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It is shown that thes-v model which is widely used in the study of the nuclear relativistic many-body
problem can be exactly treated as an Abelian massive gauge field theory. The quantization of this theory can
perfectly be performed by means of the general methods described in the quantum gauge field theory. Espe-
cially, the local U(1) gauge symmetry of the theory leads to a series of Ward-Takahashi identities satisfied by
Green’s functions and proper vertices. These identities form a uniquely correct basis for the renormalization of
the theory. The renormalization is carried out in the mass-dependent momentum space subtraction scheme and
by the renormalization group approach. With the aid of the renormalization boundary conditions, the solutions
to the renormalization group equations are given in definite expressions without any ambiguity and renormal-
ized S-matrix elements are exactly formulated in forms as given in a series of tree diagrams provided that the
physical parameters are replaced by the running ones. As an illustration of the renormalization procedure, the
one-loop renormalization is concretely carried out and the results are given in rigorous forms which are
suitable in the whole energy region. The effect of the one-loop renormalization is examined by the two-nucleon
elastic scattering.
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I. INTRODUCTION

The quantum hadrodynamics(QHD), as a relativistic
quantum field theory for baryons and mesons, has been
widely applied to studying various nuclear phenomena in-
cluding the hadron-hadron interaction, the hadron-nucleus
scattering, the bulk and single-particle properties of nuclei,
etc.[1–5]. It is commonly recognized that although the quan-
tum chromodynamics is a fundamental theory for strong in-
teraction, the QHD, as an effective field theory formulated in
terms of hadronic degrees of freedom, provides a simple and
reliable approach to produce the nuclear observables that are
insensitive to the short-range dynamics. There are various
QHD models, renormalizable and nonrenormalizable, which
were tested in the past to reproduce the empirical nuclear
properties and the experimental data. Among these models,
the s-v model proposed by Walecka[1] has been raising
particular interest. This model contains proton, neutron, and
isoscalar, Lorentz scalar and vector mesonss andv, and in
the tree diagram and nonrelativistic approximations leads to
a nucleon-nucleon interaction potential which behaves as
short-range repulsion and medium-range attraction. The
early development of this model is based on the relativistic
mean-field and Hartree approximation and shows that the
model is quite successful in the applications to the infinite
nuclear matter and atomic nuclei. Since the model is renor-
malizable, it is necessary to consider higher order perturba-
tive corrections to the results given in the mean field ap-
proximation by a certain renormalization procedure. Along
this line, a number of efforts were made previously[6–19].
Especially, the efforts were mostly concentrated on the renor-
malization of the model in the study of the nuclear matter at

finite temperature and density. In this renormalization, the
loop expansion and spectral function methods were applied
to evaluate the loop corrections. However, there are various
difficulties to occur in the renormalization[8–16]. For ex-
ample, in Ref.[12], the authors calculated the nuclear matter
energy density up to the two loop level and found enormous
contributions arising from the loop terms that alter the de-
scription of the nuclear bound state qualitatively. Therefore it
was concluded that “the loop expansion does not provide a
reliable approximation scheme in renormalizable QHD”
[19]. To this end, one may ask what is the correct procedure
of performing the renormalization for a model of QHD, and
how to assess the applicability of a renormalizable model of
QHD for which the renormalization is carried out? To answer
these questions, it is meaningful to examine the renormaliza-
tion of a QHD model from different angles and, as suggested
in Ref. [19], “to develop and apply systematic and consistent
power countingschemes that lead to more general conserv-
ing approximations and to study renormalization group
methods that could determine the analytic structure of the
ground-state energy functional.”

In this paper, we confine ourself to discussing the renor-
malization of thes-v model by the renormalization group
method in the case of zero temperature. The procedure is
very similar to that described in our previous work on the
QED and QCD renormalizations[20]. The main features of
the renormalization given in this paper contain two aspects:
(i) the renormalization is based on the U(1) gauge symmetry
because thes-v model, as argued in the next section, is
exactly of the U(1) local gauge symmetry;(ii ) The renormal-
ization is carried out by a mass-dependent momentum space
subtraction[21–24] which will lead to rigorous renormalized
results by the renormalization group method[25–28]. Ordi-
narily, the massive vector fields such as thev meson field,
the r meson field, and so on, are not viewed as gauge fields
because the mass term in the Lagrangian is not gauge invari-*Electronic mail: whj@mail.jlu.edu.cn
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ant [29–31]. On the contrary, it was pointed out in Refs.
[32–34] that a massive vector field must be viewed as a
constrained system in the whole space of the vector potential
Amsxd. This is because a massive vector meson has only three
polarization states which need only three spatial components
of the vector potentialAmsxd to describe them, while the
remaining component of theAmsxd appears to be a redundant
degree of freedom which must be eliminated by introducing
the Lorentz condition. According to the general principle for
constrained systems, the gauge invariance of a massive Abe-
lian or non-Abelian gauge field should be seen from its ac-
tion given in the physical space defined by the Lorentz con-
dition. This viewpoint will be explained in more detail in the
next section. From this viewpoint, it is easy to see that the
s-v model is surely of U(1) local gauge symmetry. There-
fore the model may be quantized by the method as used in
the gauge field theory. In this paper, we will describe the
Lorentz-covariant quantization performed in both the Hamil-
tonian and Lagrangian path-integral formalisms by following
the procedure proposed in Refs.[32–34]. From this quanti-
zation, we obtain an effective action which contains a gauge-
fixing term and a ghost term in it and manifests itself to be
invariant under a set of Becchi-Rouet-Stora-Tyutin(BRST)
transformations[35]. It should be mentioned that the quan-
tum theory of thes-v model was set up previously by the
method of canonical quantization and in the path-integral
formalism[29–31,36,37]. Especially, with the time paths be-
ing generalized to a manifestly covariant form, a covariant
path-integral formulation for the model at finite temperature
was achieved in Ref.[37] and led to manifestly covariant
Feynman rules for both real and imaginary times. Neverthe-
less, owing to the lack of the gauge-fixing term and ghost
term in the effective action, the generating functional given
in these quantizations would not exhibit the BRST symme-
try.

As emphasized in Ref.[20], a correct renormalization
procedure for a gauge field theory must respect the gauge-
symmetry(the Ward-Takahashi identities[38,39]), the Lor-
entz invariance(the energy-momentum conservation), and
the mathematical convergence principles. Otherwise, the
renormalization would be incorrect. From the gauge invari-
ance (or say, the BRST symmetry) of the s-v model, we
derive a set of Ward-Takahashi(WT) identities satisfied by
the generating functionals, Green’s functions, and vertices
which provide a firm basis for the renormalization of the
model. As mentioned before, in this paper, the renormaliza-
tion of the s-v model will be performed in the mass-
dependent momentum space subtraction. The prominent ad-
vantage of such a subtraction is that it naturally provides
boundary conditions satisfied by the renormalized wave
functions, propagators, and proper vertices for the quantum
s-v model. These boundary conditions enable us to uniquely
determine the solutions to the renormalization group equa-
tions for those renormalized quantities. With the solutions of
the renormalization group equations, aS-matrix element can
be expressed in the form as given in the tree diagrams pro-
vided that the physical parameters in theS-matrix element
are replaced by the effective(running) ones. To specify the
procedure of the renormalization group method, the one-loop
effective physical parameters are concretely calculated and
given exact and analytical expressions.

The remainder of this paper is arranged as follows. In Sec.
II, we present arguments for the gauge invariance of the
s-v model. In Sec. III, thes-v model will be respectively
quantized in the Hamiltonian and Lagrangian path-integral
formalisms. In Sec. IV, we will derive a set of WT identities
obeyed by the generating functionals. In Sec. V, a WT iden-
tity satisfied by thev meson propagator will be derived and
the renormalization of the propagator will be discussed. In
Sec. VI, we will derive a WT identity satisfied by the vecto-
rial vertex(nucleon-nucleon-v meson vertex) and discuss the
renormalizations of the vertex and the nucleon propagator. In
Sec. VII, the renormalizations of thes meson propagator and
the scalar coupling vertex(nucleon-nucleon-s meson vertex)
will be derived and discussed. Section VIII is used to sketch
the renormalization group method and the renormalized
S-matrix elements. Section IX serves to derive the one-loop
effective coupling constants and masses. In the last section,
summary and discussions will be made. In Appendix A, the
gauge independence of theS-matrix elements given in the
one-loop level will be proved. In Appendix B, we will show
the differential cross section of the two-nucleon elastic scat-
tering in the approximation of orderg2 and examine the ef-
fect of the one-loop renormalization on it.

II. ARGUMENT OF GAUGE INVARIANCE
FOR THE s-v MODEL

The s-v model is described by the following Lagrangian
density[1]:

L = c̄sigmDm − Mdc −
1

4
FmnFmn +

1

2
mv

2AmAm +
1

2
]mw]mw

−
1

2
ms

2w2, s2.1d

where

c = Scp

cn
D s2.2d

is the nucleon isospin doublet in whichcp and cn are the
proton and neutron field functions, respectively,

Dm = ]m − igvAm −
i

4
gsgmw s2.3d

is the covariant derivative in whichAm andw stand for thev
and s meson fields,gv and gs designate the vectorial and
scalar coupling constants,

Fmn = ]mAn − ]nAm s2.4d

is the vector field strength, andM, mv, and ms are the
masses of nucleon,v meson, ands meson, respectively. In
the above Lagrangian, the scalar self-couplings are ignored
as was done originally in the Walecka model[1].

In the previous, thes-v model was considered to be
gauge-noninvariant with respect to the following local U(1)
gauge transformations[29–31]:

c8sxd = eigvusxdcsxd,
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c̄8sxd = e−igvusxdc̄sxd,

Am8 sxd = Amsxd + ]musxd,

w8sxd = wsxd, s2.5d

whereusxd is the scalar parametric function of U(1) group
since the mass term of thev meson in the Lagrangian is not
gauge invariant. But, this does not mean that the dynamics of
the v meson system is not gauge invariant. As mentioned in
the Introduction, thev meson field must be viewed as a
constrained system in the space spanned by the four-
dimensional vector potentialAmsxd. As we know, a massive
gauge field has three polarization states which need only
three spatial components of the four-dimensional vector po-
tential Am to describe them. In the Lorentz-covariant formu-
lation, a full vector potentialAmsxd can be split into two
Lorentz-covariant parts: the transverse vector potentialAT

msxd
and the longitudinal vector potentialAL

msxd,

Amsxd = AT
msxd + AL

msxd, s2.6d

where

AT
msxd = Sgmn −

1

h
]m]nDAnsxd, s2.7d

AL
msxd =

1

h
]m]nAnsxd s2.8d

with h=]m]m being the D’Alembertian operator. The vector
potentialsAT

msxd and AL
msxd satisfy the following transverse

and longitudinal field conditions(identities):

]mAT
msxd = 0, s2.9d

Sgmn −
1

h
]m]nDAL

nsxd = 0 s2.10d

and the orthogonality relation

E d4xAT
msxdALmsxd = 0 s2.11d

which characterizes the linear independence of the two field
variables. Since the Lorentz-covariant transverse vector po-
tential AT

msxd contains three-independent spatial components,
it is sufficient to represent the polarization states of a massive
vector boson, whereas the Lorentz-covariant longitudinal
vector potentialAL

m appears to be a redundant unphysical
variable which must be constrained by introducing the Lor-
entz condition

x ; ]mAm = 0 s2.12d

whose solution is

AL
m = 0. s2.13d

With this solution, thes-v model Lagrangian may be ex-
pressed in terms of the independent dynamical variables
AT

msxd,

L = c̄FgmSi]m + gvATm +
1

4
gsgmwD − MGc −

1

4
FT

mnFTmn

+
1

2
mv

2AT
mATm +

1

2
]mw]mw −

1

2
ms

2w2, s2.14d

whereFT
mn is defined as in Eq.(2.4) with replacing theAmsxd

by AT
msxd. The Lagrangian represented above gives a com-

plete description of the dynamics of thes-v model. If we
want to represent the dynamics in the whole space of the full
vector potential as described by the Lagrangian in Eq.(2.1),
the v field must be treated as a constrained system. In this
case, according to the general procedure for constrained sys-
tems as formulated in mechanics, the Lorentz condition in
Eq. (2.12), as a constraint, must be introduced from the onset
and imposed on the Lagrangian in Eq.(2.1) so as to guaran-
tee the redundant degree of freedom to be eliminated from
the Lagrangian. Otherwise, the Lagrangian in Eq.(2.1) itself
cannot give a complete description for thev field system.
From the Lagrangian in Eq.(2.14), one may derive an equa-
tion of motion satisfied by thev meson field as follows:

]mFT
mn + mv

2AT
n = − jn, s2.15d

where

jn = gvc̄gnc s2.16d

is the current generated from the nucleon field. The above
equation describes the evolution of the independent variable
AT

m with time. In particular, when we take divergence of the
both sides of Eq.(2.15), considering the identities in Eq.
(2.9) and ]n]mFT

mn;0, we immediately obtain the current
conservation

]m jm = 0 s2.17d

which shows that the current is transverse.
Ordinarily, the Lorentz condition is viewed as a conse-

quence of the followingv field equation of motion which is
derived from the Lagrangian in Eq.(2.1) [29,30,36],

]mFmn + mv
2An = − jn. s2.18d

The argument of this viewpoint is as follows. When we take
divergence of Eq.(2.18) and notice the current conservation,
it is found that

mv
2]mAm = 0. s2.19d

SincemvÞ0, the above equation leads to the Lorentz con-
dition which implies that one component of the vector po-
tential is not independent. It is pointed out here that the
above viewpoint actually is an ill concept and the procedure
leading to the Lorentz condition logically is not consistent
with the principle established well in the mechanics for con-
strained systems. In fact, the aforementioned derivation
seems to imply that the Lorentz condition has already been
included in the Lagrangian denoted in Eq.(2.1). If so, when
the Lagrangian is written in the first order form, we should
see a term in the Lagrangian which is given by incorporating
the Lorentz condition with the aid of the Lagrange multiplier
method. Nevertheless, as will be shown in the next section,
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there is no such term to appear in the Lagrangian. Moreover,
as we know, equations of motion should describe the evolu-
tion of the independent variables with time as the equation
given in Eq.(2.15) does and should not lead to a constraint
condition which implies that some variable in the equation is
not independent. Therefore the viewpoint stated above is not
reasonable. In accordance with the general principle for con-
strained systems, the correct procedure is to treat the Lorentz
condition as a primary constraint and to impose this condi-
tion on the Lagrangian in Eq.(2.1) from the beginning. The
necessity of introducing the Lorentz condition can also be
seen from the derivation mentioned in Eqs.(2.18) and(2.19).
Equation(2.19) can be understood in such a way that if the
Lorentz condition is not introduced, there would appear a
contradiction that the right hand side of the equation is zero,
but the left hand side is not. Only when the Lorentz condi-
tion is introduced, the contradiction disappears. In this case,
due to the Lorentz condition, Eq.(2.19), as a trivial identity,
naturally holds and the equation of motion(2.18) can natu-
rally go over to Eq.(2.15), exhibiting the self-consistency of
the theory. Particularly in the latter case, when the diver-
gence of Eq.(2.18) is taken and the Lorentz condition is
employed, one immediately obtains the current conservation
in Eq. (2.17). In addition, we would like to note that for the
quantum theory, in the zero-mass limit:mv→0, the vector
field part of the Lagrangian in Eq.(2.1) naturally goes over
to the one for the massless vector meson, but, as shown in
Sec. V, the vector meson propagator does not and a worse
singularity occurs, revealing a severe inconsistence of the
theory. Only when the Lorentz condition is introduced ini-
tially and incorporated into the Lagrangian by the Lagrange
multiplier method can a consistent quantum theory be con-
structed.

Now, let us turn to address the gauge invariance of the
s-v model. Usually, the gauge invariance is required to the
Lagrangian. From the dynamical viewpoint, as pointed out in
Refs. [32–34], the action is of more essential significance
than the Lagrangian. This is why in mechanics and field
theory, to investigate the dynamical and symmetric proper-
ties of a system, one always starts from the action of the
system. Similarly, when we examine the gauge-symmetric
property of a field system, in general, we should also see
whether the action for the system is gauge invariant or not.
In particular, for a constrained system such as the massive
vector field, we should see whether or not the action repre-
sented in terms of the independent dynamical variables is
gauge invariant. This point of view is easy to understand
from the mechanics for constrained systems. Suppose a me-
chanical system is described by a Hamiltonian

Hspi,qidsi = 1,2,¯ ,nd s2.20d

which is given in the 2n-dimensional phase space and con-
straint conditions

waspi,qid = 0sa = 1,2,¯ ,2m, 2nd s2.21d

which define a physical phase space of dimension 2sn−md
where the system exists and moves only. If the constrained
variables can be solved out from the constraint conditions,
we may write a Hamiltonian

H * spj
* ,qj

*ds j = 1,2,¯ ,n − md s2.22d

which is expressed via the independent variables and gives a
complete formulation of the constrained system. Obviously,
to examine some symmetry of the constrained system, it is
only necessary to see if the HamiltonianH* spj

* ,qj
*d other

than the HamiltonianHspi ,qid has the desired symmetry be-
cause in contrast to theH* spj

* ,qj
*d, theHspi ,qid is not com-

plete for describing the system.
Certainly, in some special cases, the Lagrangian given in

the physical space itself is locally gauge invariant so that the
gauge invariance of the corresponding action is ensured. This
situation happens for the massless gauge fields and the mas-
sive Abelian gauge field. The gauge transformation of an
Abelian gauge field was shown in the third equality in Eq.
(2.5). Since]musxd acts as a longitudinal field, according to
the decomposition denoted in Eq.(2.6) and considering the
independence of the fieldsAT

msxd andAL
msxd, the gauge trans-

formation of thev field can be equivalently divided into two
transformations:

AT8
msxd = AT

msxd, s2.23d

AT8
msxd = AL

msxd + ]musxd. s2.24d

Equations(2.23) and (2.24) clearly express the fact that the
gauge transformation only changes the unphysical longitudi-
nal part of the vector potential, while the physical transverse
vector potential is a gauge-invariant quantity. Furthermore, it
is easy to verify that the longitudinal vector potentialAL

msxd,
which may be expressed asAL

msxd=]mwsxd wherewsxd is a
scalar function, is canceled in the field strength tensor so that

Fmn = ]mAn − ]nAm = ]mAT
n − ]nAT

m = FT
mn. s2.25d

This indicates that the longitudinal part of the vector poten-
tial has no kinetic energy term in the Lagrangian and hence
has no dynamical meaning. Such a vector potential can only
be viewed as a constrained variable. Since the transverse
field variableAT

m is gauge invariant, the Lagrangian(2.14)
which is written in the physical space is manifestly gauge
invariant. Therefore the action given by this Lagrangian is
gauge invariant. Alternatively, the gauge invariance may also
be seen from the action given by the Lagrangian in Eq.(2.1)
which is now constrained by the Lorentz condition. Under
the gauge transformation written in Eq.(2.5) and the Lorentz
condition denoted in Eq.(2.12), it is easy to find that

dS= − mv
2 E d4xu]mAm = 0. s2.26d

This indicates that thes-v model can surely be set up on the
basis of gauge-invariance principle.

III. PATH-INTEGRAL QUANTIZATION
OF THE s-v MODEL

A. Quantization in the Hamiltonian path-integral formalism

According to the general procedure of dealing with con-
strained systems, the Lorentz condition(2.12) may be incor-
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porated into the Lagrangian(2.1) by the Lagrange undeter-
mined multiplier method to give a generalized Lagrangian
[32,40]. In the first order formalism[32,40,41], this Lagrang-
ian can be written as

Ll = c̄sigmDm − Mdc +
1

2
]mw]mw −

1

2
ms

2w2 +
1

4
FmnFmn

−
1

2
Fmns]mAn − ]nAmd +

1

2
mv

2AmAm + l]mAm, s3.1d

whereAm andFmn are now treated as the mutually indepen-
dent variables andl is chosen to represent the Lagrange
multiplier. Using the canonically conjugate variables defined
by

Pc =
]L
]ċ

= ic̄g0, s3.2d

Pc̄ =
]L

]c̄
˙

= 0, s3.3d

Pw =
]L
]ẇ

= ẇ, s3.4d

and

Pmsxd =
]L
]Ȧm

= Fm0 + ldm0 = HFk0 = Ek, if m = k = 1,2,3;

l = − E0, if m = 0,
J

s3.5d

the Lagrangian in Eq.(2.1) may be rewritten in the canonical
form

L = EmȦm + Pcċ + Pwẇ + A0C − E0x − H, s3.6d

whereEm=sE0,Ekd is a Lorentz vector,

C ; ]mEm + m2A0 + gvc̄g0c, s3.7d

x was defined in Eq.(2.12), andH is the Hamiltonian den-
sity expressed by

H =
1

2
sEkd2 +

1

4
sFijd2 +

1

2
mv

2fsA0d2 + sAkd2g +
1

2
fPw

2 + s¹wd2

+ ms
2w2g − ic̄gW ·¹ c + Mc̄c − gvc̄gkcAk − gsc̄cw s3.8d

in which Fij was defined in Eq.(2.4). In the above, the four-
dimensional and the spatial indices are respectively denoted
by the Greek and Latin letters. Equation(3.6) clearly shows
that the termsA0C andE0x are respectively given by incor-
porating the constraint condition

C = 0 s3.9d

and the Lorentz condition into the Lagrangian by the
Lagrange multiplier method and the Lagrange multipliersA0
and E0 are just the constrained variables themselves in this
case. Since theA0 andE0 are a pair of the canonically con-
jugate unphysical variables, their constraint conditions in

Eqs.(2.12) and(3.9) should simultaneously occur in the La-
grangian(3.6). Otherwise, if the Lorentz condition is not
introduced, the termE0x does not appear in the Lagrangian
shown in Eq.(3.6) or in Eq. (2.1). In this case, the Lagrang-
ian could not be complete for describing the constrained sys-
tem under consideration.

From the stationary condition of the action constructed by
the Lagrangian(3.6), one may derive the following first-
order canonical equations of motion:

Ȧk = ]kA0 − Ek, s3.10d

Ėk = ]iFik + mv
2Ak + ]kE0 + gvc̄gkc, s3.11d

ẇ = Pw, s3.12d

Ṗw = ¹2w − ms
2w + gsc̄c, s3.13d

sigm]m − M + gvgmAm + gswdc = 0, s3.14d

c̄sigm]Qm + M − gvgmAm − gswd = 0, s3.15d

as well as the constraint equations written in Eqs.(2.12) and
(3.9). Equations(3.10) and (3.11) act as the equations of
motion satisfied by the independent canonical variablesAk
andEksk=1,2,3d which precisely describe the three degrees
of freedom of polarization for the massivev field, while Eqs.
(2.12) and(3.9) can only be regarded as the constraint equa-
tions obeyed by the constrained variablesA0 andE0 because
in these equations, there are no time derivatives of the dy-
namical variablesAk and Ek. It is clear to see that in Eqs.
(3.10)–(3.15), (2.12), and(3.9), there are altogether 12 equa-
tions. They are sufficient to determine the 12 variables in-

cluding the dynamical canonical variablesc, c̄, Pw, w, Ak,
and Eksk=1,2.3d and one pair of constrained variablesA0

andE0, showing the completeness of the equations.
Now, we turn to formulate the quantization performed in

the Hamiltonian path-integral formalism for thes-v model.
In accordance with the general procedure of the quantization,
we should first write a generating functional of Green’s func-
tions in terms of the independent canonical variables which

are c, c̄, Pw, w, and the transverse parts of the vectorsAm

andEm for the v meson field[32,40,41],

ZfJm,J,h̄,hg =
1

N
E DsAT

m,ET
m,c,c̄,Pw,wd

3expHi E d4xfET
mȦTm + Pcċ + Pwẇ

− H * sAT
m,ET

m,c,c̄,Pw,wd + JT
mATm

+ Jw + h̄c + c̄hgJ , s3.16d

whereH* sAT
m ,ET

m ,c ,c̄ ,Pw ,wd is the Hamiltonian which is
obtained from the Hamiltonian(3.8) by replacing the con-
strained variablesAL

m andEL
m with the solutions of Eqs.(2.12)

and (3.9),
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H * sAT
m,ET

m, . . . d = uHsAm,Em, . . . dux=0,C=0, s3.17d

andJm ,J,h, andh̄ are the external sources coupled to thev
meson,s meson, and nucleon fields, respectively. As men-
tioned before, Eq.(2.12) leads toAL

m=0. Noticing this solu-
tion and the decomposition

Emsxd = ET
msxd + EL

msxd, s3.18d

when setting

EL
msxd = ]x

mQsxd, s3.19d

whereQsxd is a scalar function, one may get from Eq.(3.9)
an equation obeyed by the scalar functionQsxd,

hxQsxd = Wsxd, s3.20d

where

Wsxd = − gvc̄sxdg0csxd − mv
2AT

0sxd. s3.21d

With the aid of the Green’s functionGsx−yd (the ghost par-
ticle propagator) which satisfies the equation

hxGsx − yd = d4sx − yd, s3.22d

one may find the solution to Eq.(3.20) as follows:

Qsxd =E d4yGsx − ydWsyd. s3.23d

From the expressions given in Eqs.(3.19), (3.21), and(3.23),
we see that theEL

msxd is a complicated functional of the vari-
ablesAT

m andET
m so that the HamiltonianH* sAT

m ,ET
m , . . .d is

of a much more complicated functional structure which is
not convenient for constructing the diagram technique in per-
turbation theory. Therefore it is better to express the gener-
ating functional in Eq.(3.16) in terms of the variablesAm and
Em. For this purpose, it is necessary to insert the following
delta functional into Eq.(3.16) [32,40,41]:

dfAL
mgdfEL

m − EL
msAT

0,c,c̄dg = detMdfCgdfxg, s3.24d

whereM is the matrix whose elements are

Msx,yd = hCsxd,xsydj

; E d4zH dCsxd
dAmszd

dxsyd
dEmszd

−
dxsyd
dEmszd

dCsxd
dAmszdJ

= hxd
4sx − yd, s3.25d

where hCsxd ,xsydj is the Poisson bracket as defined in the
second equality in Eq.(3.25). The relation in Eq.(3.24) is
easily derived from Eqs.(2.12) and (3.9) by applying the
property of the delta functional. Upon inserting Eq.(3.24)
into Eq.(3.16) and utilizing the Fourier representation of the
delta functional,

dfCg =E Dsr/2pdeied4xrsxdCsxd, s3.26d

we have

ZfJm,J,h̄,hg

=
1

N
E DsAm,Em,c,c̄,Pw,w,r/2pddetMdfxg

3expHi E d4xfEmȦm + Pcċ + Pwẇ + rC

− HsAm,Em,c,c̄,Pw,wd + JmAm + Jw + h̄c + c̄hgJ .

s3.27d

In the above exponent, there is aE0-related termE0s]0A0

−]0rd which permits us to perform the integration overE0,
giving a delta functional

df]0A0 − ]0rg = detu]0u−1dfA0 − rg. s3.28d

The determinant detu]0u−1, as a constant, may be put in the
normalization constantN and the delta functionaldfA0−rg
will disappear when the integration overr is carried out. The
integrals overEk Pw are of Gaussian type and hence easily
calculated. After these computations and noticing the expres-
sion in Eq.(3.2), we arrive at

ZfJm,J,h̄,hg =
1

N
E DsAm,c,c̄,w,ddetMdf]mAmg

3expHi E d4xfL + JmAm + Jw + h̄c + c̄hgJ ,

s3.29d

whereL was written in Eq.(2.1). When employing the fa-
miliar expression[41,42]

detM =E DsC̄,Cdeied4xd4yC̄sxdMsx,ydCsyd

=E DsC̄,Cdeied4xC̄sxdhCsxd, s3.30d

whereC̄sxd andCsxd are the mutually conjugate ghost field
variables and the following limit for the Fresnel functional:

df]mAmg = lim
a→0

Cfage−si/2aded4xs]mAmd2, s3.31d

whereCfag,pxsi /2pad1/2 and supplementing the external
source terms for the ghost fields, the generating functional in
Eq. (3.29) is finally given in the form

ZfJm,J,h̄,h,j̄,jg =
1

N
E DsAm,c,c̄,w,C̄,Cd

3expHi E d4xfLef f + JmAm + Jw + h̄c

+ c̄h + j̄C + C̄jgJ , s3.32d

where
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Lef f = L −
1

2a
s]mAmd2 + C̄hC s3.33d

which is the effective Lagrangian for the quantizeds-v
model in which the last two terms are the so-called gauge-
fixing term and the ghost term, respectively. In Eq.(3.32),
the limit a→0 is implied. Certainly, the theory may be given
in arbitrary gaugessaÞ0d. In this case, as will be seen
shortly, the ghost particle will acquire a spurious massn
=Îamv.

B. Quantization in the Lagrangian path-integral formalism

Now let us quantize thes-v model in the(second order)
Lagrangian path-integral formalism following the procedure
proposed in Refs.[32–34,40]. For later convenience, the La-
grangian in Eq.(2.1) and the Lorentz constraint condition in
Eq. (2.12) are respectively generalized to the following
forms:

Ll = L −
1

2
l2 s3.34d

and

]mAm + al = 0, s3.35d

wherelsxd is an extra function which will be identified with
the Lagrange multiplier anda is an arbitrary constant play-
ing the role of gauge parameter. According to the general
procedure for constrained systems, Eq.(3.35) may be incor-
porated into Eq.(3.34) by the Lagrange multiplier method to
give a generalized Lagrangian,

Ll = L + l]mAm +
1

2
al2. s3.36d

This Lagrangian is obviously not gauge invariant. However,
for building up a correct gauge field theory, it is necessary to
require the dynamics of the gauge field to be gauge invariant.
In other words, the action given by the Lagrangian(3.36) is
required to be invariant under the gauge transformations
shown in Eq.(2.5). By this requirement and applying the
constraint condition(3.35), we have

dSl = −
1

a
E d4x]nAnsxdshx + n2dusxd = 0, s3.37d

wheren2=amv
2. From Eq.(3.35) we sees1/ad]nAn=−lÞ0.

Therefore, to ensure the action to be gauge invariant, the
following constraint condition on the gauge group is neces-
sary to be required:

shx + n2dusxd = 0. s3.38d

The constraint condition in Eq.(3.38) may also be incorpo-
rated into the Lagrangian in Eq.(3.36) by the Lagrange un-
determined multiplier method. In doing this, it is convenient,
as is usually done, to introduce the ghost field variableCsxd
in such a fashion,

usxd = §Csxd, s3.39d

where§ is an infinitesimal Grassmann’s number. Based on
the above definition, the constraint condition(3.38) can be
rewritten as

shx + n2dC = 0, s3.40d

where the number§ has been dropped. This constraint con-
dition usually is called ghost equation. When the condition
(3.40) is incorporated into the Lagrangian(3.36) by the
Lagrange multiplier method, we obtain a more generalized
Lagrangian as follows:

Ll = L + l]mAm +
1

2
al2 + C̄shx + n2dC, s3.41d

whereC̄sxd, acting as a Lagrange undetermined multiplier, is
the new scalar variable conjugate to the ghost variableCsxd.
At present, we are ready to formulate the quantization of the
s-v model. As we learn from the Lagrange undetermined
multiplier method, the dynamical and constrained variables
as well as the Lagrange multiplier in the Lagrangian(3.41)
can all be treated as free ones, varying arbitrarily. Therefore
we are allowed to use this kind of Lagrangian to construct
the generating functional of Green’s functions,

ZfJm,J,h̄,h,j̄,jg =
1

N
E DsAm,c,c̄,w,C̄,C,ld

3expHi E d4xfLlsxdJmAm + Jw + h̄c

+ c̄h + j̄C + C̄jgJ . s3.42d

Looking at the expression of the Lagrangian in Eq.(3.41),
we see, the integral overlsxd is of Gaussian type. Upon
completing the calculation of this integral, we finally obtain

ZfJm,J,h̄,h,j̄,jg =
1

N
E DsAm,c,c̄,w,C̄,Cd

3expHi E d4xfLef fsxdJmAm + Jw + h̄c

+ c̄h + j̄C + C̄jgJ , s3.43d

where

Lef f = L −
1

2a
s]mAmd2 + C̄shx + n2dC s3.44d

is the effective Lagrangian given in the general gauges. In
the Landau gaugesa→0d, the Lagrangian(3.44) just goes
over to the one given in Eq.(3.33). As proved in Ref.[32],
the quantization described in Eqs.(3.34) and (3.44) is
equivalent to the quantization performed by the Faddeev-
Popov approach[42]. At last in this section, we would like to
emphasize that the ghost term in theLef f does not couple to
the other fields. But, we do not integrate it out in the gener-
ating functional. Keeping this term in the effective action and
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in the generating functional is helpful to later derivations of
WT identities.

IV. WARD-TAKAHASHI IDENTITIES
FOR GENERATING FUNCTIONALS

A. BRST transformation

In this section, we show that the action and the generating
functional in Eq.(3.43) are invariant with respect to a set of
BRST transformations which include the infinitesimal gauge
transformations of the nucleon,s meson, andv meson fields
as well as the transformations for the ghost fields[29–31,35].
The BRST transformations can be written in the form

dc = § D c,

dc̄ = § D c̄,

dAm = § D Am,

dC̄ = § D C̄,

dC = 0,

dw = 0, s4.1d

where

Dc = igvCc,

Dc̄ = − igvCc̄,

DAm = ]mC,

DC̄ =
1

a
]mAm. s4.2d

The above transformations for the nucleon,s meson, andv
meson fields can directly be written out from Eqs.(2.5) and
(3.39). The transformations for the ghost fields may be found
from the stationary condition of the effective action under
the BRST transformations for the nucleon,s meson, andv
meson fields,

dSef f =E d4xdLef f

=E d4xHSdC̄ −
§

a
]nAnDshx + n2dC + C̄shx + n2ddCJ

= 0. s4.3d

This expression suggests that when the ghost fields undergo
the transformations shown in Eqs.(4.1) and(4.2), the effec-
tive action is invariant. It is easy to prove that the integration
measure in Eq.(3.43) is also invariant under the BRST trans-
formations owing to the Jacobian of the transformations be-
ing unity.

B. WT identity satisfied by the generating functionals
for Green’s functions

When we make the BRST transformations shown in Eqs.
(4.1) to the generating functional in Eq.(3.43) and consider
the invariance of the generating functional, the action, and
the integration measure under the transformations, we obtain
an identity such that[29–31]

1

N
E DsAm,c,c̄,w,C̄,Cd E d4xhJmsxddAmsxd + h̄sxddcsxd

+ dc̄sxdhsxd + dC̄sxdjsxdjeiSef f+iE·F = 0, s4.4d

where E·F with E=sJm ,J,h̄ ,h , j̄ ,jd and F

=sAm ,w ,c ,c̄ ,C,C̄d stands for the external source terms ap-
pearing in Eq.(3.43). The Grassmann number§ contained in
the BRST transformations in Eq.(4.1) may be eliminated by
performing a partial differentiation of Eq.(4.4) with respect
to §. As a result, we get a WT identity as follows:

1

N
E DsAm,c,c̄,w,C̄,Cd E d4xhJmsxd D Amsxd − h̄sxd D csxd

+ D c̄sxdhsxd + D C̄sxdjsxdjeiSef f+iE·F = 0. s4.5d

In order to represent the composite field functionsDAm,

Dc̄, andDc in Eq. (4.5) in terms of derivatives of the func-
tional Z with respect to external sources, we may, as usual,
construct a generalized generating functional by introducing
new external sources(called BRST sources later on) into the
generating functional written in Eq.(3.43),

ZfJm,J,h̄,h,j̄,j;um,v̄,vg

=
1

N
E DsAm,c,c̄,w,C̄,Cd

3expHiSef f + iE · F + i E d4xfum D Am

+ v̄ D c + D c̄vgJ , s4.6d

whereum, v̄, andv are the sources coupled to the functions

DAm, DC, andDC̄, respectively. Obviously,um andDAm are

anticommuting quantities, whilev̄, v, Dc̄, andDc are com-
muting ones. It is easy to verify that the BRST-source terms
are invariant under the BRST transformation because the

functionsDAm, Dc̄, andDc are nilpotent with respect to the
BRST transformations. Thus we may start from the above
generating functional to re-derive the WT identity. The result
is the same as given in Eq.(4.5) except that the external
source terms are now extended to include the BRST sources,
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1

N
E DsAm,c,c̄,w,C̄,Cd E d4xhJmsxd D Amsxd − h̄sxd D csxd

+ D c̄sxdhsxd + D C̄sxdjsxdjexpHiSef f + iE · F

+ i E d4xfum D Am + v̄ D c + D c̄vgJ = 0. s4.7d

Clearly, Eq.(4.7) may be represented as[29–31]

E d4xFJmsxd
d

dumsxd
− h̄sxd

d

dv̄sxd
+ hsxd

d

dvsxd

+
1

a
jsxd]x

m d

dJmsxdGZfJm, . . . ,vg = 0. s4.8d

This is the WT identity satisfied by the generating functional
of full Green’s functions.

Apart from the identity in Eq.(4.8), there is another iden-
tity called ghost equation. The ghost equation may easily be

derived by first making the translation transformation:C̄

→ C̄+ l̄ in Eq. (4.6) wherel̄ is an arbitrary Grassmann vari-

able, then differentiating Eq.(4.6) with respect tol̄ and fi-

nally settingl̄=0. The result is

1

N
E DsAm,c,c̄,w,C̄,Cdhjsxd + shx + n2dCsxdj

3expHiSef f + iE · F + i E d4xfum D Am + v̄ D c

+ D c̄vgJ = 0 s4.9d

which may be represented in the form[29–31]

Fjsxd + shx + n2d
d

idj̄sxd
GZfJm, . . . ,vg = 0. s4.10d

On substituting into Eqs.(4.8) and (4.10) the relationZ
=eiW, where W denotes the generating functional of con-
nected Green’s functions, one may obtain a WT identity and
a ghost equation satisfied by the functionalW such that

E d4xFJmsxd
d

dumsxd
− h̄sxd

d

dv̄sxd
+ hsxd

d

dvsxd

+
1

a
jsxd]x

m d

dJmsxdGWfJm, . . . ,vg = 0 s4.11d

and

jsxd + shx + n2d
d

dj̄sxd
WfJm, . . . ,vg = 0. s4.12d

C. WT identity obeyed by the generating functional
for proper vertex functions

The WT identity in Eq.(4.11) and the ghost equation in
Eq. (4.12) may be represented in terms of the generating

functional G for proper (one-particle-irreducible) vertex
functions. The functionalG is usually defined by the follow-
ing Legendre transformation[29–31]:

GfAm,C̄,C,w,c̄,c;um,v̄,vg = WfJm,j̄,j,J,h̄,h;um,v̄,vg

−E d4xfJmAm + j̄C + C̄j + Jw

+ h̄c + c̄hg, s4.13d

whereAm, C̄, C, w, c̄, andc are field variables defined by the
following functional derivatives:

Amsxd =
dW

dJmsxd
, C̄sxd = −

dW

djsxd
, Csxd =

dW

dj̄sxd
,

c̄sxd = −
dW

dhsxd
, csxd =

dW

dh̄sxd
, wsxd =

dW

dJsxd
. s4.14d

From Eq.(4.13), it is not difficult to get the inverse transfor-
mations,

Jmsxd = −
dG

dAmsxd
, j̄sxd =

dG

dCsxd
, jsxd = −

dG

dC̄sxd
,

h̄sxd =
dG

dcsxd
, hsxd = −

dG

dc̄sxd
, Jsxd = −

dG

dwsxd
.

s4.15d

It is obvious that

dW

dum

=
dG

dum

,
dW

dv
=

dG

dv
,

dW

dv̄
=

dG

dv̄
. s4.16d

Employing Eqs.(4.15) and(4.16), Eqs.(4.11) and(4.12) will
be represented as

E d4xH dG

dAmsxd
dG

dumsxd
+

dG

dcsxd
dG

dv̄sxd
+

dG

dc̄sxd

dG

dvsxd

+
1

a
]x

mAmsxd
dG

dC̄sxd
J = 0 s4.17d

and

dG

dC̄sxd
− shx + n2dCsxd = 0. s4.18d

When we define a new functionalĜ in such a manner,

Ĝ = G +
1

2a
E d4xs]mAmd2, s4.19d

it follows that

dG

dAm

=
dĜ

dAm

+
1

a
]m]nAn s4.20d

and
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dG

dF
=

dĜ

dF
, s4.21d

where F=c, c̄, um, v, and v̄. Upon inserting Eqs.
(4.18)–(4.21) into Eq. (4.17) and noticingdG /dum=]mC, we
arrive at

E d4xH dĜ

dAm

dĜ

dum +
dĜ

dc

dĜ

dv̄
+

dĜ

dc̄

dĜ

dv
+ m2]nAnCJ = 0.

s4.22d

The ghost equation represented through the functionalĜ may
be written as

dĜ

dC̄sxd
− ]x

m dĜ

dumsxd
− n2Csxd = 0. s4.23d

In the Landau gauge, sincen=0 and]nAn=0, Eqs.(4.22) and
(4.23) are respectively reduced to

E d4xH dĜ

dAm

dĜ

dum +
dĜ

dc

dĜ

dv̄
+

dĜ

dc̄

dĜ

dvJ = 0 s4.24d

and

dĜ

dC̄
− ]m dĜ

dum = 0. s4.25d

These equations formally are the same as those for the mass-
less Abelian gauge field theory[29–31].

From the WT identities formulated in this section, we
may derive various WT identities obeyed by Green’s func-
tions and vertices, as will be illustrated later.

V. WT IDENTITY FOR v MESON PROPAGATOR AND
RENORMALIZATION OF THE PROPAGATOR

The WT identity satisfied by thev meson propagator can
be derived from the identities shown in Eqs.(4.8) and(4.10).
By successive differentiations of the identity in Eq.(4.8)
with respect to the sourcesJnsyd andjsxd and then setting all
the sources to be zero, one may obtain

U]x
m d2Z

dJmsxddJnsyd
U

Jn=j=¯=v=0
= − aU d2Z

djsxddunsyd
U

Jn=j=¯=v=0
.

s5.1d

Noticing the definitions of thev meson and ghost particle
propagators,

iDmnsx − yd =U d2Z

i2dJmsxddJnsyd
U

Jn=j=¯=v=0

= k0+uThAmsxdAnsydju0−l, s5.2d

i D sx − yd =U d2Z

dj̄sxddjsyd
U

Jn=j=¯=v=0

= k0+uThCsxdC̄sydju0−l

s5.3d

(here and afterward the bold letters represent the operators),
and interchanging the coordinate variables and Lorentz indi-
ces, Eq.(5.1) may be written as

]y
nDmnsx − yd = iak0+uT * hDAmsxdC̄sydju0−l

= − a]m
x D sx − yd, s5.4d

where T* symbolizes the covariant time-ordering product
and the definition ofDAm given in Eq.(4.2) has been con-
sidered. Similarly, when taking the derivative of Eq.(4.10)
with respect to the sourcejsyd and then letting all the sources
vanish, we get

shx + n2d D sx − yd = d4sx − yd. s5.5d

This is the equation obeyed by the ghost particle propagator.
Differentiating Eq.(5.4) with respect tox and utilizing Eq.
(5.5), we find

]x
m]y

nDmnsx − yd = − ahxshx + n2d−1d4sx − yd. s5.6d

This just is the WT identity satisfied by the fullv meson
propagator.

By the Fourier transformation

Dmnsx − yd =E d4xDmnskde−iksx−yd, s5.7d

Eq. (5.6) becomes

kmknDmnskd = −
ak2

k2 − n2 . s5.8d

The propagatorDmnskd may be decomposed into a transverse
part and a longitudinal part:

Dmnskd = DTsk2dSgmn −
kmkn

k2 D + DLsk2d
kmkn

k2 . s5.9d

Substitution of Eq.(5.9) into Eq. (5.8) gives rise to

DLsk2d = −
a

k2 − n2 . s5.10d

In comparison of the above expressions with the free propa-
gator which was given in the indefinite-metric approach pre-
viously [29] and may easily be derived from the generating
functional in Eq.(3.43) by the perturbation method[32],

Dmn
s0dskd = −Hgmn − kmkn/k

2

k2 − mv
2 + ie

+
akmkn/k

2

k2 − n2 + ieJ , s5.11d

one can see that the longitudinal parts in Eqs.(5.9) and
(5.11) are the same, implying that the longitudinal part of the
v meson propagator does not undergo renormalization.

To derive the expression of the functionDTsk2d, it is con-
venient to start from the Dyson equation satisfied by the full
v meson propagator[29–31,36],
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Dmnskd = Dmn
s0dskd + Dml

s0dskdPltskdDtnskd, s5.12d

wherePltskd stands for the vacuum polarization operator, or
say, the self-energy operator of thev meson. Contraction of
Eq. (5.12) with km and use of the expressions in Eqs.
(5.9)–(5.11) yield [1]

klPltskd = 0. s5.13d

This is the WT identity obeyed by the vacuum polarization
operator which is a consequence of the gauge symmetry of
the theory. The above identity indicates that the operator
Pmnskd is transverse and therefore can be written in the form

Pmnskd = sk2gmn − kmkndPsk2d, s5.14d

wherePsk2d is a scalar function characterizing the vacuum
polarization. With the above representation, it is easy to find
from Eq. (5.12) that

DTsk2d = −
1

k2f1 + Psk2dg − mv
2 + ie

. s5.15d

Thus the full propagator in Eq.(5.9) can be written as

Dmnskd = −H gmn − kmkn/k
2

k2f1 + Psk2dg − mv
2 + ie

+
akmkn/k

2

k2 − n2 + ieJ .

s5.16d

When the gauge parametera is taken to be 0 and 1, we
obtain the propagators given in the Landau gauge and in the
Feynman gauge, respectively. When thea tends to infinity,
we have the propagator given in the so-called unitary gauge.
In the lowest order perturbative approximation, the latter
propagator is of the form[1–5,29–31]

Dmn
s0dskd = −

gmn − kmkn/mv
2

k2 − mv
2 + ie

. s5.17d

This propagator was originally derived in the canonical
quantization from the vacuum expectation value of the time-
ordered product of the transverse field operators,iDmn

s0dsx
−yd=k0uThATmsxdATnsydju0l, and by making use of the Fou-
rier representation of the transverse field operatorATmsxd in
which thev meson momentumk is put on the mass shell,
k2=mv

2, so that the propagator in Eq.(5.17) is transverse only
for this momentum[29,36]. However, due to the on-shell
property of the momentum in Eq.(5.17), when evaluating
the contractionkmDmn

s0dskd, as we see, there appears an indefi-
nite result since the numerator and the denominator in Eq.
(5.17) all come to zero. Especially in the zero-mass limit,
there is a serious contradiction that the vector field part of the
Lagrangian in Eq.(2.1) is converted to the massless one, but
the propagator in Eq.(5.17) does not and is of an awful
singularity. In contrast, for the propagator in Eq.(5.11), the
momentum is off shell,k2Þmv

2. Therefore, for the transverse
part of the propagator(or say, the propagator given in the
Laudau gauge), we havekmDmn

T skd=0, showing a definite re-
sult. Moreover, in the calculation of a loop diagram involv-
ing internalv meson lines in which the momentum of thev
meson line is off shell, it is necessary to use the propagator
in Eq. (5.11). In particular, the good ultraviolet property of

the propagator allows us to perform the renormalization
safely (in spite of whether the current conservation holds or
not). In the zero-mass limit, the propagator in Eq.(5.11) and
the vector field part of the Lagrangian in Eq.(3.44) simulta-
neously go over to the massless ones, exhibiting the logical
consistency of the theory.

Now let us discuss renormalization of thev meson propa-
gator. According to the conventional procedure of renormal-
ization, the divergence included in the functionsPsk2d may
be subtracted at a renormalization point, say,k2=m2 wherem
may be real or imaginary, corresponding to the subtraction
point being timelike or spacelike,

Psk2d = Psm2d + Pcsk2d, s5.18d

wherePsm2d andPcsk2d are, respectively, the divergent part
and the finite part of the functionsPsk2d. The divergent part
can be absorbed in the renormalization constantZ3 which is
defined as

Z3
−1 = 1 +Psm2d. s5.19d

With this definition, on inserting Eq.(5.18) into Eq. (5.16),
the v meson propagator will be renormalized as

Dmnskd = Z3DRmnskd, s5.20d

where

DRmnskd = −H gmn − kmkn/k
2

k2 − smv
Rd2 + PRsk2d + i«

+
aRkmkn/k

2

sk2 − n2 + i«dJ
s5.21d

is the renormalized propagator in whichmv
R is the renormal-

ized mass,aR the renormalized gauge parameter andPRsk2d
denotes the finite correction coming from the loop diagrams.
They are defined as

mv
R = ÎZ3mv,aR = Z3

−1a,PRsk2d = Z3k
2Pcsk2d. s5.22d

It is noted that the spurious massn is a renomalization-
invariant quantity,n2=amv

2 =aRmvR
2 =nR

2. Especially, at the
renormalization point,PRsm2d=0, as seen from Eqs.(5.18)
and(5.22). In this case, we have a renornalization boundary
condition such that

uDRmnskduk”2=m2 = −H gmn − kmkn/k
2

k2 − smv
Rd2 + ie

+
aRkmkn/k

2

k2 − n2 + ieJ
s5.23d

which is of the form of free propagator except that the pa-
rameters are replaced by the renormalized ones.

VI. WT IDENTITY FOR THE VECTORIAL VERTEX
FUNCTION AND RENORMALIZATION OF THE VERTEX

AND THE NUCLEON PROPAGATOR

A. WT identity for the vectorial vertex function

The WT identity for the vectorial vertex(nucleon–
nucleon-v meson vertex) can be derived by differentiating
the identity in Eq.(4.8) with respect to the sourcesjsxd,
h̄syd, andhszd and then turning off all the sources. The result
derived, written in the operator form, is
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1

agv

]mk0+uThAmsxdcsydc̄szdju0−l

= ik0+uThC̄sxdcsydCszdc̄szdju0−l

+ ik0+uThC̄sxdCsydcsydc̄szdju0−l, s6.1d

where the definitions written in Eq.(4.2) have been used.
Similarly, by differentiating the ghost equation in Eq.(4.10)
with respect to the sourcesjsyd, h̄syd, and hszd and then
letting the sources vanishing, one may derive the following
equation:

d4sx − ydk0+uThcsydc̄szdju0−l

= − ishx + n2dk0+uThCsxdC̄sydcsydc̄szdju0−l. s6.2d

Here it is noted that since there is no coupling between the
ghost field and the fermion field, the two fields cannot con-
struct a connected Green’s function. Therefore we can write

k0+uThCsxdC̄sydcsydc̄szdju0−l

= k0+uThCsxdC̄sydju0−lk0+uThcsydc̄szdju0−l

= − Dsx − ydSFsy − zd, s6.3d

where

k0+uThcsxdc̄sydju0−l = iSFsx − yd s6.4d

is the nucleon propagator. It is easy to verify that once Eq.
(6.3) is substituted into the right hand side of Eq.(6.2) and
applying Eq.(5.5), we just obtain the expression on the left
hand side of Eq.(6.2). Acting on both sides of Eq.(6.1) with
the operatorhx+n2 and employing the decomposition in Eq.
(6.3) and the ghost equation in Eq.(5.5), we obtain the fol-
lowing WT identity:

1

agv
shx + n2d]x

mGmsx,y,zd = ifd4sx − yd − d4sx − zdgSFsy − zd,

s6.5d

where

Gmsx,y,zd = k0+uThAmsxdcsydc̄szdju0−l s6.6d

is the three-point Green’s function which is connected. This
Green’s function has the following one-particle irreducible
decomposition[29–31]:

Gmsx,y,zd =E d4x8d4y8d4z8iDmnsx − x8diSFsy − y8d

3iGnsx8,y8,z8diSFsz8 − zd s6.7d

in which Gnsx8 ,y8 ,z8d is the vectorial proper vertex. On in-
serting Eq.(6.7) into Eq. (6.5), through the Fourier transfor-
mation, we get in the momentum space that

1

agv
sk2 − n2dkmDmnskdSFspdGnsp,q,kdSFsqd

= s2pd4d4sk + p − qdfSFsqd − SFspdg. s6.8d

Considering that the energy-momentum conservation holds
at the vertex, we can write

Gmsp,q,kd = s2pd4d4sk + p − qdigvfgm + Lmsp,qdg.

s6.9d

With this representation and noticing

sk2 − n2dkmDmnskd = − akn = asp − qdn, s6.10d

one may obtain from Eq.(6.8) that

sp − qdmfgm + Lmsp,qdg = SF
−1spd − SF

−1sqd. s6.11d

It is well known that the general expression of the nucleon
propagatorSFspd can be found from the Dyson equation sat-
isfied by the propagator, as was similarly done in Eqs.
(5.12)–(5.16) for thev meson propagator. The inverse of the
propagator can be written as

SF
−1spd = p” − M − Sspd, s6.12d

wherep” =gmpm andSspd is the nucleon self-energy. Noticing
this expression, when we differentiate both sides of Eq.
(6.11) with respect topm and then setq=p, it is found that
[1]

Lmsp,pd = −
]Sspd
]pm . s6.13d

This is the WT identity which establishes the relation be-
tween the vectorial proper vertex and the nucleon self-
energy.

It is interesting to note that the above identity determines
the subtraction fashion of the nucleon self-energy. As one
knows, the divergence in the vertexLmsp,qd may be sub-
tracted at the renormalization pointm in such a way,

Lmsp,pd = Lgm + Lm
c spd, s6.14d

where

L = uLmsp,pdup”=m s6.15d

is a divergent constant. Substituting Eq.(6.14) into Eq.
(6.13) and then integrating Eq.(6.13) overpm from pm

0 to pm,
we get

Sspd = Ssmd − Lsp” − md + sp” − mdCsp2d, s6.16d

where we have chosen thepm
0 to meetgmpm

0 =m and set the
integral ep0

p dpmLm
c sp2d=sp” −mdCsp2d with the consideration

that whenp=p0, the integral vanishes andLm
c spd is finite,

satisfying the boundary conditionuLm
c spdup”=m=0 so that the

Csp2d is also finite, having the boundary conditionCsm2d
=0. When the divergent constantsSsmd andL are set to be

Ssmd = A s6.17d

and

J.-C. SU AND H.-J. WANG PHYSICAL REVIEW C70, 044003(2004)

044003-12



L = − B, s6.18d

Eq. (6.16) will be written in the form

Sspd = A + sp” − mdfB − Csp2dg. s6.19d

This is the formula that gives the uniquely correct way for
the subtraction of the nucleon self-energy.

B. Renormalization of the nucleon propagator
and the vectorial vertex

Based on the representation of the self-energy in Eq.
(6.19), the full nucleon propagator may be written as

SFspd =
1

p” s1 − Bd − sM + A − mBd + sp” − mdCsp2d
.

s6.20d

With the renormalization constant of the nucleon propagator
defined by

Z 2
−1 = 1 −B, s6.21d

the nucleon propagator will be renormalized as

SFspd = Z2SF
Rspd, s6.22d

where

SF
Rspd =

1

p” − MR − SRspd + ie
s6.23d

is the renormalized propagator in whichMR and SRspd are
the renormalized mass and the finite renormalization correc-
tion, respectively. They are separately represented in the fol-
lowing:

MR = Z M
−1M , s6.24d

whereZM is the nucleon mass renormalization constant de-
fined by

Z M
−1 = 1 +Z2F A

M
+ S1 −

m

M
DBG s6.25d

and

SRspd = − Z2sp” − mdCsp2d s6.26d

with the boundary conditionuSRspdup”=m=0 which leads to
the boundary condition of nucleon propagator like this:

uSF
Rspdup”=m =

1

p” − MR + ie
. s6.27d

Clearly, this propagator is formally the same as the free
propagator.

We would like to mention here the renormalization of the

vertex function defined byĜmsp,qd=gm+Lmsp,qd. In view
of the subtraction in Eq.(6.14) and the following definition
of vertex renormalization constantZ1:

Z 1
−1 = 1 +L, s6.28d

the vertex function will be renormalized as

Ĝmsp,qd = Z 1
−1Ĝm

Rsp,qd = Z1
−1fgm + Lm

Rsp,qdg, s6.29d

where

Lm
Rsp,qd = Z1Lm

c sp,qd s6.30d

is the finite renormalization correction to the vertex. From
the boundary conditionuLm

c spdup”=m=0 mentioned before, it
follows that uLm

Rsp,qdup”=q”=m=0 by which we have

uĜm
Rsp,qdup”=q”=m = gm. s6.31d

This just is the boundary condition for the renormalized ver-

tex functionĜm
Rsp,qd under which the vertex is of the form of

the bare vertex. In particular, from Eqs.(6.18), (6.21), and
(6.28), it is clear to see that

Z2 = Z1. s6.32d

This is the Ward identity satisfied by the nucleon propagator
renormalization constant and the vertex one.

At last, it is pointed out that the identities shown in Eqs.
(6.13) and (6.32) and the subtraction represented in Eq.
(6.19) formally are the same as those in QED because they
are all the consequence of U(1) gauge symmetry. Originally,
the identities mentioned above follow from the current con-
servation. This result is natural because the current conser-
vation, as generally proved in the gauge field theory[29–31],
can be derived from the global gauge symmetry or the local
gauge symmetry. It would be emphasized that the aforemen-
tioned identities hold not only for the case where thev me-
son is considered only, but also for the general case that the
v meson and thes meson are taken into account together.
We take one-loop diagrams to illustrate this point. The one-
loop nucleon self-energy in thes-v model is represented in
Figs. 1(a) and(b). The one-loop vectorial vertex is shown in
Figs. 2(a) and(b). In the figures, the solid line designates the
free nucleon propagatoriSF

s0dspd represented in Eq.(6.27),
the wavy line stands for the freev meson propagator
iDmn

s0dskd written in Eq.(5.11), the dashed line denotes the free
s meson propagator which is of the form

FIG. 1. The one-loop nucleon self-energy in thes-v model. The
solid, wavy, and dashed lines represent the free nucleon,v meson,
ands meson propagators, respectively.
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iDsqd =
i

q2 − ms
2 + i«

, s6.33d

the bare vectorial vertexGm
s0d and the bare scalar vertexGs0d

are

Gm
s0d = igvgm,

Gs0d = igs. s6.34d

The above Feynman rules are easily derived from the gener-
ating functional in Eq.(3.43) by the perturbation method.
Applying the Feynman rules, for the one-loop nucleon self-
energy defined by −iSspd we have the following expression:

Sspd = i E d4kfgv
2gmSF

s0dsp − kdgnDmn
s0dskd

+ gs
2SF

s0dsp − kdDs0dskdg, s6.35d

where the first term and the second one are respectively
given by Figs. 1(a) and (b) while for the one-loop vectorial
vertex, in accordance with the definition in Eq.(6.9), we
have

Lmsp,qd = i E d4kfgv
2gnSF

s0dsq − kdgmSF
s0dsp − kdg lDnl

s0dskd

+ gs
2SF

s0dsq − kdgmSF
s0dsp − kdDs0dskdg, s6.36d

where the first and second terms are given by Figs. 2(a) and
(b), respectively. By making use of the derivative

]

]pmSFsp − kd = − SFsp − kdgmSFsp − kd, s6.37d

it is easy to find that the identity in Eq.(6.13) holds. Thus the
correctness of the WT identity in Eq.(6.13) which follows
from the U(1) gauge symmetry of the model is verified by
the perturbative calculation. The identities in Eqs.(6.13) and
(6.32) will be helpful to facilitate calculations of the renoma-
lization of thes-v model.

VII. RENORMALIZATION OF THE s MESON
PROPAGATOR AND THE SCALAR VERTEX

For later convenience, it is necessary to give a general
description for the renormalization of thes meson propaga-
tor and the scalar vertex. We start from the Dyson equation
satisfied by thes meson full propagatoriDsqd,

Dsqd = Ds0dsqd + Ds0dsqdVsqdDsqd, s7.1d

whereDs0dsqd is the s meson free propagator shown in Eq.
(6.33) and −iVsqd represents thes meson self-energy. From
Eq. (7.1) it may be solved that

Dsqd =
1

q2 − ms
2 − Vsqd + i«

. s7.2d

The self-energy can be Lorentz-covariantly decomposed into

Vsqd = V1sq2dq2 + V2sq2dms
2 . s7.3d

The divergence in theVsqd can be subtracted at the renor-
malization pointm in such a way:

V1sq2d = V1sm2d + V1
csq2d,

V2sq2d = V2sm2d + V2
csq2d. s7.4d

On substituting Eq.(7.4) in Eq. (7.2), the propagatorDsqd
will be renormalized as

Dsqd = Z38DRsqd, s7.5d

where

Z38
−1 = 1 −V1sm2d s7.6d

is the renormalization constant of thes meson propagator,

DRsqd =
1

q2 − sms
Rd2 − VRsqd + i«

s7.7d

is the renormalized propagator in which

ms
R = Zm

s−1ms s7.8d

is the renormalizeds meson mass with

Zm
s = hZ38f1 + V2sm2dgj−1/2 s7.9d

being the renormalization constant of thes meson mass and

VRsqd = Z38fq
2V1

csm2d + ms
2V2

csq2dg s7.10d

is the finite correction to the renormalized propagator. Obvi-
ously, theVRsqd has the boundary conditionuVRsqduq2=m2

=0 which leads to the boundary condition of the propagator
as follows:

uDRsqduq”2=m2 =
1

q2 − sms
Rd2 + i«

. s7.11d

This propagator formally is the same as the free propagator
in Eq. (6.33).

Analogous to Eq.(6.9) for the vectorial vertex, the scalar
vertex can be written as

FIG. 2. The one-loop vectorial vertices in thes-v model. The
lines represent the same as in Fig. 1.
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Gsp,q,kd = s2pd4d4sk + p − qdigsĜsp,qd, s7.12d

where

Ĝsp,qd = 1 +Lsp,qd s7.13d

in which Lsp,qd denotes the contribution of all higher order
diagrams. When the divergence in theLsp,qd is subtracted at
the renormalization pointm, we have

Lsp,qd = L8 + Lcsp,qd, s7.14d

where

L8 = uLsp,pdup”=m s7.15d

is the divergent constant andLcsp,qd is the finite correction
of the Lsp,qd. With the above subtraction, the vertex in Eq.
(7.13) will be renormalized as

Ĝsp,qd = Z18
−1ĜRsp,qd = Z18

−1f1 + LRsp,qdg, s7.16d

whereZ18 is the renormalization constant of the scalar vertex
defined by

Z18
−1 = 1 +L8 s7.17d

and LRsp,qd=Z8Lcsp,qd is the finite correction of the

ĜRsp,qd with the boundary condition uLRsp,qdup”=q”=m=0
which yields the boundary condition for the renormalized

vertex ĜRsp,qd as follows:

uĜRsp,qdup”=q”=m = 1. s7.18d

This shows that at the renormalization point, the renormal-
ized vertex is reduced to the form of bare vertex.

It is interesting to note that there is an identity which
holds between the nucleon self-energy and the scalar vertex.
For example, from the expression of the one-loop scalar ver-
tex Lsp,qd shown in Figs. 3(a) and (b),

Lsp,qd = i E d4kfgs
2SF

s0dsq − kdDs0dskdSFsp − kd

+ gv
2gmSF

s0dsq − kdSF
s0dsp − kdgnDmn

s0dskdg
s7.19d

and the following derivative:

]

]M
SFsp − kd = SFsp − kdSFsp − kd, s7.20d

we find

Lsp,pd =
]Sspd
]M

. s7.21d

Based on this identity and the expression in Eq.(6.19), the
constant defined in Eq.(7.15) can be computed by

L8 = U]Sspd
]M

U
p”=m

=
]A

]M
. s7.22d

This relation will be used to simplify the calculation of
renormalization of thes-v model.

VIII. RENORMALIZATION GROUP EQUATION
AND RENORMALIZED S-MATRIX ELEMENTS

SupposeFR is a renormalized quantity. In the multiplica-
tive renormalization, it is related to the unrenormalized one
F in such a way,

F = ZFFR, s8.1d

whereZF is the renormalization constant ofF. TheZF andFR
are all functions of the renormalization pointm=m0e

t where
m0 is a fixed renormalization point corresponding the zero
value of the group parametert. Differentiating Eq.(8.1) with
respect tom and noticing that theF is independent ofm, we
immediately obtain a renormalization group equation(RGE)
satisfied by the functionFR [27–30]

m
dFR

dm
+ gFFR = 0, s8.2d

wheregF is the anomalous dimension defined by

gF = m
d

dm
ln ZF. s8.3d

We first note here that because the renormalization constant
is dimensionless, the anomalous dimension can only depend
on the ratios=mR/m, gF=gFsgR,sd, wheremR and gR are
the renormalized mass and coupling constant, respectively.
Next, we note that Eq.(8.2) is suitable for a physical param-
eter (mass or coupling constant), a propagator, a vertex, a
wave function or some other Green function. If the function
FR stands for a renormalized Green function, vertex or wave
function, in general, it depends explicitly not only on the
scalem, but also on the renormalized coupling constantgR,
massmR and gauge parameteraR which are all functions of
m, FR=FR(p,gRsmd ,mRsmd ,aRsmd ;m) where p symbolizes

FIG. 3. The one-loop scalar vertices in thes-v model. The lines
mark the same as in Fig. 1.
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all the momenta. Considering that the functionFR is homo-
geneous in the momentum and mass, it may be written, un-
der the scaling transformation of momentump=lp0, as fol-
lows:

FRsp;gR,mR,aR;md = lDFFRSp0;gR,
mR

l
,aR;

m

l
D , s8.4d

whereDF is the canonical dimension ofF. Since the renor-
malization point is a momentum taken to subtract the diver-
gence, we may setm=m0l wherel=et which is taken to be
the same as inp=p0l. Noticing the above transformation,
the solution to the RGE in Eq.(8.2) can be expressed as

FRsp;gR,mR,aR,m0d

= lDFee1
lsdl/ldgFsldFR„p0;gRsld,mRsldl−1,aRsld;m0…,

s8.5d

where gRsld, mRsld, and aRsld are the effective(running)
coupling constant, mass, and gauge parameter, respectively.
The solution written above describes the behavior of the
function FR under the scaling of momenta.

How do we determine the functionFRsp0; . . . ,m0d on the
right-hand side of Eq.(8.5) when theFRsp0, . . .d stands for a
wave function, a propagator, or a vertex? This question can
be unambiguously answered in the momentum space sub-
traction scheme. Noticing that the momentump0 and the
renormalization pointm0 are fixed, but may be chosen arbi-
trarily, we can, certainly, setm0

2=p0
2. With this choice, by

making use of the boundary condition satisfied by the propa-
gator, the vertex, or the wave function as denoted in Eqs.
(5.23), (6.27), (6.31), (7.11), and(7.18), we may write

uFRsp0;gR,mR,aR,mduP0
2=m2 = FR

s0dsp0;gR,mR,aRd, s8.6d

where the functionFR
s0dsp;gR,mR,aRd is of the form of a free

propagator, a bare vertex(if the vertex is fundamental, i.e.,
follows directly from the interaction Lagrangian) or a free
wave function and independent of the renormalization point
(see the examples given in the preceding sections). In light of
the boundary condition in Eq.(8.6) and considering the ho-
mogeneity of the functionFR as mentioned in Eq.(8.4), one
can write

ulDFFR„p0;gRsld,mRsldl−1,aRsld,m0…up0
2=m0

2

= FR
s0d
„p;gRsld,mRsld,aRsld…, s8.7d

where the renormalized coupling constant, mass, and gauge
parameter in the functionFR

s0dsp, . . .d become the running
ones. With the expression given in Eq.(8.7), Eq. (8.5) will
finally be written in the form[20]

FRsp;gR,mR,aRd = ee1
lsdl/ldgFsldFR

s0d
„p;gRsld,mRsld,aRsld….

s8.8d

For a gauge field theory, the anomalous dimensions
shown in Eq.(8.8) are all canceled out inS-matrix elements.
To show this point more specifically, let us take the two-
nucleon scattering taking place viav meson exchanges as an
example. The exact matrix element for the two-nucleon scat-

tering can be written out from the well-known reduction for-
mula which establishes the relation between an on-mass-
shell S-matrix element and the corresponding off-mass-shell
connected Green’s function[29,36]. A connected Green’s
function may conveniently be derived from the generating
functional W for connected Green’s functions as mentioned
in Sec. IV. For the nucleon-nucleon scattering, theS-matrix
element is related to the following four-point connected
Green’s function,

Gcsx1,x2;y1,y2d = k0+uTfcsx1dcsx2dc̄sy1dc̄sy2dgu0−lC,

s8.9d

where the subscriptC marks the connectivity of the Green’s
function. According to the familiar procedure of irreducible
decomposition[29–31], the connected Green’s function in
Eq. (8.9) can be decomposed into three one-particle irreduc-
ible ones as represented graphically in Figs. 4(a)–(c). In each
of the diagrams, there are four external legs which represent
the full off-mass-shell nucleon propagators. These propaga-
tors will be converted to the full on-mass-shell nucleon wave
functions by the reduction formula. The shaded blobs in the
diagrams stand for the exact proper(one-particle irreducible)
vertices. Let us first concentrate our attention on the dia-
grams in Figs. 4(a) and(b). These two diagrams represent the
two-nucleon scattering taking place in thet channel via av
meson exchange. The wavy line with a white blob in the
figures denotes the fullv meson propagator. Considering the
well-known fact that aS-matrix element expressed in terms
of unrenormalized quantities is equal to that represented by
the corresponding renormalized quantities, the scattering am-

FIG. 4. The diagrams represent the nucleon four-point one-
particle irreducible Green’s function. The solid line with a white
blob represents the full nucleon propagator. The wavy line with a
white blob denotes the fullv meson propagator; the shaded blobs
represent the proper vertices.
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plitude given by Figs. 4(a) and (b) may be written as
[20,29,36]

Tfi
s1d = ūR

ssq1dGR
msq1,p1duR

asp1diDmn
R skdūR

rsq2dGR
nsq2,p2duR

bsp2d

− ūR
rsq2dGR

msq2,p1duR
asp1diDmn

R skdūR
ssq1dGR

nsq1,p2duR
bsp2d,

s8.10d

where k=q1−p1=p2−q2, uR
aspd, GR

msqi ,pid, and iDmn
R skd are

the nucleon wave function, the proper vectorial vertex, and
the v meson propagator, respectively, which are all renor-
malized. The renormalization constants of the wave function,
the propagator, and the vertex are denoted byÎZ2, Z3, and
ZG, respectively. The constantZG is defined by

ZG = Z 2
−1Z 3

−1/2 s8.11d

because the vertex in Eq.(8.10) is now defined by containing
a vectorial coupling constantgv

R multiplied with an imagi-
nary numberi in it. The renormalized coupling constant is
defined as

gv
R =

Z2
ÎZ3

Z1
gv. s8.12d

On the basis of the formula given in Eq.(8.8), the renor-
malized nucleon wave function, meson propagator, and ver-
tex can be represented in the forms as shown separately in
the following. For the nucleon wave function, we have

uR
aspd = ee1

lsdl/ldgwslduRa
s0dspd, s8.13d

where

uRa
s0dspd = SE + MRsld

2MRsld D1/2S sW · pW

E + MRsld
DwaspWd s8.14d

is the renormalized wave function which formally is the
same as the free wave function, but theMRsld in it is a
running mass and

gw =
1

2
m

d

dm
ln Z2 s8.15d

is the anomalous dimension of the nucleon wave function.
For the renormalizedv meson propagator, we can write

iDmn
R skd = ee1

lsdl/ldg3sldiDmn
Rs0dskd, s8.16d

where

iDmn
Rs0dskd = −

i

k2 − mv
Rsld + i«

Fgmn − f1 − aRsldg
kmkn

k2 − n2 + i«
G

s8.17d

is the free propagator withmv
Rsld and aRsld in it being the

runningv meson mass and gauge parameter and

g3sld = m
d

dm
ln Z3 s8.18d

is the anomalous dimension of the propagator.
For the renormalized vertex, it reads

GR
msqi,pjd = ee1

lsdl/ldgvsldGR
s0dmsqi,pjd, s8.19d

wherei, j =1, 2,

GR
s0dmsqi,pjd = igv

Rsldgm s8.20d

is the bare vertex in whichgv
Rsld is the running coupling

constant, and

gvsld = m
d

dm
ln Zv = − m

d

dm
ln Z2 −

1

2
m

d

dm
ln Z3

s8.21d

is the anomalous dimension of the vertex here the relation in
Eq. (8.11) has been used.

Upon substituting Eqs.(8.13), (8.16), and(8.19) into Eq.
(8.10) and noticing Eqs.(8.15), (8.18), and (8.21), we find
that the anomalous dimensions in theS-matrix element are
all canceled out with each other. As a result of the cancella-
tion, we arrive at

Tfi
s1d = ūRs

s0dsq1dGR
s0dmsq1,p1duRa

s0dsp1diDmn
Rs0dskdūRr

s0d

3sq2dGR
s0dnsq2,p2duRb

s0dsp2d − ūRr
s0dsq2dGR

s0dmsq2,p1duRa
s0d

3sp1diDmn
Rs0dskdūRs

s0dsq1dGR
s0dnsq1,p2duRb

s0dsp2d. s8.22d

This expression clearly shows that the exactt-channel
S-matrix element of the two-nucleon scattering can be repre-
sented in the form as given by the tree diagrams shown in
Figs. 5(a) and(b) provided that all the physical parameters in
the matrix elements are replaced by their effective(running)
ones.

Next, let us turn to the diagram in Fig. 4(c). In the dia-
gram, the shaded blob with four amputated external legs rep-
resents the nucleon four-line proper vertex. The direct term
of the scattering amplitude given by Fig. 4(c) can be repre-
sented in terms of the renormalized quantities as follows:

Tfi
s2d = ūR

ssq1dūR
rsq2dGRsp1,p2;q1,q2duR

asp1duR
bsp2d.

s8.23d

In accordance with Eq.(8.8), the renormalized vertex
GRsp1,p2;q1,q2d is of the form

GRsp1,p2;q1,q2d = ee1
lsdl/ldgGsldGR

s0dsp1,p2;q1,q2d,

s8.24d

wheregGsld is the anomalous dimension of the vertex which
is determined by the renomalization constantZG=Z 2

−2 (which
is the inverse of the renormalization constant of the nucleon
four-point Green’s function). According to Eq.(8.3),

gGsld = m
d

dm
ln ZG = − 2m

d

dm
ln Z2. s8.25d

Substituting Eqs.(8.13) and(8.24) into Eq.(8.23) and notic-
ing Eqs.(8.15) and (8.25), we also find that the anomalous
dimensions are all canceled out. Thus we have
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Tfi
s2d = ūRs

s0dsq1dūRr
s0dsq2dGR

s0dsp1,p2;q1,q2duRa
s0dsp1duRb

s0dsp2d.

s8.26d

As mentioned in Eq.(8.8), the vertexGR
s0dsp1,p2;q1,q2d is

given atpi0
2 =qi0

2 =m2 si =1,2d and the physical parameters in
it are all running ones. Since the unrenormalized vertex
Gsp1,p2;q1,q2d is not fundamental, it has a complicated
structure, containing a series of tree and loop diagrams[36].
The expression of the vertexGR

s0dsp1,p2;q1,q2d can be deter-
mined by the perturbation method. Unlike the loop expan-
sion, the perturbation series of theS-matrix usually is ex-
panded in powers of the coupling constantgv. The lowest
order approximation of the vertexGsp1,p2;q1,q2d is of the
order of g4 and contains two terms which are given by the
truncated subdiagrams(the box and crossed box diagrams)
obtained from Figs. 6(e) and (f) by amputating the external
lines. The scattering amplitude given by the tree diagrams in
Figs. 6(e) and (f) and their corresponding exchanged coun-
terparts are convergent. We may dress these diagrams by
replacing the free wave functions, the free propagators, and

the bare vertices with the exact wave functions, the full
propagators, and the rigorous proper vertices. In this way, we
obtain a series of loop diagrams. As mentioned before, the
dressed wave functions, propagators, and vertices in the
S-matrix element can all be replaced by the renormalized
ones. Therefore they can be expressed in the forms as given
in Eqs.(8.13), (8.16), and(8.19). Due to the cancellation of
the anomalous dimensions, we will obtain an expression of
the renormalized scattering amplitude which is formally the
same as that written from the tree diagrams in Figs. 6(e) and
(f) and their exchanged ones. For this reason, the tree dia-
grams are called skeletons of the dressed diagrams. There are
a series of skeleton diagrams(or called tree diagrams) of the
vertexGsp1,p2;q1,q2d such as the ladder diagrams and some
others. But, in practical calculations, it is only feasible to
consider the skeleton diagrams given in lower order pertur-
bative approximations. We would like to stress that the skel-
eton diagrams can all be dressed. TheS-matrix elements
given by the dressed diagrams can be written out from the
corresponding skeleton(tree) diagrams provided that the
physical parameters are replaced by the solutions of their
RGE’s. For otherS-matrix elements representing other pro-
cesses, the conclusion is completely the same. It is noted that
a S-matrix element evaluated by thes-v model is indepen-

FIG. 5. The tree diagrams of nucleon-nucleon scattering. The
first two diagrams represent the interaction generated by thev me-
son exchange. The remaining two diagrams represent the interaction
mediated by thes meson exchange.

FIG. 6. Some two-nucleon one-loop Feynman diagrams which
are chosen to demonstrate the gauge-independence of the nucleon
scattering matrix elements.
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dent of the gauge parameter as illustrated in Appendix A in
the one-loop approximation(this is the so-called gauge inde-
pendence of theSmatrix which is implied by the unitarity of
S-matrix elements). This fact indicates that the task of renor-
malization for thes-v model is reduced to find the effective
coupling constants and the effective masses by solving their
RGE’s. These effective quantities completely describe the
effect of higher order loop corrections. As an illustration, the
effective coupling constants and the effective masses given
in the one-loop approximation will be derived and discussed
in detail in the next section.

IX. ONE-LOOP EFFECTIVE COUPLING CONSTANTS
AND MASSES

For the renornalization of thes-v model, we need to
derive the effective vectorial coupling constant, the effective
scalar coupling constant, the effective nucleon mass, and the
effective v meson ands meson masses. The one-loop ex-
pressions of these effective quantities will be derived and
discussed in the following subsections.

A. Effective vectorial coupling constant

The RGE for the renormalized vectorial coupling constant
gv

R which appears in the vectorial vertex may be immediately
written out from Eq.(8.2) by settingF=gv,

m
d

dm
gv

Rsmd + gg
vsmdgv

Rsmd = 0. s9.1d

In view of the definition shown in Eq.(8.1) and the relation
in Eq. (6.32), the renormalization constant defined in Eq.
(8.12) will be represented as

Zg
v =

Z1

Z2Z3
1/2 = Z 3

−1/2. s9.2d

According to the definition in Eq.(8.3), the anomalous di-
mensiongg

vsmd in Eq. (9.1) can be calculated by

gg
v = lim

«→0
m

d

dm
ln Zg

v = −
1

2
lim
«→0

m
d

dm
ln Z3, s9.3d

where«=2−n/2 with n being the dimension of the space in
which the regularization is performed. Based on the defini-
tion denoted in Eq.(5.19), the renormalization constantZ3
will be given by the subtraction of thev meson vacuum
polarization(self-energy) operator −iPmnskd. From the one-
loop diagram represented in Fig. 7, one may write[1,29]

Pmnskd = − 2igv
2E d4l

s2pd4TrFgm

1

l” − k” − M + i«
gn

1

l” − M + i«
G ,

s9.4d

where the factor 2 comes from the fact that the fermion loop
can be formed by both of the proton and neutron loops. By
the dimensional regularization[28–30,43], the divergent in-
tegral shown above is easily calculated. Then, from the defi-
nitions in Eqs.(5.14) and(5.19), it is not difficult to find that
in the n-dimensional space, the renormalization constantZ3
is expressed as

Z3 = 1 −Psm2d

= 1 +
gv

2

2p2s4pmg
2d«s2 − «d

Gs1 + «d
«

E
0

1 dxxsx − 1d
fm2xsx − 1d + M2g« ,

s9.5d

wheremg is a mass introduced to make the coupling constant
to be dimensionless in then-dimensional space. It is noted
here that the factorss4pmg

2d« andGs1+«d may all be set to
unity because they do not give an effect on the anomalous
dimension when we set«→0 in the final step of the calcu-
lation for the anomalous dimension. Inserting Eq.(9.5) into
Eq. (9.3), it can be found that

gg
v = −

gv
2

6p2H1 + 6s2 +
12s4

Î1 − 4s2
ln

1 +Î1 − 4s2

1 −Î1 − 4s2J ,

s9.6d

wheres=M /m. In this expression, the coupling constantgv
and the nucleon massM are unrenormalized. In the approxi-
mation of ordergv

2, they can be replaced by the renormalized
onesgv

R and MR because in this approximation, as pointed
out in the previous literature[28], the lowest order approxi-
mation of the relation between thegvsMd and thegv

RsMRd is
only necessary to be taken into account. Furthermore, when
we introduce the scaling variablel defined bym=m0l for
the renormalization point and setm0=MR (this can always be
done since them0 is fixed, but may be chosen at will; the
above choice amounts to taking the renormalization scale
parameter to be the nucleon mass), we haves=MR/m0l
=1/l. Thus, with thegg

v expressed in Eq.(9.6) and noticing
msd/dmd=lsd/dld, Eq. (9.1) may be rewritten in the form

l
dgv

Rsld
dl

=
fgv

Rsldg3

6p2 Fg
vsld, s9.7d

where

Fg
vsld = 1 +

6

l2 +
12

l4 fsld s9.8d

in which

FIG. 7. The one-loop diagram of the effectivev meson self-
energy. The solid line marks the free nucleon propagator and the
wavy line denotes the freev meson propagator.
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fsld =
l

Îl2 − 4
ln

l + Îl2 − 4

l − Îl2 − 4

=5
2l

Î4 − l2
cot−1 l

Î4 − l2
, if l ø 2,

2l

Îl2 − 4
Coth−1 l

Îl2 − 4
, if l ù 2.6 s9.9d

Upon substituting Eqs.(9.8) and(9.9) into Eq.(9.7) and then
integrating Eq.(9.7) by applying the familiar integration for-
mulas, the effective(running) coupling constant will be
found to be

aR
vsld =

aR
v

1 −
4aR

v

3p
Gvsld

, s9.10d

whereaR
vsld=fgR

vsldg2/4p, aR
v =aR

vs1d which is the coupling
constant that should be determined by experiment and

Gvsld =E
1

l dl

l
Fg

vsld = 2 +Î3p −
2

l2 + S1 +
2

l2D1

l
wsld

s9.11d

in which

wsld = Îl2 − 4 ln
1

2
sl + Îl2 − 4d

=5− Î4 − l2 cos−1 l

2
, if l ø 2,

Îl2 − 4 cosh−1 l

2
, if l ù 2. 6 s9.12d

As mentioned before, the variablel is also the scaling
parameter of momenta,p=lp0, and it is convenient to put
p0

2=m0
2 so as to apply the boundary condition. Thus, owing to

the choicem0=MR, we havep0
2=MR

2 and l=sp2/MR
2d1/2. In

this case, it is apparent that whenl=1, Eq. (9.10) will be
reduced to the result given on the nucleon mass shell with
the valueaR

vs1d=aR
v . The behaviors of the effective coupling

constants obtained in the timelike and spacelike momentum
space subtractions are separately represented in Figs. 8 and
9. The figures show that the effective coupling constant
aR

vsld has a singularityl0 (the Landau pole). The position of

the pole strongly depends on the parameteraR
v . By our nu-

merical test, we find, when theaR
v is getting smaller and

smaller, thel0 is getting larger and larger. If theaR
v goes to

zero, thel0 approaches a value near infinity, similar to the
case of QED[20]. While, when theaR

v is getting larger and
larger, thel0 moves toward unity; but it cannot arrive at
unity becauseaR

vs1d=aR
v . In the region[0,1] of l, theaR

vsld
has no singularity to appear. In Fig. 8, there are two lines
representing theaR

vsld given in the timelike momentum sub-
traction: one is given by takingaR

v =1 and has a singularity at
l.1.1385; another is obtained by takingaR

v =0.5 and has a
singularity atl.1.3885. Whenl goes froml0 to zero, the
aR

vsld decreases and tends to zero, exhibiting an asymptoti-
cally free behavior as we met in QED. In Fig. 9, the two
lines represent theaR

vsld given in the spacelike momentum
subtraction: one line is obtained by takingaR

v =1 and has a
singularity atl0.26.4689; another is given byaR

v =0.5 and
has a singularity atl0.280.431. Whenl goes to zero, the
aR

vsld approaches the constantaR
v . As one knows, the Landau

poles mentioned above give a limitation of applicability of
the one loop renormalization. That is to say, beyond the re-
gion f0,l0g, the aR

vsld is meaningless even though in the
limit: l→`, theaR

vsld tends to zero from an opposite direc-
tion. In comparison of Fig. 8 with Fig. 9, it is clear to see that
the range of applicability for theaR

vsld given in the spacelike
momentum subtraction is much larger than the range for the
aR

vsld given in the timelike momentum subtraction.

B. Effective v meson mass

In Eq. (8.2), when we setF=mv, we have a RGE for the
renormalized mass ofv meson such that

m
d

dm
mv

Rsmd + gm
vsmdmv

Rsmd = 0. s9.13d

From the definitions given in Eq.(8.1) and the first equality
in Eq. (5.22), we find

Zm
v = Z3

−1/2 = Zg
v s9.14d

so that

FIG. 8. The effective one-loop vectorial coupling constants
aR

vsld given by the timelike momentum space subtraction. The solid
line represents the coupling constant given by takingaR

v =0.5. The
dashed line denotes the coupling constant given byaR

v =1.

FIG. 9. The effective one-loop vectorial coupling constants
aR

vsld given by the spacelike momentum space subtraction. The
solid line represents the coupling constant given by takingaR

v

=0.5. The dashed line denotes the coupling constant given byaR
v

=1.
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gm
vsmd = gg

vsmd =
fgv

Rsldg2

6p2 Fg
vsld, s9.15d

whereFg
vsld was given in Eq.(9.8). With the above expres-

sion, Eq.(9.13) can be written as

dmv
R

mv
R =

2aR
vsld

3p
Fg

vsld
dl

l
. s9.16d

Integrating the above equation, one gets

mv
Rsld = mv

Res2/3pde1
lsdl/ldaR

v sldFg
vsld, s9.17d

wheremv
R=mv

Rs1d is the observedv meson mass. This is just
the one-loop result of the effectivev meson mass. If we take
the approximationaR

vsld.aR
v , the above expression be-

comes

mv
Rsld . mv

Res2/3pdGvsld, s9.18d

whereGvsld was given in Eq.(9.11).
To have an insight into the behavior of the effective

masses in Eq.(9.17), we take themv
Rsld given by taking

aR
v =1 as an example. Thismv

Rsld is shown in Fig. 10. In the
figure, the solid line represents the effective mass obtained in
the spacelike momentum subtraction and the dashed line de-
scribes the one given in the timelike momentum subtraction.
Comparing Fig. 10 with Figs. 8 and 9, we see that the both
effective masses have the same singularities and the same
scopes of applicability as the corresponding effective cou-
pling constantsaR

vsld. Particularly, the position of the singu-
larity strongly depends on the choice ofaR

v as theaR
vsld

does. Whenl tends to zero, themv
Rsld for the spacelike

momentum approaches a nonvanishing value near themv
R,

while themv
Rsld for the timelike momentum goes to zero.

C. Effective nucleon mass

The RGE for the renormalized nucleon mass, according to
Eq. (8.2), can be written as

m
d

dm
MRsmd + gMsmdMRsmd = 0, s9.19d

wheregMsmd is the anomalous dimension of nucleon mass.
In view of Eqs.(6.25) and (8.3), we have

gMsmd = m
d

dm
ln ZM

= − m
d

dm
lnH1 + Z2F A

M
+ S1 −

m

M
DBGJ .

s9.20d

To determine the constantsA, B, and Z2 in the one-loop
approximation, it is necessary to compute the nucleon self-
energy written in Eq.(6.35). By the dimensional regulariza-
tion, it is not difficult to derive from Eq.(6.35) the following
expression:

Sspd = sp” − mdS1spd + S2spd, s9.21d

where

S1spd =
gv

2

s4pd2E
0

1

dx
2sx − 1d
«Qvsxd« + s1 − ad

gv
2

s4pd2

3FE
0

1

dxE
0

1

dyyX s1 + 3xyd
«Qvsx,yd« +

1

Qvsx,yd
x2y2hs1 − xyd

3fp2 + msp” + mdg + Msp” + mdjC −
1

2G
+

gs
2

s4pd2E
0

1

dx
x − 1

«Qssxd« s9.22d

and

S2spd =
gv

2

s4pd2E
0

1

dx
2fsx − 1dm + 2Mg

«Qvsxd« + s1 − ad
gv

2

s4pd2

3XE
0

1

dxE
0

1

dyy3 H s1 + 3xydm − 2M

«Qvsx,yd«

+
1

Qvsx,yd
m2x2y2fs1 − xydm + MgJ +

1

2
sM − mdC

+
gs

2

s4pd2E
0

1

dx
sx − 1dm − M

«Qssxd« , s9.23d

where

Qvsxd = p2xsx − 1d + M2x + mv
2s1 − xd,

Qvsx,yd = p2xysxy− 1d + M2xy+ mv
2fs1 − xdy + as1 − ydg,

s9.24d

Qssxd = p2xsx − 1d + M2x + ms
2s1 − xd.

From the definitionA=Ssmd written in Eq. (6.17) and the
expressions in Eqs.(9.21)–(9.23), we find

A = A1 + A2 + A3, s9.25d

where

A1 =
gv

2

s4pd2E
0

1

dx
2fsx − 1dm + 2Mg

«Vvsxd« , s9.26d

FIG. 10. The effective one-loopv meson massesmv
Rsld given

by taking aR
v =1. The solid line and the dashed line represent the

effective masses obtained in the spacelike momentum subtraction
and the timelike momentum, respectively.
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A2 = s1 − ad
gv

2

s4pd2XE
0

1

dxE
0

1

dyyH s1 + 3xydm − 2M

«Vvsx,yd«

+
1

Vvsx,yd
x2y2fs1 − xydm3 + Mm2gJ +

1

2
sM − mdC

s9.27d

and

A3 =
gs

2

s4pd2E
0

1

dx
sx − 1dm − M

«Vssxd« s9.28d

in which

Vvsxd = m2xsx − 1d + M2x + mv
2s1 − xd,

Vvsx,yd = m2xysxy− 1d + M2xy+ mv
2fs1 − xdy + as1 − ydg,

s9.29d

Vssxd = m2xsx − 1d + M2x + ms
2s1 − xd.

The constantB appearing in Eqs.(6.21) and (6.25), accord-
ing to Eq.(6.19), ought to be computed by

B = usp” − md−1fSspd − Agup”=m. s9.30d

On inserting Eqs.(9.21)–(9.29) into Eq. (9.30) and employ-
ing the formula

1

a« −
1

b« =E
0

1

dx
«sb − ad

fax+ bs1 − xdg1+« , s9.31d

one may derive

B = B1 + B2 + B3, s9.32d

where

B1 =
gv

2

s4pd2E
0

1

dxH2sx − 1d
«Vvsxd« −

4

Vvsxd
xsx − 1d

3fsx − 1dm2 + 2MmgJ , s9.33d

B2 = s1 − ad
gv

2

s4pd2XE
0

1

dxE
0

1

dyyH 1 + 3xy

«Vvsxd« +
1

Vvsxd
xyfm2s2

+ 7xy− 9x2y2d − 2Mms2 − 3xydg +
2

Vvsxd2x3y3s1 − xyd

3fs1 − xydm4 + Mm3gJ −
1

2C , s9.34d

and

B3 =
gs

2

s4pd2E
0

1

dxH sx − 1d
«Vssxd« −

2

Vssxd
xsx − 1d

3fsx − 1dm2 − MmgJ . s9.35d

The terms expressed in Eqs.(9.27) and(9.34) are dependent

on the gauge parametera and look more complicated. How-
ever, as demonstrated in the Appendix A, theS-matrix ele-
ments evaluated in thes-v model are gauge independent.
Therefore for simplicity, these terms will not be taken into
account later on. This means that we limit ourselves to work-
ing in the Feynman gauge.

When Eqs.(9.25) and(9.32) with the expressions given in
Eqs.(9.26), (9.28), (9.33), and(9.35) are substituted into Eq.
(9.20), noticing thatZ2.1 should be taken in Eq.(9.20) in
the approximation of ordergi

2, one may find an explicit ex-
pression of the anomalous dimensiongMsmd through a te-
dious calculation,

gMsld = gM
s1dsld + gM

s2dsld, s9.36d

wheregM
s1dsld is derived from the constants in Eqs.(9.26) and

(9.33), while gM
s2dsld is given by the constants in Eqs.(9.28)

and (9.35). The expressions of thegM
s1dsld and gM

s2dsld are
separately described in the following. For the anomalous di-
mensiongM

s1dsld, we have

gM
s1dsld =

aR
v

p
Svsld s9.37d

in which

Svsld = j 0
vsld + o

i=1

4

j i
vsldJisld, s9.38d

where the functionsj i
vsld are

j 0
vsld =

1

2
s3 + ld −

2

l
+

1 − b2

l2 s1 − ld, s9.39d

j 1
vsld =

2

l4f2s1 − b2d2 − 3b2l2gS1 −
1

l
D +

1

l6f2s1 − b2d3

− 5b2s1 − b2dl2 − b2l4gs1 − ld, s9.40d

j 2
vsld =

1

l4fb2l2 − 3s1 − b2d2gs1 − ld −
6s1 − b2d

l2 S1 −
1

l
D ,

s9.41d

j 3
vsld =

4b2

l6 fb2l2 − s1 − b2d2gS1 −
1

l
D +

2b2

l8 fb2l4

+ 2s1 − b2db2l2 − s1 − b2d3gs1 − ld, s9.42d

and

j 4
vsld =

4

l6fs1 − b4dl2 − s1 − b2d3gS1 −
1

l
D −

2

l8fs1 − b2d4

− s1 − b2d2s1 + 2b2dl2 + b4l4gs1 − ld s9.43d

with b=mv /M and the functionsJisld are given by the inte-
grals shown below. With defininga=s1−b2dl−2 and b
=b2l−2, we can write
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J1sld =E
0

1

dx
1

xsx − 1d + ax+ b

=
l2

Îqsld
ln

l2 − 1 −b2 − Îqsld
l2 − 1 −b2 + Îqsld

, s9.44d

where

qsld = l4 − 2s1 + b2dl2 + s1 − b2d2, s9.45d

J2sld =E
0

1

dx
x

xsx − 1d + ax+ b

= − ln b +
l2 − 1 +b2

2Îqsld
ln

l2 − 1 −b2 − Îqsld
l2 − 1 −b2 + Îqsld

,

s9.46d

J3sld =E
0

1

dx
1

fxsx − 1d + ax+ bg2

= fs1 − b2d2 − s1 + b2dl2g
l4

b2qsld

−
2l6

qsld3/2 ln
l2 − 1 −b2 − Îqsld
l2 − 1 −b2 + Îqsld

, s9.47d

and

J4sld =E
0

1

dx
x

fxsx − 1d + ax+ bg2

= − sl2 + 1 −b2d
l4

qsld
− sl2 − 1 +b2d

3
l4

qsld3/2 ln
l2 − 1 −b2 − Îqsld
l2 − 1 −b2 + Îqsld

. s9.48d

For the anomalous dimensiongM
s2dsld, we can write

gM
s2dsld =

aR
s

2p
Sssld s9.49d

in which aR
s =sgs

Rd2/4p and

Sssld = j0
ssld + o

i=1

4

ji
ssldJi

0sld, s9.50d

where the functionsji
ssld are

j0
ssld = −

3

2
+

l

2
+

1

l2 −
b0

2

l2s1 − ld s9.51d

with b0=ms /M,

j1
ssld =

1

l6f2s1 − b0
2d3 − 5b0

2s1 − b0
2dl2 − b0

2l4gs1 − ld

−
1

l4f2s1 − b0
2d2 − 3b0

2l2gS1 −
1

l
D , s9.52d

j2
ssld =

1

l4fb0
2l2 − 3s1 − b0

2d2gs1 − ld +
3s1 − b0

2d
l2 S1 −

1

l
D ,

s9.53d

j3
ssld =

2b0
2

l6 fs1 − b0
2d2 − b0

2l2gS1 −
1

l
D

+
2b0

2

l8 fb0
2l4 + 2s1 − b0

2db0
2l2 − s1 − b0

2d3gs1 − ld,

s9.54d

and

j4
ssld =

2

l6fs1 − b0
2d3 − s1 − b0

4dl2gS1 −
1

l
D −

2

l8fs1 − b0
2d4

− s1 − b0
2d2s1 + 2b0

2dl2 + b0
4l4gs1 − ld, s9.55d

and the functionsJi
0sld formally are the same as the func-

tions Jisld except that the parameterb in the Jisld is now
replaced byb0,

Ji
0sld = uJisldub→b0

. s9.56d

Substituting thegMsld as expressed in Eqs.(9.36)–(9.56)
into Eq. (9.19) and solving the equation with noticing
md/m=ld/l, we obtain

MRsld = MRe−e1
ldl/lgMsld

= MRe−e1
ldl/lfaR

v sld/pSvsld+aR
s sld/2pSssldg, s9.57d

where MR=MRs1d is the observed nucleon mass. The cou-
pling constants in the above have been taken to be running
ones. TheaR

vsld was given in Eq.(9.10), while the aR
ssld

will be derived in the next subsection.
It would be emphasized that in the timelike momentum

space subtraction, the scaling parameterl is real so that the
effective nucleon mass is real, while in the spacelike momen-
tum space subtraction, thel is imaginary so that the effective
nucleon mass becomes complex one. In the latter case, thel
in the gMsld should be set to beil. Observing the expres-
sions in Eqs.(9.39)–(9.48) and (9.51)–(9.55), we see that in
the both subtractions, the functionsJisld are always real. The
real and imaginary parts of thegMsld are distinguished by
the real and imaginary parts of the functionsji

vsld andji
ssld.

In Figs. 11 and 12, we show the behaviors of the effective
nucleon masses given by the expression in Eq.(9.57) for
which the coupling constants be taken as the constantsaR

v

and aR
s for simplicity of computation. The effective mass

MRsld obtained in the timelike momentum space subtraction
is exhibited in Fig. 11. In the figure, the dashed, dotted and
solid lines represent theMRsld given by taking saR

v ,aR
sd

=s0,0.5d, (0.5,0), and (0.5,0.5), respectively. From the fig-
ure, we see that in the region[0,1] of l, the MRsld almost
keeps a constantMR. Beyond this region, if only the scalar
coupling is considered, theMRsld increases up to a maxi-
mum at l0=4.21 and then decreases to zero rather rapidly
when l→`. While, if the vectorial coupling enters, the
MRsld increases a little whenl goes to a smallerl0 and then
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decreases much rapidly down to zero whenl varies froml0
to `. The effective massMRsld obtained in the spacelike
momentum space subtraction is shown in Fig. 12. In the
figure, the real and imaginary parts of theMRsld are dis-
played separately. The dashed, solid, and dotted lines in the
figure represent the real and imaginary parts of theMRsld
which are obtained by takingsaR

v ,aR
sd=s0.5,0d, (0.5,0.5),

and(1,1), respectively. The figure indicates that in the region
[0,1] of l, the real part of theMRsld keeps almost a constant
equal toMR, while the imaginary part of theMRsld is almost
zero. Whenl varies from unity to infinity, the real part of the
MRsld at first increases smoothly and the imaginary part of
the MRsld decreases, then, both of them drastically oscillate
and damp to zero. The figure also shows that the stronger the
couplings (especially, the vectorial coupling), the larger is
the frequency of the oscillation. The appearance of the oscil-
lation implies that theMRsld is invalid to use in the region
that the oscillation appears.

D. Effective scalar coupling constant

When settingF=gs in Eq. (8.2), one obtains the RGE for
the renormalized scalar coupling constantgs

R which is in-
cluded in the scalar(nucleon–nucleon-s meson) vertex,

m
d

dm
gs

Rsmd + gg
ssmdgs

Rsmd = 0. s9.58d

Analogous to the case of vectorial coupling, the anomalous
dimensiongg

vsmd determined by

gg
s = lim

«→0
m

d

dm
ln Zg

s s9.59d

should be calculated from the renormalization constantZg
s

which is represented as

Zg
s =

Z18

Z2Z38
1/2 s9.60d

where Z2, Z38, and Z18 were defined, respectively, in Eqs.
(6.21), (7.6), and (7.17). According to these definitions, in
the approximation of orderg2 and in the Feynman gauge, the
Zg

s will be written as

Zg
s = 1 +B1 + B3 − L18 − L38 + V1, s9.61d

whereB1 andB3 were represented in Eqs.(9.33) and(9.35),
respectively,L18 andL38 are the parts of the constantL8 which
can conveniently be determined by the identity in Eq.(7.22).
From the identity and the representations written in Eqs.
(9.26) and (9.28), it is easy to get

L18 =
]A1

]M
=

gv
2

4p2E
0

1

dxH 1

«Vvsxd« − fxsx − 1dm

+ 2Mxg
M

VvsxdJ ,

L38 =
]A3

]M
= −

gs
2

16p2E
0

1

dxH 1

«Vssxd« + fxsx − 1dm

− Mxg
2M

VssxdJ . s9.62d

The one-loop expression of the divergent constantV1sm2d in
Eq. (9.61) can be derived from thes meson one-loop self-
energy depicted in Fig. 13. From Fig. 13, it reads

Vsqd = − 2igs
2E d4l

s2pd4TrF 1

sl” − q” − M + i«d
1

sq” − M + i«dG ,

s9.63d

where the factor 2 also arises from nucleon doublet. By the
dimensional regularization, the above integral is easily cal-
culated and expressed as

FIG. 11. The effective one-loop nucleon massesMRsld obtained
in the timelike momentum subtraction. The solid, dashed, and dot-
ted lines represent the effective masses given bysaR

v ,aR
sd=s0.5,0d,

(0,0.5), and(0.5,0.5), respectively.

FIG. 12. The effective one-loop nucleon massesMRsld obtained
in the spacelike momentum subtraction. The dashed, solid, and dot-
ted lines represent the effective masses given by takingsaR

v ,aR
sd

=s0.5,0d, (0.5,0.5), and (1,1), respectively. The upper figure de-
scribes the real part of theMRsld. Another figure shows the imagi-
nary part of theMRsld.

FIG. 13. Thes meson one-loop self-energy. The solid line rep-
resents the free nucleon propagator and the dashed line denotes the
free s meson propagator.
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Vsqd =
gs

2

s4pd2E
0

1

dx
24fq2xsx − 1d + M2g
«fq2xsx − 1d + M2g«

= V1sq2dq2 + V2sq2dms
2 s9.64d

which gives rise to

V1sm2d =
gs

2

s4pd2E
0

1

dx
24xsx − 1d

«fm2xsx − 1d + M2g« s9.65d

and

V2sm2d =
gs

2

s4pd2E
0

1

dx
24M2/ms

2

«fm2xsx − 1d + M2g« . s9.66d

On substituting Eq.(9.61) into Eq. (9.59), we get

gg
ssld = gg1

s sld + gg2
s sld + gg3

s sld, s9.67d

wheregg1
s sld, gg2

s sld, andgg3
s sld are separately defined and

described in the following.
For thegg1

s sld, we have

gg1
s sld = m

d

dm
sB1 − L18d =

av
R

p
Gvsld, s9.68d

where

Gvsld = h0
vsld + o

i=1

4

hi
vsldJisld s9.69d

in which

h0
vsld =

3

2
−

3

l
+

1 − b2

l2 ,

h1
vsld =

1

l6f2s1 − b2d3 − 6s1 − b2d2l + s1 − b2ds4 − 5b2dl2

+ 9b2l3 − 3b2l4g,

h2
vsld = −

3

l4fs1 − b2d2 − 3s1 − b2dl + s2 − b2dl2g,

s9.70d

h3
vsld =

2b2

l8 fb2l4 − 3b2l3 − 2s1 − b2d2l2

+ 3s1 − b2d2l − s1 − b2d3g,

h4
vsld =

2

l8fs2 − b2dl4 − 3s1 − b4dl3 − s1 − b2ds1 − 2b2dl2

+ 3s1 − b2d3l − s1 − b2d4g,

and the functionsJisld were given in Eqs.(9.44)–(9.48).
For thegg2

s sld we can write

gg2
s sld = m

d

dm
sB3 − L38d =

sgs
Rd2

8p2 G1
ssld, s9.71d

where

G1
ssld = h0

ssld + o
i=1

4

hi
ssldJi

0sld s9.72d

in which

h0
ssld = −

3

2
+

1 − b0
2

l2 ,

h1
ssld =

1

l6f2s1 − b0
2d2 − s1 − b0

2ds2 + 5b0
2dl2g,

h2
ssld =

1

l4f3l2 − 2s1 − b0
2d2g, s9.73d

h3
ssld =

2b0
2

l8 fb0
2l4 + s1 − b0

2ds1 + 2b0
2dl2 − s1 − b0

2d3g,

h4
ssld = −

2

l8fs1 + b0
4dl4 − 2s1 − b0

2d2s1 + b0
2dl2 + s1 − b0

2d4g,

and the functionsJi
0sld were defined in Eq.(9.56).

For thegg3
s sld, by virtue of the expression given in Eq.

(9.65), one can get

gg3
s sld = m

d

dm
V1 = −

sgs
Rd2

8p2 G2
ssld, s9.74d

where

G2
ssld = 2F1 +

6

l2 −
12

l3Îl2 − 4
ln

l − Îl2 − 4

l + Îl2 − 4
G .

s9.75d

Based on the anomalous dimensiongg
ssld given in Eqs.

(9.67), (9.68), (9.71), and(9.74), the RGE in Eq.(9.58) may
be represented in the form

dgs
Rsld
dl

+ Psldgs
Rsld + Qsldfgs

Rsldg3 = 0, s9.76d

where

Psld =
aR

vsld
pl

Gvsld, Qsld =
1

8p2l
fG1

ssld − G2
ssldg.

s9.77d

In the above equation, theaR
vsld is a known quantity as

given in Eq. (9.10). So, Eq.(9.76) is the equation used to
determine the unknown quantitygs

Rsld only. To solve the
nonlinear equation, we may set

gs
Rsld = usld−1/2 s9.78d

which leads Eq.(9.76) to a linear equation obeyed by the
function usld,

dusld
dl

− 2Psldusld − 2Qsld = 0. s9.79d

When settingQsld=0, we obtain a homogeneous equation
whose solution is
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usld = us1de2e1
ldlPsld. s9.80d

In order to seek the solution of Eq.(9.79), we assume

usld = vslde2e1
ldlPsld, s9.81d

wherevsld is an unknown function needs to be determined
from Eq. (9.79). Inserting Eq.(9.81) into Eq. (9.79), we get

dvsld
dl

= 2Qslde−2e1
ldlPsld. s9.82d

Integrating the above equation, one obtains

vsld = us1d + 2E
1

l

dlQslde−2e1
ldlPsld. s9.83d

Combining the expressions in Eqs.(9.78), (9.81), and(9.83),
the solution of Eq.(9.76) is finally given in the form

aR
ssld =

aR
sKsld

1 + aR
s /pGssld

, s9.84d

whereaR
ssld=fgs

Rsldg2/4p, aR
s =aR

ss1d which is a parameter
needed to be determined by fitting the experimental data,

Ksld = e−s2/pde1
ldl/laR

v sldGvsld, s9.85d

and

Gssld =E
1

l

dl/lGssldKsld s9.86d

in which

Gssld = G1
ssld − G2

ssld. s9.87d

The behaviors of the effective coupling constantaR
ssld

obtained in the timelike and spacelike momentum subtrac-
tions are separately displayed in Figs. 14 and 15. For time-
like momenta, theaR

ssld is real. In Fig. 14, there are four
lines representing thisaR

ssld which are given by four groups
of the parameterssaR

v ,aR
sd=s0,1d, (0.5,1), (0,0.2), and

(0.5,0.2) respectively. The figure indicates that theaR
ssld has

a Landau polel0. The poles for the four lines are respec-
tively located about atl0<1.075 23(for the first two lines),
1.8237, and 2.3967. Clearly, thel0 is larger if the both pa-

rameterssaR
v ,aR

sd are smaller. In particular, the pole moves to
the point near infinity when the both parameterssaR

v ,aR
sd

tend to zero. Whenl goes froml0 to zero and infinity, each
aR

ssld in Fig. 14 abruptly falls to zero from the opposite
directions. For spacelike momenta, the behavior of the effec-
tive coupling constant is described by the lines in Fig. 15.
The two lines in Figs. 15(a) and(b) are given by considering
the scalar coupling only with takingaR

s =1 and 0.2, respec-
tively. In this case, theaR

ssld is real and has a polel0. The
poles for the aforementioned lines are located respectively at
l0=5.725 and 234.6. However, when the vectorial coupling
is included, theaR

ssld becomes complex. In this case, the
pole disappears; instead, there is a maximum to appear as
shown in Figs. 15(c) and(d). The lines in Figs. 15(c) and(d)
are given by takingsaR

v ,aR
sd=s0.5,1d and (0.5,0.2), respec-

tively. In the figures, the real part of theaR
ssld is represented

by the solid line and the imaginary part by the dashed line.
From Fig. 15(c), we see that the real and imaginary parts of
the aR

ssld have sharp peaks corresponding to the pole of the
upper line. The peaks are manifested more clearly by the
right amplified lines. Figure 15(d) exhibits that either the real
part or the imaginary part varies rather smoothly due to the
decrement of the parameterssaR

v ,aR
sd and the larger effect of

the vectorial coupling. It is noted that whenl→0, theaR
ssld

reaches a constant, while in the limit ofl→`, the aR
ssld

goes to zero. In particular, the behaviors of theaR
ssld tell us

that the smaller the parameterssaR
v ,aR

sd, the larger will be the
range of applicability and theaR

ssld for the spacelike mo-
menta have a larger range of applicability than that for the
timelike momenta.

E. Effective s meson mass

In accordance with Eq.(8.2), the RGE for the renormal-
ized s meson mass is

l
d

dl
ms

Rsld + gm
ssldms

Rsld = 0, s9.88d

where

FIG. 14. The effective one-loop scalar coupling constantsaR
ssld

obtained in the timelike momentum subtraction. The dashed and
solid lines on the left represents the effective coupling constants
given bysaR

v ,aR
sd=s0,1d and(0.5,1). The dashed and solid lines on

the right denote the effective coupling constants given bysaR
v ,aR

sd
=s0,0.2d and (0.5,0.2).

FIG. 15. The effective one-loop scalar coupling constantsaR
ssld

obtained in the spacelike momentum subtraction. The four lines
represent the effective coupling constants given by taking
saR

v ,aR
sd=s0,1d, (0,0.2), (0.5,1), and (0.5,0.2), respectively. The

solid and dashed lines denote the real parts and the imaginary parts
of the coupling constants, respectively.
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gm
ssld = m

d

dm
ln Zm

s . s9.89d

From the definitions given in Eqs.(7.6) and(7.9), it is found
that in the approximation of ordergs

2, the renormalization
constantZm

s can be written as

Zm
s = 1 −

1

2
fV1sm2d + V2sm2dg. s9.90d

The one-loop expressions of the divergent constantsV1sm2d
andV2sm2d were given in Eqs.(9.65) and(9.66). With these
expressions, the renormalization constantsZm

s in Eq. (9.90)
can explicitly be written out. Use of this renormalization
constant in Eq.(9.89) yields thes meson mass anomalous
dimension as follows:

gm
s = −

gs
2

4p
Gssld, s9.91d

where

Gssld =
6

p
F1

6
−

1

b0
2 +

1

l2 −
2

l
S 1

l2 −
1

b0
2DhsldG s9.92d

in which b0=ms /M and

hsld =
1

Îl2 − 4
ln

l − Îl2 − 4

l + Îl2 − 4
. s9.93d

Substituting the above anomalous dimension into Eq.(9.88)
and solving the equation, we obtain an expression of the
effectives meson mass such that

ms
Rsld = ms

Ree1
lsdl/ldaR

s sldGssld, s9.94d

where ms
R=ms

Rs1d is a mass parameter which needs to be
determined by experiment. If the coupling constantaR

ssld is
approximately taken to be a constantaR

s , the integral overl
can easily be calculated. In this case, we have

ms
Rsld = ms

ReSssld, s9.95d

where

Sssld =
2aR

s

p
F1 −

1

l2 +
Î3

2
S1 −

2

b0
2Dp + S 1

l2 +
1

2
−

3

b0
2D

3
Îl2 − 4

l
ln

1

2
sl + Îl2 − 4dG . s9.96d

It is seen from Eq.(9.94) that the behavior of the effective
massms

Rsld is intimately related to property of the effective
coupling constantaR

ssld. To give a view of the behavior of
the ms

Rsld, we take thems
Rsld evaluated from Eq.(9.94) by

taking saR
v ,aR

sd=s1,1d as an example. Thisms
Rsld is shown

in Fig. 16. In the figure, the dashed line represents thems
Rsld

given in the timelike momentum subtraction. Thisms
Rsld is

real and has a singularity atl0<1.097 58 which implies that
the range of applicability of thems

Rsld is less thanl=1, the
nucleon mass scale. Whenl tends to zero, thems

Rsld ap-
proaches a value which does not deviate from the constant
ms

R so much. Thems
Rsld given in the spacelike momentum

subtraction is complex. The solid line in Fig. 16 represents
the real part of thems

Rsld which has a maximum nearl0

<5 which indicates that thems
Rsld is applicable in a wide

region of[0,5]. Similar to the coupling constantaR
ssld, when

the parameterssaR
v ,aR

sd are taken to be smaller, either the
pole or the maximum will be shifted to the point of a large
l0.

X. SUMMARY AND DISCUSSIONS

In this paper, it has been argued that thes-v model, as a
constrained system, is really of U(1) local gauge symmetry.
This enables us to quantize thes-v model by means of the
method used for quantizing the gauge field theory. In particu-
lar, the gauge symmetry allows us, in a consistent way, to
derive various WT identities which provide a faithful basis
for performing the renormalization of the model. As shown
in Sec. V, the WT identity in Eq.(5.6) satisfied by thev
meson propagator and the WT identity in Eq.(5.13) for the
vacuum polarization operator determine not only the struc-
tures of the propagator and the vacuum polarization operator,
but also the renormalization fashion of the propagator and
the v meson mass as shown in Eqs.(5.14), (5.16), (5.21),
and(5.22). Especially, the WT identity in Eq.(6.13) obeyed
by the vertex gives rise to the correct manner of subtraction
of the nucleon self-energy as denoted in Eq.(6.19). As
shown in Sec. VI, the subtraction in Eq.(6.19) leads to the
correct representations for the renormalization constants of
nucleon propagator and nucleon mass as shown in Eqs.
(6.21) and (6.25). Moreover, the identity in Eq.(6.13) di-
rectly yields the important relation between the renormaliza-
tion constantsZ1 andZ2 as written in Eq.(6.32). This rela-
tion together with the relation in Eq.(7.22) which follows
from the identity in Eq.(7.21) greatly simplify the calcula-
tion of the renormalization. It would be mentioned here that
in some previous works[7,15,17], the subtraction based on
the expressionSspd=Ap” +BM was ever used. This subtrac-
tion gives the nucleon propagator renormalization constant
as Z2=f1−Asm2dg−1 and nucleon mass renormalization con-
stant asZM =hZ2f1+Bsm2dgj−1 which are different from the
renormalization constants written in Eqs.(6.21) and (6.25)
and therefore the relation in Eq.(6.32) could not be fulfilled
in this case. The renormalization of the model under consid-
eration is performed in the mass-dependent momentum space

FIG. 16. The effective one-loops meson massesms
Rsld ob-

tained by takingsaR
v ,aR

sd=s1,1d. The solid line represents the ef-
fective mass given in the spacelike momentum subtraction, the
dashed line shows the real part of thems

Rsld given in the timelike
momentum subtraction.
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subtraction scheme by the renormalization group approach.
The prominent advantage of the subtraction scheme is that it
naturally leads to the boundary conditions for the renormal-
ized propagators, the vertices, and the wave functions. The
boundary conditions allow us to give a unique determination
of the solutions to the renormalization group equations for
the renormalized propagators, vertices, and wave functions
without any ambiguity. As claimed in the Introduction, we
limit ourselves in this paper to examine the renormalization
of the model at zero temperature by means of the renormal-
ization group method. Since the perturbative series expanded
in the powers of coupling constants is chosen to be the start-
ing point of this renormalization, the results of the renormal-
ization would be different from those obtained in the study of
nuclear matter by using the loop expansion and the spectral
function methods. Hopefully, the renormalization procedure
described in this paper will be helpful for applying the renor-
malization group approach to study the nuclear matter at
finite temperature and finite density.

The procedure of renormalization group method was
demonstrated by the one-loop renormalization in this paper.
Since the renormalization exactly respects the WT identities,
the results obtained are faithful. Especially, the one-loop ef-
fective coupling constants and masses are given in the rigor-
ous forms as they are derived from the mass-dependent mo-
mentum space subtraction. The subtraction scheme used is,
in principle, suitable not only for high energy, but also for
low energy, unlike the minimal subtraction scheme[28–31]
which is only appropriate in the large momentum limit. In
addition, the expressions of the one-loop effective physical
quantities derived in this paper are applicable for the both of
timelike momentum subtraction and spacelike momentum
subtraction. As seen from Figs. 8–12 and 14–16, the behav-
iors of the effective quantities given in the timelike subtrac-
tion and the spacelike subtraction are much different from
one another. In which case we should use the results given in
the timelike momentum subtraction or in the spacelike mo-
mentum subtraction? The answer to this question depends on
what process is discussed. For example, when we study the
nucleon-nucleon scattering taking place in thet channel, as
mentioned in Appendix B, the transfer momentum in the
boson propagator is spacelike. In this case, it is suitable to
take the effective coupling constants and boson masses given
in the spacelike momentum subtraction. If we investigate the
nucleon-antinucleon annihilation process which takes place
in thes channel, since the transfer momentum is timelike, the
effective coupling constants and boson masses given in the
timelike momentum subtraction should be used. The effect of
the one-loop renormalization is examined by the nucleon-
nucleon elastic scattering whose differential cross section
given in the order ofg2 is described in Appendix B and
plotted in Fig. 17. In the figure, we only take the differential
cross sections given at the laboratory kinetic energiesTlab
=491.9 and 575.5 MeV as an example. The figure shows that
consideration of the one-loop renormalization requires the
coupling constants to be smaller in order to fit the experi-
mental data. This actually is a general feature of considering
the renormalization effect.

As exhibited in Sec. IX, the one-loop effective physical
parameters given in the timelike momentum subtraction and

the ones given in the spacelike momentum subtraction not
only behave differently, but also have different ranges of
applicability because the singularities of the effective quan-
tities given by the two subtractions appear at the different
momenta. Especially, the positions of the singularities are
strongly dependent on the coupling constantsaR

v andaR
s . The

smaller the coupling constants, the larger are the ranges of
applicability. It would be mentioned that since the propaga-
tors written in Eqs.(5.16), (6.12), and(7.2) are solved from
the Dyson equations, the one-loop renormalization actually
contains the contribution given by partially summing up a set
of chain loop diagrams. Just due to the partial summation, as
mentioned before, the coupling constants must be set to be
smaller for fitting the experimental data of the nucleon scat-
tering. To this end, it is natural to ask if and how the behav-
iors of the one-loop effective physical parameters can be
modified by considering higher order loop renormalizations,
in other words, if the coupling constants would be smaller
and the ranges of applicability of the renormalization would
be enlarged when the contributions arising from more higher
order loop diagrams are summed up. Obviously, this is an
interesting problem worthy of pursuing further. In addition,
we would like to address that thes-v model should be
viewed as a restrictive model in which thes field is intro-
duced as a phenomenological field. Aside from thes-v
model, there are some other models in QHD which are of a
certain gauge symmetry. Especially, the model proposed by
Sakurai in the early time[44], in our opinion, is most prom-
ising to describe the nuclear force because in this model,
exchanges of the light mesons, such as pion andrho meson
dominate the strong interaction between nucleons. In view of
the argument given in Refs.[32–34,45], Sakurai’s model is a
SU(2) gauge field theory which is not only gauge invariant,

FIG. 17. The two-proton elastic differential cross sections given
at the laboratory kinetic energiesTlab=491.9 and 575.5 MeV. The
black squares show the experimental data[48]. The solid lines rep-
resent the theoretical values calculated by considering the one-loop
renormalization effect. The dashed lines represent the theoretical
values without considering the one-loop renormalization effect.
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but also renormalizable. Certainly, the renormalization of
this model may be investigated along the same line as de-
scribed in this paper. We will discuss this subject in the fu-
ture. But, it cannot be expected that a perturbative investiga-
tion could give an ultimate solution to the strong interaction.
Just as said in Refs.[46,47], to resolve the strong interaction,
it is adequate to perform a nonperturbative study of the in-
teraction kernel appearing in the relativistic equation whose
closed expression can be derived by the procedure as de-
scribed in Refs.[46,47].
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APPENDIX A: GAUGE INDEPENDENCE
OF S-MATRIX ELEMENTS

The gauge independence ofS-matrix elements computed
by a gauge field theory is a well-known fact. For thes-v
model, as argued in this paper, it actually is a U(1) gauge
field theory. So, the same conclusion should hold for the
s-v model. To convince oneself of this fact, we take the
nucleon-nucleon scattering amplitudes up to the one-loop ap-
proximation as examples to show that the matrix elements
given by thes-v model are surely independent of the gauge
parametera. The typical Feynman diagrams representing the
scattering amplitudes are depicted in Figs. 5 and 6. In Fig. 6,
only the diagrams with the internalv meson line are neces-
sary to be considered.

For the tree diagram in Fig. 5(a), the gauge-independence
of its S-matrix element is well known. In fact, theS-matrix
element

S1 = ūs8sq2digvgmur8sq1diDmnskdūssp2digvgnursp1d,

sA1d

whereusspd, the free nucleon wave function, can be divided
into two parts according to the decomposition of freev me-
son propagator,

Dmnskd = DF
mnskd + Da

mnskd, sA2d

where

DF
mnskd = −

gmn

k2 − mv
2 + i«

sA3d

which is the propagator given in the Feynman gauge and

Da
mnskd = s1 − adDask2dkmkn sA4d

which is thea-dependent part of the propagator in which

Dsk2d =
1

sk2 − mv
2 + i«dsk2 − n2 + i«d

. sA5d

For the a-dependent part ofS1, applying the energy-
momentum conservationk=q1−q2=p2−p1 and Dirac equa-
tion sp” −Mdusspd=0, it is found that

S1
a = − s1 − adigv

2ūs8sq2dk”ur8sq1dūssp2dk”ursp1dDask2d

= − s1 − adigv
2ūs8sq2dsq”1 − q”2dur8sq1dūssp2dsp”2 − p”1d

3ursp1dDask2d = 0. sA6d

This shows that thev meson propagator given in the Feyn-
man gauge is sufficient to use for evaluating the tree diagram
matrix element. In the same way, one may prove that the
S-matrix element given by the tree diagram in Fig. 5(b) is
independent of the gauge parameter as well.

Let us focus on the one-loop diagrams in Fig. 6 where
only the direct diagrams are plotted and necessary to be ex-
amined for our purpose. The gauge independence of the ma-
trix element of Fig. 6(a) which contains av meson self-
energy in it can easily be proved by using Eq.(A6). So, we
only need to examine the gauge independence of Figs. 6(b)–
(f). The matrix element of Fig. 6(b) with a vertex correction
in it can be written as

S2
1 = Mmsq1,q2dAmsp1,p2d, sA7d

where

Mmsq1,q2d = ūs8sq2digvgnur8sq1diDnmskd sA8d

which is gauge independent as shown in Eq.(A6) and

Amsp1,p2d =E d4k

s2pd4ūssp2d

3igvgriSFsp2 − kdigvgmiSFsp1 − kdi

3gvgsursp1diDrsskd. sA9d

ReplacingDrsskd by theDa
rsskd shown in Eq.(A4), we have

the following gauge-dependent part ofAmsp1,p2d:

Aa
msp1,p2d = − s1 − adgv

3E d4k

s2pd4ūssp2dk”SFsp2 − kd

3gmSFsp1 − kdk”ursp1dDask2d, sA10d

wherek”=gmkm can be written in the form

k” = SF
−1spid − SF

−1spi − kd, sA11d

wherei =1, 2. Using this relation and the Dirac equation, Eq.
(A10) becomes

Aa
msp1,p2d = − s1 − adgv

3ūssp2dgmursp1dJ, sA12d

where

J =E d4k

s2pd4Dask2d = lim
«→0

i

s4pd2E
0

1 dx

«hfa + s1 − adxgmv
2j«

,

sA13d

where the last equality is given by the dimensional regular-
ization. This integral gives a divergent constant without con-
taining any finite number in it. Therefore it may completely
be canceled out by a counterterm in a renormalization pro-
gram and gives no contribution to the renormalizedS-matrix
element. On the other hand, since the integral is independent
of momentum, it would not contribute to the anomalous di-
mension and hence to any physical quantity.
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For the matrix element of Fig. 6(c) which contains a
nucleon self-energy, it may be written as

S2
2 = Mmsq1,q2dBmsp1,p2d, sA14d

where

Bmsp1,p2d =E d4k

s2pd4ūssp2d

3igvgriSFsp2 − kdigvgsiSFsp1 − kd

3igvgmursp1diDrsskd sA15d

in which thea-dependent part is of the form

Ba
msp1,p2d = − s1 − adgv

3E d4k

s2pd4ūssp2dk”SFsp2 − kd

3k”SFsp1 + qdgmursp1dDask2d. sA16d

By employing the relation in Eq.(A11) and Dirac equation,
one may find

Ba
msp1,p2d = s1 − adgv

3ūssp2dgnSFsp2dgmursp1dJ2
n = 0.

sA17d

This is because the integral in it vanishes,

J2
n =E d4k

s2pd4knDask2d = 0, sA18d

due to that the integrand is an odd function. Similarly, the
a-dependent part of Fig. 6(d) can also be proved to give no
contribution to theS-matrix element.

Let us turn to Figs. 6(e) and (f). The matrix elements of
both figures can be respectively represented as

S2
3 = gv

4E d4k

s2pd4ūs8sq2dgmSFsq1 − kdgnur8sq1d

3 ūssp2dgrSFsp1 + kdgsursp1dDmrsq − kdDnsskd
sA19d

and

S2
4 = gv

4E d4k

s2pd4ūs8sq2dgmSFsq1 − kdgnur8sq1d

3 ūssp2dgrSFsp2 − kdgsursp1dDmssq − kdDnrskd,

sA20d

where q=p2−p1=q1−q2. Their a-dependent parts are de-
noted byS2a

3 andS2a
4 . By making use of the relation in Eq.

(A11) and the relationq−k=sq1−kd−q2=p2−sk+p1d as well
as the Dirac equation, it is easy to find

S2a
3 = − 2s1 − adgv

4ūs8sq2dgmur8sq1dūssp2dgmursp1d

3E d4k

s2pd4

Dask2d
sq − kd2 − mv

2 + i«
− s1 − ad2gv

4ūs8sq2d

3gmur8sq1dūssp2dgnursp1d

3E d4k

s2pd4kmknDafsq − kd2gDask2d = − S2a
4 sA21d

which gives S2a
3 +S2a

4 =0 so that the sum ofS2
3 and S2

4 is
independent of the gauge parameter.

APPENDIX B: CROSS SECTION OF
NUCLEON-NUCLEON SCATTERING

To illustrate the effect of the renormalization described in
this paper, we evaluate the cross section of the nucleon-
nucleon elastic scattering. Here we limit ourself to first con-
sider the cross section given in the approximation of order
g2. In this approximation, only the tree diagrams denoted in
Fig. 5 are concerned. From these diagrams, in the center of
mass frame, the differential cross section is easily calculated
and represented as follows:

ds

dVsu,wd
=

1

S
sav

2Tv + as
2Ts − avasTvsd, sB1d

whereS=4sp2+M2d with p being the nucleon momentum is
the total energy of the system,Tv is contributed from thev
meson exchange interaction,Ts is given by thes meson
exchange interaction andTvs is the crossed term related to
both of thev meson ands meson exchanges. They are sepa-
rately represented as follows:

Tv =
R1

v

sD1
vd2 +

R2
v

sD2
vd2 + s− 1d1+I R3

v

D1
vD2

v , sB2d

where

R1
v = M4 + 2p2M2 cosu + 2M2p2 + 2p4 + 2p4 cos4 u/2,

sB3d

R2
v = M4 − 2p2M2 cosu + 2M2p2 + 2p4 + 2p4 sin4 u/2,

sB4d

R3
v = 16sp4 − M4d, sB5d

D1
v = 4p2 sin2 u/2 + mv

2 , sB6d

and

D2
v = 4p2 cos2 u/2 + mv

2 . sB7d

Ts =
R1

s

sD1
sd2 +

R2
s

sD2
sd2 + s− 1dI R3

s

D1
sD2

s , sB8d

where

R1
s = 4s4p2 sin2 u/2 + M2d2, sB9d

R2
s = 4s4p2 cos2 u/2 + M2d2, sB10d

R3
s = 2f2M2sp2 + M2d + p4ssin4 u/2 + cos4 u/2dg,

sB11d

D1
s = 4p2 sin2 u/2 + ms

2 , sB12d

and
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D2
s = 4p2 cos2 u/2 + ms

2 . sB13d

Tvs =
R1

vs

D1
vD1

s +
R2

vs

D2
vD2

s + s− 1dI R3
vs

D1
vD2

s + s− 1dI R4
vs

D2
vD1

s ,

sB14d

where

R1
vs = 4M2fsM2 + 2p2d2 + sM2 + 2p2 cos2 u/2d2g,

sB15d

R2
vs = 4M2fsM2 + 2p2d2 + sM2 + 2p2 sin2 u/2d2g,

sB16d

R3
vs = 4f2sM2 + p2 cos2 u/2d2 − M2sM2 + p2 + p2 sin2 u/2dg,

sB17d

and

R4
vs = 4f2sM2 + p2 sin2 u/2d2 − M2sM2 + p2 + p2 cos2 u/2dg.

sB18d

In the above,su ,wd are the scattering angles,I is the isospin
of the two-nucleon system,Dk

v and Dk
s sk=1,2d are respec-

tively given by thev meson ands meson propagators, and
Ri

a sa=v ,s, i =1,2,3d are the functions coming from the
nucleon spinor matrix elements. In Eqs.(B2), (B8), and
(B14), the isospin-related terms arise from the exchanged
diagram, while the remaining terms represent the contribu-
tion of the direct diagram.

To consider the renormalization effect on the two-nucleon
scattering, as mentioned in Sec. VIII, we may directly re-
place the coupling constantav and as in Eq. (B1) by their
effective onesaR

vsld and aR
ssld and the particle massesM,

mv, andms appearing in the propagators and the functions

Ri
a by their effective counterpartsMRsld, mv

Rsld, andms
Rsld.

To this end, it should be noted that the nucleon spinors in the
S-matrix element under consideration are on the mass shell,
satisfying the free nucleon Dirac equation. The momentapi
in the spinors are timelike because they meet the relation
p2=M2 whereM is real. For the renormalized spinor wave
function shown in Eq.(8.14), as easily verified, it also satis-
fies the Dirac equation and the momentum in the spinor ful-
fills the relationpsld2=MRsld2 where psld=(Esld ,pW) with
Esld=fpW2+MRsld2g1/2. Therefore, for the nucleon-nucleon
scattering, it is adequate to take the effective nucleon mass
given in the timelike momentum space subtraction, while the
momenta in thev meson ands meson propagators, as one
knows, are off shell and spacelike in thet-channel scattering.
Therefore it is appropriate to take the effective coupling con-
stants aR

vsld and aR
ssld and the effective meson masses

mv
Rsld and ms

Rsld given in the spacelike momentum space
subtraction. In this paper, we only examine the effect of the
one-loop renormalization on the two-proton scattering by us-
ing the effective coupling constants and masses presented in
Sec. IX. The differential cross sections given at the labora-
tory kinetic energiesTlab=491.9 and 575.5 MeV are shown
in Figs. 17(a) and (b). In the figures, the solid lines and the
dashed lines represent, respectively, the calculated results
with and without considering the renormalization effect and
the experimental data are taken from Ref.[48]. As shown in
Figs. 17(a) and(b), in the case without considering the renor-
malization effect, the theoretical parameters are taken to be
MR=938 MeV, av

R=1.1, as
R=1.4, mv

R=782 MeV, and ms
R

=580 MeV; while in the case of considering the renormal-
ization effect, the parameters must be taken to beMR
=938 MeV, av

R=0.55, as
R=0.62, mv

R=782 MeV, and ms
R

=670 MeV. It is clearly seen from the figures that consider-
ation of the renormalization has an effect that to fit the ex-
perimental data, the coupling constants must be set to be
smaller.
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