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Several recent studies have dealt with the effects of short-range correlations on the momentum distribution
of nucleons in nuclei. Here we investigate the correlation effects on the density and spectral distribution in
coordinate space. A combination of experimental data and spectral functions calculated from realistic nucleon-
nucleon interactions allows us to resolve a recently uncovered discrepancy with occupation of quasiparticle
states derived fromse,e8pd data.
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Much of the understanding of atomic nuclei is based on
the assumption that nucleons move, independently from each
other, in the average potential created by the interaction with
all other nucleons. A more fundamental approach to the un-
derstanding of nuclei has to start from the underlying
nucleon-nucleonsN-Nd interaction. Realistic models of the
N-N interaction exhibit a strongly repulsive central interac-
tion at small internucleon distances and a strong tensor com-
ponent. These features lead to properties of nuclear wave
functions that are beyond what is describable in terms of
independent particle(IP) motion. In particular, strong short-
range correlations(SRC) are expected to occur.

The effects of the short-range correlations are known for
systems where an accurate solution of the Schrödinger equa-
tion for a realisticN-N interaction can be obtained[1]. Very
light nuclei (today up toAø10) and infinite nuclear matter
are amongst the systems where this is feasible[2–4]. The
corresponding calculations show that in a microscopic de-
scription of nuclear systems, the short-range and tensor parts
of the N-N interaction have a very important, not to say
dominating, influence, without which not even nuclear bind-
ing can be explained.

Due to these short-range correlations the momentum dis-
tributions of nucleons acquire a tail extending to very high
momentak, and part of the strength, located in IP descrip-
tions at low excitation energyE, is moved to very high ex-
citation energies.

In the past, most experimental investigations were con-
fined to rather low momenta and energies, i.e., to the region
where the strength is dominated(but not entirely given) by
the IP properties. In this region, the consequences of short-
range correlations are indicated primarily by adepopulation
of states in comparison to the predictions of the IP models
(including the long-range correlations which can be de-
scribed by configuration mixing). According to the calcula-
tions mentioned above, a depopulation on the order of 20%
is expected.

From the experimental information available up to now,
the depopulation of IP strength at lowk, E is established[1]
(for a caveat see below). Much less is known from adirect
measurement of the strength of the spectral functionSsk,Ed
at largek andE. A recentse,e8pd experiment, performed at
high momentum transferq in parallel kinematics by Roheet

al., provides a first direct measurement[5,6].
This correlated strength has always been discussed ink, E

space where(part of) it can be separated from the IP
strength. In this Rapid Communication, we take an orthogo-
nal look at the correlated strength and discuss it in coordinate
space(r space). We address this question from both the
theory and experiment side.

The trigger for this study lies in difficulties experienced in
the past in interpreting data in terms of IP models. For ex-
ample, fits with IP wave functions of the nuclear charge den-
sity often yielded form factors(of IP-dominated transitions)
with incorrect q dependence. Fits with IP wave functions
also have difficulties in reproducing the total densities in the
nuclear interior. The origin of these difficulties: total densi-
ties have contributions from correlated nucleons that do not
appear in observables dominated by quasiparticle properties.
The correlated nucleons presumably have a different radial
distribution.

The goal of this paper is to derive quasiparticle(QP) and
correlated distributions inr space using Green’s-function
theory. We compare the results to the correlated density in
r-space which we obtain from the difference of the density—
known from elastic electron scattering—and the QP contri-
butions known fromse,e8pd reactions.

As a side product, this study also sheds light on a recently
uncovered problem with QP occupation numbers derived
from se,e8pd experiments with low and high q,
respectively[7].

The evaluation of the single-particle spectral functions for
12C, the nucleus we use for our study, has been performed
within the framework of the Green’s-function method[8]
using the techniques described in[9–11]. The nucleon self-
energy Sl jspm,pn,Ed is determined in a discrete basis of
Bessel functionsfpmljsrd with appropriate boundary condi-
tions at the surface of a spherical box with radiusRbox. These
basis states are identified by the angular momentum quantum
numbersl and j and a radial quantum numberspm,pnd refer-
ring to the momentum. For a box radiusRbox of typically
20 fm, it turns out to be sufficient to include around 60 basis
states for each partial wave.

The self-energy contains a Hartree-Fock contributionSl j
HF

calculated in terms of a nuclear matterG matrix plus com-

PHYSICAL REVIEW C 70, 041301(R) (2004)

RAPID COMMUNICATIONS

0556-2813/2004/70(4)/041301(5)/$22.50 ©2004 The American Physical Society70 041301-1



plex correction terms,DSl j , which account for the inclusion
of two-particle one-hole and two-hole one-particle contribu-
tions. These correction terms are calculated directly for the
finite nucleus12C, describing the intermediate particle states
by plane waves orthogonalized with respect to the occupied
hole states. This is a good approximation to describe the
effects of SRC; however, it tends to underestimate the spec-
tral strength due to long-range correlations at missing ener-
gies slightly above the two-hole one-particle threshold.

The single-particle Green’s function is determined from
this self-energySl j

HF+DSl j by solving the Dyson equation in
the box basis described above. From the imaginary part of
this Green’s function one can calculate the spectral function
in this basis[11] or determine it in configuration space by the
transformation

Sljsr,r8;Ed = o
m,n

fpmljsrdSljspm,pn;Edfpnlj
* sr8d,

using the Bessel functionsfpmljsrd described above. The
spectral function can be split into the QP contributionSlj

QP,
which only occurs in thes1/2 and p3/2 partial waves, and in
the continuum contribution,Slj

cont, which originates from the
imaginary components in the self-energy. This leads to the
single-particle density

rsrd = o
l j

Slj
QPsr,rd + o

l j
E

«2h1p

`

dESlj
contsr,r ;Ed

= rQPsrd + rcorrsrd,

where the integration over missing energiesE starts at the
threshold of two-hole one-particle configurations. We have
assigned the label “corr” to the part of the single-particle
density, which originates from the continuum part of the
spectral function to indicate that this correlated density is
absent in the IP model.

Results for these contributions to the point density of pro-
tons in 12C are displayed in Fig. 1. The calculation of these
densities has been performed using the CD-Bonn potential
for theN-N interaction[12]. A fraction of the proton density,
which accounts for around five protons, is described by the
QP part and the rest is covered by the correlated density.

In order to allow for a better comparison of the radial
shape of the density contributions, Fig. 1 also contains the
correlated densityrcorrsrd multiplied by a factor of 3. The
comparison shows quite clearly that the correlated density is
located much more in the center of the nucleus than the QP
contribution.

The correlated single-particle density is distributed over
partial wavesl j including those which are unoccupied in the
IP model. A large fraction of the correlated strength, how-
ever, is contained in partial waves withl =0 (around 31%)
andl =1 (around 37%). One also should note that, contrary to
what one naively could expect, the strength in the higherl
states does not contribute at larger; the corresponding large
values ofE pull the radial wave functions to lowerr.

For 12C an extensive set of elastic electron scattering data
is available[13–16], covering the range of momentum trans-
fer between 0.13 and 3.7 fm−1. The carbon rms radius is
precisely known from am-x-ray experiment[17].

These data have been used to determine a model-
independent charge density using the SOG approach of[18].
The procedure employed has been described in[19]. This
yields the charge density as a function ofr, together with an
error bar that covers both the statistical and systematic un-
certainties of the data, as well as the model error.

In order to obtain the point density, we have unfolded the
effect of the finite size of the proton and neutron charge
density. This has been done by parametrizing the point den-
sity, folding it with rpsrd+rnsrd, and fitting the resulting den-
sity to the charge density as determined above. The contri-
bution of the electromagnetic spin-orbit term to the charge
density turned out to be negligible. The resulting folded den-
sity agrees within,1% with the one given in[20].

The resulting point density is shown in Figs. 2 and 3. The
error bars in general are too small to be seen.

For carbon, quite an extensive set ofse,e8pd data is avail-
able [21–28]; a compilation is discussed in[7]. Part of this
data has been taken at lowq with the goal to determine the
1p and 1s quasiparticle momentum distributions and occupa-
tion numbers. Some data have been taken at largeq mainly
in connection with the determination of nuclear transparen-
cies for high-energy protons.

The low-q data, taken with good energy and momentum
resolution mainly at NIKHEF and Saclay, have been ana-
lyzed in the framework of a distorted wave Born approxima-
tion (DWBA) using optical potentials known from proton-
carbon scattering. The QP radial wave functions have been
parametrized using Woods-Saxon(WS) potentials. Lapikas
et al. [7] have made a coherent analysis of the entire data set.
The occupation of the QP orbits, obtained by summing the
experimental spectroscopic factors, turns out to be rather low
in comparison to what is known for other nuclei[1]; the
summed 1p plus 1s strength amounts to 3.4 protons only
(56% occupation).

The high-q data, determined in part with moderate energy

FIG. 1. Comparison of QP and correlated densities from
theory.
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and momentum resolution, were taken mainly at SLAC and
JLAB. The data were summed over a large region of initial
momentumk and removal energyE, and fitted using WS
radial wave functions and theoretical transparencies. When
using the most reliable transparencies, confirmed by other
experiments, Lapikaset al. found a much higher occupancy
of the QP orbits, 5.0–5.6 protons(,87% occupation).

This discrepancy—which is very embarrassing to the
practitioners ofse,e8pd as it sheds serious doubts on the
quantitative interpretation ofse,e8pd data—obviously needs

to be better understood, and is discussed in more detail be-
low. This difference also has led to speculations about
q-dependent QP occupations, for which we see no physical
basis.

A partial reason for the difference between the low-q and
high-q results is immediately clear: The low-q data cover the
region of missing momenta of typically,180 MeV/c and
missing energyE,50 MeV, the high-q data extend to
300 MeV/c. The high-q data also cover a larger range in
missing energy; they are integrated up to typically 80 MeV.
In this largerk, E range, there is not only QP strength, but
also a fraction of the correlated strength is integrated over.
Before making a valid comparison, this correlated strength
needs to be removed.

In order to correct for this effect, we start from the high-
q se,e8pd data taken in a recent JLAB experiment[5] in
quasielastic kinematics, which minimize final state interac-
tions (FSI) and meson exchange current contributions
(MEC). This experiment yields, in agreement with the previ-
ous JLAB and SLAC experiments, 5.2 protons in the inte-
gration regionE,80 MeV, k,300 MeV/c. This number
we correct for the continuum contribution using the calcu-
lated spectral function discussed above. With this correction
the discrepancy between the low-q and high-q results is sig-
nificantly reduced; the QP occupations now are 3.4 vs 4.5
protons for the low-q/high-q data, respectively. Given the
uncertainties of these numbers—believed to be perhaps
10%—there still is a worrisome incompatibility.

In order to proceed, we have to choose. We have decided
to use the occupation coming from the high-q measurements,
as we judge the interpretation of these data to be safer. The
low-q data suffer from uncertainties in the treatment of the
final state interaction. Due to the low energies of the outgo-
ing proton (70 MeV for the NIKHEF data[25]) coupled-
channel effects not treated in the usual DWBA analysis
should be relevant. van der Steenhovenet al. [25,29] have
shown that inclusion of these effects would increase, for the
rather soft nucleus12C, the QP occupation by,20%. For the
kinematics of the low-q experiments, the calculations of Bo-
ffi et al. [30,31] also predict significant MEC effects that
would lead to a further increase of the QP occupation.

The value for the QP occupation deduced from the high-q
measurement is also compatible with the correlated strength
measured directly in the recent experiment by Rohe[5]. This
measurement agrees with theoretical predictions for the cor-
related strength of,20%. The summed QP strength from the
low-q se,e8pd data (which thus includes the fragmentation
due to long-range correlations), on the other hand, would
correspond to greater than 40% correlated strength, i.e., be
unrealistically high. Furthermore, as we will see below, our
choice of the QP occupation is confirmed by a consistency
check in our analysis.

Before proceeding to the calculation of the QP density,
one more effect of correlations must be removed from the
results of Lapikaset al. While the p- strength is located in
discrete states where no ambiguity occurs, thes strength is
located in the continuum between 20 and,50 MeV removal
energy. In this region, also the correlated strength contrib-
utes, and affects theshapeof the fitted WS momentum dis-
tribution. The correlated strength has a momentum distribu-

FIG. 3. Comparison of QP and correlated densities. The crosses
indicate the tail of the density obtained when using the low-q QP
occupation.

FIG. 2. Comparison of QP and correlated densities.
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tion that falls much more slowly with increasingk than the
1s QP strength; when fitting the sum with a WS parametri-
zation, the resulting WS momentum distribution extends
somewhat too far in momentum, i.e., it would have too small
a radial extension inr space.

We have used the theoretical 1s QP and correlated
strength in the region used in[7] for the determination of the
1s momentum distribution to calculate a correction to the
WS parametrization fitted to the sum. We find that the extent
of the wave function ink space needs to be reduced by 11%.
This modified WS shape has been confirmed[32] by an in-
dependent analysis employing the recent JLAB data of[5]
and the correlated spectral function of[3].

With these QP radial wave functions, and occupations
renormalized to the one derived above from the high-q ex-
periments, we can compute the QP density inr space. As the
radial wave functions fitted by Lapikaset al. refer to relative
coordinate between the proton and the c.m. of thesA−1d
system, we need to rescale the radial coordinate by a factor
11”12, with the corresponding adjustment in height to con-
serve the normalization.

The resulting QP density is shown in Figs. 2 and 3. The
difference of the12C point density and this QP density yields
the correlated density also shown in Figs. 2 and 3. The “error
bar” on the correlated density is not straightforward to cal-
culate due to the various adjustments that had to made in the
analysis; ±20% forr ,3 fm is probably a realistic estimate.

The first observation one can make from Figs. 2 and 3
concerns the fact that, as in the theoretical analysis of Fig. 1,
the correlated density deduced from experimental data is sig-
nificantly more concentrated towards the nuclear interior
than the QP density. One also observes that the correlated
density in the nuclear interior gives a very significant contri-
bution, of order 30%, of the central density, i.e., larger than
one could have expected from the number of 20% or so of
correlated nucleons. This explains why attempts to explain
the total densities in terms of QP orbitals cannot be very
successful.

Figure 3 shows another important feature: The experimen-
tal QP density at larger agrees perfectly with the point den-
sity measured via elastic electron scattering. Such an agree-
ment should occur, as at larger—outside the range of the
nuclear potential—the density is entirely given by the tail of
the least-bound QP orbit, the 1p3/2 state in12C. More deeply
bound states, or correlated nucleons with large removal en-
ergy, cannot contribute.

The good agreement between QP density and point den-
sity at larger also confirms the correctness of our choice of
QP occupations. Had we used the occupation derived from

the low-q experiments and, as above, the shape ofRsrd de-
termined in[7] from the fit to the worldse,e8pd data, we
would have obtained the tail indicated in Fig. 3 by the
crosses. These are obviously significantly too low. This com-
parison thus provides ana posteriorijustification of our pro-
cedure.

In Figs. 2 and 3 we also show the correlated density ob-
tained by theory. Considering the above-mentioned uncer-
tainty of the experimental result, we consider the agreement
between theory and experiment as a good one. The size of
the correlated contribution in the nuclear interior is very
similar, the rapid falloff of the correlated density at larger
also agrees within our estimated uncertainty. The correlated
density deduced from experimental data seems to contain
more spectral strength in partial waves withl .0 than the
theoretical one.

The large contribution of the correlated density in the
nuclear interior shows that the neglect of this correlated con-
tribution in the standard IP calculations(e.g., all the shell-
model descriptions) is not justified.

Starting from these,e8pd data, we have constructed the
QP density for12C in coordinate space. The difference to the
total density, obtained from elastic electron scattering, pro-
vides the density distribution of the correlated nucleons. We
find that it is significantly more concentrated towards the
nuclear interior. We also find good agreement with the theo-
retical calculation of the correlated density distribution.

The large contribution of the density related to short-
rangeN-N correlations,,30% in the nuclear interior, to-
gether with the fact that theshapeof the correlated density
differs strongly from the QP density, explains the poor per-
formance of QP wave functions in explaining many observ-
ables. Due to the shape difference, the shortcoming of the
neglect of the correlated contribution also cannot satisfacto-
rily be “compensated” by using effective quantities like ef-
fective charges, etc.

As a side product, our analysis provides a solution to the
puzzle raised in[7], the pronounced disagreement between
QP occupations derived from the low-q and high-q se,e8pd
experiments. We find that only the high-q occupation(suit-
ably corrected for the correlated contribution not considered
in [7]), is compatible with the independent information from
elastic electron scattering.
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