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The neutrino mean free paths(NMFP) for scattering and absorption in cold symmetric nuclear matter(SNM)
are calculated using two-body effective interactions and one-body effective weak operators obtained from
realistic models of nuclear forces using correlated basis theory. The infinite system is modeled in a box with
periodic boundary conditions and the one particle-holesp-hd response functions are calculated using the
Tamm-Dancoff approximation(TDA). For the densitiesr= 1

2, 1, 3
2r0, wherer0 is the equilibrium density of

SNM, the strength of the response is shifted to higher energy transfers when compared to a noninteracting
Fermi gas(FG). This and the weakness of effective operators compared to the bare operators, significantly
reduces the cross sections, enhancing the NMFP by factors of,2.5–3.5 at the densities considered. The
NMFP at the equilibrium densityr0 are also calculated using the TDA and random phase approximation(RPA)
using zero range Skyrme-like effective interactions with parameters chosen to reproduce the equation of state
and spin-isospin susceptibilities of matter. Their results indicate that RPA corrections to correlated TDA may
further increase the NMFP by,25% to 3–4 times those in a noninteracting FG. Finally, the sums and the
energy weighted sums of the Fermi and Gamow-Teller responses obtained from the correlated ground state are
compared with those of the 1p-h response functions to extract the sum and mean energies of multip-h
contributions to the weak response. The relatively large mean energy of the multip-h excitations suggests that
they may not contribute significantly to low energy NMFP.
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I. INTRODUCTION

In the past decade it has become clear that neutrinos play
a dominant role in many astrophysical processes. In the con-
text of supernovae and neutron stars, for example, it is es-
sential to know neutrino interactions with nuclear matter,
while modern neutrino detectors such as KARMEN and
MiniBooNE, used to study neutrino properties, require an
understanding of neutrino-nucleus interactions. Theoreti-
cally, essentially exact neutrino interaction rates can be cal-
culated only in the lightest nuclei[1] whereab initio calcu-
lations are possible with realistic interactions. In recent
years, much effort has been directed to developing more ac-
curate approximation methods to calculate neutrino reaction
rates and luminosities. Neutrino interactions with nuclei have
been calculated using, for example, shell model and random
phase approximation(RPA) [2,3]. While for infinite matter,
recent calculations have used mean field or Fermi liquid
theories and the RPA[4–7].

For conditions relevant in neutron stars and core collapse
supernovae, these earlier calculations have found a signifi-
cant reduction in reaction rates associated with correlations
in the nuclear wave function. For example, using Skyrme-
like effective interactions and RPA, Reddyet al. [6] obtain
an enhancement of the neutrino mean free path(NMFP) of
,2−3 in hot asymmetric matter. Similar effects on neutrino
mean free paths(NMFP) due to scattering of neutrinos by
neutral weak currents in hot neutron matter were found by
Iwamoto and Pethick[7] using Fermi liquid theory. These
calculations have incorporated the effects of correlations in
the nuclear wave function through empirical effective inter-
actions or Landau parameters. However, they have neglected
the effects of correlations on the operators and used bare
weak operators. It is well known that this treatment is incon-

sistent[8] and that a consistent set of effective operators and
effective interactions must be included in a more accurate
treatment.

As a first step toward a more consistent treatment of neu-
trino interactions, a previous article[9], hereafter referred to
as I, described a consistent set of effective interactions and
effective weak operators developed starting from realistic in-
teractions using correlated basis theory(CBT). The charge
current effective operators were found to be quenched by
,20–25 % relative to the bare operators, indicating that neu-
trino cross sections predicted by previous calculations using
bare weak operators may be overestimated. We present here
the next essential step in the ongoing program to predict
NMFP in supernovae and neutron star matter. NMFP for
scattering and absorption in cold symmetric nuclear matter
(SNM) are calculated using the two-body effective interac-
tions and one-body effective weak operators obtained in I.

The structure of the paper is as follows. A brief review of
the effective interactions and effective weak operators in
CBT is given in Sec. II. The infinite system is modeled in a
box with periodic boundary conditions and response func-
tions are calculated using the Tamm-Dancoff approximation
(TDA). These methods are discussed in detail in Sec. III. The
charge and neutral current response functions are presented
in Secs. IV and V, respectively. These are used to determine
NMFP for neutrino absorption and scattering in Sec. VI. A
comparison of response functions and NMFP obtained using
CBT and Skyrme-like effective interactions is presented in
Sec. VII. Results of RPA calculations using such Skyrme
interactions are given in Sec. VIII. Estimates of the mean
energy of neutrino response via multi-particle-hole excita-
tions of matter using response sums and energy weighted
sums are discussed in Sec. IX. Conclusions and future
projects are discussed in Sec. X.
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II. EFFECTIVE INTERACTION AND OPERATOR

In this section we briefly review the two-body effective
interaction, vi j

CB and one-body effective weak operators,
OW

ef fs1bd, obtained previously using CBT. The reader is re-
ferred to I for details.

In CBT the nuclear states are defined as

uCXl = SSp
i, j

FijDuFXl, s1d

where uFXl are uncorrelated Fermi gas(FG) states and
SpFij denotes the symmetrized product of pair correlation
operators given by

Fij = o
p=1,6

fpsr ijdOij
p . s2d

Oij
p=1,6= 1,ti · t j,si · s j,ti · t jsi · s j,Sij ,ti · t jSij . s3d

The pair correlation functions,fpsr ijd, are obtained by mini-
mizing the energy of SNM using Fermi hypernetted and
single operator chain summation methods(FHNC-SOC)
[10,11]. These variational calculations also include spin-orbit
correlations, which are neglected in the present work. The
correlated statesuCXl are not necessarily orthogonal. They
can be orthonormalized as discussed in Ref.[12]. However,
in I and here we have neglected the orthogonality correc-
tions. They should be included, together with many-body
cluster contributions, in a more accurate treatment.

The FG statesuFXl are specified by the occupation num-
bersnXsk ,s ,td of plane wave single particle states with mo-
mentumk and spin-isospins ,t, in the many-body stateX.
The FG ground stateuF0l of SNM has n0sk ,s ,td=QskF

− uku d, wherekF is the Fermi momentum. It is often conve-
nient to specify the FG states by particle-hole excitations of
the ground state. For example,

uF1p,1hl = ap,sp,tp

† ah,sh,th
uF0l. s4d

The correlated statesuCXl are in one-to-one correspon-
dence with the FG states via Eq.(1). Thus they can also be
labeled with particle-hole excitations of the correlated
ground state:

uC1p,1hl = SSp
i, j

FijDuF1p,1hl. s5d

At small excitation energies these particle-hole states have
long lifetimes, and following Landau they are called states
with quasiparticles and holes.

In Landau theory the correlateduC̃0l is assumed to be the

exact ground state, and the low-energyuC̃np,nhl states withn
quasi-particle-hole pairs are semistationary states. The CB
states are generally not eigenstates ofH since they include
only the dominant correlations in an approximate form.
Feenberg[13] argued that the Hamiltonian matrix will have
smaller nondiagonal elements in the CB sinceuCXl are much

closer to the exactuC̃Xl than theuFXl. Therefore many-body
perturbation theory could have better convergence in the CB.

The CBT has been used to study various properties including
optical potentials of nucleons in SNM[14] and responses of
SNM [15].

A. Effective interaction

The energy of the correlated stateuCXl is

kCXuHuCXl =
kFXufSPFijgsH − TFGsXddfSPFijguFXl

kFXufSPFijg2uFXl

+ TFGsXd, s6d

TFGsXd = o
all i occupied inFX

ki
2

2m
. s7d

Including only two-body clusters:

kCXuHuCXl = TFGsXd + o
i, j

ki j − ji uFijFvi jFij −
1

m
s¹2Fijd

−
2

m
s=Fijd · =Gui j l, s8d

where ui j l=eisk i·r i+k j·r jdxstsidxsts jd, xst denote spin-isospin
states, andvi j is taken to be the static part of the Argonnev88
potential. The gradient operates on the relative coordinate,
and the sumi , j is over states occupied inuFXl. The effec-
tive correlated basis two-nucleon interaction is given by

vi j
CB = FijFvi jFij −

1

m
s¹2Fijd −

2

m
s=Fijd · =G . s9d

The vi j
CB has momentum dependence via thes=Fijd ·= term,

which gives contributions to the matter energy via exchange
terms in Eq.(8). This contribution is much smaller than that
of the momentum independent, static terms invi j

CB defined as

vi j
CBS= FijSvi j −

1

m
¹2DFij . s10d

We consider onlyvi j
CBS in this work.

The energy expectation value[Eq. (6)] has contributions
from clusters withù3 nucleons[16]. They contribute to the
two-bodyvi j

ef f as well asù3-body effective interactions such
asVijk

ef f. Their contribution tovi j
ef f has been studied in the past

[14]. These many-body cluster contributions are mostly ne-
glected or approximated in the present work for the follow-
ing reasons.

The low-energy responses to weak currents are expected
to be sensitive to the spin, isospin, and Gamow-Teller sus-
ceptibilities of matter. The isospin susceptibility of nuclear
matter and the spin susceptibility of pure neutron matter,
calculated using the present two-bodyvi j

CBS agree well with
results of recent many-body calculations[9]. In addition, the
calculated spin and Gamow-Teller susceptibilities of nuclear
matter are similar to those obtained with some recent
Skyrme-like and Michigan three-range Yukawa interactions
[17]. Thus it appears that the spin-isospin dependent parts of
the presentvi j

CBS provide a good approximation.
However, the matter energy calculated usingvCBS has a

minimum atr@r0 and matter is unstable atr=r0. In fact,
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we believe that SNM is stable to density fluctuations down to
densities,0.1 fm−3 [18]. We must ultimately include the
three-body bare and effective forces and many-body cluster
terms in the effective forces to obtain this stability. In the
total energy,Esrd, of SNM there is a large cancellation be-
tween the contributions of the one-bodyTFG and two-body
vi j

ef f. Therefore the contributions of many-body clusters to the
Esrd are important. In the absence of these, the response of
density fluctuations to the spin and isospin independent part
of ONV cannot be calculated. For calculating neutrino scatter-
ing processes via the density term ofONV, we add a correc-
tion to vCBS that stabilizes matter atr*0.1 fm−3 and repro-
duces the empiricalEsrd of Ref. [18]. This correction tovCBS

is discussed in more detail in Sec. V. It does not contribute to
the dominant charge current and the spin and/or isospin de-
pendent parts of neutral current response of matter.

B. Effective weak operators

The effective weak operators,OW
ef f, are defined as

kCFuOWuCIl =
kFFufSPFijgOWfSPFijguFIl

ÎkFFufSPFijg2uFFlkFIufSPFijg2uFIl

; kFFuOW
ef fuFIl. s11d

Here subscriptsI and F label the initial and final states of
nuclear matter andOW are the bare low energy one-body
weak operators given by

OF = o
i

OFsid = o
i

ti
±eiq·r i , s12d

OGT = gA o
i

OGTsid = gA o
i

ti
±sie

iq·r i , s13d

ONV = o
i

ONVsid = o
i
S− sin2uW +

1

2
s1 − 2 sin2 uWdti

zDeiq·r i ,

s14d

ONA = gA o
i

ONAsid = gA o
i

1

2
ti

zsie
iq·r i , s15d

i is the nucleon number label andq is the momentum given
by the weak boson to the nucleon. The electroweak mixing
angle isuW with sin2 uW=0.2314, andgA=1.26 is the ratio of
the weak axial vector and Fermi coupling constants of the
nucleon. The four operators are called Fermi(F), Gamow-
Teller (GT), neutral-vector(NV) and neutral-axial-vector
(NA).

Note that OW
ef f is a many-body operator:OW

ef f=OW
ef fs1bd

+OW
ef fs2bd+¯. We define theOW

ef fsnbd operator such that it
contributes to the matrix element ofOW [Eq. (11)] only when
uFFl is ann-particle-hole excitation ofuFIl:

uFFl = ap1

† ap2

†
¯ apn

† ahn
¯ ah2

ah1
uFIl. s16d

TheOW
ef fsnbd is then ann-quasiparticle operator. The dominant

part of the weak response of SNM comes from the 1p-1h
excitations:

uFFl = ap,sp,tp

† ah,sh,th
uFIl, s17d

to which only theOW
ef fs1bd contributes. The total response has

smaller contributions fromnù2 quasi-particle-hole excita-
tions viaOW

ef fsnù2bd. In Sec. IX A we study sums and energy
weighted sums of the weak response. They suggest that the
nù2 quasi-particle-hole excitations contribute mostly to re-
sponse at large excitation energy, and their effect on the
NMFP in SNM should be small. From now on we consider
only theOW

ef fs1bd and drop thes1bd superscript for brevity.
The cluster expansion[9,16] is used to calculate theOW

ef f

from Eq. (11). The one-body cluster contributions giveOW
ef f

=OW; however,ù2-body clusters makeOW
ef fÞOW. In I, the

effective one-body operators were calculated in a two-body
cluster approximation at a variety of proton fractions and
matter densitiessr= 1

2 ,1,3
2r0d. It is convenient to define a

quenching factor, h= ukFFuOef fuFIlu2/ ukFFuObareuFIlu2 to
characterize the difference between the bare and effective
operators. For isospin and spin dependent operators,Oef f is
quenched relative toObare andh,0.75–0.80. For these op-
erators, h is relatively insensitive to the system density.
However, for the isospin and spin independent term ofONV,
eiq·r i sin2 uW, h is very sensitive to the density of the system;
at r=s1/2dr0, the effective operator is enhanced andh
,1.2 while atr=s3/2dr0 it is suppressed withh,0.75. For
all of the effective weak operatorsh is essentially indepen-
dent of q at low momentum transfers but depends slightly
s,3%d on the initial and final momenta,h and p, via the
exchange terms of the cluster expansion ofOW

ef f obtained
from Eq. (11).

III. RESPONSE FUNCTIONS IN THE TAMM-DANCOFF
APPROXIMATION

We begin by calculating the response to weak probes of
cold SNM defined for vector currents as

RVsv,qd =
1

Ao
F

ukCFuOVuCIlu2dsv + EI − EFd s18d

=
1

Ao
F

ukFFuOV
ef fuFIlu2dsv + EI − EFd. s19d

Here v is the energy transfer andA the total number of
nucleons. For axial-vector currents it is

RAVsv,qd =
1

A o
a=x,y,z

o
F

ukFFuOAV,a
ef f uFIlu2dsv + EI − EFd,

s20d

wherea denotes the components of the axial vector.
The ground state is approximated asuCIl=sSPFduF0l. In

the zeroth order of CBT,vef f=0, the statesuCFl are single
quasi-particle-hole excitations:

uCFl = uCmil = sSPFduFmil = sSPFdam
† aiuF0l. s21d

We use subscriptsm,n, . . . to denote the particle andi , j , . . .
to denote hole states. The zeroth-order CBT response is
given by
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RV
s0dsv,qd =

1

A o
kiøkF

zkFmiuOV
ef fskm,k i,rduF0lz2dsem

s0d − ei
s0d − vd

3d3skm − k i − qd, s22d

for example. The single-particle energies

ea
s0d =

ka
2

2m
s23d

for a=m or i, sincevef f=0. TheRV
s0dsv ,qd differs from the

FG response only viaOV
ef f. In Eq. (22) we have clearly indi-

cated the dependence ofOef f on km,k i and the matter density
r. It is omitted from the following equations just for brevity.

In the first order of CBT the statesuCIl and uCFl retain
their simple form as in the mean-field or Hartree-Fock(HF)
approximations of the many-body theory. The correlated HF
(CHF) response is obtained by using the CHF quasiparticle
energies in Eq.(22). Within the present approximations they
are given by

ea = ea
s0d + o

kiøkF

kai − iauvCBSuail. s24d

The Tamm-Dancoff approximation provides the next step
in the calculation of response functions. The ground state
retains it’s simple form; however, the excited states,uCFl,
are expanded in a basis of correlated 1p-1h excitations with
total momentumq, isospinT=0,1, andspin S=0,1:

uCFl = sSPFdo
mi

cmi
F am

† aiuF0l = sSPFdo
mi

cmi
F umil. s25d

The coefficients,cmi
F , are obtained by diagonalizing the

Hamiltonian in the correlated 1p-1h basis. We refer to this
method as CTDA.

The matrix elements of the Hamiltonian between 1p-1h
statesmi andnj are given by

Hmi,nj = sem − eiddi jdmn+ kmjuvCBSuinl − k jmuvCBSuinl.

s26d

In the CTDA the effective interaction between quasi-particle-
hole pairs is treated to all orders. This is necessary because
this interaction can produce collective coherent states.

We model the infinite system in a box with sidesL using
periodic boundary conditions. The single particle states are

fi =
1

ÎV
ei k i·r ixstsid, s27d

wherekn=s2p /Ldn and nx,y,z=s0, ±1, ±2. . .d. At zero tem-
perature, all single-particle states withuk i u økF are occupied
in the ground state. The 1p-1h excitations consist of all states
umil where ukmu= uk i +qu.kF. For the stateskm to be on the
lattice of momentum states in the box, given thatk i are on
the lattice, we must have

q =
2p

L
snq,xx̂ + nq,yŷ + nq,zẑd, s28d

L =
2p

uqu
Înq

2. s29d

This gives a minimum box lengthLmin=2p / uqu. The size of
the basis is increased by increasingnq

2. By adopting the box
method, the exchange terms of Eq.(26) are trivially and
explicitly included and we hope that calculations at finite
temperature will be simpler.

The response functions, Eqs.(19) and (20), obtained by
diagonalizing the Hamiltonian matrix[Eq. (26)] between all
the p-h states in the periodic box are a series of delta func-
tions with various strengths. For graphing and fitting pur-
poses, these delta functions have been folded with a Gauss-
ian function. The width of the folding function was chosen to
best reproduce the analytic noninteracting FG calculations.
However, the width is not a physical parameter and observ-
ables such as the NMFP must not be sensitive to it. In prac-
tice, this is true if one uses small enough widths such as
those chosen here.

IV. CHARGE CURRENT RESPONSE FUNCTIONS

The absorption of neutrinos via the charged current pro-
cessn+ne→p+e− is determined by the Fermi and Gamow-
Teller (GT) responses of nuclear matter. The results obtained
in the CTDA forr=r0 are shown in Figs. 1 and 2 for various
values ofq. In Figs. 3 and 4 we give more details of the
responses atq=0.3 fm−1. The top graphs of Figs. 3 and 4
show the response functions across all energy transfersv;
the lower, a magnification of the smallv region. In both
figures, q= uqu s1/Î14dsx̂+2ŷ+3ẑd with L chosen such that
the number of 1p-1h basis states is,3200 and the box con-
tains,77 000 nucleons.

The response functions indicated by cross marks in Figs.
3 and 4 are for noninteracting nucleons in the periodic box. It
is clear that the box is large enough to well reproduce the
analytic result [19] indicated by a thick solid line. The
zeroth-order response(plus marks) is included to illustrate

FIG. 1. Fermi response functions calculated for cold SNM at
r=r0 using CTDA,vCBS, andOef f at q=0.05, 0.10, 0.15, 0.20, 0.30,
0.40, and 0.50 fm−1. The width of the Gaussian folding function is
0.7 MeV.
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that the use of the effective operator suppresses the response
by ,20–25 %.

Also shown in Figs. 3 and 4 are the response functions
calculated usingOef f with various common assumptions
made regardingvef f. The CHF approximation, which is
equivalent to including only the diagonal matrix elements of
vCBS, is indicated by the dashed line. Results including only
direct terms ofvCBS in the off-diagonal matrix elements of
the CTDA are shown by the dotted line. The thin solid line
shows the response usingvCBS and the full CTDA equation.
All three calculations indicate that interactions shift the
strength to higherv when compared to the noninteracting
FG. However, the CHF response is almost twice as strong at
low v. In addition, forRF, only the full CTDA calculation
using vCBS gives a coherent state outside of thep-h con-
tinuum, indicating that the exchange terms are not negligible.
This is not the case forRGT, where the exchange terms have
little effect. The width of the coherent state in Figs. 3 and 4
indicates the width of the folding function used in these fig-
ures.

The three GT responses corresponding toa=x,y,z [Eq.
(20)] are classified as spin longitudinalsa=zd and two spin
transversesa=x,yd, where the direction ofq defines thez
axis [10,20,21]. The peak ofRGT in Fig. 4 has contributions
from three states that lie just beyond thep-h continuum. The
one at relatively lower energy is from the longitudinal re-
sponse while the other two are from the transverse and are
degenerate. The ground state of uniform FG hasJz=0, and
conservation ofJz implies that only states withJz=0 contrib-
ute to the longitudinal response. However, resonant states
obtained using a finite box are not eigenstates ofJz. For the
box lengths used in the present calculation at least 99% of
the strength of each resonance can be attributed to either the
spin longitudinal or spin transverse directions. Asq is in-
creased, the peaks are shifted into thep-h continuum and
distinguishable resonances disappear.

Calculations that assume a bare weak operator and
Skyrme-like effective interactions without tensor forces use a
slightly different definition ofRAV. The three directions,a

=x,y,z in Eq. (20) are equivalent in the absence of tensor
forces. In this case it is most convenient to calculate the
response in one direction,a=z for example. However, ex-
perimental and theoretical investigations of the isovector
spW ,nWd reactions indicate an enhancement in the longitudinal
response[10,20,21] due to the one-pion exchange, tensor
interaction. The spin longitudinal and spin transverse com-
ponents of the axial-vector response functions can differ sig-
nificantly at larger values ofq and must be calculated sepa-
rately. We have chosen here to sum the components of the
axial vectors and discuss thetotal response. The differences
in the sums of spin longitudinal and transverse responses will
be discussed in Sec. IX. A third of the presentRAV should be
used to compare results with those of simpler models that
ignore tensor forces.

V. NEUTRAL CURRENT RESPONSE FUNCTIONS

For the neutrino scattering processes,N+ne→N8+ne8 (N
=n or p), two transitions are possible: isospin changeDT

FIG. 2. Gamow-Teller response functions calculated for cold
SNM at r=r0 using CTDA,vCBS and Oef f at q=0.05, 0.10, 0.15,
0.20, 0.30, 0.40, and 0.50 fm−1. The width of the Gaussian folding
function is 0.7 MeV.

FIG. 3. Fermi response functions calculated atq=0.3 fm−1 for
cold SNM atr=r0. The upper graph shows the full response across
all values ofv, the lower is a magnification of the smallv region.
The thick solid line is the analytic result for an infinite non-
interacting FG[19] while the cross marks show the response ob-
tained using the finite periodic box. The zeroth-order response ob-
tained by replacingObare by Oef f in the noninteracting FG is
indicated by the plus marks. The remaining lines are calculations
using Oef f and various approximations: dashed, CHF; dotted, in-
cludes only directvCBSoff-diagonal matrix elements, and solid, full
CTDA usingvCBS. The curves show responses folded with a Gauss-
ian of width 0.28 MeV.
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=0 and 1. ForDT=1, only thetz terms of the neutral current
operators can contribute. For SNM, these can be trivially
related to the charge current operators discussed in Sec. IV:
theDT=1 contribution toRNV=1/2s1−2 sin2 uWd2RF and all
of RNA=1/2RGT. We do not include separate results for these
response functions.

For DT=0 transitions, the neutral current response func-
tion is given by the isospin and spin independent operator of
ONV, oi sin2 uW eiq·r i where oie

iq·r i is the density operator.
The total energy,Esrd, calculated in I usingvCBS, minimizes
at r@r0 and matter is unstable to density fluctuations at the
densities considered in this work. However, it is believed that
matter is stable down to densities,0.1 fm−3 [18]. We there-
fore add a correction tovCBS meant to take into account the
neglected three-body forces and many-body cluster contribu-
tions. This correction is chosen to reproduce the semiempir-
ical Esrd in Ref. [18].

We use a density dependent zero-range central interaction,
which is to be used only for direct matrix elements,

vi j
d srd = FC1S r

r0
Da

+ C2Gdsr i − r jd, s30d

to represent this correction. For finite range effective inter-
actions such asvCBS, the exchange contribution to the matrix
element of the Hamiltonian depends on the momentum dif-
ference between the hole states,k i j =k i −k j. When uk i j u is
large, the contribution of the exchange term to the effective
interaction is negligible. However, ford-function interactions

the exchange contribution is a constant, independent of the
relative momenta. Including exchange contributions from
vdsrd causes unphysically large corrections in the exchange
channel and we therefore assume thatvdsrd contributes only
to the direct matrix elements.

The contribution ofvdsrd to the energy of matter per
nucleon is

Edsrd
A

=
1

2o
i,j

ki j uvi j
d srdui j l s31d

=
1

2
FC1S r

r0
Da

+ C2Gr. s32d

The parametersC1,C2, and a are chosen so thatvCBS

+vdsrd reproduces the semiempiricalEsrd of Ref. [18] in the
s1/2–3/2dr0 range. The fitted parameters are given in Table
I at the two densities considered. Recall thatvCBS is density
dependent because the correlation functions that definevCBS

are density dependent. The parameters ofvi j
d srd therefore de-

pend on the density at whichvCBS is determined. However,
both sets fit the sameEsrd, and predict similar responses.

The contribution ofvdsrd to the energy of single-particle
states,ed, is obtained by differentiatingEdsrd /V with respect
to r, and the second derivative with respect tor is the effec-
tive interaction:

ed =
1

2
FC1sa + 2dr0S r

r0
Da+1

+ 2C2rG s33d

kmjuvef f
d uinl =

1

V

1

2
FC1sa + 2dsa + 1dS r

r0
Da

+ 2C2G .

s34d

The kmjuvef f
d uinl is of the same order askmjuvc

CBSuinl in DT
=0, NV transitions.

The neutral currentDT=0 response functions atq
=0.30 fm−1 for r=r0 and s3/2dr0 are given in Fig. 5. The
calculations have been scaled by 1,000 for convenience. The
matter is unstable atr=s1/2dr0 and we have not included
response functions for this density. The dotted lines show
DT=0 RNV for a non-interacting FG, the CTDA response
functions obtained usingvCBS+vdsrd are shown as the
dashed line whenObare is used and solid whenOef f is used.
The density response is pushed to largerv though not as
much as theRF and RGT. And the suppression due toOef f

depends sensitively on the system density. Atr=r0, there is
little suppression while atr=s3/2dr0, the response is
quenched by,25%.

The present treatment of the density response is less sat-
isfactory than that of the other responses. However, theDT

FIG. 4. Gamow-Teller response functions calculated atq
=0.3 fm−1 for cold SNM at r=r0. See caption of Fig. 3 for
notation.

TABLE I. Parameters ofvi j
d at r=0.16 and 0.24 fm−3.

r C1 C2 a

0.16 310.3 2302.4 0.54

0.24 342.7 2356.0 0.50

S. COWELL AND V. R. PANDHARIPANDE PHYSICAL REVIEW C70, 035801(2004)

035801-6



=0 neutral current response gives a contribution only of or-
der 10% to the total neutrino scattering cross section. The
overall accuracy of the present calculation is also of order
10%.

VI. NEUTRINO MEAN FREE PATHS

To evaluate the significance of these changes to the re-
sponse functions, we calculate the NMFP for low energy
neutrino scattering and neutrino absorption processes in cold
SNM. For the low energy neutrino reactions considered, the
Hamiltonian density is given by the Weinberg-Salam model:

HW =
GF

Î2
E d3xeiq·x,m jmsxd, s35d

where ,m=c̄2gms1−g5dc1 is the lepton current, the sub-
scripts 1,2 denote the incident and outgoing leptons, respec-
tively, and q=p1−p2. The nonrelativistic nuclear current,
j f i
m =s j0, j d, is defined as

j0 = kCFuOVuCIl, s36d

j = kCFuOAVuCIl. s37d

GF=1.166x 10−5 GeV−2. The cross section is obtained using
Fermi’s golden rule and averaging over initial and summing
over final spin states:

ds

d3p2
=

GF
2

s2pd2o
F

dsv + EI − EFd
1

E1E2
fp1

mp2
n + p1

np2
m

− p1 · p2g
mn + iemanbp1

ap2
bg j f i

m j f i
n* , s38d

whereesatb is the antisymmetric tensor withe0123=1.
We choose thez axis in the direction ofq, qm=sp1

−p2dm=sv ,0 ,0 ,qd and defineQm=sp1+p2dm=sV ,Qx,0 ,Qzd.
Equation(38) then simplifies to

ds

d3p2
=

GF
2

s2pd2 o
F

dsv + EI − EFdFs1 + cosu12d j0j0
*

+ s1 − cosu12dj · j * +
1

2E1E2
fQx

2jxjx
* + sQz

2 − q2d jzjz
*

+ QxQzs jxjz
* + jzjx

*dgG , s39d

where, in theme=0 limit, the lepton scattering angle is given
by cosu12=sE1

2+E2
2−q2d / s2E1E2d.

Using the previous definitions of the response functions,
Eqs.(19) and (20), and further defining a mixed component
response,

RAV,i jsv,qd =
1

A o
F

kFIuOAV,i
ef f†uFFlkFFuOAV,j

ef f uFIl

3dsv + EI − EFd, s40d

where i and j are components of the axial-vector operator,
the cross section can be expressed in terms of thev-q space

ds

dqdv
=

GF
2

2p

E2

E1
qHs1 + cosu12dRV + s1 − cosu12dRAV

+
1

E1E2
fQx

2RAV,xx + sQz
2 − q2dRAV,zz+ 2QxQzRAV,xzgJ .

s41d

We have made the substitutiond3p2=E2
2 dE2 dV=fsE1

−vd /E1gq dq dv df and integrated overf.
The total cross section is obtained by integrating Eq.(41)

over all kinematically allowed values ofv andq. The NMFP,
defined asl=ssrd−1, is given in Figs. 6 and 7 for low energy
neutrino absorption and scattering, respectively.

The top graph of Fig. 6 shows thelCTDA calculated for
neutrino absorption using CTDA withvCBS and Oef f (upper
curves) as well as thelFG for a noninteracting FG(lower
curves) for the densitiesr=1/2, 1, and s3/2dr0 (solid,
dashed, and dotted). For the absorption process, bothlFG
andlCTDA are dominated byRGT. It accounts for,75–80 %
of the total cross section of the CTDA and slightly more for
the FG. The ratiolCTDA/lFG is given in the bottom graph. At
the densities considered,lCTDA is ,2.5−3.5 times larger
thanlFG.

FIG. 5. Neutral current response functions forDT=0 transitions
calculated atq=0.3 fm−1 for cold SNM at r=r0 (upper) and
s3/2dr0 (lower). Dotted lines show the response for a noninteract-
ing FG. Response functions calculated in TDA usingvCBSandObare

are shown as dashed lines and the CTDA results withOef f by solid
lines. The curves show responses folded with a Gaussian of width
0.96 MeV for r=r0 and 1.2 MeV forr=s3/2dr0.
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Figure 7 showsl for neutrino scattering atr=1 and
s3/2dr0 (solid and dashed lines, respectively). As was found
for the absorption process,lCTDA is ,2.6−3.5 times larger
thanlFG. The suppression of neutrino scattering is similar to
that for absorption because theDT=1 contribution accounts
for ,90% of the total scattering cross section. In addition,
the NMFP for scattering is,2 times larger than that for
absorption; the inverse of the scaling factor relating the
dominant neutral and charge current axial-vector responses
fRNA=s1/2dRGTg. The dominance of theDT=1 channel en-
sures that errors associated with introducing the correctionvd

to the two-bodyvCBS will not significantly effect the NMFP,
providing that stability is ensured.

In calculatinglCTDA, we have extrapolated to obtain the
q&0.1 fm−1 response functions. The side length of the box
used to model the infinite system is~1/q. For small momen-
tum transfers, the box size becomes large and the number of
basis states exceeds,10 000. A basis of this size is beyond
the capabilities of the standard desktop computer used in this
work. For this reason in Figs. 6 and 7 we have not included
l for En,5 MeV, which is completely determined by the
extrapolated response functions. The contribution of these
low q response functions becomes negligible whenEn

*20 MeV.
In the absence of tensor forces, the lowq response can be

considered in two parts: a single collective state and the

p-h continuum. In diagonalizing the Hamiltonian, all but one
of the excitation energies lie within the single-particle ener-
gies of the “unperturbed” or CHF states. These states con-
tribute to the response in thep-h continuum. The state with
energy beyond the continuum is the collective state and its
contribution to the response can be well represented by a
delta function,RCsqdd(v−vCsqd). The energy,vCsqd, and
strength,RCsqd, are linear inq when q&0.2 fm−1. This is
illustrated in Fig. 8 wherevCsqd (top graph) and RCsqd
(middle graph) for the Fermi responseRF are plotted along
with linear fits at smallq. For RGT, the tensor force splits the
single coherent resonance into two components, spin longi-
tudinal and spin transverse. The energies of these states re-
main outside of thep-h continuum, but have slightly differ-
ent values. Each component can be fit separately using a
delta function where the strength and resonant energies are
linear in q at q,0.2 fm−1.

As q→0, the response in thep-h continuum fRsv ,qd
−RCsqdd(v−vCsqd)g→aRCHF

bare. (For RGT contributions of all
the three resonant states are subtracted.) The coefficienta
can be determined by comparing the area offRsv ,qd
−RCsqdd(v−vCsqd)g to the area ofRCHF

bare calculated using
Obare and the CHF single-particle energies. This ratio is
shown in the bottom graph of Fig. 8 for the Fermi response
where

FIG. 6. NMFP for absorption,n+n→e−+p. The upper graph
showsl for a noninteracting FG(lower curves) and the CTDA
(upper curves). The lower graph gives the ratio oflCTDA to lFG.
The system densities arer=s1/2dr0 (solid), r0 (dashed), and
s3/2dr0 (dotted).

FIG. 7. NMFP for scattering,n+N→n8+N8. The upper graph
showsl for a noninteracting FG(lower curves) and the CTDA
(upper curves). The lower graph gives the ratio oflCTDA to lFG.
The system densities arer=r0 (solid) and s3/2dr0 (dashed).
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a =
E fRsv,qd − RCsqdd„v − vCsqd…gdv

E RCHF
baresv,qddv

. s42d

The RCHF
bare can be calculated analytically; at smallq it de-

pends only on the Landau effective mass. In CB theory the
effective mass mostly comes from the contribution of the
exchange matrix elements ofvCBS to the single-particle en-
ergies. It depends upon the momentum and is defined as

1

m*skd
=

1

"2k

d

dk
eskd. s43d

The Landau effective mass,mL
* =m*sk=kFd<0.64mN at r

=r0 with the presentvCBS. This value is less than the stan-
dard value of,0.7mN. However, we have not included the
momentum dependence ofvCB nor ùthree-body contribu-
tions that are expected to increase our value ofmL

* .
Calculations that neglect tensor forces and assumeObare

use a simplified form of Eq.(41). In the absence of tensor
forcesRAV,xx=RAV,zz=s1/3dRAV, andRAV,xz=0, and Eq.(41)
can be rewritten as

ds

dqdv
=

GF
2

2p

E2

E1
qfs1 + cosu12dRV + s3 − cosu12d

1
3RAVg .

s44d

When tensor forces are included the spin longitudinal and
spin transverse responses can be considerably different from

s1/3dRAV and calculations must be carried out using Eq.(41).
However, for the low energy processessq&0.5 fm−1d,
RAV,xx<RAV,zz<s1/3dRAV, and RAV,xz<0 and lCTDA calcu-
lated using Eq.(44) differs by &5% from that calculated
using the full expression for the cross section.

VII. SKYRME-LIKE APPROXIMATIONS OF veff

Many recent calculations of NMFP have used a Skyrme-
like effective interaction of the form

vSK= svc + vtti · t j + vssi · s j + vstsi · s jti · t jdd3sr i − r jd.

s45d

Only the direct contributions ofvSK are used and the
strengths of the delta functions can be directly related to the
Landau parameters[17]. It is instructive to compare the
NMFP obtained previously to that obtained by approximat-
ing vCBSwith this simple zero-range effective interaction. We
consider two cases: the strengths of thevSK interaction are
fitted using an effective mass defined in the preceding sec-
tion, vSKsm*d; and the bare nucleon mass isvSKsmNd.

To ensure stability, it is necessary to introduce a density
dependent central interaction of the form Eq.(30) such that
vc=vdsrd. Using the FG kinetic energy determined for each
mass, the parameters ofvc are chosen such that the semi-
empiricalEsrd in Ref. [18] is reproduced. For each mass, the
strengthsvt , vs andvst are fit to reproduce the susceptibili-
ties calculated in I. The strengths of the interaction atr=r0
are given in Table II.

Figure 9 compares the Fermi(upper graph) and Gamow-
Teller (lower graph) TDA response functions obtained using
vSK and Oef f and vCBS and Oef f when q=0.3 fm−1 and r
=r0. For both the Fermi and GT weak operators the response
obtained usingvSKsmNd (dashed line) is dominated by a
single coherent state beyond thep-h continuum. The energy
of this state is significantly less than that obtained usingvCBS

(solid line). In contrast,RF calculated usingvSKsm*d (dotted
line) extends to energy transfers similar to those of thevCBS

calculation. However, at largeq, the Landau effective mass
approximation is no longer valid and differences between
responses calculated withvCBS and vSKsm*d increase. The
NMFP is most sensitive to the lowv region. In this region,
vSKsm*d is a good approximation to the response obtained
usingvCBS. Similar results are obtained forRGT.

In comparingvCBSresponse functions of Fig. 9 to those of
Figs. 3 and 4, the heights of the resonant peaks are signifi-
cantly different. This is due to the difference in the width of
the folding function used in each calculation. The Skyrme
calculations contain fewer basis states requiring a larger

FIG. 8. Extrapolation parameters for low-q Fermi response. See
text for description.

TABLE II. Strengths of delta function interactions forvSKsm*d
andvSKsmNd at r=r0.

C1 a C2 vt vs vst

vSKsm*d 1353.07 0.25 −1982.28 183.73 60.29 257.43

vSKsmNd 795.55 0.36 −1271.10 269.03 145.59 342.73
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width to smooth the delta functions. This does not effect the
calculation of physical parameters such as NMFP.

The neutral vector response for theDT=0 transition is
given in Fig. 10 for the three effective interactions. The re-
sponse calculated withvSKsmNd (dashed), vSKsm*d (dotted),
andvCBS (solid) are shown forr=r0 andq=0.3 fm−1. Note

that this response has been multiplied by 1000. The structure
of the response is significantly different for each effective
interaction. However, theDT=0 contribution to the cross
section is&10% and these differences will have little effect
on the NMFP. The response functions for theDT=1 transi-
tion are related to the charge current response functions in
Fig. 9 (see Sec. V) and are not shown separately.

The ratio of the NMFP obtained usingvSK to those of Sec.
VI at r=r0 are shown in Fig. 11;lSKsm*d /lCTDA (solid line)
and lSKsmNd /lCTDA (dashed line). The top graph compares
results for the neutrino absorption process, the lower for neu-
trino scattering. For both processes, the NMFP calculated
using vSKsm*d is in good agreement with the results of the
previous section. However, usingvSKsmNd underestimates the
NMFP by ,25%. Assuming a suitable effective mass, the
zero range approximation is a fair representation ofvCBS for
these low energy calculations.

Figure 11 also shows results obtained usingvSKsm*d and
Obare. The ratio with respect tolCTDA is shown by the dotted
line. It is ,25% less than the NMFP obtained whenOef f is
used. This calculation is indicative of many current ap-
proaches and shows that calculations using an effective in-
teraction and a bare weak operator may overestimate the
neutrino cross sections.

FIG. 9. Fermi(upper) and Gamow-Teller(lower) response func-
tions calculated usingvSKsm*d (dotted), vSKsmNd (dashed), andvCBS

(solid) at q=0.3 fm−1 for cold SNM atr=r0. All responses have
been calculated using the TDA andOef f. The curves show responses
folded with a Gaussian of width 1.1 MeV.

FIG. 10. DT=0 neutral current response functions obtained us-
ing vSKsm*d (dotted), vSKsmNd (dashed), and vCBS (solid) at q
=0.3 fm−1 for cold SNM atr=r0. All responses have been calcu-
lated usingOef f and the TDA. The curves show responses folded
with a Gaussian of width 1.1 MeV.

FIG. 11. NMFP for neutrino absorption(upper) and neutrino
scattering(lower). Shown is the ratio oflSK/lCTDA calculated in
TDA using Oef f andvSKsm*d (solid), vSKsmNd (dashed). The dotted
line shows the ratio calculated usingvSKsm*d andObare.
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VIII. RANDOM PHASE APPROXIMATION

The usual progression from the simple TDA calculation is
to allow for 2p-2h excitations in the ground state and employ
RPA. In the context of CBT, this procedure is not simple. An
inherent complication of CBT is the nonorthogonality of the
correlated wave functions. In the basis of uncorrelated states
the ground state wave function of the RPA can be written as

uFRPAl = a0uF0l + o ap1p2h1h2
uFp1p2h1h2

l + ¯ . s46d

The analogousuCRPAl in correlated basis can be considered
as

uCRPAl = a0uC0l + o ap1p2h1h2
uCp1p2h1h2

l + ¯ , s47d

where

uCp1p2h1h2
l = sSPFijdap2

† ap1

† ah1
ah2

uF0l = sSPFijduFp1p2h1h2
l.

s48d

However, kC0uCp1p2h1h2
lÞ0 and orthogonality corrections

must be included. These corrections have been considered by
Krotscheck[22] for simple Jastrow correlations using the
correlated random phase approximation(CRPA).

Our objective here is to estimate the size of the RPA cor-
rections. We therefore usevSKsm*d discussed in the preced-
ing section to calculate the response functions using RPA and
determine the NMFP for neutrino absorption. The difference
between TDA and RPA results with thevSKsm*d should be of
the order of that between CTDA and CRPA.

In RPA, the final state wave function,uFFl, is given by

uFFl = So
mi

xmi am
† ai − o

mi

ymi ai
†amDuFRPAl. s49d

The excited states are obtained by diagonalizing the Hamil-
tonian in this 1p-1h basis. The resulting RPA matrix

S A B

− B* − A* DSX

Y
D = vSX

Y
D s50d

is non-Hermitian with elements defined by

A = sem − eiddi jdmn+ kmjuvSKuinl, s51d

B = kmnuvSKui j l. s52d

We again model the infinite system in a box with periodic
boundary conditions containing,40 000 nucleons.

Figures 12 and 13 compareRF andRGT at r=r0 calculated
using vSKsm*d and Oef f in the RPA (solid line) and TDA
(dashed line). Each figure shows the response atq values
typical for the low energy processes considered. The RPA
response functions are generally smaller than the TDA. The
reduction of the response functions carries directly into the
NMFP shown in Fig. 14. ThelRPA/lFG (lower graph) is
,3.6 atr=r0.

In combining RPA withOef f defined by CBT, we tacitly
assume that effects of ground state correlations included in
the RPA are not already accounted for in theOef f. In the
present correlated basis, theOef f is dominated by tensor cor-
relations. Recall that the quenching factor,hGT<0.77 for q

=0.3 fm−1. If the tensor correlations are set to zero,hGT
<1.02, suggesting that all of the quenching is due to tensor
correlations. Similar behavior is found forOF

ef f. The RPA
using vSKsm*d does not introduce tensor correlations since
vSK has no tensor force. However, it generates long range
spin-isospin correlations in matter via thevSK. Therefore it
appears that the CBOef f should be used in RPA calculations
with Skyrme-type effective interactions, and that CRPA cal-
culations may give,25% longer NMFP than the present
CTDA.

IX. SUM RULES

A. Static structure functions and energy weighted sum rules

In addition to the 1p-h, there are multip-h excitations that
contribute to the response functions and therefore to the
NMFP. So far we have neglected these contributions. We can
estimate the importance of these contributions by calculating
sum rules. The static structure function

FIG. 12. Fermi response functions calculated using RPA(solid)
and TDA (dashed) with OF

ef f andvSKsm*d for q=0.1–0.4 fm−1 and
r=r0.

FIG. 13. Gamow-Teller response functions calculated using
RPA (solid) and TDA (dashed) with OGT

ef f and vSKsm*d for q
=0.1–0.4 fm−1 andr=r0.
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Ssqd =
1

A
Eo

F

zkCFuOWuCIlz2dsv + EI − EFddv, s53d

=
1

A
kCIuOW

† OWuCIl, s54d

and the energy weighted sum

Wsqd =
1

A
Eo

F

zkCFuOWuCIlz2dsv + EI − EFdv dv,

s55d

=
1

2A
kCIu†OW

† ,fH,OWg‡uCIl, s56d

are calculated using the variational ground state(VGS) ob-
tained in the FHNC-SOC calculations[10,11] and also by
direct integration of the CTDA response functions described
in Sec. IV. The sums calculated using VGS include both
1p-h and multi p-h contributions, while the CTDA with
Oef fs1bd contains only the contributions of 1p-h correlated
basis states. The multi-p-h sums are then given bySmph
<SVGS−SCTDA andWmph<WVGS−WCTDA.

The static structure function and energy weighted sum for
the Fermi response,SFsqd (upper) and WFsqd (lower), are
shown in Fig. 15. Charge conservation requiresSFsq=0d=0.

However,SF
VGSsqd (solid line) is nonzero atq=0, indicating

the error due to approximations in the FHNC-SOC calcula-
tion. For the bare weak operators,Sbare

CTDAsqd=SFGsqd given by
the dashed line.SF

CTDAsqd calculated from the CTDA with
Oef f and shown by the stars is,20% less than theSF

VGSsqd. If
we consider q=0.2 fm−1, for example, SF

VGS=0.07 and
SF

CTDA=0.05, showing that the 1p-h contribution to the static
structure function is dominant. However the multi-p-h con-
tribution, Smph<0.02, is not negligible.

We can approximate the average energy of the multi-p-h
response usingWFsqd. Consider againq=0.2 fm−1 where
WF

VGS=1.15 MeV. For the 1p-h contribution, WF
CTDA

=0.70 MeV and we findWmph<0.45 MeV. The average en-
ergy of the multi-p-h response is

Emph<
Wmph

Smph
= 23 MeV, s57d

where

E1ph <
WF

CTDA

SF
CTDA = 14 MeV. s58d

Though the contribution of the multip-h processes are not
negligible, the average energy of the multip-h response is
much higher than that of the 1p-h response. The NMFP is
most sensitive to the response at low energy transfers where

FIG. 14. NMFP for absorption calculated usingvSKsm*d and
Oef f in RPA (solid), TDA (dashed), and noninteracting FG(dotted)
for cold SNM atr=r0. The lower graph gives the ratio ofl /lFG.

FIG. 15. SFsqd (upper) andWFsqd (lower) for the Fermi opera-
tor. Results are shown for a noninteracting FG(dashed line), for
integrals of the CTDARFsv ,qd (stars) and for the VGS using Eqs.
(54) and (56).
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the multi-p-h contribution is not expected to be significant.
Similar results are obtained for theOGT sums shown in

Fig. 16. Note thatSGT
VGSsqd (solid line) is large atq=0 as the

spin density is not conserved when tensor forces are in-
cluded. The static structure function again indicates that the
multi-p-h contribution is not negligible. However, the aver-
age energy of the multi-p-h response is significantly higher
than that of the 1p-h response.

It is commonly argued that RPA is the better method for
obtaining reaction rates because the energy weighted sums of
the response functions satisfyWRPAsqd=q2/2m. This value
of the energy weighted sum is correct only when the inter-
action operatorvi j commutes with the perturbation operator
Osqd. However, the weak operators do not commute with the
nuclear forces, and the energy weighted sums calculated us-
ing VGS and realistic nuclear forces via Eq.(56) clearly
show thatWFsqd andWGTsqd@q2/2m (Figs. 15 and 16).

B. Spin transverse and spin longitudinal sum rules

There are experimental and theoretical indications that the
spin longitudinal and spin transverse response functions can
differ significantly due to tensor forces. To illustrate this
point we calculate the spin longitudinal and spin transverse
static structure functions and energy weighted sums forOGT
using VGS and by direct integration of the CTDA response
functions calculated usingOef f. We assumeq along thez axis
and define the static structure functions as

SLsqd =
1

A
Eo

F

zkCFuq̂ ·OGTuCIlz2dsv + EI − EFddv,

s59d

STsqd =
1

2A
Eo

F

zkCFuq̂ 3 OGTuCIlz2dsv + EI − EFddv.

s60d

For the CTDA, these are simply

SLsqd =E Rzzdv, s61d

STsqd =E Rxxdv, s62d

where the response functionsRzz andRxx are defined by Eq.
(40).

The energy weighted sums are given by

WLsqd =
1

A
Eo

F

zkCFuq̂ ·OGTuCIlz2dsv + EI − EFdv dv,

s63d

WTsqd =
1

2A
Eo

F

zkCFuq̂ 3 OGTuCIlz2dsv + EI − EFdv dv.

s64d

Figures 17 and 18 show the spin longitudinal(upper
graph) and spin transverse(lower graph) sums obtained from
the VGS(solid line) and CTDA response(stars). We include
for reference in Fig. 17,SL

FGsqd=ST
FGsqd calculated for a non-

interacting FG(dotted line).
In the longitudinal direction,SL

VGSsqd is significantly
larger than theSL

FGsqd. It is nonzero atq=0 and has a peak
value of ,1.2 atq,1.5 fm−1. However, the 1p-h SL

CTDAsqd
is smaller than the FG sum at smallq. Whenq*0.5 fm−1,
SL

CTDA deviates significantly from the FG sum and more
closely matchesSL

VGSsqd. In this region, the 1p-h contribu-
tions are dominant. In principle the sum of the 1p-h response
must be smaller than that of the total. The presentSL

CTDA,
however, exceedsSL

VGS nearq,1.3 fm−1 by ,20%, indicat-
ing that the CTDA longitudinal response may be too large.

In the transverse case,ST
VGSsqd differs significantly from

the FG sum only at smallq, where it is finite atq=0. The
sum of 1p-h contributions,ST

CTDAsqd is less than bothST
VGSsqd

andST
FGsqd at all values ofq.

The energy weighted sumsWL,T
VGSandWL,T

CTDA are shown in
Fig. 18. They indicate that the multi-p-h contributions to
both longitudinal and transverse responses have larger aver-
age energies than the 1p-h contributions.

These sums have been previously calculated using an
older variational ground state also obtained with FHNC-SOC
methods[10]. The present results do not differ significantly
from those previously published for large values ofq. How-
ever, the range of integration was not long enough in the

FIG. 16.SGTsqd (upper) andWGTsqd (lower) for the GT operator.
See caption of Fig. 15 for notation.
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calculations of Ref.[10] to give accurate results at small
values ofq. At qø0.25 fm−1, the present calculation is more
accurate, and replaces the previous results.

X. CONCLUSIONS

We have calculated the response of cold SNM to weak
probes using two-body effective interactions and one-body
effective weak operators. These were obtained consistently
from realistic nuclear forces using CBT. The infinite system
has been modeled using a box with periodic boundary con-
ditions. Using a basis of correlated 1p-1h excitations, i.e.,
the correlated TDA, the response for both neutral and charge
weak operators have been calculated.

For both charge and neutral weak operators the response
is pushed to larger energies when compared to the response
of a noninteracting FG. The effective operators suppress the
response by 20–25 % relative to calculations using bare op-
erators in most cases. However, for the density or isospin and
spin independent term ofONV, the suppression depends sen-
sitively on the density of the system. The effective operator
has little effect whenr=r0, but suppresses the “bare” re-
sponse by,20% for r=s3/2dr0.

Using the response functions obtained in CTDA, the
NMFP for low energy neutrino scattering and absorption in
SNM have been calculated. For neutrino absorption in matter
at densitiesr= 1

2 ,1,3
2r0, l is enhanced by,2.5–3.5 relative

to l obtained for a noninteracting FG. Similar results are
seen for neutrino scattering at matter densitiesr
=1,s3/2dr0.

Using the Landau effective mass obtained from the
single-particle energy calculated usingvCBS, the low energy
NMFP can be adequately reproduced using a zero-range
Skyrme-like effective interaction,vSKsm*d and Oef f. The
vSKsm*d is chosen to reproduce the spin, isospin and spin-
isospin susceptibilities of SNM and the equation of state.
Though the responses calculated fromvCBS and vSKsm*d do
not agree in detail, the predicted NMFP are nearly the same.
Many current approaches use a Skyrme-like effective inter-
action and bare weak operators. The present calculations in-
dicate that these may overestimate the neutrino cross sec-
tions.

We also examine the need to extend the current calcula-
tion to include RPA corrections. UsingvSKsm*d the response
functions have been calculated using standard RPA methods.
For the low energy processes of interestlRPA for r=r0 was
increased by,25% relative tolTDA. The NMFP obtained
usingvCBSandOef f in RPA including the necessary orthogo-
nality corrections may be,3 to 4 lFG in the 1/2 tos3/2dr0

density region.
Though the 1p-1h response functions calculated here are

the dominant contributions to the one-body neutrino pro-
cesses considered, there are higher-body terms that can con-
tribute via the many-body terms inOef f. The importance of
these terms has been estimated using the static structure

FIG. 17. Spin longitudinal(upper) and spin transverse compo-
nents of the GT static structure functions calculated using VGS
(solid), CTDA (cross marks), and noninteracting FG(dotted).

FIG. 18. Spin longitudinal(upper) and spin transverse compo-
nents of the GT energy weighted sums calculated using VGS(solid)
and CTDA(cross marks).
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function and energy weighted sum. These were calculated
using the VGS obtained using FHNC-SOC methods and by
direct integration of the CTDA response functions. The sums
indicate that though the multi-p-h response is not negligible,
the average energy of their response is much larger than that
of the 1p-1h response. For low energy neutrinos, the NMFP
in SNM is dominated by the response at low energy trans-
fers, and the contributions of the multi-p-h may not be sig-
nificant.

In the context of supernovae and neutron stars the cold
SNM calculations given here are not very useful. However,

the present methods can be easily adapted to handle the tem-
perature and proton fraction dependence needed in calculat-
ing neutrino rates for modern supernovae and neutron star
simulations. In addition, the present cold SNM calculations
provide tests of some of the approximations used to study
weak interactions in hot asymmetric matter.
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