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Goldstone modes are the only pseudoscalar mesons to possess a nonzero leptonic decay constant in the
chiral limit when chiral symmetry is dynamically broken. The decay constants of their radial excitations
vanish. These features and aspects of their impact on the meson spectrum are illustrated using a manifestly
covariant and symmetry-preserving model of the kernels in the gap and Bethe-Salpeter equations.
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The meson spectrum contains three pseudoscalars
fIGsJPdL=1−s0−dSg with masses below 2 GeV[1]: ps140d,
ps1300d, and ps1800d. Of these, the pionfps140dg is well
known and much studied. The other two are observed, e.g.,
as resonances in the coherent production of three pion final
states via pion-nucleus collisions[2]. In the context of a
model constituent-quark Hamiltonian, these mesons are often

viewed as the first three members of aQQ̄ n1S0 trajectory,
wheren is the principal quantum number; i.e., theps140d is
theS-wave ground state and the others are its first two radial
excitations. By this reasoning the properties of theps1300d
andps1800d are likely to be sensitive to details of the long-
range part of the quark-quark interaction because the
constituent-quark wave functions will possess material sup-
port at large interquark separation. Hence the development of
an understanding of their properties may provide information
about light-quark confinement, which complements that ob-
tained via angular momentum excitations[3].

This view might reasonably be held about all trajectories
of radial excitations. However, the pseudoscalar trajectory is
particularly interesting because its lowest mass member is
QCD’s Goldstone mode. An explanation should therefore si-
multaneously describe(1) chiral symmetry and its dynamical
breaking, and(2) the possible correlation of the trajectory’s
higher mass members via an approximately linear radial
Regge trajectory[4,5]. Outcome(2) does not require that
confinement in light-quark systems be expressed through the
formation of a flux tube[6]. It is easily obtained in Poincaré
invariant quantum mechanics[7] but requirement(1) is not.

A Poincaré covariant and symmetry-preserving treatment
of quark-antiquark bound states can be based on the Bethe-
Salpeter equation(BSE)

Gtusk;Pd =E
q

L

fxsq;PdgsrKrs
tusq,k;Pd, s1d

where k is the relative andP the total momentum of the
constituents;r , . . . ,u represent color, Dirac, and flavor indi-
ces;xsq;Pd : =Ssq+dGsq;PdSsq−d, q±=q± P/2, andeq

L rep-
resents a translationally invariant regularization of the inte-
gral, with L the regularization mass scale[8,9]. In Eq. (1), S
is the renormalized dressed-quark propagator andK is the
fully amputated dressed-quark-antiquark scattering kernel.
The productSSKis a renormalization point invariant. Hence,

when the kernel is expressed completely in terms of renor-
malized Schwinger functions, the BSE’s solution is indepen-
dent of the regularization mass scale, which may be re-
moved, viz.,L→`.

In a given channel the homogeneous BSE only has solu-
tions for particular, separated values ofP2: P2=−mn

2, where
mn is a bound state’s mass, whereatGnsk;Pd is that bound
state’s Bethe-Salpeter amplitude.(We use a Euclidean metric
with hgm ,gnj=2dmn, gm

† =gm, anda·b=oi=1
4 aibi. For a time-

like vectorPm, P2,0.) In the flavor nonsinglet pseudoscalar
channel the lowest mass solution is associated with the
ps140d. The homogeneous BSE next possesses a solution
when P2 assumes the value associated with the mass of the
ps1300d. This pattern continues so that in principle one may
obtain the mass and amplitude of every pseudoscalar meson
from Eq.(1). Herein we will illustrate this in practice for the
two lowest-mass flavor-nonsinglet pseudoscalar mesons.

The dressed-quark propagator appearing in the BSE’s ker-
nel is determined by the renormalized gap equation

Sspd−1 = Z2sig · p + mbmd + Sspd, s2d

Sspd = Z1E
q

L

g2Dmnsp − qd
la

2
gmSsqdGn

asq,pd, s3d

where Dmn is the dressed-gluon propagator,Gnsq,pd is the
dressed-quark-gluon vertex, andmbm is the L-dependent
current-quark bare mass. The quark-gluon-vertex and quark
wave-function renormalization constants,Z1,2sz2,L2d, de-
pend on the renormalization pointz, the regularization mass
scale, and the gauge parameter. The gap equation’s solution
has the form

Sspd−1 = ig · pAsp2,z2d + Bsp2,z2d. s4d

It is obtained from Eq.(2) augmented by the renormalization
condition

uSspd−1up2=z2u = ig · p + mszd, s5d

wheremszd is the renormalized mass,

Z2sz2,L2dmbmsLd = Z4sz2,L2dmszd, s6d

with Z4 the Lagrangian mass renormalization constant. In
QCD the chiral limit is unambiguously defined by
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Z2sz2,L2dmbmsLd ; 0, ∀ L @ z, s7d

which is equivalent to stating that the renormalization-point-
invariant current-quark massm̂=0.

The 1−s0−dS sn1S0d trajectory contains the pion, whose
properties are fundamentally governed by the phenomenon
of dynamical chiral symmetry breaking(DCSB). One ex-
pression of the chiral properties of QCD is the axial-vector
Ward-Takahashi identity

PmG5m
j sk;Pd = S−1sk+dig5

t j

2
+ ig5

t j

2
S−1sk−d − 2imszdG5

j sk;Pd,

s8d

which we have written here for two quark flavors, each with
the same current-quark mass:ht i : i =1,2,3j are flavor Pauli
matrices. In Eq.(8), G5m

j sk;Pd is the axial-vector vertex,

fG5m
j sk;Pdgtu = Z2Fg5gm

t j

2
G

tu
+E

q

L

fx 5m
j sq;PdgsrKtu

rssq,k;Pd,

s9d

andG5
j sk;Pd is the pseudoscalar vertex

fG5sk;Pdgtu = Z4Fg5
t j

2
G

tu

+E
q

L

fx 5
j sq;PdgsrKtu

rssq,k;Pd.

s10d

The quark propagator, axial-vector and pseudoscalar ver-
tices are all expressed via integral equations, i.e., Dyson-
Schwinger equations(DSEs). Equation(8) is an exact state-
ment about chiral symmetry and the pattern in which it is
broken. Hence it must always be satisfied. Since that cannot
be achieved veraciously through fine tuning, the distinct ker-
nels of Eqs.(2), (3), (9), and(10) must be intimately related.
Any theoretical tool employed in calculating properties of
the pseudoscalar and pseudovector channels must preserve
that relationship if the results are to be both quantitatively
and qualitatively reliable.

A weak-coupling expansion of the DSEs yields perturba-
tion theory and satisfies this constraint. However, that trun-
cation scheme is not useful in the study of bound states nor
other intrinsically nonperturbative phenomena. Fortunately
at least one nonperturbative systematic and symmetry pre-
serving scheme exists.(Reference[10] gives details). This
entails that the full implications of Eq.(8) can be both elu-
cidated and illustrated.

Every flavor nonsinglet pseudoscalar meson is exhibited
as a pole contribution to the axial-vector and pseudoscalar
vertices[8], viz.,

G5m
j usk;PduP2+m

pn

2 <0 =
fpn

Pm

P2 + mpn

2 Gpn

j sk;Pd, s11d

uiG5
j sk;PduP2+m

pn

2 <0 =
rpn

P2 + mpn

2 Gpn

j sk;Pd, s12d

wherein we have omitted terms regular in the neighborhood
of the pole,Gpn

j sk;Pd is the bound state’s canonically nor-
malized Bethe-Salpeter amplitude,

Gpn

j sk;Pd = t jg5fiEpn
sk;Pd + g · PFpn

sk;Pd

+ g ·kk · PGpn
sk;Pd + smnkmPnHpn

sk;Pd,

s13d

and

fpn
d i j Pm = Z2 trE

q

L 1

2
t ig5gmxpn

j sq;Pd, s14d

irpn
szdd i j = Z4 trE

q

L 1

2
t ig5xpn

j sq;Pd. s15d

The residues expressed exactly in Eqs.(14) and (15) are
gauge invariant and cutoff independent.

For a structureless pseudoscalar meson,Fpn
sk;Pd;0

;Gpn
sk;Pd;Hpn

sk;Pd in Eq. (13). The first two of these
functions can be described as characterizing the pseudoscalar
meson’s pseudovector components; and the last, its pseudot-
ensor component. The associated Dirac structures necessarily
occur in a Poincaré covariant bound state description and
they signal the presence of quark orbital angular momentum.

Equation(8) combined with Eqs.(11)–(15) yields [8,9]

fpn
mpn

2 = 2mszdrpn
szd, s16d

i.e., an identity valid for every 0− meson and irrespective of
the magnitude of the current-quark mass[11].

We focus now on the ground staten=0 pseudoscalar me-
son and assume that all pseudoscalar excitations are more
massive. In this case DCSB in QCD entails[8], via Eqs.(4),
(8), and(11)–(15),

fp0

0 Ep0
sk;0d = Bsk2,z2d, s17d

where fpn

0 : = limm̂→0 fpn
, from which follows

rp0

0 szd: = lim
m̂→0

rszd = −
1

fp0

0 kq̄qlz
0, s18d

wherein

− kq̄qlz
0 = lim

L→`
Z4sz2,L2dNc trDE

q

L

S0sq,zd s19d

is the vacuum quark condensate[12]. The scalar functions in
Eq. (4) that characterize the dressed-quark propagator are
both positive definite at spacelike momenta[13,14]. This
fact, along with their ultraviolet behavior in the chiral limit
[15], guarantees 0,−kq̄qlz

0,`. Furthermore, Eq.(17) and
related quark-level Goldberger-Treiman relations[8] involv-
ing Ask2;z2d ensure that 0, fp0

0 ,`. Hencemp0
=0 in the

chiral limit, and in the neighborhood of this limit the so-
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called Gell-Mann–Oakes–Renner relation is a corollary of
Eq. (16).

We next consider then.0 pseudoscalar mesons:
mpn.0

.mp0
by assumption, and hencempn.0

Þ0 in the chi-
ral limit. The existence of a bound state entails thatxnsk;Pd
is a finite matrix-valued function. Moreover, the ultraviolet
behavior of the quark-antiquark scattering kernel in QCD
guarantees that Eq.(15) is cutoff independent. Thus

rpn

0 szd: = lim
m̂→0

rpn
szd , `, ∀ n. s20d

Hence, it is a necessary consequence of chiral symmetry and
its dynamical breaking in QCD, viz., Eq.(16) , that

fpn

0 ; 0, ∀ n ù 1. s21d

This result is consistent with Refs.[16], as appreciated in
Ref. [17].

This argument is legitimate in any theory that has a valid
chiral limit. It is logically possible that such a theory does
not exhibit DCSB, i.e., it realizes chiral symmetry in the
Wigner mode. This is the case, e.g., in QCD above the criti-
cal temperature for chiral symmetry restoration[18]. Equa-
tion (16) is still valid in the Wigner phase. However, its
implications are different.

Without DCSB, namely, in the Wigner phase, one has

BWs0,z2d ~ mszd ~ m̂, s22d

i.e., the constituent-quark mass vanishes in the chiral limit.
This result is accessible in perturbation theory. Equation(17)
applies if there is a massless bound state in the chiral limit.
Suppose such a bound state persists in the absence of DCSB.
(If that is false then considering this particular case is unnec-
essary. However, it is true at the transition temperature in
QCD [18].) It then follows from Eqs.(17) and (22) that

fp0

W ~ m̂. s23d

In this case the leptonic decay constant of the ground state
pseudoscalar meson also vanishes in the chiral limit.

It is always true that

fp0
rp0

szd ~
m̂<0

− kq̄qlz
0. s24d

In the Wigner phase[12], kq̄qlz
0W~m̂3. Hence, via Eq.(16), if

a rigorously chirally symmetric theory possesses a massless
pseudoscalar bound state then

mp0

W ~
m̂<0

m̂. s25d

In this case there is also a degenerate scalar meson partner
whose mass behaves in the same manner.

We have elucidated exact results. They can be illustrated
accurately in a model that both preserves QCD’s ultraviolet
properties and exhibits DCSB. For this purpose we employ
the renormalization-group-improved(RGI) rainbow-ladder
DSE model introduced in Ref.[19] whose widespread appli-
cation is reviewed in Ref.[20]. The heart of the model is an
ansatz for the Bethe-Salpeter kernel in Eq.(1):

Krs
tusq,k;Pd = − Gfsk − qd2gDmn

freesk − qdFgm

la

2
G

ts
Fgn

la

2
G

ru
,

s26d

whereinDmn
frees,d is the free gauge boson propagator and

Gssd
s

=
4p2

v6 Dse−s/v2
+

8p2gm

lnft + s1 + s/LQCD
2 d2g

Fssd, s27d

with Fssd=h1−exps−s/ f4mt
2gdj /s, mt=0.5 GeV, t=e2−1,

gm=12/25, andLQCD=LMS
s4d =0.234.

This form expresses the interaction as a sum of two terms.
The second ensures that perturbative behavior is correctly
realized at short range; namely, as written, forsk−qd2,k2

,q2*1–2 GeV2, K is precisely as prescribed by QCD. On
the other hand, the first term inGsk2d is a model for the
long-range behavior of the interaction. It is a finite width
representation of the form introduced in Ref.[21], which has
been rendered as an integrable regularization of 1/k4 [22].
This interpretation, when combined with the result that in a
heavy-quark–heavy-antiquark BSE the RGI ladder truncation
is exact [10], is consistent with Gsk2d leading to a
Richardson-like potential[23] between static sources.

The active parameters in Eq.(27) are D and v, which
together determine the integrated infrared strength of the
rainbow-ladder kernel, but they are not independent. In fit-
ting a selection of observables[19], a change in one is com-
pensated by altering the other, e.g., on the domainv
P f0.3,0.5g GeV, the fitted observables are approximately
constant along the trajectoryvD=s0.72 GeVd3= :mg

3. Herein
we usev=0.38 GeV.

With a given truncation of the BSE’s kernel there is a
unique kernel for the gap equation which ensures the axial-
vector Ward-Takahashi identity, Eq.(8), is automatically sat-
isfied [10]. This partner to Eq.(26) is a rainbow gap equa-
tion, i.e., Eq.(2) with

Sspd =E
q

L

Gfsp − qd2gDmn
freesp − qd

la

2
gmSsqd

la

2
gn. s28d

We have calculated properties of the ground and first ex-
cited states. The first step was to solve the gap equation, Eq.
(28), for a specified renormalized current-quark mass. With
the dressed-quark propagator thus obtained, solutions of the
homogeneous BSE, Eq.(1) with Eq. (26), were obtained via
a straightforward numerical procedure that yields every sca-
lar function in Eq.(13). The general procedure is described
in detail in Ref.[9], and Ref.[24] explains the method nec-
essary to isolate excited states.

In Fig. 1 we depict the lowest Chebyshev moments of the
pseudoscalar amplitude in Eq.(13), i.e., 0,2Ep0

sk2d and
0,2,4Ep1

sk2d, where

iEp0,1
sk2d =

2

p
E

0

p

db sin2bUiscosbdEp0,1
sk2,k · P;P2d,

s29d

with Uisxd a Chebyshev polynomial of the second kind and
k·P: =cosbÎk2P2. The odd moments,i =1,3,5, . . ., etc.,
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vanish in the case of equal mass constituents. The Chebyshev
moments are obtained from the canonically normalized
Bethe-Salpeter amplitudes but, for illustrative simplicity, the
functions depicted are rescaled by the positive constant
0Ep0

sk2=0d.
All Chebyshev moments ofEp1

possess a single zero,
whereas those ofEp0

exhibit none. This similarity to the
wave functions of radial excitations in quantum mechanics is
not particular to manifestly covariant BSE studies[25,26]. It
is evident that the zeroth Chebyshev moment almost com-
pletely determines the pseudoscalar amplitude in the ground
state pseudoscalar meson. For the first excited state, how-
ever, the second moment is also required to obtain a good
approximation toEp1

sk;Pd. The pseudovector and pseudot-
ensor amplitudes are nonzero in the ground and first excited
states, and they are materially important in the calculation of
their properties. The bulk qualitative features of the scalar
functions characterizing these amplitudes are the same as
those described in connection with the pseudoscalar ampli-
tude.

In Fig. 2 we depict the evolution with current-quark mass
of the masses of the ground and first excited pseudoscalar
states, and in Fig. 3 we display the behavior of the leptonic
decay constants. Calculated results at points of particular in-
terest on these trajectories are presented in Table I.N.B.The
ladder truncation supports ideal mixing. This is not a good
picture of ground statess̄pseudoscalars, for whichs-channel

gluon (OZI suppressed) contributions are important.(See,
e.g., Ref.[27].) However, it should prove increasingly reli-
able as the current-quark mass increases, since the RGI lad-
der truncation is exact in the static source limit, and/or as the
mass of the bound state increases because this mass scale,
too, suppresses diagrams that violate the OZI rule.

The chiral behavior we predicted for the leptonic decay
constant of the pseudoscalar meson excited states is exem-
plified in Fig. 3: viz., fp1

=0 for m̂=0. It is notable that this
decay constant is negative as the current-quark mass in-
creases away from the chiral limit. Hence the residue in the
pseudovector vertex of the pole associated with the 21S0 me-
son is negative onm̂.0. It is evident from the table that the
residue at the associated pole in the pseudoscalar vertex,
rp1

szd, is also negative. Thus is Eq.(16) satisfied. We antici-
pate that the pole residues alternate in sign, i.e., they are
positive for evenn but negative for oddn. This is required of
a vertex that, considered as a function ofP2, is continuous
and does not vanish between adjacent bound state poles.
Since it is the square of the residues that appear in the scalar
functions which characterize the axial-vector and pseudo-
scalar vacuum polarizations,PAsP2d, PPsP2d, this feature is
unlikely to have readily observable consequences.

The parameterv in Eq. (27) defines a length scalera
=1/v, and magnifyingra increases the range of strong at-
traction in the model. In our calculations we found, as antici-
pated, that the properties of the pion’s first radial excitation
are sensitive to the long-range part of the interaction. For
example, while a 30% increase inra raisesmp0

by merely
3%, it reducesmp1

by 14%. In contrast, on the domain of

FIG. 1. Dimensionless low-order Chebyshev moments of the
scalar function that characterizes the dominant amplitude in Eq.
(13) for the groundsp0d and first excitedsp1d states.

FIG. 2. Evolution of the mesons’ masses with renormalized
current-quark mass,mq=msz=1 GeVd.

FIG. 3. Evolution of the mesons’ leptonic decay constants with
renormalised current-quark mass,mq=msz=1 GeVd.

TABLE I. Calculated results for properties of the ground and
first excited state pseudoscalar mesons:msz0d :
=m̂/ sln z0/LQCDdgm, z0=1 GeV,z=19 GeV. Available experimen-
tal values (in GeV) [1]: mp0

=0.14, mp1
=1.3±0.1; mh=0.547,

mhs2Sd=1.293±0.005;fp0
=0.092. Dimensions in the table are in

GeV except forrszd, which is listed in GeV2.

msz0d mp0
mp1

fp0
fp1

rp0
szd rp1

szd

0 0 1.08 0.091 0 s0.51d2 −s0.49d2

0.0055 0.14 1.10 0.093 −0.002 s0.52d2 −s0.49d2

0.125 0.69 1.40 0.130 −0.023 s0.64d2 −s0.54d2
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current-quark masses for which our present calculations are
reliable, the results are consistent withmp0

/mp1
→1− in the

heavy-quark limit.
We estimated the charge radius of the pion and its first

radial excitation using the symmetry preserving impulse ap-
proximation introduced in Ref.[28] with the Ball-ChiuAn-
satz [29] for the dressed-quark-photon vertex:rp1

=1.7rp0
.

While a more reliable calculation would employ a self-
consistently calculated dressed-quark-photon vertex[30], our
estimate for the ratio should be a fair guide.

It is natural to extend our quantitative analysis to larger
current-quark masses, higher radial excitations, and systems
in which the constituents have different masses. This expan-
sion of the domain on which the manifestly covariant and
symmetry-preserving model is applied will inform our inter-

pretation of observables, and guide the model’s improvement
and further employment. It will not, however, alter the exact
results the model has been used to illustrate. They serve as a
constructive constraint on approaches advocated for the
study of (exotic) hadron spectroscopy and interactions.

We acknowledge interactions with P. Maris, P.C. Tandy,
M.K. Volkov, and V.L. Yudichev. This work was supported
by Austrian Research FoundationFWF, Erwin-Schrödinger-
StipendiumNo. J2233-N08; Department of Energy, Office of
Nuclear Physics, Contract No. W-31-109-ENG-38; National
Science Foundation Contract No. INT-0129236; theA.v.
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