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A method is developed for treating the effect of the neutron-proton mass difference in isospin-violating
nuclear forces. Previous treatments utilized an awkward subtraction scheme to generate these forces. A field
redefinition is used to remove that mass difference from the free Lagrangian(and hence from asymptotic
nucleon states) and replace its effect by effective interactions. Previous calculations of static class II charge-
independence-breaking and class III charge-symmetry-breaking potentials are verified using the new scheme,
which is also used to calculate class IV nuclear forces. Two-body forces of the latter type are found to be
identical to previously obtained results. A three-body force is also found. Problems involving Galilean invari-
ance with class IV one-pion-exchange forces are identified and resolved.
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I. INTRODUCTION

Although isospin violation in nuclear physics is a rather
mature topic[1,2], it has recently undergone a renaissance
because of chiral perturbation theorysxPTd [3,4]. Many of
the phenomenology-based mechanisms that underlie the tra-
ditional approach to isospin violation in nuclear forces have
been rederived inxPT [5–12]. Most of the results of this
reanalysis are the same as those of the traditional approach,
which should be no surprise. There have nevertheless been
several mechanisms that had been incompletely calculated
using older techniques and have been recently completed in
xPT, such as the staticp-g exchange force[7], the two-pion-
exchange charge-independence-breaking(CIB) potential[8],
and the two-pion-exchange charge-symmetry-breaking
(CSB) potential[12]. The primary innovation ofxPT, how-
ever, is the use of power counting to order the sizes of inter-
actions and(Lagrangian) building blocks in a well-defined
way [3,13] so that it is apparent which interactions and
mechanisms are dominant. In some cases this leads to the
identification of important contributions that had not been
considered before, which in turn give results that are signifi-
cantly different from traditional approaches. An example is
charge-symmetry breaking inpn→dp0, where previously
ignored contributions required by chiral symmetry change
the sign of the predicted front-back asymmetry[14], in
agreement with subsequent data[15].

The most important attribute of effective field theories is
the underlying power counting that allows a systematic or-
ganization of calculations. In the case ofxPT, which is the
low-energy effective field theory based on the symmetries
and scales of QCD[3], the relevant scales for constructing

nuclear potentials(using Weinberg power counting[3,5]) in-
clude the pion decay constantfp,93 MeV, which sets the
scale for pion emission or absorption, the pion massmp,
which sets the scale for chiral-symmetry breaking, the typi-
cal nucleon momentumQ,mp, which is an inverse correla-
tion length in nuclei, and the characteristic QCD scaleL
,mr, which is the scale of QCD bound states appropriate for
heavy mesons, nucleon resonances, etc. The latter are frozen
out and do not explicitly appear, although their effect is
present in the counterterms of the effective interactions. The
resulting field theory is a power series inQ/L, and the num-
ber of powers of 1/L (e.g., n) is used to label individual
terms in the Lagrangian(viz., Lsnd). In this way higher pow-
ers denote smaller terms, and this is an integral part of the
organizing principle ofxPT.

Chiral perturbation theory was originally applied[3,5,16]
to ordinary strong forces(class I in the terminology of Ref.
[1]) and, for the two-nucleon potential, these calculations
have now been completed at the two-loop level[17]. A major
success of the program has been the numerical determination
of the coefficients of several counterterms in thexPT La-
grangian whose role had previously been restricted to pion-
nucleon scattering. This determination used partial-wave
analysis of nucleon-nucleon scattering data to isolate the
contributions proportional to those counterterms[18].

The xPT formalism was extended in Ref.[5] to incorpo-
rate isospin violation in nuclear forces. The extended theory
has now been applied to charge-independence-breaking
forces [6–10] (class II forces) and ordinary charge-
symmetry-breaking forces[6,9–12] (class III forces). The
latter are determined by differences between “mirror” forces
in a given multiplet, such as the difference betweenpp sT3
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= +1d and nn sT3=−1d forces within theT=1 isomultiplet
(for later notational consistency we will uniformly use “3”
rather than “z” to refer to the third component of an isospin
vector). In this work we will complete the list by treating
class IV charge-symmetry-breaking two-nucleon forces[1],
which lead to transitions(only) between theT=0 andT=1
isomultiplets in thenp system. We also note that the scales of
isospin violation inxPT were used in the past[5] to prove
that these forces satisfy (in magnitude)
class I.class II.class III.class IV.

While electromagnetic interactions break charge indepen-
dence in general, the up-down quark-mass difference breaks
charge symmetry specifically. CSB observables can, there-
fore, be linearly sensitive to the up-down quark-mass differ-
ence, while CIB observables that are charge symmetric at
best depend quadratically on the quark-mass difference.
Since the quark-mass difference is small on a typical had-
ronic scale, CIB is for all practical purposes dominated by
electromagnetism. Interest in quark masses takes us to CSB.

At low energies, CSB originates from a variety of sources,
but the terms favored by power counting are associated with
the nucleon-mass difference. In general, in order to under-
stand CSB at low energies we need to include the effects of
the nucleon-mass difference. In Sec. II we invent a field re-
definition that removes the nucleon-mass-difference term
from the low-energy effective Lagrangian at the expense of
new interactions. In Sec. III we show that the previous cal-
culations of class II and III forces are very easily reproduced
in the new field basis. The implications for class IV forces in
xPT are discussed in Secs. IV and V.

II. THE NUCLEON-MASS DIFFERENCE

The mass difference between the proton and neutron,
dMN=mp−mn, plays an important role in charge-symmetry
breaking. This mass difference arises from two separate
physical mechanisms. One of these is the up-down quark-
mass difference, which dominates and makes the neutron
heavier than the proton. The other mechanism is hard elec-
tromagnetic (e.m.) interactions at the quark level, which
tends to make the proton heavier than the neutron. The di-
mensionless parameter associated with up-down quark-mass-
difference isospin violation isemp

2 /L2,1%, wheree=smd

−mud / smd+mud,0.3 and we have chosenL to be the mass
of the r meson. The parameter associated with hard e.m.
interactions isa /p, 1

4%, wherea is the fine-structure con-
stant. In addition to these mechanisms, which have an origin
in short-distance physics, there are also important soft-
photon contributions(such as the Coulomb interaction be-
tween protons) that dominate isospin violation in nuclei. All
three of these mechanisms contribute to class IV forces.

Because asymptotic nuclear states individually reflect the
appropriate nucleon masses, previous work on class III
forces noted that only those nuclear intermediate states
whereZ−N changes will contribute to isospin violation. An
example would bepp scattering with the emission of twop+

mesons(creating annn intermediate nucleon configuration
with a different mass) and subsequent reabsorption of the
pions. In Ref.[12] we adopted a subtraction procedure that

accomplished the necessary bookkeeping, although it was
somewhat awkward and would have been difficult to gener-
alize to more complicated operators(such as three-body
forces). In what follows below we will use a field redefini-
tion procedure that simply removes then−p mass difference
from the asymptotic states[in favor of an average nucleon
massMN= 1

2sMn+Mpd] and compensates for this by intro-
ducing new effective interactions determined bydMN that
must be treated in perturbation theory.

We illustrate the method in the lowest chiral orders, in
which case only the lowest orders indMN appear. In addi-
tion, for the sake of simplicity, we display in the equations
below only those few terms of most interest for the nuclear
potential. It should of course be kept in mind that thexPT
Lagrangian includes all terms allowed by QCD symmetries,
and that at each chiral order all powers of pion fields are
required by chiral symmetry.

The leading-order Lagrangian inxPT is

Ls0d =
1

2
fṗ2 − s¹W pd2 − mp

2p2g + N†Si]0 −
1

4fp
2 t · sp 3 ṗdDN

+
gA

2fp

N†sW ·¹W st · pdN + ¯ , s1d

while the sub-leading-order Lagrangian is given by

Ls1d =
gA

4fpMN
N†hsW · pW ,t · ṗjN +

c̃2

fp
2 N†Nṗ2 + ¯ . s2d

In these equationsgA=Os1d sgA.1.26d and c̃2=Os1/Ld
sc̃2,−2 GeV−1d are parameters not determined by chiral
symmetry, and “…” denotes terms that we do not require
[19]. There are threeLs2d terms with one pion interacting
with a single nucleon; we will comment further on them
below.

In addition to these class I interactions we have isospin-
violating interactions, a comprehensive list of which can be
found in Ref.[5]. We are here particularly interested in the
interactions generated by the quark-massfdMN

qm

=Osemp
2 /Ldg and hard-photonfdMN

em=OsaL /pdg contribu-
tions to the nucleon masssdMN=dMN

qm+dMN
emd,

Liv = −
dMN

2
N†t3N +

dMN
qm

4fp
2 N†t · pp3N +

dMN
em

4fp
2 N†st3p2

− t · pp3dN −
1

2
dmp

2sp2 − p3
2d +

b̄1

4fp
2 sp2 − p3

2dN†N

+
b̄2

4fp
2 sp 3 ṗd3N

†N + ¯ . s3d

For reasons that will soon become obvious we have also
shown explicitly the pion-mass-splitting term and a pion-
nucleon seagull with the same transformation properties. The
pion-mass-splitting term is dominated by the electromagnetic
contribution dmp

2 .sdmp
2dem=OsaL2/pd fdmp

2

.s38 MeVd2g, since the contribution from the quark masses
is small,sdmp

2dqm=Ose2mp
4 /L2d. Because of the quark-mass

contribution,dMN counts formally as chiral ordern=1. (See,
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however, the discussion in Sec. V.) Noting thata /p is nu-
merically comparable toemp

3 /L3 and adjusting our power
counting of e.m. terms accordingly, the pion-mass-splitting
term then counts asn=1, and all other isospin-violating in-

teractions are of higher order[5]. [For example,b̄1 is

OsaL /pd andn=2, while b̄2 is Osa /pd andn=3.]
The average nucleon massMN has already been removed

from consideration by means of the time-dependent transfor-
mationN=e−iMNtN8, which uses the fact that only the second
term in Eq.(1) contains a time derivative of a nucleon field,
while the exponential multiplyingN8 commutes with every-
thing else. That procedure will not work straightforwardly
for the dMN term becausedMNt3 does not commute with
other nucleon isospin operators inLsnd. One can eliminate
the first term in Eq.(3) by an appropriate redefinition of the
nucleon field,

N → e−idMNtt3/2N ; cosS1

2
dMNtD − it3 sinS1

2
dMNtD .

s4d

In the process, however, we create interactions that are ex-
plicitly dependent on the timet, unless we also redefine the
pion fields. Using Eq.(4) we find

eidMNtt3/2tie
−idMNtt3/2 = AsdMNtdti + BsdMNtdei j 3t j

+ CsdMNtddi3t3, s5d

where

Aszd = cosszd,

Bszd = − sinszd,

Cszd = 1 − cosszd. s6d

The transformations for the Cartesian components ofti show
that they are identical to those of a coordinate rotation about
the z axis in isospin space by an angle −dMNt. This imme-
diately suggests the corresponding form for the pion trans-
formation:

pi → AsdMNtdpi + BsdMNtdei j 3p j + CsdMNtddi3p3. s7d

To leading order indMNt this pair of transformations is
nothing more than the usual SUs2dV generators for(electric)
charge conservation. Application of these transformations
demonstrates thatp2, p3, t ·p, andt3 are invariant, as one
expects. Only terms that involve a time derivative in the
Lagrangian are not invariant, and these will generate new
Lagrangian terms[20] that compensate for the rotating iso-
spin coordinate system, each of them modifying the isospin-
violating Lagrangian. Each time derivative can introduce one
power ofdMN into the final result in Eq.(8). BecausedMN is
of ordern=1, a new term generated by an isospin-symmetric
term of ordern will have ordern+1 or higher. Note that
terms with an even number of time derivatives can generate
new interactions with even powers ofdMN. Although the
original nucleon-mass-difference term in Eq.(3) is charge-
symmetry breaking, some of the new interactions will be
charge symmetric.

Since the maximum number of derivatives at ordern is
n− f /2+2,wheref is the number of fermion fields, the above
field redefinition generates a finite number of new terms at
each chiral order. Four new terms arise from transforming
Ls0d. One of them comes from the nucleon kinetic term, and
is equal in magnitude and opposite in sign to the first term in
Liv. Another new term comes from the Weinberg-Tomozawa
interaction(the chiral partner of the nucleon kinetic term),
and has the form of the third term inLiv (the chiral partner of
the nucleon EM mass-difference term). The third and fourth
terms come from the pion kinetic term. In addition, two new
terms are generated byLs1d, and so on.

The sum of the new isospin-violating contributions to our
Lagrangian together with the surviving terms from Eq.(3) is

Liv8 = dMNsp 3 ṗd3 +
dMN

qm

4fp
2 N†ht · pp3 + fst 3 pd 3 pg3jN

−
1

2
sdmp

2 − dMN
2 dsp2 − p3

2d −
gA

4fp

dMN

MN

3N†hsW · pW ,st 3 pd3jN +
1

4fp
2 sb̄2 + 8c̃2dMNdsp 3 ṗd3

3N†N +
1

4fp
2 sb̄1 + 4c̃2dMN

2 dsp2 − p3
2dN†N + ¯ . s8d

Because the quark-mass-difference part ofdMN counts like
two derivatives[12], the first and second terms in Eq.(8) are
of ordern=1, the second part of the third and fourth and the
fifth terms are of ordern=2, and the second part of the sixth
term is of ordern=3. The Ls2d interactions generate one
single-nucleon contribution proportional todMNṗ /MN

2 ,
which hasn=3 (plus another of orderdMN

2 with n=4). Note,
however, that in the nuclear potential the energy transferred
by pions isOsQ2/MNd, and a time derivative produces con-
tributions that are effectively the size of contributions with
two space derivatives. Thus the one-pion-exchange potential
(OPEP) derived from this interaction effectively contributes
at ordern=4. The fifth and sixth terms in Eq.(8) and terms
stemming fromLsnù2d produce a higher-order potential than
we wish to consider.

Our new Lagrangian isLs0d+Ls1d+Liv8 +¯. The nucleon-
mass difference has been entirely removed from the
asymptotic states and now resides only in the new effective
interactions[see, however, the discussion below Eq.(22)].
Among the latter we find novel two-pion seagull terms. The
field redefinition presented here is thus particularly suited to
the study of nuclear processes.

III. CLASS II AND III FORCES

Like any other field redefinition, Eqs.(4) and (7) do not
introduce any new physics; they only produce a new—in this
case, useful—bookkeeping of various contributions. We can
check this result by repeating previous calculations of
isospin-violating forces. Three vertices corresponding to the
various terms in Eq.(8) are illustrated in Figs. 1(a)–1(c).
Figure 1(d) depicts the usual isospin-conserving OPEP
(which is class I), while 1(e) is generated by vertex 1(b) (and
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corresponds to class IV) and 1(f) is generated by vertex 1(a).
The latter includes a term that is proportional to the energy
transfer(q0, or the time component of the four-momentum
transferqm) between the two nucleons and hence vanishes in
the center-of-mass(c.m.) frame. It has a class IV type of
isospin structure, and we will treat both OPEP graphs[i.e.,
Figs. 1(e) and 1(f)] in the next section.

Figure 1(a) also contains the pion-mass splitting and gen-
erates well-known, relatively large class II forces. The new
dMN

2 term in the pion-mass splitting results in small class II
forces. For example, it generates a small class II OPEP that
has been obtained before[5]. However, the field redefinition
above makes it obvious that the contribution of thisdMN

2

term to higher-order class II forces can also be obtained from
the correspondingdmp

2 contribution by the straightforward
substitution dmp

2 →dmp
2 −dMN

2 . In particular, this remark
holds for the two-pion-exchange potential of Ref.[8]. These
new terms are all expected to be small because formallydMN

2

is the size of the expected small quark-mass contribution to
dmp

2, Ose2mp
4 /L2d. In addition, the discussion in Sec. V sug-

gests thatdMN
2 in pion-mass splitting should be treated as if

it were n=4, rather thann=2, since it is approximately18%
of the usual pion-mass difference.

We can also reproduce the calculation of static class III
two-pion-exchange potentials that was performed in Ref.
[12]. The remaining graphs to consider are two-pion-
exchange graphs such as those in Fig. 2, which must be
modified by introducing Fig. 1(a) into pion propagators, Fig.

1(b) into single-pion vertices, or Fig. 1(c) into two-pion
seagull vertices. We will ignore the modifications from Fig.
1(b) because they are nonstatic, and for this reason are higher
order in power counting than was calculated in Ref.[12].
Likewise, thec̃2 interaction in Fig. 1(c) contributes to the
potential at higher order.

The remaining terms in the seagull, Fig. 1(c), consist of
the original seagull[that in Eq.(3)] plus thedMN modifica-
tion induced by the transformations(4) and (7). Like the
original seagull, the seagull modification vanishes in Fig.
2(d) to orderdMN because of isospin symmetry. The seagull
terms in Fig. 2(c) give Eqs.(9b) and (9c) of Ref. [12]; the
original seagull gave Eq.(9c), while the seagull modification
reproduces Eq.(9b). If one ignores the energy transfer be-
tween nucleons and other nuclear-energy dependence(which
is a higher-order correction), the graphs that result from
pion-propagator modification by Fig. 1(a) are greatly simpli-
fied by a symmetry that develops. The integral over the loop
four-momentumsknd then has a simplified time component
(i.e., the integral over the loop energyk0), which can be
classified according to the paritysk0→−k0) of thek0 factors.
The ṗ factors are odd, since each generates one factor ofk0.
Each inverse pion propagator becomes proportional tosk0d2

and is therefore even under a sign change, while each
nucleon propagator becomes

1

±k0 + ie
= ± P 1

k0 − ipdsk0d, s9d

whereP denotes a principal-value integral(odd ink0), while
the d-function part fdsk0dg is an even function ofk0. All
modifications of Fig. 2 produced by inserting Fig. 1(a) only
once are found to contain an odd number ofk0 factors, and
have at most one surviving nucleon propagator. Thus if we
use Eq.(9) the k0 factors all vanish upon(symmetric) k0

integration except for thed-function part. In this way only
the modification of the crossed-box graph in Fig. 2(b) con-
tributes (the remaining graphs vanish, as they did in Ref.
[12]). Performing the trivial integral over thed function
leads directly to Eq.(9a) of Ref. [12].

Therefore, the formalism for treating isospin violation
from dMN using Eq.(8) reproduces previous results but is
much more direct and transparent. Although we have not
calculated the corresponding three-nucleon isospin-violating
forces, it should prove much easier with the new approach.
We turn now to the remaining component(class IV) of the
two-nucleon potential.

FIG. 1. Vertices created by removal of the nucleon-mass differ-
ences from the basis states of our Hilbert space are shown in(a),
(b), and (c), while the usual one-pion-exchange graph is shown in
(d) and additional graphs generated by the interactions(a) and (b)
are illustrated in(f) and(e). Pions are depicted as dashed lines and
nucleons as solid lines.

FIG. 2. Two-pion-exchange graphs that contribute to isospin-
conserving-nucleon scattering.
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IV. CLASS IV FORCES

Two-body class IV forces have traditionally been classi-
fied into two types with the generic forms in the c.m. frame

Va
IVsrWd = st1 3 t2d3ssW1 3 sW2d ·LWwasrd s10d

and

Vb
IVsrWd = st1 − t2d3ssW1 − sW2d ·LWwasrd s11d

(where rW=rW1−rW2). These forms have been simplified by ig-
noring possible factors ofpW2, the square of the common c.m.
nucleon momentumpW , and thus correspond only to the low-
est order in power counting. Given an isospin operator that is
antisymmetric under the interchange of the two nucleons,
parity conservation(requiring symmetric radial forms) then
dictates an antisymmetric combination for the spin vector.
We note, however, that since antisymmetric isospin vectors
can only induce transitions betweenT=0 and T=1 (two-
nucleon) states, the two forms in Eqs.(10) and(11) are pro-
portional and effectively equivalent, as are the two spin-
vector forms. Thus in an operational sense there is only a
single class IV type, either(10) or (11), even though the two
isospin(spin) forms have different time-reversal properties.

The dominant class IV forcesn=2d is generated by one-
pion exchange using the fourth term in Eq.(8) in Fig. 1(e). A
simple calculation in configuration space leads to

Vp;1e
IV = −

dMNgA
2

8fp
2MN

o
iÞ j

sti 3 t jd3hsWi · pWi,sW j ·¹Wi jh0sr ijdj,

s12d

where

h0szd =
1

4pz
e−mpz. s13d

We have chosen to write the complete frame-dependent form
of Vp;1e

IV for reasons that will become obvious. If one now
writes the mass of theith nucleon in isospin notation[which
is implicit in Eq. (3)] as

Mi = MN + 1
2ti

3dMN, s14d

which expresses the total mass in terms of the 3 component
of the total isospin

Mt = o
i=1

A

Mi = AMN + 1
2dMNt3, s15d

we can separate each nucleon’s momentum into a c.m. part

sPW d and an internal partsKW d using the usual relations

pWi = KWi +
Mi

Mt
PW . s16d

Using Eqs.(14)–(16) we decomposeVp;1e
IV into the form(10)

for the internal part,

wasrd =
dMNgA

2

4fp
2MN

h08srd
r

, s17d

plus a frame-dependent part

Vp;1e
IV sPWd = −

dMNgA
2

4fp
2MN

o
iÞ j

sti 3 t jd3sWi · PWsW j ·¹Wi jh0sr ijd.

s18d

Although this form resembles frame-dependent relativistic
corrections to nuclear potentials, which were exhaustively
treated in the past[21], it has too few powers of 1/MN to be
a relativistic correction to OPEP.

To clarify the role this term plays it is necessary to deter-
mine the contribution of Fig. 1(f), which also hasn=2 but
vanishes in the two-nucleon c.m. frame(and hence is usually
ignored). That contribution is

Vp;1f
IV =

dMNgA
2

32fp
2MN

o
iÞ j

sti 3 t jd3sWi ·¹Wi jsW j ·¹Wi j

3hpWi + pW j, · rWi jh0sr ijdj. s19d

The decomposition of this potential into internal and c.m.
parts leads to

Vp;1f
IV sPWd =

dMNgA
2

8fp
2MN

o
iÞ j

sti 3 t jd3f2sWi · PWsW j ·¹Wi jh0sr ijd

+ PW · rWi jsWi ·¹Wi jsW j ·¹Wi jh0sr ijdg s20d

for the c.m. part, while the internal part is obtained by re-

placingpW i andpW j by KW i andKW j, respectively. Since the sum of

all KW i in any system vanishes, this force vanishes in a two-

body system. In a three-body system, however,KW i +KW j =

−KW k (i , j ,k all different), and this force does not vanish. The
OPEP from Fig. 1(f) is therefore a peculiar three-body force
that violates isospin conservation. Although it has class IV
isospin dependence, this force does not mix spin representa-
tions in the manner of two-body class IV forces. Note that
this effect is present inany three-or-more-body system where
momentum is transferred to the two-nucleon system.

Adding thePW -dependent terms in Eqs.(20) and (18) to-
gether we arrive at a relatively simple form

Vp
IVsPWd =

dMN

2MN
o
iÞ j

sti 3 t jd3PW · rWi jvp
i j , s21d

whereas the usual(class I) OPEP is given by

Vp =
1

2o
iÞ j

ti · t jvp
i j . s22d

The origin of this unusual force can be understood in simple
terms. Consider a neutron and a proton placed some distance
apart, and place the origin of coordinates on the neutron(for
simplicity). The center of mass of the system is slightly
closer to the neutron than the proton because the neutron is
heavier. The exchange of a charged pion interchanges the
neutron and the proton, which causes the c.m. to move
(slightly) further from the origin. Thus with differing neutron
and proton masses theusualc.m. does not move in a straight
line in the absence of an external force. This problem is
Galilean in origin (see Refs.[22]) and is unrelated to the
specific problems that arise from special relativity(such as
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the Thomas precession and Lorentz contraction).
Forming the usual c.m. coordinate vector

RWc.m.= o
i=1

A
MirWi

Mt
=

AMN

Mt
RW0 +

dMN

2Mt
o
i=1

A

ti
3rWi , s23d

with RW 0=oi=1
A rWi /A, it then follows that

iPW · fRWc.m.,Vpg = Vp
IVsPWd, s24d

where the latter quantityfVp
IVsPW dg was derived in Eq.(21)

and therefore reflects the fact that OPEP and the usual non-
relativistic c.m. coordinates do not commute. Note thatMt
commutes withVp, and the nonvanishing commutator is gen-
erated by thedMN term in Eq.(23).

The presence of the termVp
IVsPW d in the potential is re-

quired in order to preserve the Galilean invariance of the
matrix element of the HamiltonianH. Galilean invariance
requires that in an arbitrary frame of reference we have

kPWuHsPWduPWl =
PW2

2Mt
+ E, s25d

where the constantE is the useful part of the matrix element
(nuclear binding energy, for example). The presence of

Vp
IVsPW d in HsPW d would ordinarily spoil Eq.(25), but the wave

function uPW l is defined asuPW l=expsiPW ·RW c.m.du0l, and we re-

call that RW c.m. does not commute withVp. Expanding the
plane wave to first order indMN we find

kPWuVp + Vp
IVsPWduPWl > kPW8uVp + Vp

IVsPWd

− iPW · fRWc.m.,VpsPWdguPW8l

; kPW8uVpuPW8l, s26d

where uPW 8l=expsiPW ·RW 0du0l. This cancellation of terms pro-
portional todMN therefore preserves the Galilean structure
of the matrix element of the Hamiltonian. In other words the
formalism we have developed remembers that we have re-
moved dMN from asymptotic states, and corrects for this

change by introducingVp
IVsPW d. The corresponding Lorentz

case[treating relativity properly in the matrix element in Eq.
(26)] is considerably more complicated.

What other class IV forces are expected to be significant?
Other forces arise from short-range CSB mechanisms in
higher orders. We note that there are non=3 terms. The
leading-order short-range interaction is of ordern=4 and has
the form

LIV =
id1

2fp
2 sN†sitaNd¹lfN†s jtbs¹Q − ¹WdmNgeab3ei jkeklm,

s27d

with d1=Osemp
2 /L4d. All other possibilities can be manipu-

lated into this form. The origin of this interaction cannot be
asserted from the symmetries of QCD, and therefore depends
on the details of the QCD short-range dynamics. In the ex-
isting literature, this interaction has been modeled by various

mechanisms involving meson exchange. When the mesons
are frozen out, Eq.(27) results. An example of this type of
interaction is provided byr-v mixing, which is usually con-
structed by imitating one-photon exchange[24]. As demon-
strated in Ref.[6] the usual form of the class IIIr-v mixing
force has “natural” size. We will comment below on the cor-
responding class IV form. Note that in addition to this short-
range interaction, atn=4 there exist also loop diagrams that
give rise to class IV forces. For example, we have one-loop
graphs involving the fourth term in Eq.(8); however, be-
cause they should be suppressed by,mp

2 / s4pfpd2 with re-
spect to the OPEP term above, the discussion in the next
section suggests that these graphs might contribute little. It is
likely that the most important loop diagrams involve the fifth
term in Eq.(8), sincec̃2 is relatively large due to contribu-
tions from the delta isobar.

In addition to these short-range CSB mechanisms, there
exist class IV forces from photon exchange. The dominant
soft e.m. interaction is the Breit interaction produced by one-
photon exchange. Since the only two-nucleon system with a
class IV interaction is thenp system, only the spin-orbit and
spin-other-orbit[23] parts of the Breit interaction are of this
type, and they correspond to the magnetic moment of the
neutron interacting with the charge of the proton. This pro-
duces a class IV interaction of the type(11) with

wb
gsrd =

akn

4MN
2 r3 , s28d

wherekn=Os1dskn.−1.91d is the neutron anomalous mag-
netic moment. This interaction isOsQ2/MN

2 d smaller than
Coulomb exchange. If one takesa /p asemp

3 /L3, this inter-
action counts asn=3.

V. COMMENTS AND CONCLUSIONS

Much of the recent interest in class IV CSB forces has
centered around two sets of very different experiments. The
first set of three experiments measured the difference in neu-
tron and proton analyzing powers in elasticnp scattering at
183 MeV [25], 347 MeV [26], and 477 MeV[27] neutron
(lab) energies. Some recent reviews of CSB that discuss
these measurements are listed in Ref.[28]. Agreement be-
tween theory and experiment is quite good. Three dominant
mechanisms contribute to the theoretical description:(a) the
e.m. Breit interaction between the neutron magnetic moment
and the proton charge[given by Eq.(28)]; (b) the class IV
OPEP given by Eq.(17); (c) the short-ranger-v mixing
force. Additional small contributions fromr exchange and
2p exchange are sometimes included. OurxPT derivation
agrees with the previously obtained results for these forces.

The Breit-interaction class IV force was first mentioned in
the context of class IV experimental tests by Refs.[1,29]. It
is an important contribution and is included in all compre-
hensive calculations.

The importance of the nucleon-mass difference in the
presence of one-pion exchange in a relativistic model was
emphasized by Gersten[30], who did not calculate a poten-
tial. A potential was calculated in Ref.[31], which verified
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that both pseudovector and pseudoscalar(relativistic) cou-
pling of a pion to a nucleon gave identical results for the
class IV OPEP, presumably because the overall momentum
dependence of the force is determined by Galilean invari-
ance. We note, however, that other terms would not be the
same; pseudoscalar coupling is very dangerous to use if one
wishes to preserve chiral symmetry, and for this reason can
lead to anomalous results. The Class IV OPEP corresponds
to n=2 in power counting.

Calculations also include short-range forces fromr-v
mixing. Although ther-v mixing force is part of the short-
rangexPT counterterm(and hence of undetermined size) in
Eq. (27), its coefficient in the traditional approach is fixed by
r-v mixing experiments[28]. Thus there are no adjustable
constants in the dominant contributions to the traditional
theory of class IV forces, and this leads to impressive agree-
ment with experiment.

Other ingredients have been used in calculations, includ-
ing two-pion exchange forces[32] and heavy-meson ex-
change modified bydMN [33]. Reference[33] has a particu-
larly useful catalog of forces based on the exchange of
different types of particles. These mechanisms are smaller
than the ones given above. InxPT two-pion exchange can be
calculated explicitly atn=4, and all heavy-meson-exchange
contributions are subsumed in contact interactions to be fit-
ted to experiment.

Recent calculations typically combine the dominant
forces with a subset of the smaller ones[32–38]. These re-
cent numerical calculations point out a potentially serious
problem with the power counting. The three dominant
mechanisms(Breit interaction, OPEP, and meson mixing) are
all approximately the same size. The power counting would
suggest that the OPEP should dominate the meson-mixing
potential by a factor of roughly 30. To understand this dis-
crepancy it is useful to substitute the estimate ofQ,mp for
uqW u and upW u in the momentum-space expressions for these
three forces, while ignoring the spin and isospin factors. Do-
ing this reveals that all three forces are within a factor of 2 of
each other in size. The contradiction with naive power count-
ing arises from the smaller than normal OPEP(by a factor of
more than 5) and the larger than normal meson-mixing force
(by a factor of about 3). The reason for the former is that the
OPEP isospin violation is proportional todMN.−1.3 MeV,
while the dimensional estimate for the quark-mass compo-
nent of this isemp

2 /L,7.6 MeV. The physical mass differ-
ence is the result of cancellation between the quark-mass-
difference effect and the e.m. contribution(of opposite sign),
and is fine-tuned to the correct physical value. Its size is
therefore anomalously small and more typical ofn=3 terms
in the power counting.

The large class IV meson-mixing force is primarily the
result of the larger–nucleon tensor couplings,frd that has
been used historically, although this coupling plays only a
minor role in class III forces. To see this we strip the dimen-
sional factors from ther-v mixing force in momentum space
and compare the result to Eq.(27):

d1
rv = fp

2grkrgvkruHuvl/mv
4MN

2 , s29d

where gr and gv are the usualr- and v-nucleon coupling
constants, kr; fr /gr determines the strength of the

r-nucleon tensor-coupling term,kruHuvl is the r-v
mixing matrix element, andmv is the common value chosen
for the mass of these two mesons. On the basis of
arguments given in Ref.[6] we expect thatcv= fpgv /mv is
the natural dimensionless coupling strength of any
vector meson to the nucleon. We similarly expect that
kruHuvl=−crvemp

2, wherecrv should be natural. This leads
to d1

rv=crcvkrcrvf−emp
2 /mv

2mN
2g. Using a typical set of val-

ues for the coupling constants used in class IV calculations
(see Table I of Ref.[33]) we find cr=0.42, cv=1.9, crv

=0.6, andkr=6.1, and the product of these factors is 2.9,
which is large but natural. Using the vector-dominance value
for kr (i.e., 3.7) would lead to a smaller value, as would a
smallercv [39]. Even larger values of these coupling con-
stants have been occasionally used in class IV calculations.

The fact thatr-v mixing seems to provide the necessary
additional ingredient for conventional calculations to agree
with experiment suggests that axPT calculation atn=4 will
also be successful. At this order,xPT includes a contact in-
teraction of the appropriate form, and the previous discussion
implies that a relatively large, but not unnatural, coefficient
would suffice.

Note that this argument does not rely onr-v mixing pro-
viding the correct short-range force. For example, an alter-
native short-range force from isospin violation in the cou-
pling constants of vector mesons has been proposed by Ref.
[40]. That result is compatible in sign and magnitude with
ther-v mixing force. The sum of the two mechanisms is too
large to reproduce the experimental data, if the above values
for r and v parameters are used. In fact, these two mecha-
nisms cannot be distinguished at low energies: only their
sum, together with an infinite number of other CSB short-
range interactions, can be determined. All short-range
mechanisms are subsumed ind1, and ad1 of about three
times its natural size seems to be appropriate. How much
each short-range mechanism contributes tod1 can only be
decided at higher energies than those accessible toxPT.

Of course, the above arguments are purely suggestive. A
consistent, model-independent calculation is required before
more definitive statements can be made. A framework for
such a calculation is provided by the Nijmegen partial-wave
analysis(PWA) [41,18]. In this PWA long-range forces, in-
cluding Eqs.(12) and (28), are used as input, and a general
boundary condition at a certain radius, which represents
short-range forces, is adjusted until it reproduces data. The
IUCF and TRIUMF data have not been analyzed in detail
yet. It will be very interesting to see to what extent a short-
range parameter equivalent to a natural-sizedd1 can repro-
duce the available data, in particular their energy dependence
[42]. Preliminary estimates suggest that the long-range parts
of the OPEP and Breit interactions alone account for about
half of the experimental values at all three energies.

Finally we recall that the original version of the proof[5]
that isospin-dependent forces satisfy(in magnitude)
class I.class II.class III.class IV took into account ex-
plicitly the structure of class IV short-range forces, but not
the corresponding OPEP.[The latter is momentum dependent
and suppressed by one power ofMN. In Ref. [5], a power
counting was used in whichQ/MN was counted assQ/Ld2,
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rendering this forcen=3.] Although the size of the latter
estimated from the present power countingsn=2d is nomi-
nally the same as that of class III forces, its suppression due
to cancellations and fine-tuning(to reproduce the physical
nucleon mass) makes the class IV OPEP more typical ofn
=3 size, and therefore the results of the proof are not altered.

The second set of two CSB experiments measuredp0

production:n+p→d+p0 [15] andd+d→4He+p0 [43]. The
front-back asymmetry is the CSB signal in the first reaction,
while the cross section of the second reaction vanishes in the
absence of isospin mixing. The effect of the second and third
terms in Eq.(3) on then+p→d+p0 front-back asymmetry
was calculated in Ref.[14]. It was found to be relatively
large, and of opposite sign to other mechanisms. This predic-
tion is in good agreement with the experimental result[15].
The situation is considerably more complicated ford+d
→4He+p0. A preliminary, simplified calculation[44] sug-
gests that various mechanisms contribute significantly. Both

reactions should be further studied. The field redefinitions
that were invented in Eqs.(4) and (7) and led to Eq.(8)
could prove useful in this regard.

In summary, in this paper we have presented a convenient
framework in which to analyze nuclear effects of the
nucleon-mass difference. We examined in some detail the
class IV force in the context ofxPT, stressing its similarities
and differences with respect to conventional approaches.
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