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I. INTRODUCTION

In a fundamental description of nucleon-nucleon(NN) in-
teraction, the existence of the nucleon internal structure can-
not be ignored. The standardNN potentials are actually ef-
fective tools aiming to mimic a much more complicated
interaction process, of which it is not even clear that it could
be reduced to a potential problem. TheNN system can be
rigorously described only when starting from the underlying
QCD theory for the nucleon constituents: quarks and gluons.
This is, however, a very difficult task, which is just becoming
accessible in lattice calculations[1–3], and that will be in
any case limited for a long time to the two-nucleon system.
In any attempt to describe the nuclear structure, one is thus
obliged to rely on more or less phenomenological models.

Since the nucleon size is comparable to the strong inter-
action range, the effects of its internal structure are expected
to be considerable. In particular theNN interaction should be
nonlocal, at least for small internucleon distances. In addi-
tion, we have no reason to believe that nuclear interaction is
additive as the Coulomb one: the interaction between two
nucleons may not be independent of the presence of a third
one in their vicinity. Finally the interplay of nucleon confine-
ment and relatively large kinetic energies can generate—e.g.,
via virtual nucleon excitations—a rather strong energy de-
pendence in the interaction. Despite numerous studies de-
voted to this subject, we still do not have a clear understand-
ing of the relative importance of these effects inNN force,
specially concerning their influence on experimentally mea-
surable quantities.

This work investigates the consequences of using nonlo-
cal NN forces in describing theA=3 andA=4 nuclear sys-
tems. The locality ofNN force, assumed in some of the so-
called realistic models[4,5], is due more to numerical
convenience than to convincing physical arguments. The
two-nucleon experimental data, since they contain only on-
shell physics, are successfully reproduced without including
any energy dependence or nonlocality in theNN force. How-
ever, they all suffer from the underbinding problem, i.e., two-
nucleon interaction alone fails to reproduce the nuclear bind-
ing energies, starting already from the simplestA=3 nuclei.
Figure 1 shows the relative differences between experimental
and theoretical binding energies for He isotopes obtained
with AV18 potential[4,6,7]. These differences increase with

the mass numberA and vary from,0.7 MeV in 3He to
,10 MeV in the case of10He.

The inclusion of nonlocal terms—as in Nijm 93 and Nijm
I potentials[5]—does not remove this discrepancy[8,9]. If in
some cases, as in CD-Bonn[10] or in chiral models[11–13],
they considerably improve 3N and 4N binding energies, the
improvement is still not sufficient to reproduce the experi-
mental values. This underbinding is rather easily removed by
means of three-nucleon forces(3NF). The existence of such
forces is doubtless, but their strength depends on theNN
partner in use and is determined only by fitting requirements.

However, the use of 3NF, to some extent, can be just a
matter of taste. It has been shown in Refs.[14,15] that two
different, but phase-equivalent, two-body interactions are re-
lated by a unitary, nonlocal, transformation. One thus could
expect that a substantial part of 3N and multinucleon forces
could also be absorbed by nonlocal terms. A considerable
simplification would result if the bulk of experimental data
could be described by only using two-body nonlocal interac-
tion. In fact, the unique aim of any phenomenological model
is to provide a satisfactory description of the experimental
observables, but it is worth reaching this aim by using the
simplest possible approach.

FIG. 1. (Color online) Comparison between the experimental
and theoretical calculations with AV18 interaction in He isotopes.
Results are taken from Refs.[6,7].
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Already there exist calculations reproducing the triton
binding energy without making explicit use of 3NF. The first
one was obtained by Stadler and Gross[16] using a relativ-
istic equation and benefiting from some additional freedom
in the off-shell vertex form factors. The complexity in using
relativistic equations, however, makes their extension to
larger nuclear systems, or even to 3N scattering, difficult.

A very promising result, which takes profit from nonlo-
cality in nonrelativistic nuclear models, has been obtained by
Doleschall and collaborators[17–23]. In this series of papers,
purely phenomenological nonlocalNN forces have been con-
structed, which were able to overcome the lack of binding
energy in three-nucleon systems, namely3H and 3He, with-
out explicitly using 3NF and still reproducing 2N observ-
ables. The striking success of these models is closely related
to the presence of small deuteronD-state probability, com-
paratively to localNN interaction, a difference which does
not contradict the phenomenology and which follows from
using two equivalent representations of the one and the same
physical object[24]. In fact, nonlocality of the Doleschall
potential softens the short range repulsion of localNN mod-
els and can simulate part of the effects due to the 6-quark
structures as well as quark exchange between nucleons inside
the nucleus. Local realistic interaction models, maybe with
the exception of the Moscow[25] potential, artificially pro-
hibits such effects by imposing a very strong short-range
repulsion.

Our work is an extension to theA=4 nuclei of the Dole-
schall pioneering studies. In particular, we would like to
check whether such nonlocal interaction models remain suc-
cessful or not when applied to the more complicated 4N
systems. We will first provide results for4He ground state
and then extend the calculations to then−3H scattering. This
system possesses a resonance atEc.m.<3 MeV, exhibiting
different dynamical properties from those of bound states
and testifying to a failure of the conventionalNN+3NF in-
teraction models[26].

II. THEORETICAL TREATMENT

A. FY Equations

We describe the 4N system by using Faddeev-Yakubovski
(FY) equations in configuration space[27–29]. Even though
the major goal of FY formalism is a mathematically rigorous
description of the continuum states, it turns out as well to be
advantageous when dealing with a bound state problem. The
advantage lies in the natural decomposition of the wave
function in terms of the so-called Faddeev-Yakubovski com-
ponents(FYC) which make use of the system’s symmetry
properties. These amplitudes have a simpler structure than
the wave function itself and are therefore easier to handle
numerically. Four-particle systems require the use of two
types of FYC, namelyK andH. Asymptotes of components
K incorporate 3+1(see Fig. 2) channels, while components
H contain asymptotes of 2+2 ones(see Fig. 2). By permut-
ing the particles one can construct twelve different compo-
nents of the typeK and six components of the typeH. The
total wave function is simply a sum of these 18 FYC.

In the theoretical treatment of the problem we use the
isospin formalism, i.e., we consider protons and neutrons as
being degenerate states of the same particle—nucleon. For a
system of identical particles, the FYC are not completely
independent, being related by several straightforward sym-
metry relations. All the 18 FYC can be obtained by the ac-
tion of the permutation operators on two of them, arbitrarily
chosen, provided one is of typeK and the other of typeH.
We have chosenK;C12,3

4 andH;C12
34. The four-body prob-

lem is solved by determining these two components, which
satisfy the system of differential equations[29]:

sE − H0 − VdK = VsP+ + P−dfs1 + QdK + Hg,

sE − H0 − VdH = V12P̃fs1 + QdK + Hg. s1d

P+, P−, P̃, andQ are the permutation operators:

P+ = sP−d−1 = P23P12,

Q = «P34,

P̃ = P13P24 = P24P13.

Employing the operators defined above, the system’s wave
function is given by

C = f1 + s1 + P+ + P−dQgs1 + P+ + P−dK

+ s1 + P+ + P−ds1 + P̃dH. s2d

ComponentsK and H are functions in configuration
space, and depend also on the internal degrees of freedom of
the individual particles(spins and isospins). The configura-
tion space is provided by the position of the different par-
ticles, which we describe by using reduced relative coordi-
nates. These coordinates differ from Jacobi coordinates
usually employed in classical mechanics by factors depend-
ing on the particle masses. Use of such coordinates has sev-
eral big advantages: first, center of mass motion can be easily
separated, then transition between two bases is equivalent to

FIG. 2. (Color online) (a) FY componentsK andH. Asymptoti-
cally, as z→`, componentsK describe 3+1 particle channels,
whereas componentsH contain asymptotic states of 2+2 channels.
(b) The j- j coupling schemes used when developing FYCK andH
into a partial wave basis.
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orthogonal transformation inR3sN−1d space; finally, kinetic
energy operator in this basis reduces to a multidimensional
Laplace operator in corresponding subspaces. Two princi-
pally different sets of reduced relative coordinates can be
defined. One is associated with the componentsK;Ci j ,k

l :

xW i j =Î2
mimj

mi + mj
srW j − rWid,

yW i j ,k =Î2
smi + mjdmk

mi + mj + mk
SrWk −

mirWi + mjrW j

mi + mj
D ,

zWi jk,l =Î2
smi + mj + mkdml

mi + mj + mk + ml
SrWl −

mirWi + mjrW j + mkrWk

mi + mj + mk
D ,

s3d

wherem, andrW, are, respectively, the mass and the position
of the ,th particle. The coordinate set associated with the
componentsH;Ci j

kl is defined by

xW i j =Î2
mimj

mi + mj
srW j − rWid,

yWkl =Î2
mkml

mk + ml
srWl − rWkd,

zWi j ,kl =Î2
smi + mjdsmk + mld
mi + mj + mk + ml

SmkrWk + mlrWl

mk + ml
−

mirWi + mjrW j

mi + mj
D .

s4d

The functionsK andH are expanded on the basis of par-
tial angular momentum, spin and isospin variables, according
to the equation

FisxW i,yW i,zWid = o
a

Fi
asxi,yi,zid
xiyizi

Yi
asx̂i,ŷi,ẑid. s5d

Here Yi
asx̂i , ŷi , ẑid generalize tripolar harmonics containing

spin, isospin, and angular momentum variables. Functions
Fi

asxi ,yi ,zid are so-called partial amplitudes, being continu-
ous in radial variablesx, y, andz. The labela represents the
set of intermediate quantum numbers defined in coupling
scheme; it includes as well the specification for the type of
FY component(K or H). We have usedj- j couplings, repre-
sented in Fig. 2(b), and expressed by

fhstit jdtx
tkjT3

tlg T khflxssisjdsx
g jx

flyskg jy
jJ3

flzslg jz
lJp s6d

for components ofK-type and

fstit jdtx
stktldty

g T khflxssisjdsx
g jx

flyssksldsy
g jy

j jxy
lzlJp s7d

for the H-type components. Heresi and ti are the spin and
isospin quantum numbers of the individual particles and
sJp ,Td are, respectively, the total angular momentum, parity,
and isospin of the four-body system. Each amplitude
Fi

asxi ,yi ,zid is thus labeled by the set of 12 quantum numbers
a. The symmetry properties of the wave function with re-
spect to the exchange of two particles impose additional con-

straints. One should haves−1dlx+sx+tx=« for the amplitudes
derived from any type of components(K or H), while for
H-type amplitudes additional constraints−1dly+sy+ty=« is
valid as well. Since we deal with nucleons(i.e., fermions),
Pauli factor« is equal to −1. The total parityp is given by
s−1dlx+ly+lz, independently of the coupling scheme in use.

By projecting each of Eqs.(1) on its natural configuration
space basis, one obtains a system of coupled integrodifferen-
tial equations. In general one has an infinite number of
coupled equations. Note that, contrary to the 3N problem, the
number of partial FY amplitudes is infinite even when the
pair interaction is restricted to a finite number of partial
waves. This divergence comes from the existence of addi-
tional degree of freedomlz in the expansion of theK-type
components. Therefore we are obliged to make additional
truncations in numerical calculations by taking into account
only the most relevant amplitudes.

B. Boundary conditions

Equations(1) are not complete and should be comple-
mented with the appropriate boundary conditions. Boundary
conditions can be written in the Dirichlet form. First FY
amplitudes, for bound as well as for scattering states, satisfy
the regularity conditions:

Fi
as0,yi,zid = Fi

asxi,0,zid = Fi
asxi,yi,0d = 0. s8d

For the bound state problem, the wave function is exponen-
tially decreasing and therefore the regularity conditions can
be completed by forcing the amplitudesFi

a to vanish at the
borders of the hypercubef0,Xmaxg3 f0,Ymaxg3 f0,Zmaxg,
i.e.,

Fi
asXmax,yi,zid = Fi

asxi,Ymax,zid = Fi
asxi,yi,Zmaxd = 0. s9d

For the elastic scattering problem the boundary conditions
are implemented by imposing at large values ofz the
asymptotic behavior of the solution. In case ofN+NNNelas-
tic scattering we impose atZmax the solution of the 3N prob-
lem for all the quantum numbers, corresponding to the open
channelaa:

Fi
aasxi,yi,Zmaxd = f i

aasxi,yid. s10d

Functionsf i
aasxi ,yid are the Faddeev amplitudes obtained af-

ter solving the corresponding 3N bound state problem. In-
deed, below the first inelastic threshold, at large values ofz,
the solution of Eqs.(1) factorizes into a bound state solution
of 3N Faddeev equations and a plane wave propagating in
the z direction with the momentum kaa

=Îsm/"2dsEc.m.−E3Nd. One has

Fi
aasxi,yi,zid , f i

aasxi,yidf ĵ lzskaa
zid + tansddn̂lz

skaa
zidg.

There are two different ways to obtain the scattering ob-
servables. The easier one is to extract the scattering phases
from the tail of the solution, namely taking the logarithmic
derivative of the open channel’sK amplitude aa in the
asymptotic region:
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tand =

kaa
ĵ l8skaa

zid −
]zi

Fi
aasxi,yi,zid

Fi
aasxi,yi,zid

ĵ lskaa
zid

]zi
Fi

aasxi,yi,zid

Fi
aasxi,yi,zid

n̂lskaa
zid − kaa

n̂l8skaa
zid

. s11d

This result can be independently verified by using integral
representation of the phase shifts

sind = −
m

"2 E Faa

s123dsxW i,yW id ĵ lskaa
zdsV14 + V24 + V34d

3CsxW i,yW i,zWiddV. s12d

Here Faa

s123dsxW i ,yW id is a 3N bound state wave function com-
posed by particles(1,2,3). This wave function is considered
to be normalized to unity. Asymptotes of the wave function
CsxW i ,yW i ,zWid are considered to have the same normalization as
Faa

s123dsxW i ,yW id, i.e., they tend to

CsxW i,yW i,zWid = Faa

s123dsxW i,yW idf ĵ lzskaa
zid + tansddn̂lz

skaa
zidg.

s13d

A detailed discussion on these technical aspects can be found
in Refs.[26,30].

C. Numerical solution

In order to solve the set of integrodifferential equations—
obtained when projecting Eq.(1) in conjunction with the
appropriate boundary conditions into partial wave basis—
componentsFi

a are expanded in terms of piecewise Hermite
spline basis:

Fi
asx,y,zd = o cijkl

a SjsxdSksydSlszd.

In this way, integrodifferential equations are converted into
an equivalent linear algebra problem with unknown spline
expansion coefficientscijkl

a to determine. In the case of the
bound state problem the eigenvalue-eigenvector problem is
obtained:

Ac= EBc, s14d

whereA and B are square matrices, whileE and c are, re-
spectively, unknown eigenvalue(s) and its eigenvector(s) to
determine. In the case of the elastic scattering problem, a
system of linear algebra equations is obtained:

fA − Ec.m.Bgc = b, s15d

whereb is an inhomogeneous term imposed by the boundary
conditions, Eq.(10). Numerical methods used for solving
these large scaleN,107 eigenvalue problems and linear sys-
tems are given in Ref.[26].

III. RESULTS AND DISCUSSION

We have used in our calculations four different Doleschall
potentials derived in Refs.[17–23]. Hereafter, INOY96 de-
notes the SB+SDA version of the potential defined in Refs.
[17,18]. It consists in short-range nonlocal potentials in1S0
and 3SD1 partial waves continued with a local Yukawa tail
outside R=4 fm. The other partial waves are taken from
AV18. INOY03 denotes the IS version considered in Ref.
[22]. It is an updated version of INOY96, which has a
smaller nonlocality rangesR=2 fmd and provides a more ac-
curate description of 2N observables. INOY04 and INOY048
are the two most recent versions[23] having the same1S0
and 3SD1 potentials as INOY03, completed with the newly
defined nonlocal potentials inP and D waves. As in the
preceding models, higher partial waves are also taken from
AV18.

All the results have been obtained considering equal
masses for neutrons and protonssmn=mp=md with "2/m
=41.47 MeV fm2. As mentioned in Sec. II A we have used
isospin formalism, furthermore assuming the total isospin
quantum numberT to be conserved.

A. 3N system

We will start with the presentation of our results concern-
ing 3N systems. Binding energies for3H and3He nuclei are
summarized in Table I. In order to control our accuracy, we
have included in this table the results of AV18[4] with and

TABLE I. 3H and3He binding energies(in MeV) calculated with various versions of nonlocal Doleschall
potentials and with the AV18+UIX model. Results are compared to experimental values and previous
calculations.DB denotes the difference between3H and3He binding energies.

3H 3He DB

This work Other This work Other This work Other

INOY96 8.556 7.882 0.674

INOY03 8.497 8.482[22] 7.734 7.718[22] 0.763 0.764

INOY04 8.476 7.711 0.765

INOY048 8.464 8.481[23] 7.704 7.718[23] 0.760 0.763

AV18 7.616 7.618(2) [32] 6.914 6.917(2) [32] 0.699

AV18+UIX 8.473 8.474(4) [32] 7.739 7.742(4) [32] 0.734

Expt. 8.482 7.718 0.764

R. LAZAUSKAS AND J. CARBONELL PHYSICAL REVIEW C70, 044002(2004)

044002-4



without Urbana IX(UIX ) three-nucleon force[31]. One can
see that we are in close agreement with the benchmark cal-
culations of Ref.[32]. Our results concerning nonlocal po-
tentials are slightly different from those given in Refs.
[22,23]. The small deviationss<15 keVd come from isospin
breaking effects which were fully included in Doleschall cal-
culations[33] while, as discussed in the above section, they
were only approximately taken into account in ours. These
isospin effects for AV18+UIX have also been evaluated in
Ref. [32] and were found to be of about 5 keV, i.e., three
times less than in nonlocal models. In any case, the small
differences related to isospin approximation cannot overcast
the main achievement of these nonlocal interactions: the
ability to reproduce experimental 3N binding energies with-
out three-nucleon force. One can also note from Table I that,
while the binding energies obtained with AV18+UIX are in
good agreement with the experimental data, the value of
DB=B3H−B3Heis better reproduced by nonlocal models.

The analysis of the 3N binding energies is shown in Table
II. One can see that the major contribution to binding is due
to the nonlocal short-range interaction termskVnll. Contribu-
tions from the local part—coming either from the long-range

Yukawa tail or from higher partial waves—are marginal in
INOY96 model and remain less than 15% in the other ones.

Comparison between INOYs and AV18+UIX results is
instructive. Both models provide similar energies and rms
radii but they result from values of kinetic and potential en-
ergies that differ as much as,50%. The introduction of a
nonlocal interaction reduces the short-range repulsion be-
tween nucleons and makes the potential well more shallow.
Deuterons are already obtained with the same binding energy
and size as for the AV18 model but their wave function does
not have, at short distances, the sharp slope due to hard-core
repulsion. On the other hand, the weaker3S1-

3D1 coupling in
nonlocal models generates a smaller contribution of theD
state. All these effects reduce the average kinetic energy and
favor stronger binding in the 3N system, which is more com-
pact than the deuteron. If the average size of the 3N system
between two models is only slightly different, the average
kinetic energy of nucleons is sensibly smaller in the case of
nonlocal interactions.

The relative contributions(algebraic values) of the most
relevantVNN partial waves to the3H potential energy are
given in Table III. The column labeled “Others” denotes the
contribution of all partial waves not listed in the table. One

TABLE III. Relative contributions of differentVNN partial waves to triton potential energy.

3S1
1S0

3D1
3P2

3P0
1D2

3P1
1P1

3D2
3D3 Others

INOY96 57.94 29.24 12.78 0.1658 0.1506 0.05664 −0.3810 −0.04528 0.04939 0.01505 0.02518

INOY03 58.30 30.31 11.42 0.1350 0.1892 0.04260 −0.4214 −0.05317 0.06144 0.01634 0.02307

INOY04 58.35 30.33 11.38 0.1409 0.1579 0.04843 −0.4304 −0.05495 0.06303 0.06460 0.0113

INOY048 58.40 30.36 11.37 0.1478 0.7854 0.05061 −0.4368 −0.05711 0.06527 0.04333 0.0089

AV18 45.00 25.30 28.97 0.4466 0.2272 0.1840 −0.3977 −0.03244 0.07952 0.08769 0.1290

TABLE II. Expectation values of kineticskTld energies, rms radiussR=Îkr2ld, and proton radiusrp

corresponding to the binding energies of Table I. The values of the potential energy have been separated into
contributions coming from the nonlocalkVnll and local kVll terms of the potential. For the AV18+UIX
model,kVnll denotes the contribution of 3NF to potential energy. For3He, the expectation values of Coulomb
interaction have not been included.

Model kTl sMeVd −kVll sMeVd −kVnll sMeVd R sfmd rp sfmd

3H INOY96 34.24 0.776 42.02 1.656 1.561

INOY03 33.11 5.551 36.06 1.664 1.566

INOY04 33.01 5.564 35.92 1.667 1.567

INOY048 32.97 5.547 35.89 1.668 1.568

AV18 46.71 54.32 — 1.770 1.654

AV18+UIX 51.28 58.69 1.140 1.684 1.584

Expt. 1.60

3He INOY96 33.64 0.777 41.42 1.684 1.733

INOY03 32.33 5.512 35.21 1.701 1.752

INOY04 32.24 5.510 35.08 1.703 1.755

INOY048 32.20 5.525 35.05 1.704 1.756

AV18 45.68 53.30 — 1.809 1.867

AV18+UIX 50.22 57.60 1.095 1.716 1.767

Expt. 1.77
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can note the small role ofP waves. It was noticed a long
time ago that the triton binding energy basically depends on
1S0 and 3S1-

3D1 NN interactions. Indeed, in absence of the
tensor force, the 3N ground state would haveL=0 and S
= 1

2 as conserved quantum numbers and in this caseP waves
would not contribute at all. The3S1-

3D1 tensor coupling in-
troduces anL=2 admixture in the wave function. TheL=1
state appears only in the second order and contributes less
than 0.1%.NN P waves start acting only in the second order
as well, which explains their negligible contribution to 3N
binding energy, as shown in Table III. The reduction of the
tensor force is also sizable:3D1 waves’ contributions are con-
siderably smaller for Doleschall interactions than for AV18.

The calculatedn-d scattering lengths are presented in
Table IV. The quartet values4ad, corresponding to theJp

=3/2+ state, is independent of the interaction model in use,
furthermore being in full agreement with the experimental
one. This robustness is due to the strong Pauli repulsion,
prohibiting two neutrons to get close to each other. It follows
that only 3S1-

3D1Vnp waves are important in describing the
Jp=3/2+ state and still only through its well-controlled, long-
range part. Therefore, this state does not contain any off-shell
physics and can be successfully described by any potential
model, provided it reproduces theJp=1+ np scattering ob-
servables.

The integral representation of the phase shifts, Eq.(12), is
used to study the role of differentVNN partial waves. In Table
V are given the relative contributions to this integral. Their

sum, in algebraic values, is normalized to 100. Results for
n-d doublet scattering lengths2ad are presented in the upper
half of the table and the quartet ones in the lower part. It can
be seen that forJp=3/2+, NN waves other than3S1 contribute
by less than 0.1%, which confirms the statements above. The
situation is different for2a, which results mainly from a can-
cellation between1S0 and3S1 and is more sensitive to higher
NN partial waves, showing a deeper impact into the off-shell
physics. Due to the smallness of2a, all the interaction effects
have to be taken into account very accurately. In particular,
its value is very sensitive to the electromagnetic(e.m.) inter-
action terms. The differences between INOY predictions and
the experiment can therefore be caused by the absence of
e.m. terms in these models. On the contrary e.m. corrections
were properly included in AV18+UIX results. In any case
the small discrepancy with data has no consequences in phe-
nomenology, since2a is by one order of magnitude smaller
than 4a and its relative contribution to the scattering cross
sections is negligible.

B. 4N system

Our results concerning thea-particle binding energy are
displayed in Table VI. Two series of calculations were per-
formed, including(upper half of the table) and neglecting
(lower half) the Coulomb repulsion between protons. This
latter interaction was provided by the Argonne group in their
AV18 code[4] and takes into account proton finite size ef-
fects.

Calculations have been done by considering isospin aver-
aged pair interaction, i.e.,

Vt1t2
= Pnnst1,t2dVnn + Pppst1,t2dVpp + Pnpst1,t2dVnp,

wherest1,t2d are the isospin quantum numbers of FY ampli-
tudes in Eq.(5). They, respectively, representstx,T3d for
K-type amplitudes andstx,tyd for H-type ones.Pnn, Ppp, and
Pnp are the probabilities of finding, respectively,nn, pp, and
np pairs in a given isospin state. Note that, since the number
of protons and neutrons in thea particle is equal, one has
Pnnst1,t2d=Pppst1,t2d.

As in 3N calculations, we have neglected isospin breaking
effects, considering thea particle as a pureT=0 state. Con-

TABLE IV. Neutron-deuteronsndd scattering lengths(in fm)
calculated using Doleschall potentials.

2andsfmd 4andsfmd

INOY96 0.448 6.34

INOY03 0.523 6.34

INOY04 0.543 6.34

INOY048 0.553 6.34

AV18 1.26 6.34

AV18+UIX 0.595 6.34

Expt. 0.65±0.04 6.35±0.02

TABLE V. Relative contributions of differentNN interaction waves inn-d integral scattering lengths. The doublet value is in the upper
half of the table and quartet in the lower half.

3S1
1S0

3D1
3P2

3P0
1D2

3P1
1P1

3D2
3D3 Others

INOY96 −685.3 800.3 −20.14 2.664 −1.240 −5.097 −11.97 20.07 −0.7484 0.6967 0.7998

INOY03 −572.6 685.2 −16.73 1.955 0.2399 −4.523 −10.95 16.73 −0.6048 0.3972 0.8616

INOY04 −549.6 662.4 −16.28 1.997 −0.3862 −4.257 −10.31 15.66 −0.5025 0.3749 0.8932

INOY048 −538.5 650.8 −15.92 2.127 −1.076 −4.167 −9.308 15.25 −0.4694 0.3563 0.8825

AV18 −195.5 293.5 −4.283 4.779 0.6261 −0.3768 −5.944 6.190 −0.3316 0.9574 0.3281

INOY96 100.1 −0.0297 0.0183 −0.2708 −0.5036 −0.1510 0.8177 0.0190 −0.1644 0.0076 0.0312

INOY03 100.0 −0.0288 0.0199 −0.2694 −0.4640 −0.1529 0.8180 0.0192 −0.1641 0.00742 0.0315

INOY04 100.1 −0.0283 0.0197 −0.2707 −0.4938 −0.1515 0.8343 0.0189 −0.1653 −0.0006 0.0480

INOY048 99.98 −0.0279 0.0195 −0.2675 −0.4973 −0.1503 0.9043 0.0188 −0.1651 −0.0004 0.0479

AV18 100.1 −0.0400 0.0097 −0.2672 −0.4870 −0.2577 0.8081 0.0252 −0.1691 0.0096 0.0361
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tributions ofT=1, 2 admixture were calculated for AV18 and
AV18+UIX models in Ref.[8] and found to be as small as
10 keV. Results for the 3N system presented in the last sec-
tion showed that Doleschall nonlocal models are more sen-
sible to isospin breaking: they account for<15 keV in 3H
compared to<5 keV in AV18+UIX [32]. In any case, for
the a particle these effects should not exceed some 50 keV
and will not affect the physics discussed below. Notice also
that Coulomb corrections obtained by nonlocal models ex-
ceed by 70 keV those obtained by AV18, due to the different
rms radii they give.

As mentioned in Sec. II A, FY calculations have been
performed in thej- j coupling scheme. The following trunca-
tions in the partial wave expansion of amplitudes were used:
(i) VNN waves are limited tolxø3 but always include tensor-
coupled partners, i.e., involving the set1S0, 3SD1,
1P1, 3P0, 3PF2, 3P1, 1D2, 3DG3, 3D2, 1F3, 3FH4, 3F3, and
(ii ) lx+ ly+ lzø10.

Convergence was studied as a function ofj yz
=maxs j y, jzd for K-like components andj yz=maxs j y, lzd for
H-like components, starting withj yzø1. In Table VII we
present thea-particle binding energy results for INOY048
and AV18 models, respectively. The convergence is rather
smooth, except when passing fromj yzø5 to j yzø6. We
think this is an artefact of our truncation procedure which
keeps the basis set fixed in thex coordinate. Note that the
agreement between our results for the AV18 potential and
those given in Refs.[8,34] is very good. From the results
displayed in Table VII, as well as from analogous conver-
gence patterns seen in 3N calculations, we conclude that
Doleschall potentials converge more rapidly than AV18. This
is probably due to their weaker tensor force, resulting into

wave functions with stronger spherical symmetry.
To our opinion the main conclusion of the results dis-

played in Table VI is the possibility offered by the INOY
models to provide a satisfactory description ofA=4 nuclei in
terms of two-body forces alone, as it is already the case for
A=2 and 3. One can argue that this agreement is not yet fully
realized in their present version, for they all slightly overbind
the experimental value: the most favorable version
sINOY048d still exceeds the4He binding energy by 0.79
MeV. One should, however, note that this result is obtained
without adjusting any additional parameter with respect to
A=3. On the other hand, the difference between INOY96
and INOY048—due essentially to different parameterizations
of their nonlocal short-range parts—is 1.1 MeV. It seems
thus possible, by a finer tuning, to reach an even more pre-
cise description ofA=4 in a next generation of potentials. If
they are not contradicted by other aspects of the phenom-
enology, INOY models offer an alternative description per-
mitting to avoid three-nucleon forces.

Results of Table VI have been gathered in a Tjon plot—
see Fig. 3—which displays the correlation between3H and
4He binding energies for variousNN potentials. One can see
that, due to the small overbinding of thea particle, INOY
results (diamond symbols) are outside the line formed by
realistic local model predictions and, except for INOY96, are
almost superimposed to CD Bonn+Tucson-Melbourne(TM)
value.

INOY03, INOY04, and INOY048 models, which differ in
their P-wave structure, give very close results, while
INOY96, which has a different nonlocalS-wave structure,
falls out further apart. This indicates that theSwaves are the
key point in bindinga particles, and in order to improve the
agreement with the experimental value a better tuning in the
3S1−3D1 and1S0 could be helpful.

Proton rms radii predicted by INOY potentials deserve
some comments. One can see already in 3N systems(see
Table II) that they are slightly smaller than the experimental
ones. Fora particles we have only calculated average rms of
nucleons, without making a distinction between neutrons and

TABLE VI. Binding energyB (in MeV) and rms radiusR (in
fm) for the 4He ground state obtained with Doleschall and AV18
+UIX potentials. The lower part contains Coulomb force. Energies
presented in the two last lines of the table, respectively, for AV18
and AV18+UIX models have been taken from Refs.[8,34],
whereas the rms radius is from Ref.[6].

Potential kTl −kVl B R

INOY96 72.80 103.8 31.00 1.353

INOY03 69.89 99.94 30.04 1.369

INOY04 69.49 99.41 29.91 1.372

INOY048 69.46 99.36 29.88 1.372

AV18 98.69 123.6 24.95 1.511

Potential kTl −kVl −kEl R

INOY96 72.45 102.7 30.19 1.358

INOY03 69.54 98.79 29.24 1.373

INOY04 69.14 98.62 29.11 1.377

INOY048 69.11 98.19 29.09 1.376

AV18 97.77 122.1 24.22 1.516

97.80 122.0 24.23[8,34]

AV18+UIX 113.2 141.7 28.50[8,34] 1.44 [6]

Expt. 28.30 1.47

TABLE VII. Results of thea-particle binding energy(in MeV)
for INOY048 and AV18 models withVNN interaction limited tolx
ø3 (see text) and partial wave basis limited tolx+ ly+ lzø10. The
convergence was searched as a function ofj yz=maxs j y, jzd for
K-like components andj yz=maxs j y, jzd for H-like components. The
last line, denoted by an asterisk, contains additional calculations
with NN interaction waves up tojxø6 andlx+ ly+ lzø12.

j yz INOY048 AV18

1 28.094

2 28.661

3 28.967

4 28.971 23.897

5 28.974 23.920

6 29.084 24.233

7 29.085 24.226

* 29.085 24.223
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protons. The real value of protons rms should be slightly
larger. However, since Coulomb interaction has a very small
effect on thea-particle wave function(rms radii calculated
by taking Coulomb interaction into and without account dif-
fer only in fourth digit), this value cannot differ by more than
0.5%. One can, therefore, see that protons rms provided by
the INOY model are already by 6% smaller than the experi-
mental one, compared to 1–2 % in the 3N complex. This fact
clearly demonstrates that INOY interactions are too soft, re-
sulting in a faster condensation of the nuclear matter. In or-
der to improve the agreement one should try to increase the
short-range repulsion between the nucleons. This would in-
evitably imply a reduction of 3N binding energies, although
this reduction is not necessarily very large. If one chooses
the ITF 3S1−3D1 and ISA 1S0 potential versions from Ref.
[21], which give the smallest probabilities to find nucleons
close to each other in 2N systems, the resulting triton un-
derbinding will be of only,50 keV.

Let us finally consider then+3H elastic scattering. This is,
in principle, the simplest 4N reaction, being almost a pure
T=1 isospin state and free of Coulomb interaction. However,
its simplicity is only apparent. In fact,n+3H is a system with
very large neutron excessfh=sN−Zd /A=0.5g. The only
stable nucleus having a neutron excess equally large is8He.
Let us be reminded that the AV18+UIX Hamiltonian faces

increasing difficulties when describing neutron-rich nuclei.
The more elaborate 3NF model, namely Illinois[6], even
though being able to improve the agreement with experimen-
tal data, still suffers from similar discrepancies[26]. In ad-
dition, the n+3H system contains several near-threshold
resonances of negative parity(see Fig. 4), which strongly
affect the scattering observables nearEc.m.<3 MeV. Their
internal dynamics is richer than that for bound states and it is
not clear that they can be described by using the same reci-
pes as those used for solving the underbinding problem. The
description of then+3H cross sections in the resonance re-
gion is therefore a very challenging task for nucleon-nucleon
interaction models.

We have performed extensive calculations of then+3H
scattering states only by using the INOY04 potential. The
model dependency of the results was checked atEc.m.=0 and
3 MeV with INOY048. We present in Table VIII the calcu-
lated singletsa0+d and tripletsa1+d scattering lengths together
with the deduced coherent value

ac =
1

4
sa0+ + 3a1+d s16d

and the zero-energy cross section

FIG. 3. (Color online) Tjon line for the local and nonlocalNN
potentials.

FIG. 4. (Color online) Negative-parity resonance above then
+ t threshold.

TABLE VIII. n+3H singlet sJp=0+d, triplet sJp=1+d and coherent scattering lengths(in fm) along with
zero-energy cross sections. Different model results are compared with the experimental data.

Potential a0+ sfmd a1+ sfmd ac sfmd s sfm2d

INOY04 4.00 3.52 3.64 166.5

INOY048 4.00 3.52 3.64 166.8

AV18 4.27 3.71 3.85 187.0

AV18+UIX 4.04 3.60 3.71 173.4

Experimental 3.70±0.62 3.70±0.21 3.82±0.07[39] 170±3[38]

4.98±0.29 3.13±0.11 3.59±0.02[40]

2.10±0.31 4.05±0.09

4.45±0.10 3.32±0.02 3.607±0.017[41]
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ss0d = psa0+
2 + 3a1+

2 d. s17d

Results for AV18 and AV18+UIX models have also been
obtained and agree at the 1% level with those given in Ref.
[35].

The Jp=0+ and 1+ positive-parity states, determining the
low-energy behavior of then+3H cross section, do not have
anyS-matrix singularity, except the triton bound state thresh-
old. It is therefore not surprising that then+3H scattering
lengths are found to be correlated with 3N binding energy, in
a similar way asn+d doublet scattering length is Ref.[36].
This is the reason why realistic local interaction models, pro-
viding too low 3N binding energies, overestimaten+3H
zero-energy cross sections. Once triton binding energy is cor-
rected, for instance by implementing 3NF, a value close to
the experimental one is automatically obtained. From Table
VIII it can be seen that the Doleschall potential agrees with
the lower bound of experimentally measured zero-energy
cross section, whereas the AV18+UIX model coincides with
its upper bound. The zero-energy scattering cross section is
thus fairly well reproduced.

The situation with scattering lengths looks more precari-
ous. The values found in the literature are hardly compatible
with each other[37], as can be seen in Table VIII. The usual
way to getai is to express them in terms of the measured
quantitiesac andss0d, by reversing relations(16) and (17).
This procedure, represented in Fig. 5, is numerically un-
stable. Indeed, oncess0d is fixed, the domain of permitted
a1+ anda0+ values is given by the ellipse of Eq.(17) in the
sa0+,a1+d plane. Since there are uncertainties inss0d, the
permitted values of scattering lengths are trapped in between
two ellipsis(dotted curves in Fig. 5). On the other hand, each
measurement ofac restrictsa1+ and a0+ values to lie on a
straight line which spreads into a band due to experimental
errors(see Fig. 5). The lower band displayed in Fig. 5 fol-
lows from theR-matrix analysis resultac=3.607±0.017 fm
[41], while the upper one comes from the experimental mea-
surementac=3.82±0.07 fm from Ref.[39]. By assuming an

exact value ofac, e.g.,ac=3.624 fm given by the top of the
lower band, the present—though small—experimental error
in ss0d leads to two sets of solutions which spread over a
wide range:(i) a0+=f4.31−5.00g , a1+=f3.16−3.40g, and(ii )
a0+=f2.25−2.94g , a1+=f3.85−4.08g fm. This example illus-
trates the difficulty of extracting reliable values ofa0+ and
a1+. The accurate determination ofai would require us to
gain one order of magnitude in measuring bothss0d andac.

As it can be seen also from Fig. 5, the coherent scattering
length valueac=3.82±0.07 fm of Ref.[39] is in evident dis-
agreement with the experimentally measured zero-energy
cross sections, since it does not intersect thess0d ellipsis. In
this respect, the more recent valuesac=3.607±0.017 fm[41]
andac=3.59±0.02 fm[40] are more reliable. The Doleschall
nonlocal potential providesac=3.63 fm, one standard devia-
tion from these measurements, and seems to be more com-
patible with data than the AV18+UIX model. Figure 5 sug-
gests also that the real value of the zero-energy cross section
should coincide with the lower bound of the experimental
result.

The success in describingn+3H scattering lengths by the
Doleschall potential is visible at slightly higher energies as
well. In Fig. 6 we present our calculated elastic cross section
for the scattering energies in then+3H center of mass energy
range from 0 to 3 MeV. The Doleschall potential reproduces
experimental cross sections near its minima atEc.m.
<0.4 MeV. In this region both Malfliet-Tjon(MT) I-III—
the only potential known to us being capable to reproduce
the resonant region[43]—and AV18+UIX overestimate the
experimental value.

In previous works[30,37,42,44,45] we pointed out that
local realistic interaction models underestimate the cross sec-
tions near the resonance peak,Ec.m.=3 MeV. At that time,
calculations had been, however, performed with a limited
number of partial waves and the failure was attributed in Ref.
[47] to a lack of convergence. Recently we have consider-
ably increased our basis set and have shown that the dis-
agreement is indeed a consequence of nuclear models

FIG. 5. (Color online) Extraction procedure forn+3H singlet
sa0+d and tripletsa1+d scattering lengths from measurements of zero-
energy cross section(elliptic band) [38] and coherent scattering
length (linear bands) [39–41]. The values ofai are given by the
intersection of these two curves. Bandwidths are related to experi-
mental errors and, even being small, they make their determination
very unstable.

FIG. 6. (Color online) Comparison between experimental and
theoreticaln−3H total cross section calculated with several local
and nonlocalNN potentials.
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[26,46]. The convergence of our present results is shown in
Table IX, following the same truncation criteria as fora
particles(see Table VII). The number of FY partial ampli-
tudes involved inn+ t scattering calculations is considerably
larger than for a pure 0+ bound state and we have not been
able to go in the partial wave basis(PWB) as far than in
Table VII. One can, however, remark that the results dis-
played on Table IX converge pretty well, and provide at least
three-digit accuracy.

Implementation of 3NF is just able to improve zero-
energy cross sections and is not efficient at the resonance
energies. Doleschall nonlocal potentials seem to suffer from
a similar defect: the phase shifts obtained using INOY04 are
even slightly smaller in their absolute value(except for the
2− state) than those obtained with local potentials and the
total cross section is slightly worse. In fact the reduction of
positive-parity phase shifts is a consequence of improving
triton binding energies. As was previously discussed,n+3H
scattering lengths are linearly correlated with the triton bind-
ing energy. Whichever way one uses to increase triton bind-
ing, by means of nonlocal interaction or 3NF, the final result
will inevitably be a reduction of 0+ and 1+n+3H scattering
lengths and low-energy phase shifts(in absolute value). It
turns out that by the same way, we reduce in absolute value
the 0− and 1− phase shifts. Only 2− phases are slightly in-
creased in both AV18+UIX and Doleschall models. Thus we
have a real puzzle for the interaction models: on one hand
they have to reduce low-energy cross sections, while on the
other hand cross sections in the resonance region should be
significantly increased. The fact that all realistic interactions
systematically suffer in the resonance region lead us to be-
lieve that the underlying reason of this disagreement is not
related to the nonlocality or to 3NF effects. The observed
discrepancies have different background than the underbind-
ing problem. Where does this failure come from?

When analyzingn+3H cross sections in the resonance
region, one should first recall their origin. They are negative-

parity states and their symmetry is consequently different
from the positive-parity ones, which are dominated byS
waves. The good agreement of the scattering lengths pro-
vided by the Doleschall potential as well as its success in
reproducing the low-energy cross section minima make us
believe that the positive-parity phases are quite well repro-
duced in the resonance region as well. On the other hand,
negative-parity phase shifts should be rather far from reality,
causing a disagreement with the experimental data.

To understand the possible source of such a disagreement,
we have calculated—as for thend case—the relative contri-
bution of the differentNN partial waves in the integral ex-
pression of the phase shifts(12). The obtained results are
summarized in Table X. The first two rows correspond to the
0+ at E=0 andE=3 MeV. One can see that positive-parity
states are completely controlled by the interaction in3SD1
and 1S0 waves, at zero energies as well as atEc.m.=3 MeV,
close to resonance peak. The role of higher partial waves is
marginal. The situation changes dramatically in negative-
parity states(values in rows 3–5). The contribution of
P-wave interactions becomes comparable to theS wave. On
the other hand, the nontriviality of physics in the resonance
region is reflected by the strong compensation of differentP
waves as well as3D1 and3S1 components in the3SD1 chan-
nel. In addition, differentP waves dominate in different
states: in 2− state, the3P2 waves are the most relevant,
whereas3P0 is almost negligible; in the 0− state, the3P0
wave has the largest contribution, while 3P2 fades away.

Finally, we would like to comment that all the observables
whereNN P waves are contributing have a tendency to dis-
agree with the experimental data. A small disagreement can
already be seen inn-d doublet scattering lengths(Table IV),
whereas the triton, described by the same quantum numbers
but whereP waves are negligible, is perfectly reproduced.
Other examples could be the 3N analyzing powers[48,49],
as well as the increasing discrepancy when describing bind-
ing energies of neutron-rich nuclei(see Fig. 1). One should

TABLE IX. Convergence ofn+ t scattering lengths and selected phase shifts atEc.m.=2.625 MeV for the
INOY04 model. Corresponding mixing parameters are given in parentheses.

j yz a0
+ sfmd a1

+ sfmd ds1+d sdegd ds1−d sdegd

1 3.889 3.609 — —

2 3.995 3.508 −56.13 −0.757s0.803d 21.32 39.54s−42.05d
3 3.995 3.513 −56.12 −0.759s0.803d 21.39 39.74s−43.06d
4 3.995 3.515 −56.12 −0.759s0.803d 21.39 39.76s−43.16d

TABLE X. Relative contributions of differentNN interaction waves inn−3H integral scattering lengths(second half of the table).

Jp
Ec.m.

sMeVd 1S0
3S1

1P1
3P0

3P1
3P2

1D2
3D1

3D2
3D3 Others

INOY048 0+ 0.0 75.95 22.83 3.588 −1.301 1.942 −0.8112 −0.8661 −1.433 0.1145 0.006131 0.0188

INOY048 0+ 3.0 79.79 19.68 3.413 −1.046 1.913 −0.5796 −0.5796 −1.837 0.0745 0.005113 −0.0803

INOY04 0− 3.0 61.93 67.82 −0.3569 32.97 −26.58 2.190 1.897 −40.41 0.6489−0.6528 0.5551

INOY048 0− 3.0 64.16 70.14 −0.3769 32.83 −29.71 2.305 1.987 −41.90 0.6723−0.6919 0.5750

INOY048 2− 3.0 39.75 54.90 −0.1640 1.063 −6.893 14.29 0.0970 −3.182 0.1476 .0001 0.0092
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also recall thatP waves in most of theNN interactions are
tuned onn-p andp-p data. Moreover,p-p P waves are over-
cast by Coulomb repulsion, whilen-n P waves are not di-
rectly controlled by experiment at all. This study suggests
that charge symmetry breaking(CSB) and charge indepen-
dence breaking(CIB) effects can be sizable inn-n P waves
and provide a possible explanation for the disagreement ob-
served inn−3H resonance region.

IV. CONCLUSIONS

During the last decade, a series of nonlocalNN potentials
has been developed by Doleschall and collaborators and
were found to provide an overall satisfactory description of
the 2N and 3N system. If they left unsolved some of the
theoretical nuclear problems—like the so-calledAy puzzle—
they constitute an undoubted success for their ability to re-
produce the experimental binding energy of3H and3He nu-
clei without adding three-nucleon forces.

In this work, we have examined the possibilities for these
nonlocal potentials to describe the 4N system as well. This
system is a cornerstone in the nuclearab initio calculations
and a crucial test for the nuclear models, not only because
therein the underbinding problem manifests in its full
strength, but also because of the rich variety of scattering
states it possesses.

We have found that nonlocalNN models could well pro-
vide 3N and 4N binding energies in agreement with the ex-
perimental data without making explicit use of three-nucleon
forces. They offer a solution to cope with the nuclear un-
derbinding problem other than the one offered by the local
plus 3NF philosophy.

In their present form, they overbind4He by some 0.7
MeV, a discrepancy much smaller than all the existing mod-

els and which reverses the lack of binding observed in most
realistic potentials. The fluctuations in the predictions be-
tween different versions of the nonlocal models suggest that
a finer parametrization of their internal nonlocal part could
be enough to make them fully successful in that point. The
current version seems to be too soft in the short-range region,
thus giving slightly too small rms radii of light nuclei.

By calculatingn+3H scattering states, we have found that
Doleschall models are also very encouraging in describing
the low-energy parameters, providing an even better descrip-
tion than Nijm II or AV18+UIX. However, they fail also in
reproducing the elastic cross section few MeV above, in the
resonance region. In a series of preceding works
[26,42,44,46] we have shown that local realistic interactions,
even implemented with 3NF, underestimate the cross sec-
tions at the resonance peakEc.m.=3 MeV. Unfortunately, the
nonlocal models do not solve this problem. On the contrary,
they even provide slightly smaller values of the cross sec-
tion. We believe than the reason for this failure is common to
all realistic models and lies in the nucleon-nucleonP waves
themselves. The analysis of their contribution shows that,
contrary to4He binding energy, they play a crucial role in the
n+3H cross sections. If then-p P waves seem to be well
controlled by the experimental data, one still has a relative
freedom in then-n ones to improve the description.
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