WT identity satisfied by the meson propagator can Substitution of Eq(5.9) into Eq.(5.8) gives rise to

be derived from the identities shown in E¢4.8) and(4.10). a

By successive differentiations of the identity in E@h.8) Dy (k?) =~ - 2 (5.10
with respect to the sourcd’(y) and£(x) and then setting all
the sources to be zero, one may obtain In comparison of the above expressions with the free propa-

gator which was given in the indefinite-metric approach pre-

57 _ 8z viously [29] and may easily be derived from the generating
ag&]“(x)a]”(y) JV:?”:U:O— Ta SEX)OU(Y) | eyt functional in Eq.(3.43 by the perturbation methogg2],
(5.1) O ) G KKJK ak kK
D,(k)=- + , (6.1
K K-mi+ie K -17+ie .19

Noticing the definitions of thes meson and ghost particle
propagators, one can see that the longitudinal parts in E@s9 and
(5.11) are the same, implying that the longitudinal part of the

. 87 ® meson propagator does not undergo renormalization.
iD,(X=y)= W To derive the expression of the functidy(k?), it is con-
Yl pege =0 venient to start from the Dyson equation satisfied by the full
=(0"IT{A ,()A (y)}|07), (5.2  ® meson propagatd9-31,36,
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D, (k) =D'9(k) + DK II*(K)D,(K) (5.12 the propagator allows us to perform the renormalization
yy mv N TV ’ . . .
. o safely (in spite of whether the current conservation holds or
wherelI*"(k) stands for the vacuum polarization operator, orpgy). |n the zero-mass limit, the propagator in E§.11) and

say, the self-energy operator of taemeson. Contraction of the vector field part of the Lagrangian in E&.44) simulta-
Eq. (5.12 with k* and use of the expressions in EQs. neously go over to the massless ones, exhibiting the logical
(5.9~5.17) yield [1] consistency of the theory.
kJT(K) = 0. (5.13 Now let us.discuss renormali_zation of themeson propa-
gator. According to the conventional procedure of renormal-
This is the WT identity obeyed by the vacuum polarizationization, the divergence included in the functidigk?) may
operator which is a consequence of the gauge symmetry @fe subtracted at a renormalization point, $&y, u?> whereu

the theory. The above identity indicates that the operatomay be real or imaginary, corresponding to the subtraction
I1#%(k) is transverse and therefore can be written in the formpoint being timelike or spacelike,

1#(k) = (K°g,, = K, K)TI(K?), (5.14 TI(K?) = TI(?) + TT(K?), (5.18

wher(_aH(_kZ) is a scalar function charact_erizipg_ the vacuu_mwhereH(MZ) andIl (k% are, respectively, the divergent part
polarization. With the above representation, it is easy to findhnd the finite part of the functiordd(k?). The divergent part

from Eq.(5.12) that can be absorbed in the renormalization consEnwhich is
1 defined as
Dr(k) = - K[1+(K)]-mi+ie (519 Z3t =1 +T1(u?). (5.19
Thus the full propagator in Eq5.9) can be written as With this definition, on insgrting Eq5.18 .into Eq.(5.16),
o, 0= _{ G - kMkV/kZ . akﬂk,,/k.z } the w meson propagator v_v|II be renormalized as
Y K[1+TI(K)]-m2+ie Ki-1P+ie D,.,(K) = Z3Dg,,(K), (5.20

(5.16  where

When the gauge parameteris taken to be 0 and 1, we .~ 0, ~ KKK R ILS
obtain the propagators given in the Landau gauge and in the Rur(K) = k2= (M2 +TIR(K) +ie (K- 1P +ie)
Feynman gauge, respectively. When théends to infinity, ¢
we have the propagator given in the so-called unitary gauge. (5.2
In the lowest order perturbative approximation, the Iatter,s the renormalized propagator in Whmhﬁ is the renormal-
propagator is of the fornji1-5,29-3] ized massag the renormalized gauge parameter dhglk?)

9, — kK /m? denotes the finite correction coming from the loop diagrams.

uv ' %) .

- (5.17 They are defined as

R_.[7_ — 1 2y — 2 2
This propagator was originally derived in the canonical M, = \ZeM,, ar = Zg a0 TTg(€) = ZakCT() . (5.29
guantization from the vacuum expectation value of the timedt is noted that the spurious massis a renomalization-
ordered product of the transverse field operatdté;l(x invariant quantity,»”=am? = agm’,=va. Especially, at the
-y)=(0|T{A1,(X)A1,(y)}|0), and by making use of the Fou- renormalization point[Ix(1?) =0, as seen from Eq$5.18
rier representation of the transverse field operatgy(x) in ~ and(5.22. In this case, we have a renornalization boundary
which the w meson momentunk is put on the mass shell, condition such that

Oy = _ Jur ~ KK,
Dk K-mi+ie

kzsz_), so that the propagator in E¢h.17) is transverse only G~ kMkaz aRkMk,,/kz

for this momentum[29,3§. However, due to the on-shell Drun(Kke=p2= =1 5 Ro T ]
property of the momentum in Eq5.17), when evaluating k™= (m,)"+ie —vtle

the contractiorkﬂsz(k), as we see, there appears an indefi- (5.23

?Slti;)ezllljItcglrzget(t)hgerrlgmlzegg?cri;&di;h'?hgezr:eor(r)mrgztss: ;ir:nEthiCh is of the form of free propagator except that the pa-
there is a serious contradiction that the vector field part of therameters are replaced by the renormalized ones.
Lagrangian in Eq(2.1) is converted to the massless one, but  vI. WT IDENTITY FOR THE VECTORIAL VERTEX
the propagator in Eq(5.17 does not and is of an awful FUNCTION AND RENORMALIZATION OF THE VERTEX
singularity. In contrast, for the propagator in K§.11), the AND THE NUCLEON PROPAGATOR
momentum is off shellk?# mZ. Therefore, for the transverse
part of the propagatofor say, the propagator given in the
Laudau gauge we havek“DZV(k):O, showing a definite re- The WT identity for the vectorial vertexnucleon—
sult. Moreover, in the calculation of a loop diagram involv- nucleone meson vertexcan be derived by differentiating
ing internalw meson lines in which the momentum of tee  the identity in Eq.(4.8) with respect to the source&x),
meson line is off shell, it is necessary to use the propagaton(y), andz(z) and then turning off all the sources. The result
in Eq. (5.12). In particular, the good ultraviolet property of derived, written in the operator form, is

A. WT identity for the vectorial vertex function
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g MO TTA U ) = (= KD, OSPI(P.GRSH0)

v

= (0 T{C(X) ¥y)C(2) ¥(2)}07) = (2m)*8'(k+p - [S:(a) - S(p)]- (6.9
FIOTHCCH Py w2H0),  (6.1)

Considering that the energy-momentum conservation holds
at the vertex, we can write

where the definitions written in Eq4.2) have been used. I',(p,a,k) = 2m)*8*k+p-qig,[y, + A (p.a)].
Similarly, by differentiating the ghost equation in H¢4.10 * e

with respect to the sourceXy), #(y), and »(z) and then

letting the sources vanishing, one may derive the followingwith this representation and noticing

equation:
(= 1AK“D,,(K) = - ak,= a(p-q),,  (6.10
S (x— YO T{y) i 2)}[07) one may obtain from Eq(6.8) that
= —i(Oy+ 1O TICHICY)iy) ¢(2}|07). (6.2) (P- 9 [y, *+ A (p,9]=Sp) - SHq).  (6.11

(6.9

ét is well known that the general expression of the nucleon

Here it is noted that since there is no coupling between th ropagatoiS.(p) can be found from the Dyson equation sat-
ghost field and the fermion field, the two fields cannot con-ProPag Se(p > LY qualic
fied by the propagator, as was similarly done in Egs.

struct a connected Green'’s function. Therefore we can writ .
‘!(\55.12—(5.16) for the w meson propagator. The inverse of the

propagator can be written as

(OTICH)C(yY)ily) ¢(2)}|07)

—1
— — (P=p-M=-2(p), (6.12
= (0" T{COICHONO Ty WO P 2
B wherep=y*p, and(p) is the nucleon self-energy. Noticing

=-Ax-y)S(y -2, (63 this expression, when we differentiate both sides of Eq.

(6.11) with respect top* and then seg=p, it is found that

where 1]
+ YY)HOT) = iS(x— . Js
O TP wy}0) =iSe(x-y) (6.4) A= ;5»_ (6.13

is the nucleon propagator. It is easy to verify that once Eq.

(6.3) is substituted into the right hand side of H.2) and  This is the WT identity which establishes the relation be-
applying Eq.(5.5), we just obtain the expression on the left tween the vectorial proper vertex and the nucleon self-
hand side of Eq(6.2). Acting on both sides of Eq6.1) with energy.

the operatof],+»? and employing the decomposition in Eq. It is interesting to note that the above identity determines
(6.3) and the ghost equation in E¢5.5), we obtain the fol- the subtraction fashion of the nucleon self-energy. As one

lowing WT identity: knows, the divergence in the vertek,(p,q) may be sub-
tracted at the renormalization poiptin such a way,
1 .
ag, )Gy, 2) =[5} (x~y) = 8 (x=2) ]Sy - 2), Au(p.p) =Ly, +AS(p), (6.14
) (6.5) where
where L= AL(p,P)lp=p (6.15

o is a divergent constant. Substituting E@.14) into Eg.
G.(x,y,2) = (0*|T{A ,(X) ¢(y) }(2)}|07) (6.6) (6.13 and then integrating E¢6.13) overp, from pz top,,
we get
is the three-point Green’s function which is connected. This _ e _ 2
Green’s function has the following one-particle irreducible 2(p)=%(p) - Lp- ) + (- wC(PY),  (6.16
decompositior{29-31: where we have chosen thn% to meety*‘pg:,u and set the
integral [ godp“A;(pz):(p— w)C(p?) with the consideration
-0 ; ; c i fini
G,(xy,2) = | dXd%'d*Z'iD ,(x - X)i ' that whenp=p®, the integral vanishes andl®(p) is finite,
ux¥.2) f Y = NSy =y) satisfying the boundary conditiom;(p)|p:#=#0 so that the
XiT"(X',y’,2)iSe(Z - 2) (6.7) C(p?) is also finite, having the boundary conditid®(u?)
=0. When the divergent constarigu) andL are set to be
in which I'”(x",y",Z') is the vectorial proper vertex. On in- -A 1
serting Eq.(6.7) into Eq.(6.5), through the Fourier transfor- () 6.17
mation, we get in the momentum space that and
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L=-B, (6.18 k (a)
Eq. (6.16 will be written in the form ”m"
S(p) = A+ (p- w[B-C(P)]. 6.19 p \J P
This is the formula that gives the uniquely correct way for p_k
the subtraction of the nucleon self-energy.
k(b
B. Renormalization of the nucleon propagator /’“‘\‘
and the vectorial vertex > { ) >
Based on the representation of the self-energy in Eg. p p
(6.19), the full nucleon propagator may be written as J 2
_ 1 FIG. 1. The one-loop nucleon self-energy in thes model. The
S(p) = B(1-B) - (M+A-uB)+(p- u)C(p?)’ solid, wavy, and dashed lines represent the free nucleangson,
and o meson propagators, respectively.
(6.20
With th lizati tant of th I t - -7 -
delfinedebr;norma ization constant of the nucleon propagator (pa)=2 11F5(p'q) :le[yMJr AE(D’Q)]! (6.29
Z;'=1-B, (6.2  Where
the nucleon propagator will be renormalized as Ai(p,q) = ZlA;(p,q) (6.30
S(p) =ZS(p), (6.22 s the finite renormalization correction to the vertex. From
where the boundary condition Af(p)|4-,=0 mentioned before, it
follows that Ai(p,q)|p:q:#=0 by which we have
1
Sp) = : (6.23 .
p_MR_ER(p)'HE Fi(p,q)m:q:u:yﬂ. (6.31)

is the renormalized propagator in whidhg and 2x(p) are o " .
the renormalized mass and the finite renormalization correcThIS justis the boundary condition for the renormalized ver-

tion, respectively. They are separately represented in the fof€X functionl'3(p, ) under which the vertex is of the form of
lowing: the bare vertex. In particular, from Eq$.18), (6.21), and

(6.28), it is clear to see that

Mg=Z M, (6.24)
whereZy, is the nucleon mass renormalization constant de- Z2= 21, (6.32
fined by This is the Ward identity satisfied by the nucleon propagator
. A u renormalization constant and the vertex one.
Zw=1l+Z o+ (1-1 /B (6.29 At last, it is pointed out that the identities shown in Egs.
(6.13 and (6.32 and the subtraction represented in Eq.
and (6.19 formally are the same as those in QED because they
are all the consequence of1) gauge symmetry. Originally,
— 2
2R(p) = = Zo(p = w)C(pY) (6.20  the identities mentioned above follow from the current con-
with the boundary condition Sg(p)|y=, =0 which leads to servation. This result is natural because the current conser-
the boundary condition of nucleon propagator like this: ~ vation, as generally proved in the gauge field the@g-31,

can be derived from the global gauge symmetry or the local
SE(P)| _ 1 6.27 gauge symmetry. It would be emphasized that the aforemen-
p=u p-Mg+ie ) tioned identities hold not only for the case where thene-
) . son is considered only, but also for the general case that the
Clearly, this propagator is formally the same as the freg, meson and ther meson are taken into account together.
propagator. _ o We take one-loop diagrams to illustrate this point. The one-
We would like to ment|qn here the renormalization of the|Oop nucleon self-energy in the-w model is represented in
vertex function defined by, (p,q)=v,+A,(p,q). In view  Figs. Xa) and(b). The one-loop vectorial vertex is shown in
of the subtraction in Eq6.14) and the following definition  Figs. 2a) and(b). In the figures, the solid line designates the
of vertex renormalization consta#i: free nucleon propagatdS,(:O)(p) represented in Eq6.27),
1 the wavy line stands for the free@ meson propagator
Z'=1+L, 6.28 .o itten i i
|DMV(k) written in Eq.(5.11), the dashed line denotes the free
the vertex function will be renormalized as o meson propagator which is of the form
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VII. RENORMALIZATION OF THE o MESON
PROPAGATOR AND THE SCALAR VERTEX

For later convenience, it is necessary to give a general
description for the renormalization of themeson propaga-
tor and the scalar vertex. We start from the Dyson equation
satisfied by ther meson full propagatorA(q),

A(g) =AO9(g) + A9()Q(q)A(g), (7.0

whereA©)(q) is the o meson free propagator shown in Eq.
(6.33 and -iQ)(q) represents the meson self-energy. From
Eqg. (7.1) it may be solved that

A(g) = (7.2

P-m-Q(q) +is’

The self-energy can be Lorentz-covariantly decomposed into

FIG. 2. The one-loop vectorial vertices in thew model. The Q) = Q)% + Q2(q2)mi_ (7.3
lines represent the same as in Fig. 1. ) ]
The divergence in th€)(q) can be subtracted at the renor-

i malization pointw in such a way:

iIA(Q)=—5——, 6.3
=  nie (633 04(6) = () + O5(D),
; (0) 0)
;hrz bare vectorial vertek = and the bare scalar vertdxX (0D = Qy(12) + QP (7.4)
F(O):ig Qn substituting 'Eq(7.49 in Eq. (7.2), the propagatoA(q)
n vV will be renormalized as
ro=ig,. (6.34) A() = Z3AR(0), (7.5

The above Feynman rules are easily derived from the genewhere

ating functional in Eq.(3.43 by the perturbation method. .

ApDIVi Zit=1-04ud (7.6
pplying the Feynman rules, for the one-loop nucleon self- 3 Ve

energy defined by = (p) we have the following expression: s the renormalization constant of themeson propagator,

; 1
3(p) =i f d*[g5 7S (p~ k) y'DOK) AR(Q) = (7.7
T - (m)? - Og(g) +ie
+928%(p- KA K] (6.35 i in whi
s ' : is the renormalized propagator in which

where the first term and the second one are respectively mR=71m (7.9
given by Figs. 1a) and(b) while for the one-loop vectorial o~ =m o '
vertex, in accordance with the definition in E@.9), we s the renormalized meson mass with
have

Z5={Z3[1 + ()] (7.9
A, (p,g) =i J d*kg?y'SY(q-K 7,5V (p -k ¥ *DY(K) being the renormalization constant of thaneson mass and
+23%(q-K7,S2(p-AOK], (636 Qr(0) = Z[?Q5(4?) + M OQ5(P)] (7.10
where the first and second terms are given by Figs.and S the finite correction to the renormalized propagator. Obvi-
(b), respectively. By making use of the derivative ously, theQx(q) has the boundary condition(Qg(q)|qe-,.2
=0 which leads to the boundary condition of the propagator
d foll :
pi (CRUBREICRUPECRUNNNCE A
1
it is easy to find that the identity in E¢6.13 holds. Thus the Ar@le=2= o me s (7.1D

correctness of the WT identity in E@6.13 which follows

from the U1) gauge symmetry of the model is verified by This propagator formally is the same as the free propagator
the perturbative calculation. The identities in E@s13 and  in Eq. (6.33.

(6.32 will be helpful to facilitate calculations of the renoma-  Analogous to Eq(6.9) for the vectorial vertex, the scalar
lization of theo-w model. vertex can be written as
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FIG. 3. The one-loop scalar vertices in #ia» model. The lines
mark the same as in Fig. 1.

I'(p,q,k) = (2m)*&*(k+ p-qigd (p,q),  (7.12

where

I'(p,g)=1+A(p,q) (7.13

in which A(p,q) denotes the contribution of all higher order
diagrams. When the divergence in thép, q) is subtracted at
the renormalization poing, we have

A(p,q) =L" + A(p,), (7.19

where
L"= A(p,p)|p=p (7.15

is the divergent constant antl.(p,q) is the finite correction
of the A(p,q). With the above subtraction, the vertex in Eq.
(7.13 will be renormalized as

[(p,0) =2 Tr(p.) =2, 1 + A(p,)], (7.16

whereZ; is the renormalization constant of the scalar vertex

defined by
Z7 =1+l (7.1

and Ag(p,q)=Z'A.(p,q) is the finite correction of the
I'r(p,q) with the boundary condition Ag(p,q)|s=¢=,=0

PHYSICAL REVIEW C 70, 044003(2004

A(p,Q) =i f d*k[g2S”(q - KA QK S(p - k)
+327S%(q- kS (p- k¥ DY(K)]

(7.19
and the following derivative:
S (P-K=Sp-KS(P-K, (720
we find
_92(p)
A(p,p) = PYR (7.21

Based on this identity and the expression in Ej19), the
constant defined in Eq7.15 can be computed by

a oA
=20 A (7.22
M g, M
This relation will be used to simplify the calculation of
renormalization of ther-w model.

VIll. RENORMALIZATION GROUP EQUATION
AND RENORMALIZED S-MATRIX ELEMENTS

SupposeFy is a renormalized quantity. In the multiplica-
tive renormalization, it is related to the unrenormalized one
F in such a way,

F=2ZFg, (8.1)

whereZg is the renormalization constant Bf TheZg andFg

are all functions of the renormalization point u.e' where

Mo is a fixed renormalization point corresponding the zero
value of the group parameterDifferentiating Eq.(8.1) with
respect tou and noticing that th& is independent of:, we
immediately obtain a renormalization group equatiRGE)
satisfied by the functiofrg [27-3Q

dFg

wa, ¥Fr=0, (8.2
o
where y¢ is the anomalous dimension defined by
d
'yF:,LLd_ In ZF' (83)
)72

We first note here that because the renormalization constant

which yields the boundary condition for the renormalizedis dimensionless, the anomalous dimension can only depend

vertefo(p,q) as follows:

fR(p,Q)|p:q:,L =1. (7.19

on the ratioc=mg/ u, ¥=ve(gr, o), Wheremg and gg are

the renormalized mass and coupling constant, respectively.
Next, we note that Eq8.2) is suitable for a physical param-
eter (mass or coupling constgnta propagator, a vertex, a

This shows that at the renormalization point, the renormalwave function or some other Green function. If the function

ized vertex is reduced to the form of bare vertex.

Fg stands for a renormalized Green function, vertex or wave

It is interesting to note that there is an identity which function, in general, it depends explicitly not only on the
holds between the nucleon self-energy and the scalar vertegcalew, but also on the renormalized coupling constggt
For example, from the expression of the one-loop scalar vermassmg and gauge parameteg which are all functions of

tex A(p,q) shown in Figs. 8) and(b),

mo Fr=Fr(p,9r(1) ,Mr(w) , ar(u); 1) Where p symbolizes
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all the momenta. Considering that the functieg is homo- X (a) X,
geneous in the momentum and mass, it may be written, un-

der the scaling transformation of momentygm\p,, as fol-

lows:

m
FR(p;ngmR1aR;/~L):)\DFFR<pO;gRaTR-aR;§>: (8.4 N Y2

whereD¢ is the canonical dimension &f. Since the renor-
malization point is a momentum taken to subtract the diver-
gence, we may sgi=u\ wherex=¢€' which is taken to be
the same as ip=pg\. Noticing the above transformation,
the solution to the RGE in Eq8.2) can be expressed as Y ¥,

FR(P; Oro MR, @R, o) (¢)
= NPre/ MM YN E (g g(M), RN, a(M) ;s 1),
(8.5

where gg(\), mg(\), and ag(\) are the effectivgrunning

coupling constant, mass, and gauge parameter, respectively.

The solution written above describes the behavior of the ” y
function Fr under the scaling of momenta. N 2

. :or\]/v d(;) Wde deftermme thﬁ funﬁtldﬁ?(po; ,,uo)donfthe FIG. 4. The diagrams represent the nucleon four-point one-
right-han _S' e of Eq8.5) when theFg(po, - ) §tan S Qr a particle irreducible Green’s function. The solid line with a white
wave function, a propagator, or a vertex? This question caBjon represents the full nucleon propagator. The wavy line with a

be unambiguously answered in the momentum space sulite blob denotes the fulb meson propagator; the shaded blobs
traction scheme. Noticing that the momentyy and the  yrepresent the proper vertices.

renormalization poinj, are fixed, but may be chosen arbi-

tranly, we can, certainly, sepo—pp: With 'th|.s choice, by tering can be written out from the well-known reduction for-
making use of the boundary condition satisfied by the ProP3n,1a’ which establishes the relation between an on-mass-

gator, the vertex, or the wave function as denoted in EqSqpe) s matrix element and the corresponding off-mass-shell

(5.23, (6.21), (6.3D, (7.11), and(7.18), we may write connected Green’s functiof9,3§. Apconne?:ted Green’s
Fr(Po; Or: Mg, R, /'L)|P2=,¢L2:F(RO)(pO;gRimRv ar), (8.6) function may conveniently be derived from the generating

0 functional W for connected Green’s functions as mentioned

where the functiorF(R?)(p;gR,mR,aR) is of the form of a free in Sec. IV. For the nucleon-nucleon scattering, Smatrix

propagator, a bare vertdi the vertex is fundamental, i.e., element is related to the following four-point connected

follows directly from the interaction Lagrangipor a free ~ Green's function,

wave function and independent of the renormalization point

(see the examples given in the preceding secfidndight of Ge(Xq,%2;Y1,Y2) = (0| TLh(x0) hx0) Yy 1) ¢(y2) 1|0,
the boundary condition in Eq8.6) and considering the ho- (8.9
mogeneity of the functiofrg as mentioned in Eq8.4), one
can write where the subscripf marks the connectivity of the Green'’s
5 ., function. According to the familiar procedure of irreducible
NFFR(Po; RN, MRMA T, ar(N), ko) =2 decomposition[29-31, the connected Green’s function in
0. Eq. (8.9) can be decomposed into three one-particle irreduc-
- F%)(p'gRO‘)’mRO\)’aR()‘))’ (8.7) ible ones as represented graphically in Figa)4c). In each

where the renormalized coupling constant, mass, and gaud¥ the diagrams, there are four external legs which represent
parameter in the functio\¥(p,...) become the running the full off-mass-shell nucleon propagators. These propaga-

ones. With the expression given in E&.7), Eq. (8.5 will  tors will be converted to the full on-mass-shell nucleon wave

finally be written in the forn{20] fqnctlons by the reduction formula. The shade_d blob_s in the
diagrams stand for the exact progene-particle irreducible

Fr(P; G Mk, @R) =eﬁ(d”’WF(”FQ)(p;gR(A),mRO\),aR(A)). vertices. Let us first concentrate our attention on the dia-

8.9 grams in Figs. @) and(b). These two diagrams represent the
’ two-nucleon scattering taking place in thehannel via aw
For a gauge field theory, the anomalous dimensionsneson exchange. The wavy line with a white blob in the
shown in Eq(8.8) are all canceled out iB-matrix elements. figures denotes the fulb meson propagator. Considering the
To show this point more specifically, let us take the two-well-known fact that &S-matrix element expressed in terms
nucleon scattering taking place viameson exchanges as an of unrenormalized quantities is equal to that represented by
example. The exact matrix element for the two-nucleon scatthe corresponding renormalized quantities, the scattering am-
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7 1 1 1 A
lelct)ugg 3gq|ven by Figs. @) and (b) may be written as Fg(qi,pj):efl(d”wv(x)lﬁg))"(qi,pj), (8.19
@ " wherei, j=1, 2,
T = UR(A) (. Py UE(P)ID R (K UR() T (2, P2 UE(P) :

~ UR(0)T (G, POUR(PDID  (KIUZ(G) T H(cr, PUE(P), TR (o, pp) = igF) 7 (8.20

(8.10 is the bare vertex in whiclg,f‘()\) is the running coupling

where k=0, -p;=p,~0p, UX(P), TA(q;,p), andiDR, (k) are ~ constant, and

the nucleon wave function, the proper vectorial vertex, and

the o meson propagator, respectively, which are all renor- ,(\) :Mi Nz = _Mi InZ,- lﬂi
malized. The renormalization constants of the wave function, v du v du 2" du
the propagator, and the vertex are denoted\By, Z;, and (8.21)
Zr, respectively. The consta#} is defined by

InZ3

7 = 77177112 811 is the anomalous dimension of the vertex here the relation in
r=<2c3 (8.17) Eq. (8.11 has been used.
because the vertex in E(B.10) is now defined by containing ~ Upon substituting Eqg8.13), (8.16), and(8.19) into Eq.

a vectorial coupling constarg® multiplied with an imagi-  (8.10 and noticing Eqs(8.19, (8.18, and(8.21), we find
nary numberi in it. The renormalized coupling constant is that the anomalous dimensions in t8ematrix element are

defined as all canceled out with each other. As a result of the cancella-
tion, we arrive at

R= ZLZ (8.12 (1) 710 ©) ©)(n.)inRO (|0
vz, o : T’ = Ure(GD) TR (01, P UR,(PVID ,, (K)Ug,
O)v 0 0 0
On the basis of the formula given in E@.8), the renor- X (AR (G, P)UigB(P) — Uy (@) TR (2, P) Uiy
malized nucleon wave function, meson propagator, and ver- ><(Pl)iDE(VO)(k)U%(QDF(F?)V(QL pz)u%(pz)_ (8.22)

tex can be represented in the forms as shown separately in
the following. For the nucleon wave function, we have This expression clearly shows that the exdathannel
N A @A) 300, (0) S-matrix element of the two-nucleon scattering can be repre-
ug(p) = el MW MYO (p), (8.13  sented in the form as given by the tree diagrams shown in
Figs. Ka) and(b) provided that all the physical parameters in

where . ; ; ;
the matrix elements are replaced by their effectieening

O _ [E* Mg(\) |2 G-p R ones.
Ura(P) = MV E+ M) ®a(P) (8.19 Next, let us turn to the diagram in Fig(ed. In the dia-
R R gram, the shaded blob with four amputated external legs rep-
is the renormalized wave function which formally is the resents the nucleon four-line proper vertex. The direct term
same as the free wave function, but thl(\) in it is a  of the scattering amplitude given by Figic# can be repre-

running mass and sented in terms of the renormalized quantities as follows:
M 8.15 T = UR(G) UR(0) T R(P1. P2; O, G UE(PL UE(P)
du (8.23

is the anomalous dimension of the nucleon wave function.

For the renormalized meson propagator, we can write In accordance with EQ(8.8), the renormalized vertex

I'r(P1,P2:01,0) is of the form

iDR (k) = /1M ¥MiDRO), (8.16)
v nv \
where TR(Py, P2; 0, 0p) = €1 MO (b, pyiay, ),
(8.29
. i kK,
iDR(k) =~ - mf) +ie 9w [1- aR()\)]kz__’;Tis whereyr(\) is the anomalous dimension of the vertex which

is determined by the renomalization constépt Z ,2 (which
(8.17 is the inverse of the renormalization constant of the nucleon

is the free propagator withﬁ()\) and ag(M\) in it being the four-point Green’s function According to Eq(8.3),

running @ meson mass and gauge parameter and

d d
d ‘)/I‘()\)z/.Ld_ In ZF=_2/.Ld_ In Z,. (8.25
YN =g InZg (8.18 # #
# Substituting Eqs(8.13) and(8.24) into Eqg.(8.23 and notic-
is the anomalous dimension of the propagator. ing Egs.(8.15 and(8.25, we also find that the anomalous
For the renormalized vertex, it reads dimensions are all canceled out. Thus we have
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q9: (a) q, q, (d) 12
pl p2 q, 12 9 Py
(b) « © 5, (o)
q, 4 >’fg\"w P.—k q, 12}
>W’5W< -y o
p -k H P
q, D1 q-k ptk
P 12 v o
q p
9 (C) q, 1 q=p,— Db 1

- (c) 1

“ ¢ i r 4 p
2 3T
b P, >¢\MX< u q_k p
(d) 1 ql—k

p,—k
q2 k ql ql Y k c
e % 12
q9=D,—D
121 P

FIG. 6. Some two-nucleon one-loop Feynman diagrams which
FIG. 5. The tree diagrams of nucleon-nucleon scattering. Thée chosen to demonstrate the gauge-independence of the nucleon
first two diagrams represent the interaction generated bythme- ~ Scattering matrix elements.
son exchange. The remaining two diagrams represent the interacti

) e bare vertices with the exact wave functions, the full
mediated by ther meson exchange.

propagators, and the rigorous proper vertices. In this way, we
obtain a series of loop diagrams. As mentioned before, the
T(fiz):Eg(ql)ﬁg(%)rg)(pbpz;%Qz)U(Ro(),(pl)u(p%(pz)- dressed wave functions, propagators, and vertices in the
(8.26 Smatrix element can all be replaced by the renormalized
ones. Therefore they can be expressed in the forms as given
) . ) _ . in Egs.(8.13), (8.16), and(8.19. Due to the cancellation of
AS mentnzjnedz in Eq(8.8), the vertexI'e (p1,P2;01,%2) IS the anomalous dimensions, we will obtain an expression of
given atpj=0io=x (i=1,2) and the physical parameters in the renormalized scattering amplitude which is formally the
it are all running ones. Since the unrenormalized verteXagme as that written from the tree diagrams in Fige) &nd
I'(p1,P2:01,92) is not fundamental, it has a complicated (f) and their exchanged ones. For this reason, the tree dia-
structure, containing a series of tree and loop diagrg86  grams are called skeletons of the dressed diagrams. There are
The expression of the vertd?{f)(pl, P2;d1,02) can be deter-  a series of skeleton diagrarfsr called tree diagram®f the
mined by the perturbation method. Unlike the loop expanvertexI'(p;,p»;d;,0) such as the ladder diagrams and some
sion, the perturbation series of ti@&matrix usually is ex- others. But, in practical calculations, it is only feasible to
panded in powers of the coupling constapt The lowest consider the skeleton diagrams given in lower order pertur-
order approximation of the vertelR(p;,p,;0;,0,) is of the  bative approximations. We would like to stress that the skel-
order ofg* and contains two terms which are given by theeton diagrams can all be dressed. Thenatrix elements
truncated subdiagramhe box and crossed box diagrgms given by the dressed diagrams can be written out from the
obtained from Figs. @) and (f) by amputating the external corresponding skeletoiitree) diagrams provided that the
lines. The scattering amplitude given by the tree diagrams iphysical parameters are replaced by the solutions of their
Figs. §e) and (f) and their corresponding exchanged coun-RGE's. For otherS-matrix elements representing other pro-
terparts are convergent. We may dress these diagrams lggsses, the conclusion is completely the same. It is noted that
replacing the free wave functions, the free propagators, and S-matrix element evaluated by the w model is indepen-
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q

4 1

—_ 92 I

otk = Z'QUJ(277)4Tr{7“r—k—|v|+is”r—M+is |

- - (9.4)
q—k

where the factor 2 comes from the fact that the fermion loop

FIG. 7. The one-loop diagram of the effective meson self- can be formed by both of the proton and neutron loops. By
energy. The solid line marks the free nucleon propagator and ththe dimensional regularizatiof28—30,43, the divergent in-

wavy line denotes the free meson propagator. tegral shown above is easily calculated. Then, from the defi-
nitions in Eqs(5.14) and(5.19), it is not difficult to find that

dent of the gauge parameter as illustrated in Appendix A i the n-dimensional space, the renormalization consint
the one-loop approximatiofthis is the so-called gauge inde- 1S €xpressed as

pendence of th& matrix which is implied by the unitarity of

Smatrix elements This fact indicates that the task of renor- zZ;=1 -TI(u?)

malization for thes-w model is reduced to find the effective 5 1

coupling constants and the effective masses by solving their =1 + % (47.”.@8(2 _S)F(l +€)f dxxx - 1) '
RGE’s. These effective quantities completely describe the 27 & o [u(x=1) + M?J°
effect of higher order loop corrections. As an illustration, the (9.5)
effective coupling constants and the effective masses given

in the one-loop approximation will be derived and discussed . . .
in detail in the next section. wheremy is a mass introduced to make the coupling constant

to be dimensionless in the-dimensional space. It is noted
here that the factoréﬁlwmg)s andI'(1+e) may all be set to
IX. ONE-LOOP EFFECTIVE COUPLING CONSTANTS unity because they do not give an effect on the anomalous
AND MASSES dimension when we set— 0 in the final step of the calcu-

o lation for the anomalous dimension. Inserting E9,5) into
For the renornalization of the-w model, we need to Eq. (9.3), it can be found that

derive the effective vectorial coupling constant, the effective
scalar coupling constant, the effective nucleon mass, and the ) 4 —_—
effective » meson andr meson masses. The one-loop ex-  p__ %o 19, 6.2, 120 1+v1-40

g 1

. : o . . - In
pressions of these effective quantities will be derived and 612 V1-46% 1-41-402
discussed in the following subsections. (9.6)
A. Effective vectorial coupling constant whereo=M/ . In this expression, the coupling constaypt

The RGE for the renormalized vectorial coupling constan@nd the nucleon madé are unrenormalized. In the approxi-

gR which appears in the vectorial vertex may be immediatelyMation of ordew,, they can be replaced by the renormalized
written out from Eq.(8.2) by settingF =g onesg, and My because in this approximation, as pointed

out in the previous literaturf28], the lowest order approxi-
d . R, N mation of the relation between thlig(M) and theg,f*(MR) is
’“d,ug”('“) * 7919, (1) = 0. 9.1 only necessary to be taken into account. Furthermore, when
) L ) . we introduce the scaling variabbe defined byu=uo\ for
!n view of the definition sho.wnlln Eq8.1) and thg rela_tlon the renormalization point and seb=Mpg (this can always be
in Eq. (6.32, the renormalization constant defined in Ed. gone since theu, is fixed, but may be chosen at will: the

(8.12) will be represented as above choice amounts to taking the renormalization scale
7 parameter to be the nucleon mpswe haveo=Mg/ uoh
Z3= Lo=7;42 (9.2 =1/x. Thus, with they, expressed in Eq9.6) and noticing
TAYA p(d/dw)=N(d/dN), Eq.(9.1) may be rewritten in the form

According to the definition in Eq(8.3), the anomalous di-
mensionyé(,u) in EQ. (9.1) can be calculated by dgﬁ()\) [gfVB
= U

d 1 d
=limpu—InZi=-—-lim u— In Zs, 9.3
yg SHOMdM Y 2¢-0 Md,LL 3 ( )

) ) _ _ ~ Where
wheree =2-n/2 with n being the dimension of the space in

which the regularization is performed. Based on the defini- 6 12

tion denoted in Eq(5.19, the renormalization constai FUN) =1+ +—f(\) (9.9
will be given by the subtraction of the meson vacuum ¢ AT
polarization(self-energy operator +1,,(k). From the one-

loop diagram represented in Fig. 7, one may wfite29| in which
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FIG. 8. The effective one-loop vectorial coupling constants FIG. 9. The effective one-loop vectorial coupling constants

) . . )
al(\) given by the timelike momentum space subtraction. The solig®rR() given by the spacelike momentum space subtraction. The

line represents the coupling constant given by takifg0.5. The ~ Solid line represents the coupling constant given by _ta‘“'?,@
dashed line denotes the coupling constant giver/by1. =0.5. The dashed line denotes the coupling constant giveagby

=1.
f(N) = — A n At V,)‘2_4 the pole strongly depends on the parameigr By our nu-
W2=4  A-\?-4 merical test, we find, when thep is getting smaller and
o N smaller, the\q is getting larger and larger. If the}; goes to
cott ,iFA=<2, zero, theny approaches a value near infinity, similar to the
) Va2 V4 - \? (9.9 case of QED[20]. While, when thea}; is getting larger and
B 2\ RN . ’ larger, thehy moves toward unity; but it cannot arrive at
\)\2——4 Coth W2-4 Th=2. unity becauseri(1)=ag. In the region[0,1] of \, the ak(\)

has no singularity to appear. In Fig. 8, there are two lines
Upon substituting Eq$9.8) and(9.9) into Eq.(9.7) and then  representing the(\) given in the timelike momentum sub-
integrating Eq(9.7) by applying the familiar integration for-  traction: one is given by takings=1 and has a singularity at
mulas, the effective(running coupling constant will be \=1.1385; another is obtained by takiag=0.5 and has a

found to be singularity at\ =1.3885. Whem goes from\, to zero, the
ol aj(N) decreases and tends to zero, exhibiting an asymptoti-
ak(N) :—UR, (9.10 cally free behavior as we met in QED. In Fig. 9, the two
1- 4“RG ) lines represent thek(\) given in the spacelike momentum
37 " subtraction: one line is obtained by takiag=1 and has a

singularity athy=26.4689; another is given y;=0.5 and
has a singularity aky=280.431. When\ goes to zero, the
aj(N) approaches the constagff. As one knows, the Landau
A ; = 2 2\1 poles mentioned above give a limitation of applicability of
G,(M) :f TFQ()\) =2+\8m- gt 1+ X‘P()‘) the one loop renormalization. That is to say, beyond the re-
! gion [0,Aq], the aj(N) is meaningless even though in the
(9.1D  |imit: A— o0, the ak(\) tends to zero from an opposite direc-
in which tion. In comparison of Fig. 8 with Fig. 9, it is clear to see that
1 the range of applicability for thex(\) given in the spacelike
—~h2_An= N momentum subtraction is much larger than the range for the
¢\ =VAT-4ln 2()\ V-4 aj(N) given in the timelike momentum subtraction.

whereai(\) =[g&(\) ]2/ 4, k= a%(1) which is the coupling
constant that should be determined by experiment and

) )\ .
— 4 = )\? cos‘la, ifA<2,

= (9.12

— A
VA2 -4 cosh? > if A=2.

B. Effective @ meson mass

In EqQ. (8.2, when we seF=m,, we have a RGE for the
renormalized mass ab meson such that

As mentioned before, the variableis also the scaling
parameter of momenta=Ap,, and it is convenient to put
pgz,ug so as to apply the boundary condition. Thus, owing to
the choiceuy=Mg, we havepz=M23 and A=(p?/M2)*2. In
this case, it is apparent that wha 1, Eq.(9.10 will be  From the definitions given in Eq8.1) and the first equality
reduced to the result given on the nucleon mass shell with, gq. (5.22), we find
the valueai(1) = ap. The behaviors of the effective coupling
constants obtained in the timelike and spacelike momentum
space subtractions are separately represented in Figs. 8 and
9. The figures show that the effective coupling constant
a%(\) has a singularity\, (the Landau pole The position of ~ so that

d
Md—mﬁ(u) + yo(wmi(u) = 0. (9.13
o

Zo=23"%=7 (9.14
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10"

d
) = Md InZy,
«_s10°
LA SV S 1+z[é+<1—ﬁ>s]
€ o] " M 2l M M '
(9.20
RIS S i S A S N To determine the constanss, B, and Z, in the one-loop

FIG. 10. The effective one-loop meson massesi;(\) given  gnargy written in Eq(6.35. By the dimensional regulariza-

by taking ag=1. The solid line and the dashed line represent thetlon it is not difficult to derive from Eq¢6.35) the following
effective masses obtained in the spacelike momentum subtractio &pres& on:

and the timelike momentum, respectively.

2(p) = (B~ wZa(p) +Z(p), (9.2

2
Yolw) = Vo) = [gg Ve, ey where

_ 9% 2(x-1) g
whereFg(\) was given in Eq(9.8). With the above expres- 24(p) = (4m?), "£0 (x)° +(1- )(4 )2
sion, EQ.(9.13 can be written as °

1 1
(1+3Xy) 1
v X[ | dx f dy ot X2yH{(1 =xy)
dn - 205N F”(x)d—)‘. (9.16 U o Jo £0,(xy)°  0,xy)
ms 3 9\
1
Integrating the above equation, one gets X[p%+ u(p+ w1+ M(p+ M)}) - 5]
ROV = MR/ AN aE0FE), (9.17) @ fl w—1 02
X .
wherem?=mf(1) is the observed meson mass. This is just @m?Jo O
the one-loop result of the effective meson mass. If we take and
the approximationag(\) = e, the above expression be- 2
2 1
comes g, 2A(x=1Du+2M]
e ey
R()\) 2/371')G ()\) (918)
whereG,(\) was given in Eq(9.11). (f dxf dyyx {(1 Xy FZM
To have an insight into the behavior of the effective £0,(xy)

masses in Eq(9.17), we take them(\) given by taking 1
a%=1 as an example. This®(\) is shown in Fig. 10. In the + XY (L =xy)u+M] [+ E(M - ,u))
figure, the solid line represents the effective mass obtained in 0,(xy)

the spacelike momentum subtraction and the dashed line de- 9
scribes the one given in the timelike momentum subtraction. +— ZJ
Comparing Fig. 10 with Figs. 8 and 9, we see that the both (4m)*Jq
effective masses have the same singularities and the saqjg,ere

scopes of applicability as the corresponding effective cou-

pling constants¥%(\). Particularly, the position of the singu- 0,(x) = pX(x- 1) + M+ m2(1 -x),

larity strongly depends on the choice of as the aj(\)

does. When\ tends to zero, then(\) for the spacelike 0,(xy) = pXy(xy - 1) + My + m[(1 -X)y + a(1 - y)],
momentum approaches a nonvanishing value neamfhe (9.24
while the mﬁ()\) for the timelike momentum goes to zero. '

X=Du-M
£04(x)°

: (9.23

04(x) = pX(x— 1) + M + m2(1 - x).

. . _From the definitionA=3(w) written in Eq.(6.17) and the
The RGE for the renormalized nucleon mass, according t%xpressmns in Eq$9.21)~(9.23, we find

Eqg. (8.2), can be written as

C. Effective nucleon mass

g A=A +A,+ A, (9.29
MMMR(M) + ym()Mg(u) =0, (9.19  where
1 -
where yy(w) is the anomalous dimension of nucleon mass. A= 9 Zf ,(2[()( Dp+ ZM], (9.26)
In view of Egs.(6.25 and(8.3), we have (4m=Jo £, (x)°?
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1+3Xy)u-2M
S
2\ ;2] _ 3 2 l -
+ Qv(x,y)x Y11 -xy)u”+Mu ]} + 2(M ,u))
(9.27)
and
g [t x=Du-M
A3‘(4w>2fo Ay 929
in which

Q,(%) = u?x(x = 1) + M>+ m?(1 - ),

Q,(x,y) = u>xy(xy - 1) + M3y + mZ[(1 -X)y + a(1 -y)],
(9.29

Qy(X) = u?x(x = 1) + M3+ m2(1 - x).

The constanB appearing in Eqe6.21) and(6.25, accord-
ing to Eq.(6.19, ought to be computed by

B= (p— 1) [2(p) ~ Allp=y- (9.30

On inserting Eqs(9.2D)—9.29 into Eq.(9.30 and employ-
ing the formula

1 1t e(b-a)
a b fo dX[ax+ b(1 —x)]*’ (033
one may derive
B=B,+B,+Bs, (9.32
where
B 2(x—-1) 4 _
B amy? f {emx)s 0,00 7Y
><[(x—1),u2+2M,u]}, (9.33
1+3xy 1 2
=(- a) f f y{aQU(x)g t a0
+7xy = 9%y?) = 2Mu(2 - 3xy)] + Q ( e x3y3(1 -xy)
1
X[(1 = xy)u* + M/ﬂ} -5), (9.39
and
_ (x=-1) 2 _
Ba= (amp? f x‘{angxf 0,00 Y
X[(x=Dpu® - MM]}- (9.35

The terms expressed in Eq9.27) and(9.34) are dependent

PHYSICAL REVIEW (70, 044003(2004)

on the gauge parametarand look more complicated. How-
ever, as demonstrated in the Appendix A, Seatrix ele-
ments evaluated in the-w model are gauge independent.
Therefore for simplicity, these terms will not be taken into
account later on. This means that we limit ourselves to work-
ing in the Feynman gauge.

When Eqs(9.25 and(9.32 with the expressions given in
Eqgs.(9.26), (9.28), (9.33), and(9.35 are substituted into Eq.
(9.20, noticing thatZ,=1 should be taken in Eq9.20) in
the approximation of ordeg;,, one may find an explicit ex-
pression of the anomalous dimensigg(x) through a te-
dious calculation,

M) = AN+ A0, (9.36)

WhereyM )i |s derlved from the constants in E¢9.26) and
(9.33), while yM J(\) is given by the constants in Ec{9 28

and (9.35. The expressions of thez,\j)(x) and y ()\) are
separately described in the following. For the anomalous di-
mensionyﬁ)()\), we have

ﬁﬂm=%&@> (9.37)
in which
4
3,00 =50 + 2 ETVT(N), (9.38
i=1
where the functiong /(\) are
_BZ
fo()\)—_(g +>\)——+ (1-N), (9.39

2 1 1
€100 = 520 -B3)?- 332A2](1 - ;) sl -B°

-58%(1 - BAHN2 - gAY (1 -N), (9.40

6(1 - B2 1

500 = 8- 3(1 - 71 -y - B)( —;),
(9.4

) 43 1\ 282
g5\ = F[szz -(1 —,82)2]<l - ;) + F[ﬁzk“
+2(1-B)BAN - (1-BH%1(1-N), (9.42

and

4 1 2
5= S -pn- - 1- 3] - B - g

- (1-B9%1+ 28N>+ B\ (1-N) (9.43

with =m,/M and the functiong;(\) are given by the inte-
grals shown below. With defininga=(1-8%)\"2 and b
=2\"2, we can write

044003-22
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1
1
JJN=| dx———
1N JO Xx(x—1)+ax+b
_ )\2 n )\2_ 1_B2_ \"W
Vg A =1-82+ g

(9.49

where

g\ =N = 2(1+ BN + (1 - B2, (9.49

o x
X(x=1)+ax+b

“1+8° 2- 1~ =g\
2vgq\)  A2=1-B2+\g(\)’
(9.46)

1
J(\) = J dx
0

:—In,8+

1
5N = f d)\[x(x -1)+ax+ b]2

=[(1-p77 - (1+BN]

BZ )

SIS ol Koyl CEN)
q()\)3/2 In )\2 -1 _BZ_'_ \rq()\) ’ (947)

and
X
34()\) - Jo dA[X(x N 1) P b]z
%
=-(\+1- Bz)m -(\2-1+p?

4 PRI ey

3 o o (9.48

X In .
a2 " N2 1 -2+ g\

For the anomalous dimensiqvﬁf)()\), we can write

A= ES 0 (9.49
r
in which a%=(g})?/4m and
34N = go(x)+2 {ONNAONE (9.50
where the functiong’(\) are
3. N1 B
GN=-S+o+5-50-N (95D
with Byg=m,/M,

1
&0 = 5l2(1 - B3)° - 5B3(1 - BINZ = BAAAI(L -\

- %[2(1 -B)? - 3/3%A2](1 - %) : (9.52

PHYSICAL REVIEW C 70, 044003(2004

3(1 _/30)< E)
\? A
(9.53

&) = MOAZ 3(1-B9)4(L -\ +

232 1
§§(A)=%’[(1—BS)2— sz](l—x)

2 2
+ %[B%A“ +2(1- BB - (1= B)°J(L -,
(9.59

and
S — 2 2\3 2 1 4
&0 = 51 -5 - (1- B\ ](17) ——[(1 B5)
~ (1= BYAL+2B)N*+ BA*I(1 - ), (9.55

and the functions]?()\) formally are the same as the func-
tions J;(\) except that the paramet@ in the J;(\) is now
replaced byg,,

I = Ji()\)|ﬁ—>ﬁo-

Substituting theyy(\) as expressed in Eq$9.36—9.56
into Eg. (9.19 and solving the equation with noticing
pd/ w=xd/\, we obtain

(9.56

Mg(\) =M Re—fﬁdmm(h)

= Mge™ f}dx/x[a;(x)/wzU(x)mﬁo\)/zﬁzs(x)], (9.57)
where Mg=Mg(1) is the observed nucleon mass. The cou-
pling constants in the above have been taken to be running
ones. Theak(\) was given in Eq(9.10, while the ai(\)

will be derived in the next subsection.

It would be emphasized that in the timelike momentum
space subtraction, the scaling paramatés real so that the
effective nucleon mass is real, while in the spacelike momen-
tum space subtraction, theis imaginary so that the effective
nucleon mass becomes complex one. In the latter casa, the
in the y(N\) should be set to bé\. Observing the expres-
sions in EQqs(9.39—9.48 and(9.51)—9.55, we see that in
the both subtractions, the functiofig\) are always real. The
real and imaginary parts of thg,(\) are distinguished by
the real and imaginary parts of the functicfig\) and &(\).

In Figs. 11 and 12, we show the behaviors of the effective
nucleon masses given by the expression in @g57) for
which the coupling constants be taken as the constajts
and o}, for simplicity of computation. The effective mass
Mg(\) obtained in the timelike momentum space subtraction
is exhibited in Fig. 11. In the figure, the dashed, dotted and
solid lines represent thdg(\) given by taking (ak, o)
=(0,0.9, (0.5,0, and(0.5,0.5, respectively. From the fig-
ure, we see that in the regidf,1] of \, the Mg(\) almost
keeps a constartlz. Beyond this region, if only the scalar
coupling is considered, thBlg(\) increases up to a maxi-
mum at\y=4.21 and then decreases to zero rather rapidly
when A — . While, if the vectorial coupling enters, the
Mg(\) increases a little whekn goes to a smallex, and then
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q
..... »—-- PP S,
k k
q-—k
0.0 . ) ‘. Y FIG. 13. Theos meson one-loop self-energy. The solid line rep-
10" 10° 10" 102 10° resents the free nucleon propagator and the dashed line denotes the
free o meson propagator.
FIG. 11. The effective one-loop nucleon maskgg\) obtained
in the timelike momentum subtraction. The solid, dashed, and dot-
i ; ; S\ —
ted lines represent the effective masses giveridjy ag)=(0.5,0), _gs (M) + Yg (W) (M) 0. (9.58

(0,0.5, and(0.5,0.5, respectively. d

i . Analogous to the case of vectorial coupling, the anomalous
decreases much_ rapidly down to zero wm_amanes from)\(_, dimensiony?(u) determined by
to «. The effective masMg(\) obtained in the spacelike 9
momentum space subtraction is shown in Fig. 12. In the
figure, the real and imaginary parts of thék(\) are dis-
played separately. The dashed, solid, and dotted lines in the
figure represent the real and imaginary parts of Mhg\) should be calculated from the renormalization cons@n
which are obtained by takingal,a$)=(0.5,0, (0.5,0.5,  Which is represented as
and(1,1), respectively. The figure indicates that in the region 7!
[0,1] of \, the real part of théMg(\) keeps almost a constant ZZ = —}1,2
equal toMg, while the imaginary part of thg(\) is almost 2523
zero. Whenk varies from unity to infinity, the real part of the where Z,, Z;, and Z; were defined, respectively, in Egs.
Mg(N) at first increases smoothly and the imaginary part 0f(6.21), (7.6), and(7.17). According to these definitions, in
the Mg(\) decreases, then, both of them drastically oscillatehe approximation of ordeg® and in the Feynman gauge, the
and damp to zero. The figure also shows that the stronger tti% will be written as
couplings (especially, the vectorial couplingthe larger is .,
the frequency of the oscillation. The appearance of the oscil- ZZ =1+By+Bg-Ly—Ls+ (), (9.61)
lation |mp||eS that thdle()\) is invalid to use in the region WhereBl and B; were represented in Ec@SS} and(9_35),
that the oscillation appears. respectivelyl ; andL} are the parts of the constelnt which
can conveniently be determined by the identity in EG22).
From the identity and the representations written in Egs.
(9.26 and(9.29), it is easy to get

d
=lim u—In ZS (9.59
du

e—0

(9.60

D. Effective scalar coupling constant

When setting==gs in Eq. (8.2), one obtains the RGE for WA, g
the renormalized scalar coupling constafft which is in- Liz—lz 7:2 d
cluded in the scalafnucleon—nucleorr meson vertex, M 4w Jo

-0 ( - —[X(x-Du

15¢ Real Part + ZMX]Q )

,_OAg _
L= oM 167721 X{SQS( e P Dw

} (9.62

- Mx]
Q%)
The one-loop expression of the divergent consfy(i?) in
Eqg. (9.61) can be derived from the- meson one-loop self-
energy depicted in Fig. 13. From Fig. 13, it reads

4
_ _ Qqg) =- 2|gsf d 4Tr[ L - L :
FIG. 12. The effective one-loop nucleon masskg\) obtained (2m) (F-4-M+ie) (4-M +ie)
in the spacelike momentum subtraction. The dashed, solid, and dot- (9.63
ted lines represent the effective masses given by takifigeg)
=(0.5,0, (0.5,0.5, and (1,1), respectively. The upper figure de- where the factor 2 also arises from nucleon doublet. By the
scribes the real part of theg(\). Another figure shows the imagi- dimensional regularization, the above integral is easily cal-
nary part of theMg(\). culated and expressed as
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24[gx(x - 1) + M?]

% [
0= o, Mol
= (@) + Qo) (9.64
which gives rise to
k)= (4%-5;)4 01 d“s[uzi?xx (—Xl_) 1)MZ]E 969
and
00 = % zfldA 224lem§ . (9.60
@m?)y  eluPx(x— 1)+ M7F
On substituting Eq(9.61) into Eq.(9.59, we get
Vo) = %1 (V) + Ygo(N) + Ygs(N), (9.67)

where y3;(\), vg(\), and yg(N) are separately defined and

described in the following.
For theygl()\), we have

R

d a
Yor(N) = Hae B L) =T, (9.69
where
4
T°(\) = 7900 + 2 7P ()JHON) (9.69
i=1
in which

3 3
U)\:___+
7]0() 27\

1
mN) = F[Z(l -B)*-6(1- BN+ (1 - B7)(4 - BB\
+ 9B2A3 _ 3B2)\4] ,

3
7N == P[(l = B)?=3(L-BIN+(2- BN,

(9.70

2
ng()\) - 2)\_8[ﬁ2)\4 _ 3B2)\3 _ 2(1 _ ﬁZ)Z)\Z

+3(1- 92\ - (1- 97,

2
7N = 52 - BN =3(1 - BHN3 - (1 - BA)(1 - 2B89)\?
+3(1- B33\ - (1- 91,

and the functiong;(\) were given in Eqs(9.44—(9.48).
For the yg,(\) we can write

(99)?

d
Yo\ = u——(Bz—Ly) = 8.2 SV,

du (9.7)

where

PHYSICAL REVIEW C 70, 044003(2004

4

500 = 7500 + 2 77000 (9.72
i=1
in which
s 3 1-8%
7o(N) = ECMRY °,
1
71N = 5[2(1 = B3 - (1= ) (2 + 5EON7],
1
EONE F[sxz -2(1-85%, (9.73

2 2
2500 = TN+ (1~ )1+ 2690 - (1~ ),

2
7)== 5l +BON = 2(1 - BHHL + BONZ + (1 - B,

and the functions’(\) were defined in Eg(9.56.
For the y35(\), by virtue of the expression given in Eq.

(9.65), one can get
d (g9)°

Yga(\) = Maﬂl =T 82 I'5(\),

(9.79

where

12 A= V\2-4
NNZ-4 N+ N?-4]
(9.79

Based on the anomalous dimensigzg()\) given in Eqgs.
(9.67), (9.68), (9.71), and(9.74), the RGE in Eq(9.58 may
be represented in the form

dgf(n)
d\

6
Fg()\)=2 1+P—

+P(VGEN) +QM[gEN =0,  (9.78

where

a%(N\ 1
P(\) = %rw, QN = 55

[T\ =T50N)].

(9.77)

In the above equation, thej(\) is a known quantity as
given in EQ.(9.10. So, EQ.(9.76 is the equation used to
determine the unknown quantig®(\) only. To solve the
nonlinear equation, we may set

ge) =u(n) ™2 (9.78
which leads Eq(9.76) to a linear equation obeyed by the
function u(\),

dur)
()N

When settingQ(A\)=0, we obtain a homogeneous equation
whose solution is

= 2P(M)u(N) = 2Q(N) =0. (9.79

044003-25



J.-C. SU AND H.-J. WANG PHYSICAL REVIEW (70, 044003(2004)

o
1
N
(=1

60 F B (a)
o of Eo omoq
..... 0. 1 ----- 0, 0.2
1

0%
i

3o ii—os 02
/ o .

o

0 ) ) ) . ’
0 150 300 450 600 750 A

&
3

-5 L 3, L L L L "
0 1 2 o 1 2 3 4 5

FIG. 14. The effective one-loop scalar coupling consta#fis.)
obtained in the timelike momentum subtraction. The dashed and
solid lines on the left represents the effective coupling constants
given by (ak,a®)=(0,1) and(0.5,1). The dashed and solid lines on FIG. 15. The effective one-loop scalar coupling constai{$.)
the right denote the effective coupling constants giver(ddy, o) obtained in the spacelike momentum subtraction. The four lines
=(0,0.2 and(0.5,0.2. represent the effective coupling constants given by taking

(ak,ap)=(0,1), (0,0.2, (0.5,1, and (0.5,0.3, respectively. The
N solid and dashed lines denote the real parts and the imaginary parts
u(\) = u(1)e? 1P, (9.80  of the coupling constants, respectively.

In order to seek the solution of E(.79), we assume

a

20 0 150 300 450 600 750

YN rameterg aj, ap) are smaller. In particular, the pole moves to
u(\) =v(\)e2ThP0, (9.81)  the point near infinity when the both parametétg;, a3)

wherev(\) is an unknown function needs to be determined€nd o0 zero. When goes fromh, to zero and infinity, each

from Eq. (9.79. Inserting Eq(9.81) into Eq.(9.79, we get ag(\) in Fig. 14 abruptly falls to zero from the opposite
directions. For spacelike momenta, the behavior of the effec-

dv(\) _ 20(\) &2 1P 98 tive coupling constant is described by the lines in Fig. 15.
dn Qe ' (9.82 The two lines in Figs. 1&) and(b) are given by considering
_ _ _ the scalar coupling only with takinggz=1 and 0.2, respec-
Integrating the above equation, one obtains tively. In this case, ther(\) is real and has a pole,. The
A N poles for the aforementioned lines are located respectively at
v(\) =u(l) + 2f dNQ(N) e H 1PN, (9.83  \y=5.725 and 234.6. However, when the vectorial coupling
1 is included, theai(\) becomes complex. In this case, the

Combining the expressions in Eq8.798), (9.81), and(9.83), pole disappears; instead, there is a maximum to appear as

the solution of Eq(9.76) is finally given in the form shown in Figs. 1&) and(d). The lines in Figs. 1) and(d)
. are given by taking ek, ap)=(0.5,1) and (0.5,0.3, respec-
N = agK(\) (9.84) tively. In the figures, the real part of thei(\) is represented
R 1+aj/mG(\)’ ' by the solid line and the imaginary part by the dashed line.

From Fig. 15%c), we see that the real and imaginary parts of
the ax(\) have sharp peaks corresponding to the pole of the
' upper line. The peaks are manifested more clearly by the
K(\) = e—(zm)f}dx/m;(x)rvm' (9.85 right amplifigd ques. Figure ]() exhibits that either the real
part or the imaginary part varies rather smoothly due to the
and decrement of the parametdigs, o) and the larger effect of
N the vectorial coupling. It is noted that whan- 0, the ax(\)
Gs(\) :f dNATS(NK(N) (9.86 reaches a constant, while in the limit af— o, the ag(\)
1 goes to zero. In particular, the behaviors of tg\) tell us
in which that the smaller the parametérs;, o), the larger will be the
range of applicability and thej(\) for the spacelike mo-
IS0 =TI - T5(N). (9-87  menta have a larger range of applicability than that for the

The behaviors of the effective coupling constarifn) ~ timelike momenta.
obtained in the timelike and spacelike momentum subtrac-
tions are separately displayed in Figs. 14 and 15. For time-
like momenta, thenx(\) is real. In Fig. 14, there are four ]
lines representing this$(\) which are given by four groups N accordance with Eq8.2), the RGE for the renormal-
of the parameters(ag,ag)=(0,1), (0.5,1, (0,0.2, and ized ¢ meson mass is
(0.5,0.9 respectively. The figure indicates that thg(\) has d . . R
a Landau polex,. The poles for the four lines are respec- )\am(r()\) + ¥m(MM;(N) =0, (9.89
tively located about aky=1.075 23(for the first two lines,

1.8237, and 2.3967. Clearly, thg is larger if the both pa- where

where a3(\) =[gR(\) 1%/ 41, ay=ad(1) which is a parameter
needed to be determined by fitting the experimental data

E. Effective o meson mass

044003-26



RENORMALIZATION OF THE o-w MODEL WITHIN....

d
YoM =pg - I Zy, (9.89
)7
From the definitions given in Eqé7.6) and(7.9), it is found
that in the approximation of orda_ﬁ, the renormalization

constantZy, can be written as

1
Zn=1- 5[91(,“2) +Qy(u?)]. (9.90
The one-loop expressions of the divergent consténtg.?)
andQ,(u?) were given in Eqs(9.65 and(9.66). With these
expressions, the renormalization constafffsin Eq. (9.90

can explicitly be written out. Use of this renormalization
constant in Eq(9.89 yields theo meson mass anomalous

dimension as follows:

o g
'ym=—4—SGS()\), (9.92)
T
where
6|11 1 1 2({1 1
GN=—|=--=+=-—(=-= |7\ 9.9
in which By=m,/M and
1 N—V\?-4
) =— In —_— 9.93
M= i (9.93

Substituting the above anomalous dimension into (Bd8)

PHYSICAL REVIEW C 70, 044003(2004
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FIG. 16. The effective one-loop meson massesi(\) ob-
tained by taking(ak, «g)=(1,1). The solid line represents the ef-
fective mass given in the spacelike momentum subtraction, the
dashed line shows the real part of mré()\) given in the timelike
momentum subtraction.

subtraction is complex. The solid line in Fig. 16 represents
the real part of themff()\) which has a maximum neax,

~5 which indicates that thmfj()\) is applicable in a wide
region of[0,5]. Similar to the coupling constaafy(\), when

the parametersai, o) are taken to be smaller, either the
pole or the maximum will be shifted to the point of a large
AO.

X. SUMMARY AND DISCUSSIONS

In this paper, it has been argued that th@ model, as a
constrained system, is really of(l local gauge symmetry.
This enables us to quantize thew model by means of the
method used for quantizing the gauge field theory. In particu-

and solving the equation, we obtain an expression of thqear, the gauge symmetry allows us, in a consistent way, to

effective 0 meson mass such that

mR(\) = mRefgmux)a;(x)esm’ (9.94)

derive various WT identities which provide a faithful basis
for performing the renormalization of the model. As shown
in Sec. V, the WT identity in Eq(5.6) satisfied by thew

where mf=mi(1) is a mass parameter which needs to bemeson propagator and the WT identity in Ef.13) for the

determined by experiment. If the coupling constapt\) is
approximately taken to be a constarg, the integral ovei
can easily be calculated. In this case, we have

m(\) = me>®), (9.95
where
208 1 3 2 1 1 3
s,0)==F 1——2+\—<1-—2)”+(—2+———2>
T N2 B N2 B
N-4 1
X\T In 5()\ +\\? - 4):| . (9.96

It is seen from Eq(9.94) that the behavior of the effective
massm('f()\) is intimately related to property of the effective
coupling constantx(\). To give a view of the behavior of
the m¥(\), we take them}(\) evaluated from Eq(9.94) by
taking (ak, agp)=(1,1) as an example. Thimff()\) is shown
in Fig. 16. In the figure, the dashed line representsfie.)
given in the timelike momentum subtraction. Thliﬁ()\) is
real and has a singularity a=~1.097 58 which implies that
the range of applicability of then¥(\) is less tharn=1, the
nucleon mass scale. Whentends to zero, then('f()\) ap-

vacuum polarization operator determine not only the struc-
tures of the propagator and the vacuum polarization operator,
but also the renormalization fashion of the propagator and
the ® meson mass as shown in Eg5.14), (5.16), (5.21),
and(5.22. Especially, the WT identity in Eq6.13 obeyed

by the vertex gives rise to the correct manner of subtraction
of the nucleon self-energy as denoted in E6.19. As
shown in Sec. VI, the subtraction in E@.19 leads to the
correct representations for the renormalization constants of
nucleon propagator and nucleon mass as shown in Egs.
(6.2) and (6.25. Moreover, the identity in Eq(6.13 di-
rectly yields the important relation between the renormaliza-
tion constantsZ; andZ, as written in Eq.(6.32. This rela-

tion together with the relation in Eq7.22 which follows
from the identity in Eq.(7.22) greatly simplify the calcula-
tion of the renormalization. It would be mentioned here that
in some previous work§7,15,17, the subtraction based on
the expressior(p)=Ap+BM was ever used. This subtrac-
tion gives the nucleon propagator renormalization constant
asZ,=[1-A(x?]™* and nucleon mass renormalization con-
stant asZy={Z,[1+B(x?)]}"* which are different from the
renormalization constants written in Eq$.21) and (6.25

and therefore the relation in E¢6.32) could not be fulfilled

proaches a value which does not deviate from the constamm this case. The renormalization of the model under consid-
mff so much. Themff()\) given in the spacelike momentum eration is performed in the mass-dependent momentum space
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4.75

subtraction scheme by the renormalization group approach. @ L
The prominent advantage of the subtraction scheme is that it 450k T=491.9MeV 3
naturally leads to the boundary conditions for the renormal- g4a5E
ized propagators, the vertices, and the wave functions. The £4.00F
boundary conditions allow us to give a unique determination 1§3.75 E
of the solutions to the renormalization group equations for RV
the renormalized propagators, vertices, and wave functions assk 3
without any ambiguity. As claimed in the Introduction, we 2.00 Eu . .
limit ourselves in this paper to examine the renormalization 45 60 ». (degf
of the model at zero temperature by means of the renormal- o
ization group method. Since the perturbative series expanded o - T

6.0 3 m

in the powers of coupling constants is chosen to be the start-

Ty,=575.5MeV

ing point of this renormalization, the results of the renormal-
ization would be different from those obtained in the study of
nuclear matter by using the loop expansion and the spectral
function methods. Hopefully, the renormalization procedure
described in this paper will be helpful for applying the renor- RN

do/dQ (mbarn)
-
(4]

malization group approach to study the nuclear matter at 30 . . . .I-""‘i'r
finite temperature and finite density. 30 4 60 75 90
The procedure of renormalization group method was 0.m.(deg)

demonstrated by the one-loop renormalization in this paper. o ) ) )
Since the renormalization exactly respects the WT identities, F'G- 17 The two-proton elastic differential cross sections given
the results obtained are faithful. Especially, the one-loop ef2t the laboratory kinetic energids;,=491.9 and 575.5 MeV. The
fective coupling constants and masses are given in the rigof2ck sauares show the experlmer;tal dd@. The solid "nﬁs rep-l
ous forms as they are derived from the mass-dependent m(r)qsent th? th_eoretlcal values calcu ate_d by considering the one- oop
. . renormalization effect. The dashed lines represent the theoretical
.me”t.“”? space subiraction. The Su.btracuon scheme used dlues without considering the one-loop renormalization effect.
in principle, suitable not only for high energy, but also for
low energy, unlike the minimal subtraction schef@8-31] the ones given in the spacelike momentum subtraction not
which is only appropriate in the large momentum limit. In only behave differently, but also have different ranges of
addition, the expressions of the one-loop effective physicahapplicability because the singularities of the effective quan-
guantities derived in this paper are applicable for the both ofities given by the two subtractions appear at the different
timelike momentum subtraction and spacelike momentunmomenta. Especially, the positions of the singularities are
subtraction. As seen from Figs. 8-12 and 14-16, the behawstrongly dependent on the coupling constaet@and . The
iors of the effective quantities given in the timelike subtrac-smaller the coupling constants, the larger are the ranges of
tion and the spacelike subtraction are much different fromapplicability. It would be mentioned that since the propaga-
one another. In which case we should use the results given irs written in Eqs(5.16), (6.12), and(7.2) are solved from
the timelike momentum subtraction or in the spacelike mothe Dyson equations, the one-loop renormalization actually
mentum subtraction? The answer to this question depends @ontains the contribution given by partially summing up a set
what process is discussed. For example, when we study thef chain loop diagrams. Just due to the partial summation, as
nucleon-nucleon scattering taking place in thehannel, as mentioned before, the coupling constants must be set to be
mentioned in Appendix B, the transfer momentum in thesmaller for fitting the experimental data of the nucleon scat-
boson propagator is spacelike. In this case, it is suitable teering. To this end, it is natural to ask if and how the behav-
take the effective coupling constants and boson masses givéors of the one-loop effective physical parameters can be
in the spacelike momentum subtraction. If we investigate thenodified by considering higher order loop renormalizations,
nucleon-antinucleon annihilation process which takes placen other words, if the coupling constants would be smaller
in the s channel, since the transfer momentum is timelike, theand the ranges of applicability of the renormalization would
effective coupling constants and boson masses given in thiee enlarged when the contributions arising from more higher
timelike momentum subtraction should be used. The effect obrder loop diagrams are summed up. Obviously, this is an
the one-loop renormalization is examined by the nucleoninteresting problem worthy of pursuing further. In addition,
nucleon elastic scattering whose differential cross sectiome would like to address that the-w model should be
given in the order ofg? is described in Appendix B and viewed as a restrictive model in which thefield is intro-
plotted in Fig. 17. In the figure, we only take the differential duced as a phenomenological field. Aside from theo
cross sections given at the laboratory kinetic enerdigs  model, there are some other models in QHD which are of a
=491.9 and 575.5 MeV as an example. The figure shows thafertain gauge symmetry. Especially, the model proposed by
consideration of the one-loop renormalization requires theSakurai in the early tim@44], in our opinion, is most prom-
coupling constants to be smaller in order to fit the experidising to describe the nuclear force because in this model,
mental data. This actually is a general feature of consideringxchanges of the light mesons, such as pion gm@meson
the renormalization effect. dominate the strong interaction between nucleons. In view of
As exhibited in Sec. IX, the one-loop effective physical the argument given in Ref§32—-34,45, Sakurai's model is a
parameters given in the timelike momentum subtraction an&U(2) gauge field theory which is not only gauge invariant,
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but also renormalizable. Certainly, the renormalization of Sf:_(1_a)igvz_us’(q2)kur’(Ql)is(pZ)kur(pl)Da(kz)
this model may be investigated along the same line as de-

scribed in this paper. We will discuss this subject in the fu- =~ (1 - a)ig’Ug () (@1 — d) Uy () Us(P2) (2 = By)
ture. But, it cannot be expected that a perturbative investiga- XU, (py)D, (k) = 0. (A6)

tion could give an ultimate solution to the strong interaction.
Just as said in Ref§46,47, to resolve the strong interaction, This shows that the meson propagator given in the Feyn-
it is adequate to perform a nonperturbative study of the inman gauge is sufficient to use for evaluating the tree diagram
teraction kernel appearing in the relativistic equation whosenmatrix element. In the same way, one may prove that the
closed expression can be derived by the procedure as d&matrix element given by the tree diagram in Figb)is
scribed in Refs[46,47. independent of the gauge parameter as well.
Let us focus on the one-loop diagrams in Fig. 6 where
only the direct diagrams are plotted and necessary to be ex-
ACKNOWLEDGMENT amined for our purpose. The gauge independence of the ma-

This research was supported by the National Natural Sciglnxerelerir;]eir:tcgl; I;géiIeai)g\/h:g?/e((:jogtahnssinMEZE;SOSHO svevlé-
ence Foundation of China. gy y be p y using . So,

only need to examine the gauge independence of F{p$-6
(f). The matrix element of Fig.(6) with a vertex correction

APPENDIX A: GAUGE INDEPENDENCE in it can be written as
OF SMATRIX ELEMENTS S= M,,(0:, G A“(p1.p), (A7)

The gauge independence $imatrix elements computed \yhere
by a gauge field theory is a well-known fact. For thew o _ _
model, as argued in this paper, it actually is élUgauge M .(G1,02) = Us (02)ig, ¥, (q1)iD (k) (A8)

field theory. So, the same conclusion should hold for the hich i ind dent h . d
o-o model. To convince oneself of this fact, we take the WNICN 1S gauge independent as shown in &) an

nucleon-nucleon scattering amplitudes up to the one-loop ap- d*k

proximation as examples to show that the matrix elements A(p1,p2) :f WUS(pZ)

given by theo-w model are surely independent of the gauge

parametew. The typical Feynman diagrams representing the Xi9,¥,iSe(p2 — K)ig, ¥*iSe(py — K)i

scattering amplitudes are depicted in Figs. 5 and 6. In Fig. 6, ‘N po

only the diagrams with the internal meson line are neces- %9y Yol (P)ID(K). (A9)

sary to be considered. ReplacingDr?(k) by theD??(k) shown in Eq.(A4), we have
For the tree diagram in Fig(#&), the gauge-independence the following gauge-dependent part &*(p;,p.):

of its Smatrix element is well known. In fact, th&matrix

d*k
element A4pLp) =— (1 -a)g] J Wus(pz)k&(pz -k
S| = Ug (02)ig, ¥,.Ur (A ID#"(K)Us(po)ig, U (Py),

A1) X ¥*Se(py — K)Ku, (p1)D (K2, (A10)
) . wherek=vy"k, can be written in the form

whereug(p), the free nucleon wave function, can be divided . .
into two parts according to the decomposition of freene- k=S"(p) - S (pi— K, (A11)
son propagator, wherei=1, 2. Using this relation and the Dirac equation, Eq.

D#(k) = DE"(k) + D*"(k), (A2) (A10) becomes
where A(PLP2) = = (1 - )gUs(p2) YU (p)d,  (AL2)

g where
DE K== 55— A3
Fk K2—m +ie (A3) ] f d“kD(kz) i fl dx
= —D, =|lim o

which is the propagator given in the Feynman gauge and (2m)* e—0 (4m)? o effa+(1-a)x]mi}

DX(K) = (1 - @)D, (ko) k*K” (Ad) (AL3)

where the last equality is given by the dimensional regular-
ization. This integral gives a divergent constant without con-
5 1 taining any finite number in it. Therefore it may completely
D(k%) = (KR=nE +ig)(K2— 2 +ig) (A5) be canceled out by a counterterm in a renormalization pro-
e)(ke= 1 +ig) ; N . )
@ gram and gives no contribution to the renormali&chatrix

For the a-dependent part ofS, applying the energy- element. On the other hand, since the integral is independent
momentum conservatiok=q;—0,=p,—p; and Dirac equa- of momentum, it would not contribute to the anomalous di-
tion (p—M)ug(p)=0, it is found that mension and hence to any physical quantity.

which is thea-dependent part of the propagator in which
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For the matrix element of Fig.(6) which contains a which givesS +S},=0 so that the sum of and S; is
nucleon self-energy, it may be written as independent of the gauge parameter.

S =M,,(d1,8)B“(p1.py), (A14)
APPENDIX B: CROSS SECTION OF

where NUCLEON-NUCLEON SCATTERING

4
BX(py, o) :f ﬁ@(pz) To illustrate the effect of the renormalization described in
(2m?* this paper, we evaluate the cross section of the nucleon-
i is K i —K npcleon elastic scattering. Herg we limit ourgelf to first con-
'g"y” F(pz_ )i9,76iSe(P1 = K) sider the cross section given in the approximation of order
Xig, U, (p)iD*7(K) (A15) @2 In this approximation, only the tree diagrams denoted in
Fig. 5 are concerned. From these diagrams, in the center of

in which the a-dependent part is of the form mass frame, the differential cross section is easily calculated

3 d*k _ and represented as follows:
BL(P1,p2) =~ (1 -a)g, f (2_77_)4Us(p2)k3:(l32 —k) ; L
ag
= (T, + 2T — ayagT,y), (B1)
XKSe(py+ Q) ¥Uy (P Do(K2). (A16) dQ(6,¢) S = °

By employing the relation in EqA11) and Dirac equation, whereS=4(p?+M?) with p being the nucleon momentum is

one may find the total energy of the syster, is contributed from theo

B 3— . meson exchange interactioiiy is given by theo meson
Ba(P1,P2) = (1~ )g,Us(P2) 7,S:(P2) YUy (P1)J2 = 0. exchange interaction arifl 5 is the crossed term related to

(A17) both of thew meson andr meson exchanges. They are sepa-
rately represented as follows:
R . R

v d4k ” Tu:
Jff 2mAk Dk =0. (A18) (822 " (ay?

This is because the integral in it vanishes,

R

2 (B2)

+_ll+| ,
-1 ATAY

due to that the integrand is an odd function. Similarly, theWhere

a-dependent part of Fig.(8) can also be proved to give no RS = M*+ 2p?M?2 cosd + 2M?p? + 2p* + 2p* cod' /2,
contribution to theS-matrix element. (B3)
Let us turn to Figs. @) and (f). The matrix elements of

both figures can be respectively represented as
RS = M* - 2p?M? cos g + 2M?p? + 2p* + 2p* sin' 612,

d*k _
S= gﬁj (2—4Us'(CIz) YS9 - K YU (ay) (B4)
)
XUS(pZ)’ypSF(pl-'_ k)‘ya-ur(pl)Dp,p(q_ k)DV(r(k) Rlé: 1&p4_ M4), (BS)
(A19)
and A = 4p? sir? g2 +mp, (B6)
&K and
=g f (2 (@Y S~ K Y () AL = 4p? cog 012 + . (B7)
XUS(pZ)’ypSF(pZ_ k)yuur(pl)DMa'(q_ k)DVp(k)! _ Ri Rg ! | Rg B8
(A20) Tap? Ty Y Ay =

where q=p,—p;=0;-0,. Their a-dependent parts are de- \here
noted byS;, andS,,. By making use of the relation in Eq.
(A11) and the relatiom—k=(q; —k) - q,=p,— (k+p,) as well RS = 4(4p? sir? 612 + M?)?, (B9)
as the Dirac equation, it is easy to find
S =~ 2(1 - a)gjug () YU, (G us(po) Y,.Ur(P1)
d*k D, (k% C (1 - g () R = 2[2M?(p? + M?) + p*(sin’* /2 + cod 6/2)],
(2m*(q-k?-m +ie v (B11)
XU (A Us(P2) ¥ (P)

RS = 4(4p? cog 02 + M?)?, (B10)

A = 4p? sir? 02 + 2, (B12)

4
x J (SW';k,LkVDa[(q—k>2]Du<k2):—% (A2D)  and
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5=4p? cog 02 + i, (B13)

RS S R
Tom s S
1-1 222

vS
R4
UAS?
2A1

(B14)

S
+(=1)
AUAS -1

where
RiS= AM7[(M? + 2072 + (M + 207 cog 6/2)7],
(B15)

RS = AM?[(M? + 2p?)? + (M? + 2p? sir? 6/2)?],
(B16)

Ry = 4[2(M? + p? cos 6/2)% ~ M3 (M2 + p? + p? sir? 6/2)],

(B17)
and
Ry®= 4[2(M? + p? sir? 6/2)> = M2(M? + p? + p? co$ 6/2)].
(B18)

PHYSICAL REVIEW C 70, 044003(2004

R® by their effective counterparfglg(\), m(\), andm(\).

To this end, it should be noted that the nucleon spinors in the
Smatrix element under consideration are on the mass shell,
satisfying the free nucleon Dirac equation. The momenta

in the spinors are timelike because they meet the relation
p?=M? whereM is real. For the renormalized spinor wave
function shown in Eq(8.14), as easily verified, it also satis-
fies the Dirac equation and the momentum in the spinor ful-
fills the relationp(\)2=Mg(\)? where p(\)=(E(\),p) with
E(\)=[p?+Mg(\)?]¥2. Therefore, for the nucleon-nucleon
scattering, it is adequate to take the effective nucleon mass
given in the timelike momentum space subtraction, while the
momenta in thew meson andr meson propagators, as one
knows, are off shell and spacelike in thehannel scattering.
Therefore it is appropriate to take the effective coupling con-
stants aj(\) and ajx(\) and the effective meson masses
mfj()\) and mﬁ()\) given in the spacelike momentum space
subtraction. In this paper, we only examine the effect of the
one-loop renormalization on the two-proton scattering by us-
ing the effective coupling constants and masses presented in
Sec. IX. The differential cross sections given at the labora-
tory kinetic energied,,=491.9 and 575.5 MeV are shown

in Figs. 17a) and(b). In the figures, the solid lines and the

In the above(d, ¢) are the scattering angleisis the isospin  dashed lines represent, respectively, the calculated results
of the two-nucleon systemy; and Ag (k=1,2) are respec- with and without considering the renormalization effect and
tively given by thew meson andr meson propagators, and the experimental data are taken from Rd#]. As shown in
R* (a=v,s,i=1,2,3 are the functions coming from the Figs. 17a) and(b), in the case without considering the renor-
nucleon spinor matrix elements. In Eq®2), (B8), and malization effect, the theoretical parameters are taken to be
(B14), the isospin-related terms arise from the exchangedz=938 MeV, a?=1.1, a?=1.4, mM?=782 MeV, andmf
diagram, while the remaining terms represent the contribu=580 MeV; while in the case of considering the renormal-
tion of the direct diagram. ization effect, the parameters must be taken to Ndg

To consider the renormalization effect on the two-nucleon=938 MeV, &=0.55, a}=0.62, m =782 MeV, and m;
scattering, as mentioned in Sec. VIIl, we may directly re-=670 MeV. It is clearly seen from the figures that consider-

place the coupling constamt, and «g in Eq. (B1) by their
effective onesak(\) and ax(\) and the particle massed,

ation of the renormalization has an effect that to fit the ex-
perimental data, the coupling constants must be set to be

m,, and m, appearing in the propagators and the functionssmaller.
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