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Pseudoscalar meson radial excitations
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Goldstone modes are the only pseudoscalar mesons to possess a nonzero leptonic decay constant in the
chiral limit when chiral symmetry is dynamically broken. The decay constants of their radial excitations
vanish. These features and aspects of their impact on the meson spectrum are illustrated using a manifestly
covariant and symmetry-preserving model of the kernels in the gap and Bethe-Salpeter equations.
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The meson spectrum contains three pseudoscalamghen the kernel is expressed completely in terms of renor-
[16(JP)L=17(0")S] with masses below 2 GeYl]: #(140, malized Schwinger functions, the BSE’s solution is indepen-
(1300, and 7(1800. Of these, the pionm(140)] is well ~ dent of the regularization mass scale, which may be re-
known and much studied. The other two are observed, e.gmoved, viz.,A — .
as resonances in the coherent production of three pion final In a given channel the homogeneous BSE only has solu-
states via pion-nucleus collisiorf€]. In the context of a tions for particular, separated valuesRf: P?=-n, where
model constituent-quark Hamiltonian, these mesons are ofte, is a bound state’s mass, wherdaik;P) is that bound
viewed as the first three members oQa_g n's, trajectory, state’s Bethe-SaIpeteTr amplituqgve use4a Euclidean metric
wheren is the principal quantum number; i.e., th¢140 is ~ With {v,, %.}=28,,, 7,57, anda-b=2i,ab;. For a time-
the Swave ground state and the others are its first two radialik€ vectorP,, P<0.,) In the flavor nonsinglet pseudoscalar
excitations. By this reasoning the properties of t@300  channel the lowest mass solution is associated with the
and (1800 are likely to be sensitive to details of the long- 7(140. The homogeneous BSE next possesses a solution
range part of the quark-quark interaction because th&/hen p? assumes the value associated with the mass of the
constituent-quark wave functions will possess material supZ(1300. This pattern continues so that in principle one may
port at large interquark separation. Hence the development @tain the mass and amplitude of every pseudoscalar meson
an understanding of their properties may provide informatiorf’om Eq.(1). Herein we will illustrate this in practice for the
about light-quark confinement, which complements that obiWO lowest-mass flavor-nonsinglet pseudoscalar mesons.

tained via angular momentum excitatiof. The dressgd—quark propagator appearing in thg BSE’s ker-
This view might reasonably be held about all trajectories"€! is determined by the renormalized gap equation
of radial excitations. However, the pseudoscalar trajectory is Sp)L=Zy(iy- p+ ™ +3(p), )

particularly interesting because its lowest mass member is
QCD’s Goldstone mode. An explanation should therefore si-
multaneously describ@) chiral symmetry and its dynamical S(p) =2, j
breaking, and?2) the possible correlation of the trajectory’s q
higher mass members via an approximately linear radial ) )
Regge trajectony4,5. Outcome(2) does not require that WNereD,, is the dressed-gluon pﬁ)pagatdi?u(q,p) is the
confinement in light-quark systems be expressed through tH&réssed-quark-gluon vertex, amf™ is the A-dependent
formation of a flux tubg6]. It is easily obtained in Poincaré Current-quark bare mass. The quark-gluon-vezrteé and quark
invariant quantum mechani¢g] but requirementl) is not. ~ Wave-function renormalization constant®; A(¢°,A%), de-

A Poincaré covariant and symmetry-preserving treatmeni€nd on the renormalization poitit the regularlzat!on mass
of quark-antiquark bound states can be based on the Bethgcale, and the gauge parameter. The gap equation’s solution

A a
9°D,.(p- q)%ns(q)Fi(q, p, (3

Salpeter equatio(BSE) has the form
A S(p) =iy pAp* 3 +B(p? ). (4)
Fy(k;P) = f [x(9;P)]sKra(a.k; P), (1) _ _ L
q It is obtained from Eq(2) augmented by the renormalization
condition
wherek is the relative andP the total momentum of the
constituentsr, ... ,u represent color, Dirac, and flavor indi- S(p)_1|p2=§2 Ziy-p+m(Q), (5)

ces; x(q;P): =S(q,)I(q; P)S(q.), 9:=q+P/2, and [ rep-
resents a translationally invariant regularization of the inte
gral, with A the regularization mass scd&9]. In Eq.(1), S Z,(&2, A)MPM(A) = Z,(2 A2)m(Q), (6)

is the renormalized dressed-quark propagator ling the

fully amputated dressed-quark-antiquark scattering kernelvith Z, the Lagrangian mass renormalization constant. In
The produciSSKis a renormalization point invariant. Hence, QCD the chiral limit is unambiguously defined by

wherem({) is the renormalized mass,

0556-2813/2004/7@)/0422035)/$22.50 70 042203-1 ©2004 The American Physical Society



RAPID COMMUNICATIONS

HOLL, KRASSNIGG, AND ROBERTS PHYSICAL REVIEW (70, 042203R) (2004
Zy(% AHMPM(A) =0, 0A > ¢, ) . Prn
IFS(k; P)|p2+minz0: men(k;P), (12)
n

which is equivalent to stating that the renormalization-point-

invariant current-quark masa=0. wherein we have omitted terms regular in the neighborhood
The 1‘(0‘)S(nlso) trajectory contains the pion, whose of the pole,l"’,Tn(k;P) is the bound state’s canonically nor-

properties are fundamentally governed by the phenomenomalized Bethe-Salpeter amplitude,

of dynamical chiral symmetry breakindCSB). One ex- oy — T _ _

pression of the chiral properties of QCD is the axial-vector Fwn(k'P) =7 75[|E7Tn(k,P) ty PFwn(k’ P)

Ward-Takahashi identity +y-kk- PG, (k;P)+ 0, k,PH. (K;P),

. . (13)
. RS B ) .
Pul5u(iP) = SHK)iys +ive, Sk = 2mOTEGP), g
(8) ' M1 J.
f'n'n5 Pp, = ZZ tr q ET 757#X77n(q1 P), (14)
which we have written here for two quark flavors, each with
the same current-quark mags::i=1,2,3 are flavor Pauli ) Ao
matrices. In Eq(8), F'SM(k; P) is the axial-vector vertex, ipwn(é')ﬁ” =2, trf Er' y5XJWn(q;P). (15

q

. 7 A The residues expressed exactly in E¢s4) and (15) are
[F%M(k;P)]tuzzz[?’smg} +f [x5.(a;P)]sK(a.k;P),  gauge invariant and cutoff independent.
W For a structureless pseudoscalar mesbp,(k;P)=0
(9 =G, (k;P)=H, (k;P) in Eq. (13). The first two of these
functions can be described as characterizing the pseudoscalar
and I‘js(k; P) is the pseudoscalar vertex meson’s pseudovector components; and the last, its pseudot-
ensor component. The associated Dirac structures necessarily
i A ohccur_in altI;oincaré cova][iant bkourtl)(_jt sltate dlescriptiontand
. _ T i 1Sy Lo they signal the presence of quark orbital angular momentum.
[FskiP) )= 24{75 2 L* L [x5(d; P)lsiKia(a,k; P). équguon(s) ([:)ombined wi?h Eqs(11)«15) ?/ields (8,9

(10 M =20, (0, (16)

~ The quark propagator, axial-vector and pseudoscalar vef-  an identity valid for every Omeson and irrespective of
tices are all expressed via integral equations, i.e., Dysone magnitude of the current-quark mds].

Schwinger equationeDSES. Equation(8) is an exact state-  \ye focus now on the ground state:0 pseudoscalar me-
ment about chiral symmetry and the pattern in which it iSg5y and assume that all pseudoscalar excitations are more

broken. Hence it must always be satisfied. Since that cann@tsssive. In this case DCSB in QCD entd#, via Eqs.(4)
be achieved veraciously through fine tuning, the distinct kerg) - and (11)~(15) ' '

nels of Eqs(2), (3), (9), and(10) must be intimately related.
Any theoretical tool employed in calculating properties of f?TOEwO(k;O) =B(K?,{?), (17
the pseudoscalar and pseudovector channels must preserve 0 ) ]

that relationship if the results are to be both quantitativelywherefz :=lims, o f. , from which follows

and qualitatively reliable.

A weak-coupling expansion of the DSEs yields perturba- P2 ():=lim p(¢) =- %@)0, (18)
tion theory and satisfies this constraint. However, that trun- 0 m—0 fwo
cation scheme is not useful in the study of bound states nor .
other intrinsically nonperturbative phenomena. Fortunatel;y"herem
at least one nonperturbative systematic and symmetry pre- A
serving scheme exist$Reference[10] gives details This — Qg = lim Z4(£% A?)N, thf Sa.9) (19
entails that the full implications of Eq8) can be both elu- A a
cidated and illustrated. is the vacuum quark condenséie?]. The scalar functions in

Every flavor nonsinglet pseudoscalar meson is exhibiteq. (4) that characterize the dressed-quark propagator are
as a pole contribution to the axial-vector and pseudoscalgioth positive definite at spacelike momerjt8,14. This
vertices[8], viz., fact, along with their ultraviolet behavior in the chiral limit

[15], guarantees @—@>2<oo. Furthermore, Eq(17) and

_ f_P _ related quark-level Goldberger-Treiman relati¢8sinvolv-

I, (k;P)|pz+mi = Pzir:z FL,n(k;P), (1)  ing A(K?;2?) ensure that @Ef?To<oc. Hencem, =0 in the
" e chiral limit, and in the neighborhood of this limit the so-
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called Gell-Mann—-Oakes—Renner relation is a corollary of w ornfre A2 A\

Eq. (16). Kis(@.kiP) == Gl(k-a)°ID,, k=) %75 | | v5 |
We next consider then>0 pseudoscalar mesons: ts "

m, _,> M, by assumption, and hence,  #0 in the chi- (26)

ral limit. The existence of a bound state entails thak, P) wherein Dfr?/e(f) is the free gauge boson propagator and
is a finite matrix-valued function. Moreover, the ultraviolet :

behavior of the quark-antiquark scattering kernel in QCD @:ﬂ)D rsa? 87 Y Hs). (27)
guarantees that E@15) is cutoff independent. Thus s o In[7+ (1 +A5cp)?]”
P2 (2):=lim p, (§) <=, On. (200 with F(s)={1-exp-s/[4m?])}/s, m=0.5 GeV, r=€*-1,
n ﬁ"IHO n

Ym=12/25, andAgcp=Atie=0.234.
Hence, it is a necessary consequence of chiral symmetry and This form expresses the interaction as a sum of two terms.
its dynamical breaking in QCD, viz., E@16) , that The second ensures that perturbative behavior is correctly
realized at short range; namely, as written, fkrq)?~ k?
~g?=1-2 GeV, K is precisely as prescribed by QCD. On
the other hand, the first term i6i(k?) is a model for the
long-range behavior of the interaction. It is a finite width
representation of the form introduced in Rgf1], which has
been rendered as an integrable regularization & 122].

f?,nEO,Dnzl. (21)

This result is consistent with Ref§l6], as appreciated in
Ref. [17].
This argument is legitimate in any theory that has a valid

chiral limit. It is logically possible that such a theory does This interpretation, when combined with the result that in a

not exhibit DCSB, i.e., it realizes chiral symmetry in the . .
Wigner mode. This is the case, e.g., in QCD above the critif €avy-guark-heavy-antiquark BSE the RGI ladder truncation

) . . > )
cal temperature for chiral symmetry restoratid]. Equa- E ﬁxa(;:t [1?.]|2 IS coq5|st3en; with G(k ). leading to a
tion (16) is still valid in the Wigner phase. However, its ichardson-like potentigl23] between static sources.

implications are different. The active parameters in E7) are D and w, which
Without DCSB, namely, in the Wigner phase, one has together determine the integrated infrared strength of the
rainbow-ladder kernel, but they are not independent. In fit-
BM0,%) = m(¢) « M, (22) ting a selection of observabl¢$9], a change in one is com-
. . ) ) ) ~_pensated by altering the other, e.g., on the domain
i.e., the constituent-quark mass vanishes in the chiral limit.. [0.3,0.9 GeV, the fitted observables are approximately

This result is accessible in perturbation theory. Equatioh  gnstant along the trajectoryD=(0.72 GeVj3= :nt. Herein
applies if there is a massless bound state in the chiral limit, e usew=0.38 GeV. g

Suppose such a bound state persists in the absence of DCSB.
(If that is false then considering this particular case is unnec

essary. However, it is true at the transition temperature ir\‘/ector Ward-Takahashi identit ; : )
y, E(B), is automatically sat
QCD[18].) It then follows from Egs(17) and(22) that isfied [10]. This partner to Eq(26) is a rainbow gap equa-

oo i, (23) tion, i.e., Eq.(2) with

0

With a given truncation of the BSE’s kernel there is a
unique kernel for the gap equation which ensures the axial-

A a a

. . A A
In this case the leptonic decay constant of the ground state  X(p) :f Gl(p- q)Z]DZ?,e(p— A= 7.9 7. (28
pseudoscalar meson also vanishes in the chiral limit. q 2 2

Itis always true that We have calculated properties of the ground and first ex-

=0 cited states. The first step was to solve the gap equation, Eq.
fwopwo(é) o« - @)2. (24) (28), for a specified renormalized current-quark mass. With
the dressed-quark propagator thus obtained, solutions of the
In the Wigner phasg1.2], (qa)?" o ®. Hence, via Eq(16), if  homogeneous BSE, E(L) with Eq. (26), were obtained via
a rigorously chirally symmetric theory possesses a masslegsstraightforward numerical procedure that yields every sca-

pseudoscalar bound state then lar function in Eq.(13). The general procedure is described
0 in detail in Ref.[9], and Ref.[24] explains the method nec-
mV o . (25) essary to isolate excited states.
o In Fig. 1 we depict the lowest Chebyshev moments of the
In this case there is also a degenerate scalar meson part@§eudoscalar amplitude in Eql3), i.e., O'ZEwo(kz) and
whose mass behaves in the same manner. O’Z'AE,,l(kz), where

We have elucidated exact results. They can be illustrated -
accurately in a model that both preserves QCD's ultraviolet g (k2= EJ dg sirtBU;(cos B)E,. (K& k- P;P?),
properties and exhibits DCSB. For this purpose we employ o1 7)o o1
the renormalization-group-improve(RGI) rainbow-ladder (29)
DSE model introduced in Ref19] whose widespread appli-
cation is reviewed in Ref20]. The heart of the model is an with U;(x) a Chebyshev polynomial of the second kind and
ansatz for the Bethe-Salpeter kernel in EY: k-P:=cosB\k2P?. The odd momentsj=1,3,5,..., etc.,
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FIG. 1. Dimensionless low-order Chebyshev moments of the FIG. 3 Evolution of the mesons’ leptonic decay constants with

scalar function that characterizes the dominant amplitude in Eqfénormalised current-quark mass,=m(¢{=1 GeV).
(13) for the ground(mg) and first excited ;) states.

gluon (OZI suppressedcontributions are importani.See,
vanish in the case of equal mass constituents. The Chebyshew., Ref.[27].) However, it should prove increasingly reli-
moments are obtained from the canonically normalizecable as the current-quark mass increases, since the RGI lad-
Bethe-Salpeter amplitudes but, for illustrative simplicity, theder truncation is exact in the static source limit, and/or as the
functions depicted are rescaled by the positive constarmass of the bound state increases because this mass scale,
°E7TO (k?=0). too, suppresses diagrams that violate the OZI rule.

All Chebyshev moments oE_ possess a single zero,  The chiral behavior we predicted for the Ieptonic_decay
whereas those OF, exhibit none. This similarity to the constant of the pseudoscalar meson excited states is exem-
wave functions of radial excitations in quantum mechanics ilified in Fig. 3: viz.,f, =0 for m=0. It is notable that this
not particular to manifestly covariant BSE studjes,2q. It ~ decay constant is negative as the current-quark mass in-
is evident that the zeroth Chebyshev moment almost comf'€ases away from the chiral limit. He.nce thg residue in the
pletely determines the pseudoscalar amplitude in the grounSeudovector vertex of the pole associated with t1g3 te-
state pseudoscalar meson. For the first excited state, howon iS negative om>0. Itis evident from the table that the
ever, the second moment is also required to obtain a gootfSidue at the associated pole in the pseudoscalar vertex,
approximation toE,, (k;P). The pseudovector and pseudot- p=(0), is also negative. Thus is E(L6) satisfied. We antici-
ensor amplitudes are nonzero in the ground and first exciteB@t® that the pole residues alternate in sign, i.e., they are
states, and they are materially important in the calculation oP©Sitive for evem but negative for odah. This is required of
their properties. The bulk qualitative features of the scalaf Vertexthat, considered as a function Bf, is continuous
functions characterizing these amplitudes are the same &9d does not vanish between adjacent bound state poles.
those described in connection with the pseudoscalar amplPince it is the square of the residues that appear in the scalar
tude. functions which characterize the axial-vector and pseudo-

In Fig. 2 we depict the evolution with current-quark massScalar vacuum polarizationbla(P?), Ilp(P?), this feature is
of the masses of the ground and first excited pseudoscal&ilikely to have readily observable consequences.
states, and in Fig. 3 we display the behavior of the leptonic The parametew in Eq. (27) defines a length scale,
decay constants. Calculated results at points of particular in= 1/, and magnifyingr, increases the range of strong at-
terest on these trajectories are presented in TalNeB.The  traction in the model. In our calculations we found, as antici-
ladder truncation supports ideal mixing. This is not a goodPated, that the properties of the pion's first radial excitation
picture of ground statespseudoscalars, for whichchannel ~ are sensitive to the long-range part of the interaction. For
example, while a 30% increase iy raisesm, by merely
-] 3%, it reducesnﬁl by 14%. In contrast, on the domain of

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

TABLE |. Calculated results for properties of the ground and
first excited state pseudoscalar mesons:m({p):
=m/(In {o/ Agcp)™, {o=1 GeV, =19 GeV. Available experimen-
tal values (in GeV) [1]: mw020.14, mwlzl.SiO.l; m,=0.547,

7 | M,29=1.293+0.005;f; =0.092. Dimensions in the table are in
m | GeV except forp(£), which is listed in Ge¥.
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L4
Y

m_[GeV]

PN N N T ] m(é'fo) mwo mrrl f‘n'o f‘n-l pwo(g) Pﬂl(f)
0 0.2 04 0.6

m, [GeV] 0 0 108 0.091 0 (05)% —(0.492

0.0055 0.14 110 0.093 -0.002(0.522 —(0.49?

FIG. 2. Evolution of the mesons’ masses with renormalizedg 105 069 1.40 0.130 -0.023(0.64%2 —(0.54>2
current-quark massy,=m({=1 GeV).
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current-quark masses for which our present calculations arneretation of observables, and guide the model’'s improvement

reliable, the results are consistent with) /m, — 1" in the  and further employment. It will not, however, alter the exact

heavy-quark limit. results the model has been used to illustrate. They serve as a
We estimated the charge radius of the pion and its firstonstructive constraint on approaches advocated for the

radial excitation using the symmetry preserving impulse apstudy of (exotic) hadron spectroscopy and interactions.
proximation introduced in Ref28] with the Ball-ChiuAn-

satz [29] for the dressed-quark-photon vertex; =1.7 .. We acknowledge interactions with P. Maris, P.C. Tandy,
While a more reliable calculation would employ a self- M.K. Volkov, and V.L. Yudichev. This work was supported
consistently calculated dressed-quark-photon vk our by Austrian Research Foundati&WF, Erwin-Schrodinger-
estimate for the ratio should be a fair guide. StipendiumNo. J2233-N08; Department of Energy, Office of
It is natural to extend our quantitative analysis to largerNuclear Physics, Contract No. W-31-109-ENG-38; National
current-quark masses, higher radial excitations, and systen®&ience Foundation Contract No. INT-0129236; tAev.
in which the constituents have different masses. This exparHumboldt-Stiftungvia a FW. Bessel Forschungspreiand
sion of the domain on which the manifestly covariant andbenefited from the ANL Computing Resource Center’s facili-
symmetry-preserving model is applied will inform our inter- ties.
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