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We present a relativistic dynamical model of pion photoproduction on the nucleon in the resonance region.
It offers several advances over the existing approaches. The model is obtained by extending ourpN-scattering
description to the electromagnetic channels. The resulting photopion amplitude is thus unitary in thepN, gN
channel space; Watson’s theorem is exactly satisfied. At this stage we have included the pion, nucleon,Ds1232d
resonance degrees of freedom. Ther andv meson exchanges are also included, but play a minor role in the
considered energy domain(up toÎs=1.5 GeV). In this energy range the model provides a good description of
all the important multipoles. We have allowed for only two free parameters—the photocouplings of theD

resonance. These couplings are adjusted to reproduce the strength of corresponding resonant-multipolesM1+

andE1+ at the resonance position.
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I. INTRODUCTION

In recent years there has been significant interest in the
pion and kaonphotoproductionandelectroproductionoff the
nucleon. Several excellent experimental programs exploring
these reactions in theresonance regionhave been performed
at MAMI, MIT Bates, BNL, and Jefferson Lab. To extract
the resonance properties from the experimental data a num-
ber of sophisticated tools have been developed over the past
decade. Most widely exploited are thepartial-wavephoto-
production solutions SAID [1] and MAID [2], K-matrix
models[3], and dynamical models, such as DMT[4], the
model of Sato and Lee[5], the Gross and Surya model[6],
and a number of others[7].

In this paper we present a new dynamical model forpion
photoproduction. It is an extension of our model of pion-
nucleonspNd interaction[8,9] to include the electromagnetic
interaction in a way consistent with the Watson theorem[10]
and current conservation. The framework is based on solving
a Bethe-Salpeter type of equation for the scattering ampli-
tude in the channel space spanned bypN andgN states. As
in the pN case we use theequal-time(instanteneous) quasi-
potential reduction of the Bethe-Salpeter equation. The driv-
ing force of the equation to lowest order in interactions is
given by single-particle exchange graphs. Here we will re-
strict our discussion to the force given by the single nucleon,
pion, r andv mesons, andDs1232d-resonance exchanges.

In comparing with other approaches based on the hadron-
exchange dynamics we note that they differ mainly in the use
of relativistic dynamics and the renormalization procedures.
Our model bears close analogies to the relativistic model
developed by Gross and Surya[6]. In contrast to their work,
we do not approximate the hadron exchanges in thet- and

u-channels by a separable interaction. As a result, the integral
equation for thepN amplitude can be solved only numeri-
cally, and hence the task of solving the model is more tech-
nically involved. Our models are also different in the choice
of a quasipotential reduction of the Bethe-Salpeter
equation—equal-time vs pion spectator.

There are important differences of our model with the
DMT model. First of all, the dressed resonance exchanges in
the s channel are represented by a Breit-Wigner form with
“unitarity phases” which need to be fitted to the condition of
Watson’s theorem. In our model these contributions are gen-
erated dynamically. This has an advantage of satisfying Wat-
son’s theorem automatically. Also, the resonance parameters,
apart from the electromagnetic couplings, are thus fully con-
strained by thepN interaction and need not be fitted sepa-
rately. The second major difference is again in the choice of
relativistic dynamics—the DMT model exploits the Kadys-
hevsky quasipotential reduction of the Bethe-Salpeter equa-
tion.

Sato and Lee[5] apply the Hamiltonian approach and the
method of unitary transformations which makes it difficult to
compare directly to the Bethe-Salpeter type of approach. The
generic feature that distinguishes the two is that in the
quantum-mechanical Hamiltonian description the particles
are always on the mass shell and intermediate particles are
off the energy shell, while in the field-theoretic description it
is the other way around. Another difference is that Sato and
Lee do not perform any renormalizations of the dressed
baryon-pole contributions.

In this paper we shall only briefly present the framework
and the results for the photoproduction multipoles. The re-
sults for the pion-photoproduction observables as well as the
extension to electroproduction of pions will appear in subse-
quent publications, see, e.g.,[11]. The paper is organized as
follows. In the following section we briefly summarize the
usual arguments for inclusion of thepN final state interac-
tion in thep photoproduction reactions. In Sec. III we con-
struct the pion-photoproduction potential with an emphasis

*Electronic address: vlad@jlab.org
†Electronic address: tjon@jlab.org

PHYSICAL REVIEW C 70, 035209(2004)

0556-2813/2004/70(3)/035209(9)/$22.50 ©2004 The American Physical Society70 035209-1



on satisfiyng the gauge-invariance constraints. In Sec. IV the
renormalization of the pole terms of the photoproduction am-
plitude is described. In Sec. V we present some numerical
results for the pion-photoproduction multipoles and discus-
sion. Section VI concludes the paper.

II. pN-gN COUPLED CHANNEL EQUATIONS

To include the photon in a way preserving unitarity in the
channel space spanned by thepN andgN states we consider
the following four processes:

pN → pN, pN → gN,

gN → pN, gN → gN, s1d

and the following coupled-channel scattering equation:

STpp Tpg

Tgp Tgg
D = SVpp Vpg

Vgp Vgg
D + SVpp Vpg

Vgp Vgg
DSGp 0

0 Gg
D

3STpp Tpg

Tgp Tgg
D , s2d

whereT and V are the suitably normalized amplitudes and
driving potentials of thepN scatteringsppd, pion photopro-
duction spgd, absorptionsgpd, and the nucleon Compton
effect sggd. The propagatorsGp andGg are, respectively, the
pion-nucleon and photon-nucleon two-particle propagators.
With the assumption of Hermiticity of the potential and time-
reversal symmetry, which in particular relates thegp andpg
amplitudes, Eq.(2) leads to an exactly unitaryS matrix, Sfi
=d f i +2iTfi, in the defined channel space.

Since iterations of the potentials involving the photon
give rise to the small electromagnetic corrections, one can
simplify the equation by keeping only the leading order in
the electric chargee. This leads to

Tpp = Vpp + VppGpTpp, s3ad

Tpg = Vpg + TppGpVpg, s3bd

Tgp = Vgp + VgpGpTpp, s3cd

Tgg = Vgg + VgpGpTpg. s3dd

In this approximation, the integral equation has to be solved
for the pN amplitude only. The rest is determined in a one-
loop calculation.

The equation for thepN amplitude, Eq.(3a), has been
studied by us previously in the framework of relativistic qua-
sipotential scattering with thepN potential modeled by a
number of relevant hadron exchanges[9]. The parameters
have been fitted to thepN-scattering partial-wave analysis

data. In the present work we obtain the photoproduction am-
plitude from Eq.(3b) (diagrammatically shown in Fig. 1)
using exactly the same quasipotential approach and thepN
amplitude as in Ref.[9]. The only free parameters in this
calculation will be the electromagnetic couplings of hadrons
entering the driving forceVpg, all the rest is fixed through
the analysis ofpN scattering.

Our resulting photoproduction amplitude obeys theWat-
son theorem[10], which relates the phase of the photopro-
duction amplitude to thepN elastic phase shiftdpp:

Tgp = uTgpueidpp. s4d

The phase of the photoproduction amplitude is thus fully
determined in terms of the on-shellpN amplitude. The de-
pendence on the off-shell behavior of thepN interaction re-
sides fully in the absolute magnitude of the photoproduction
amplitude.

III. THE MODEL POTENTIAL AND GAUGE INVARIANCE

The pion-photoproduction potential of this model is
shown diagrammatically in Fig. 2. The first four graphs rep-
resent the so-called Born term, where the fourth graph is the
Kroll-Ruderman contact term. The latter is obtained by the
“minimal substitution” in the pseudovectorpNN coupling,
and is therefore needed to ensure the current conservation of
the Born contribution.

Except for thegND couplings, the Lagrangian we use is
standard. For brevity we only specify here the Feynman rules
for corresponding vertices[omitting isospin, the isospin
structure will be specified below, cf. Eq.(13)]

GgNN
m sk;qd = egm −

ek

2mN
gmnqn, s5ad

GgpNN
m =

egpNN

2mN
gmg5, s5bd

Ggpp
m sk8,kd = esk8 + kdm, s5cd

Ggpv
ma sq,kd =

eggpv

mp

«mabnkbqn, s5dd

wheree is the proton electric chargese2/4p.1/137d, k is
the anomalous magnetic moment of the nucleon,mN

FIG. 1. The unitary model for the photoproduction
amplitude.

FIG. 2. The tree-level photoproduction
potential.
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.0.9383 GeV,mp.0.139 GeV are the nucleon and pion
masses,gmn= 1

2fgm ,gng, andq andk denote the momenta of
the photon and pion, respectively. The subscriptv stands for
a vector meson, in this caser or v.

ThegND vertices we obtain from the following Lagrang-
ian:

LgND =
3e

2mNsmN + mDd
N̄T3

†sigMF̃mn − gEg5F
mnd]mDn + H.c.,

s6d

wheremD.1232 MeV is theD-isobar mass,T3 is the isospin
ND transition matrix, with normalizationT3

†T3= 2
3. This gND

coupling is invariant under electromagnetic gauge transfor-
mations(to the order to which we work), as well as under the
spin-3/2 gauge transformation,

Dmsxd → Dmsxd + ]m«sxd, s7d

with « a spinor field. Invariance under Eq.(7) ensures the
correct spin-degrees-of-freedom counting[12]. In the D’s
rest frame(where D0=0, ]0Di =−imDDi, and ]iD j =0), the
coupling (6) becomes

LgND = −
3emD

2mNsmN + mDd
N̄T3

†sgMBi + gEg5E
idDi + H.c.,

s8d

whereBi is the magnetic andEi the electric field. Therefore
the two terms correspond toND magnetic and electric tran-
sitions, respectively.

However, in the standard convention[13], the electric
couplingGE is defined as the one directly proportional to the
E1+

s3/2d multipole. On the mass shell of theD, our convention
and the convention of Jones and Scadron[13] are related as
follows:

gM = GM − GE, s9ad

gE = − 2GE
mD + mN

mD − mN
. s9bd

The Feynman rule corresponding to the coupling(7) reads

GgND
am sp,qd =

3e

2mNsmN + mDd
fgM«ambnpbqn

− gEsp ·qgam − qapmdig5g, s10d

with p sqd being the 4-momentum of theD (photon), anda
smd the vector index of theD (photon) field.

For the “strong-interaction” vertices we use the same
forms as in[9], namely,

GpNNskd =
gpNN

2mN
g5k” , s11ad

GpNN*skd =
gpNN*

2mN
g5k” , s11bd

GvNN
a sqd = gvNNSga −

kv

2mN
ganqnD , s11cd

GpND
a sk,pd =

fpND

mpmD

«abmnpbgmg5kn. s11dd

The Feynman graphs depicted in Fig. 2 correspond to

s4pdVsNd,pole
sS,Vdm = GpNNsk8dSNsp + qdGgNN

m skS,V;qd, s12ad

s4pdVsNd,exch
sS,Vdm = GgNN

m skS,V;qdSNsp − k8dGpNNsk8d,

s12bd

s4pdVsDd,pole
m = GpND

a sk8,pdSD
absp + qdGgND

mb sp;qd, s12cd

s4pdVsDd,exch
m = GgND

ma sp;qdSD
absp − k8dGpND

b sk8,pd,

s12dd

s4pdVspd
m = GpNNsq − k8dSpsq − k8dGgpp

m sk8,q − k8d,

s12ed

s4pdVsKRd
m = GgpNN

m , s12fd

s4pdVsvd
m = GvNN

a sq − k8dSv
absq − k8dGgpv

mb sq,k8d, v = sr,vd.

s12gd

These graphs give the following contributions to the iso-
spin pg amplitudes:

Vs1/2dm = 3VsNd,pole
sVdm − VsNd,exch

sVdm + 2Vspd
m + 2VsKRd

m +
4

3
VsDd,exch

m

+ Vsvd
m , s13ad

Vs3/2dm = 2VsNd,exch
sVdm − Vspd

m − VsKRd
m + VsDd,pole

m +
1

2
VsDd,exch

m + Vsvd
m ,

s13bd

Vs0dm = VsNd,pole
sSdm + VsNd,exch

sSdm + Vsrd
m . s13cd

The gauge invariance of the electromagnetic interactions
imposes the followingcurrent conservationcondition:

qmVsIdm = 0, s14d

for all values of the isospin:I =0,1
2 , 3

2. For theD, r, andv
exchange graphs this condition is trivially satisfied, since the
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corresponding electromagnetic vertices vanish when con-
tracted with the photon momentum. For the nucleon and pion
exchange contributions the situation is complicated by the
fact that the photon couples minimally and hence the vertices
fulfill the Ward-Takahashi(WT) identities:

1

e
qmGgNN

m sp8,pd = SN
−1sp8d − SN

−1spd, s15ad

1

e
qmGgpp

m sk8,kd = Sp
−1sk8d − Sp

−1skd. s15bd

Nonetheless, using these identities, it is easy to see that a
cancellation among the nucleon, pion, and the KR contact
term contributions leads to

s4pdqmVs1/2dm = − 3eGpNNsk8dSNsp + qdSN
−1spd

+ eSN
−1sp8dSNsp − k8dGpNNsk8d

+ 2eGpNNsq − k8dSpsq − k8dSp
−1sk8d,

s16d

and analogously for the other isospin amplitudes. Therefore,
the current is conserved up to the terms proportional to the
inverse propagators of the external particles, and hence is
exactly conserved when the external particles are on the
mass shell.

A problem arises when we would like to include theside-
ways form factors, i.e., cutoff functions dependent on the
4-momentum of the exchanged particle. Obviously, simply
introducing them into the pion and nucleon exchange graphs,
as we have done for thepN potential in[9], will destroy the
current conservation. The cancellation among the graphs
does not anymore take place.

The easiest way to implement such cutoff form factors
without loss of current conservation is to perform the mini-
mal substitution on the form factors themselves. We follow
essentially the method of Gross and Riska[14]. We use the
fact that our sideways form factors depend exclusively on the
momentum of the exchanged particle and hence it makes no
difference whether to include the form factor into the vertex
function or the inverse form factor squared into the propaga-
tor. In the latter case the minimal substitution is more
straightforward.

More specifically, in the nucleon case we start with

L = ff−1s]2dC̄gsi]” − mNdf−1s]2dC, s17d

where fs]2d is the form factor operator in the coordinate
space. Substituting]m by Dm=]m− ieAm, and linearizing in
the electromagnetic field we find themodifiedgNN vertex

GgNN
m,modsp8,pd = egmf−1sp82df−1sp2d + esp + p8dmff−1sp82d

3sp”8 − mNd + f−1sp2dsp” − mNdgJsp82,p2d,

s18d

where in generalJ is the finite difference the inverse form
factor

Jsp82,p2d =
f−1sp82d − f−1sp2d

p82 − p2 . s19d

For instance, for the monopole type[i.e, f−1sp2d=sL2

−p2d / sL2−m2d] we have simplyJ=sL2−m2d−1.
Taking the specific nucleon form factor used in ourpN

model,

fsp2d = S 2LN
4

2LN
4 + sp2 − mN

2d2D2

s20d

we find Jsp82,p2d=sp82+p2−2mdff−1sp82d+ f−1sp2dg / s2LN
4d.

The anomalous magnetic moment term,Gamm
m

=−sek /4mNdfgm ,gngqn, is explicitly gauge invariant and we
choose to leave it unchanged. Adding it to the vertex, and
substituting Eq.(19) for J, we obtain

GgNN
m,modsp8,pd = ef−1sp82df−1sp2dSgmn −

sp + p8dmqn

q · sp + p8d
Dgn

+
esp + p8dm

q · sp + p8d
ff−2sp82dSN

−1sp8d

− f−2sp2dSN
−1spdg + Gamm

m . s21d

This equation, together with Eq.(20), defines thegNN vertex
of the model.

One needs to keep in mind that since the free Lagrangian
is modified by form factors, the propagators take the form

SN
modspd = f2sp2dSNspd, s22d

where SNspd=sp” −mNd−1. Nucleon spinors should be modi-
fied accordingly, i.e., multiplied byf. From Eq. (21) it is
particularly easy to see that the modified vertex and propa-
gator obey the same WT identity as the unmodified ones.
Thus, we have included the cutoff functions in a way con-
sistent with gauge invariance.

Considering the pion case in the same fashion, and using
the monopole form offsk2d, we find

Ggpp
m,modsk8,kd = esk + k8dmF f−1sk82df−1sk2d + f−1sk82d

k82 − mp
2

Lp
2 − mp

2

+ f−1sk2d
k2 − mp

2

Lp
2 − mp

2 G . s23d

Note that the KR term is not modified, since we do not
introduce any form factors in thepNN interaction Lagrang-
ian, but rather have them in the propagators. Since the modi-
fied propagators and vertices obey the standard WT identi-
ties, the proof of current conservation for the model with
form factors is exactly the same as before.

IV. RENORMALIZATION OF THE POLE TERMS

One of the effects of thepN final-state interaction is to
renormalize thes-channel contributions of the photoproduc-
tion potentialVpg. Let us recall that thepN amplitudeTpp

amplitude can symbolically be presented as

V. PASCALUTSA AND J. A. TJON PHYSICAL REVIEW C70, 035209(2004)

035209-4



T = G†SG + Tu,

Tu = Vu + VuGTu,

G = Z1sG + GGTud,

S−1 = S−1 − Z1GGG + Z2sm− m0d + sZ2 − 1dS−1

= Z2S0
−1 − Z1GGG, s24d

whereS0
−1 is the inverse bare propagator, e.g., for the nucleon

it is given byp” −m0.
The photoproduction potentialVpg and the resulting am-

plitude Tpg can also be separated into the “pole” and “non-
pole” parts. In order forTpg to have the same dressed baryon
exchanges as in thepp amplitude, one ought to use the bare
parameters in the pole terms of theVpg potential, i.e.,

Vpg =
Z2

Z1
GS0Gg + Vpg,u, s25d

whereGg is the electromagnetic vertex. Indeed, one then has

Tpg = s1 + G†SGG + TuGdSZ2

Z1
GS0Gg + Vpg,uD

= GSGg + TuGVpg,u. s26d

We thus construct the nucleon- andD-pole contributions by

using the bare parameters known from thepN model, see
Table VII of Ref. [9].

V. RESULTS AND DISCUSSION

In Figs. 3 and 4 we present the model predictions for the
pion photoproduction multipoles, in units of 10−3/mp+. The
dashed curves represent the Born amplitude without the side-
ways form factors, while the dashed-dotted curves—with the
sideways form factors. The dotted curves show the tree-level
Born+r ,v calculation with all the form factors intact. The
solid curves(Red—real part, Blue—imaginary part) repre-
sent the full calculation defined by Eq.(3a) (see also Fig. 1)
with Born+r ,v ,D photoproduction potential and the com-
pletepN final state interaction from Ref.[9]. The results are
compared with the data from the partial-wave solutions of
Berends and Donnachie[15] and SAID [1].

The electromagnetic coupling parameters used in the cal-
culation are given in Table I, withmv=0.783 GeV,Lv=Lr.
Only theD-isobar electromagnetic couplingsgM andgE were
adjusted to for the best description of the resonant multi-
poles: M1+

s3/2d and E1+
s3/2d. In the figures we have plotted the

results for the central values of these paramaters, given in
bold in Table I. The other multipoles are very weakly sensi-
tive to the D isobar contribution(recall that the spin-1/2
backgrounds are absent in our model because of the specific
form of thegND vertex). Other parameters have been taken
from the literature[3,16].

FIG. 3. (Color online) The description ofJ
=1/2 pion-photoproduction multipoles. The
dashed curves represent the Born amplitudewith-
out the sideways form factors. The dashed-dotted
curves represent the Born amplitudewith the
sideways form factors. The dotted curves show
the tree-level Born +r ,v calculation (with the
form factors intact). The solid curves are the full
calculation including the final state interaction
(ReA, red solid line; ImA, blue solid line). The
results are compared to the partial-wave analyses:
BD75 [15] (ReA, filled violet circles; ImA, open
violet circles), and SAID SM95 solution[1]
(ReA, filled purple squares; ImA, open purple
squares).
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From the figures we see that the full model calculation for
most of the pion-photoproduction multipoles are in a very
good agreement with the partial-wave analyses in this energy
region. The only problematicpM1−

s1/2d and nM1−
s1/2d multipoles

can possibly be corrected by including an explicit Roper-
resonance exchange in the photoproduction potential. It is
expected to correct not only the resonance but also lower
energy region because of theN-Roper mixing and related
renormalization issues, cf.[9] for details.

The difference between the solid and dotted curves, in the
nonresonant multipoles, can serve as a good measure of the
effect of the final state interaction. One can see that this
effect is not dramatically large. However, it does make a
significant difference in some channels, as will be demon-
strated below.

Let us consider the reaction close to the threshold,s
.smN+mpd2. The electric dipole amplitudes,E0+

sId, are of pri-
mary interest in this regime, all the other multipoles are tiny.
There are predictions forE0+ from the low-energy theorems

(LET) [17,18] and chiral perturbation theory(ChPT) [19].
The result of the “old” LETs[17] are given simply by the
Born-graph contribution expanded in powers ofm=mp /mN:

E0+sp+nd =
egpNN

8pmN

Î2S1 −
3

2
mD + Osm2d, s27ad

E0+sp−pd =
egpNN

8pmN

Î2S− 1 +
1

2
mD + Osm2d, s27bd

E0+sp0pd = −
egpNN

8pmN
mF1 −

1

2
ms3 + kpdG + Osm3d,

s27cd

E0+sp0nd = −
egpNN

8pmN

1

2
m2kn + Osm3d. s27dd

Bernardet al. [18] discovered that atOsm2d there is an im-
portant chiral-loop correction to the LET for theneutral
pion-production channels:

FIG. 4. (Color online) The description of
some of theJ=3/2 pion-photoproduction multi-
poles. The legend is the same as in Fig. 3.

TABLE I. The electromagnetic coupling constants. The values
given in bold were varied for a best fit.

kV=3.71,kS=kv=−0.12

grNN=2.66,gvNN=9.0, ggpv=3ggpr=0.313

gM =2.8±0.2, gE=1.5±0.5
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E0+sp0pd = E0+
LETsp0pd +

egpNN

8pmN
S mp

4fp
D2

, s28ad

E0+sp0nd = E0+
LETsp0nd +

egpNN

8pmN
S mp

4fp
D2

, s28bd

wherefp.93 MeV is the pion decay constant. This result is
commonly referred to as the “new LET.” Of course at this
order there are also loop corrections to the charged multi-
poles; however, they appear to be less significant numerically
than for the neutral channels.

The numerical values of these predictions, together with
the predictions of our model and some experimental results
are collected in Table II. In all of the theory predictions we
have usedgpNN

2 /4p=13.8, the value inferred from our pion-
nucleon analysis.

In Table II, the second column represents the value of the
Born amplitude in our model, while the third column corre-
sponds to the full model calculations. It is reassuring that
without need to fit any parameters we obtained a reasonable
agreement with experiment in all the channels. It is also good
to see that the effect of the FSI is small for the charged pion
photoproduction and significant for thep0 channels in anal-
ogy with the chiral loop effect of the new LET. Thus, our
results at threshold are in at least qualitative agreement with
ChPT. They also are in reasonable quantitative agreement
with experiment, and for thep0 production are even in better
agreement than the “new LET” result. Although, it should be
noted that in a more complete calculation, including higher
order effects and counterterms, ChPT is in better agreement
with experiment than our simple model. One can of course
try to improve the model by including higher-order contact
terms in the photoproduction potential. We, however, have
not done that. Our main aim is to apply the model in the
resonance region where ChPT is not applicable(yet).

In particular, in theD-resonance region we have been able
to extract the coupling constants of thegN→D transition. A
quantity of interest here is the ratio of the electricsE2d and
magnetic sM1d gN→D transition strength:REM=E2/M1.
The physical significance of these values is attributed to the
deformation of the nucleon, see, e.g.,[26,27]. For instance,
in a naive quark model where the nucleon consists of three
constituent quarks in the sphere-shapeS state—theE2/M1
ratio vanishes.

In terms of thegND-vertex parameters in our model the
E2/M1 ratio is defined as(cf. Appendix A of Ref.[28]):

REM =
gE

2gM
mD + mN

mD − mN
− gE

3 100%. s29d

Using the bare values ofgM andgE in Table I, we estimate
this ratio to be

REM
bare= s3.8 ± 1.6d%. s30d

We should immediately note that this value only seems to be
inconsistent with the PDG value[29]: REM=s−2.5±0.5d%,
the reason being that the PDG analyses define this ratio as
the ratio of corresponding resonant multipoles:

REM
smultipolesd =

Im E1+
s3/2d

Im M1+
s3/2d 3 100%. s31d

In our model we obtain ImE1+
s3/2d=−1.0±0.2, and ImM1+

s3/2d

=38.5±1.5(in units of 10−3/mp) at theD resonance position
(i.e., where ReE1+

s3/2d=0=ReM1+
s3/2d). Therefore, we have

REM
smultipolesd = s− 2.6 ± 0.6d% s32d

which is consistent with the PDG value.
The definition (31), however, is equivalent to Eq.(29)

only assuming that the on-mass-shell renormalized values of
gM andgE are used in Eq.(29). While this is correct for the
M1+, for theE1+ the D contribution turns out to be relatively
small. This multipole is dominated by processes which have
nothing to do with the electric quadrupolegN→D transition.

Our result that the bareE2/M1 ratio is, in fact, small and
positive is in agreement with other dynamical models[4],
which allows us to believe that the model dependence in the
extraction of this quantity in a dynamical modeling is rather
mild and should be pursued further.

VI. CONCLUSION

We have extended the dynamical modeling of the pion-
nucleon system in the first resonance region[8,9] to the pro-
cess of pion photoproduction on the nucleon. Such an exten-
sion is indispensable in testing thepN dynamics beyond the
elasticpN scattering.

The presented numerical results are obtained in the model
which satisfies unitarity in thepN^ gN channel space to the
leading order in the electromagnetic coupling, and hence
Watson’s theorem is exactly fulfilled. We find that the model
description of the pion-photoproduction multipoles is in
overall agreement with the partial-wave analyses in the re-
gion from the threshold up to 650 MeV photon laboratory
energy. We have therefore developed a realistic hadron-

TABLE II. Predictions and experimental data for the threshold electric dipole multipoles for various reaction channels.

Multipole Born Vgps1+GTppd Old LET New LET Experiment

E0+sp+nd 26.1 26.3 25.9 25.9 27.9±0.5[20], 28.06±0.27[21]

E0+sp−pd −29.9 −29.6 −30.8 −30.8 −31.4±1.3[20], −31.5±0.8[22]

E0+sp0pd −2.4 −1.4 −2.3 1.0 −1.31±0.08[23], −1.32±0.05±0.06[24]

E0+sp0nd 0.4 1.0 0.5 3.8 .1.6 [25]

PION PHOTOPRODUCTION ON NUCLEONS IN A… PHYSICAL REVIEW C 70, 035209(2004)

035209-7



exchange model describing the low and intermediate energy
pion scattering and photoproduction on the nucleon in a uni-
tary fashion. The model treats the quantum effects due to
pion-nucleon loops in a Lorentz-covariant framework. It can
be extended to higher energies by including more reaction
channels. Furthermore, it is fully compatible and comple-
mentary to the relativistic meson-exchange models for the
few-nucleon system, and hence can naturally be embedded in
these models to describe more complicated processes.

The results for the threshold electric dipoles of the
charged pion photoproduction are very close to the low-
energy theorem(LET) prediction and in a reasonable agree-
ment with experiment. In contrast, the electric dipole for the
neutral pion photoproduction off the proton receives a siz-
able correction due to the final state interaction and which
improves the agreement with experimental as compared to
LETs. This correction is found to be in a qualitative agree-
ment with the large chiral-loop correction to LET known
from chiral perturbation theory(ChPT).

The two parameters of thegND vertex, which essentially
are the only free parameters of the model, were fitted toE1+
andM1+ multipoles from the SAID solution. In the future we
plan to extract these parameters directly from experimental
data. At present, theE2/M1 ratio obtained in the model is
equal to 3.8±1.6% for the bare value and −2.6±0.6 for the
physical value. This is consistent with other analyses based
on dynamical models. The precise value of this ratio is
model dependent as it is sensitive on the details of thepN
final state interaction. The only possibility of extracting this
value in a model-independent way is by using ChPT with
explicit D degrees of freedom. It would be extremely useful
to carry out such analysis.
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APPENDIX: LORENTZ, MULTIPOLE, AND ISOSPIN
DECOMPOSITION OF THE PHOTOPRODUCTION

AMPLITUDE

The general Lorentz structure of the fully off-shellgp
amplitude can be written as

Tl8,s
r8r sp8,k8;p,qd = ūl8

r8sp̄8ds1,p”8dFSA11 A12

A21 A22
D + P” SB11 B12

B21 B22
D

+ «”SC11 C12

C21 C22
D + P” «”SD11 D12

D21 D22
DG

3S1

p”
Dul

rspWd, sA1d

whereA, B, C, D are scalar functions,«t st=0, ±1d stands
for the photon polarization vector, indexs=l−t denotes the
helicity of thegN state, andP is the total 4-momentum.

The parity-conservinggp amplitudes are the transition
amplitudes from thegN partial-wave state

uJ,r,rl =
uJ,r,sl − rruJ,r,− sl

Î2
sA2d

to thepN partial-wave state,

uJ,r,rl =
uJ,r,ll + rruJ,r,− ll

Î2
. sA3d

In terms of the partial-wave helicity amplitudesMl8s
r8r, these

amplitudes are given by

Tr
r8r = Tl8s

r8r − rTl8−s
r8r . sA4d

For real photonss takes the values: −32, −1
2, 1

2, 3
2. Thus, for

each parityr and ther-spin values, we find two independent
amplitudes, e.g.,

Ar
r8r = T1/2,1/2

r8r − rT1/2−1/2
r8r ,

Br
r8r = T1/2,3/2

r8r − rT1/2−3/2
r8r . sA5d

The multipole amplitudesare related to the parity con-
serving amplitudes in the following way:

El+ =
Î2

4sl + 1d
fA+ + Îl/sl + 2dB+g, sA6ad

Ml− =
Î2

4l
f− A− + Îsl − 1d/sl + 1dB−g, sA6bd

El− =
Î2

4l
fA− + Îsl + 1d/sl − 1dB−g, J . 1/2, sA6cd

Ml+ =
Î2

4sl + 1d
fA+ − Îsl + 2d/lB+g, J . 1/2, sA6dd

whereE or M denotes whether the transition is of electric or
magnetic type. Indexl± stands for the value of thepN state
orbital momentum,l =J− 1

2r, and the value of parityr.
Considering the isospin structure,

T = p8axN8AaxN, sA7d

the following three decompositions are usually made:

Aa = da3A
s+d + taA

s0d + i«a3btbA
s−d

=
1

3
tat3A

1/2 + taA
s0d + Sda3 −

1

3
tat3DA3/2

=
1

2
tas1 + t3dpA

1/2 +
1

2
tas1 − t3dnA

1/2 + Sda3 −
1

3
tat3DA3/2.

sA8d

The relation amongst them is given by
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A3/2 = As+d − As−d, A1/2 = As+d + 2As−d, sA9ad

pA
1/2 = As0d +

1

3
A1/2, nA

1/2 = As0d −
1

3
A1/2. sA9bd

It is also possible to relate these to the amplitudes of specific
reactions,

Asgp → p0pd = As+d + As0d =
2

3
A3/2 + pA

1/2, sA10ad

Asgn → p0nd = As+d − As0d =
2

3
A3/2 − nA

1/2, sA10bd

Asgp → p+nd = Î2sAs0d + As−dd = Î2S−
1

3
A3/2 + pA

1/2D ,

sA10cd

Asgn → p−pd = Î2sAs0d − As−dd = Î2S1

3
A3/2 + nA

1/2D .

sA10dd
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